Institut für Analysis

Priv.-Doz. Dr. Gerd Herzog

M.Sc. Niklas Knobel M.Sc. Sebastian Ohrem

Lösungsvorschlag zur Modulprüfung Höhere Mathematik II für die Fachrichtung Physik

Sommersemester 2024

12. September 2024

Aufgabe 1 (2+7+7+4=20 Punkte):

$$A = \begin{pmatrix} 1 & i & -i \\ -i & 1 & 1 \\ i & 1 & -1 \end{pmatrix}.$$

- (a) Zeigen Sie: A ist hermitesch.
- (b) Bestimmen Sie die Eigenwerte von A.
- (c) Bestimmen Sie eine unitäre Matrix S und eine Diagonalmatrix D so, dass $A = SDS^{-1}$ gilt.
- (d) Bestimmen Sie det(A) und $spur(A^{11})$.

Lösungsvorschlag zu Aufgabe 1:

- (a) Man erkennt an der Matrix direkt, dass $A^{\top} = \overline{A}$ gilt. Entsprechend ist $A^* = \overline{(A^{\top})} = \overline{(\overline{A})} = A$, also ist A hermitesch.
- (b) Zunächst berechnen wir das charakteristische Polynom

$$p_A(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & \mathbf{i} & -\mathbf{i} \\ -\mathbf{i} & 1 - \lambda & 1 \\ \mathbf{i} & 1 & -1 - \lambda \end{pmatrix} \longleftrightarrow = \det\begin{pmatrix} 1 - \lambda & 0 & -\mathbf{i} \\ 0 & 2 - 2\lambda & -\lambda \\ \mathbf{i} & -\lambda & -1 - \lambda \end{pmatrix}$$
$$= (1 - \lambda) \det\begin{pmatrix} 2 - 2\lambda & -\lambda \\ -\lambda & -1 - \lambda \end{pmatrix} - \mathbf{i} \det\begin{pmatrix} 0 & 2 - 2\lambda \\ \mathbf{i} & -\lambda \end{pmatrix} = (1 - \lambda) \left((2 - 2\lambda)(-1 - \lambda) - \lambda^2 + \mathbf{i} \cdot 2\mathbf{i} \right)$$
$$= (1 - \lambda) (\lambda^2 - 4) = (1 - \lambda)(2 - \lambda)(-2 - \lambda).$$

Somit hat A die Eigenwerte -2, 1, 2.

Bemerkung: Da alle Nullstellen einfach sind, haben alle Eigenwerte algebraische und geometrische Vielfachheit 1.

(c) Nun berechnen wir die Eigenräume:

$$\begin{split} E_A(1) &= \operatorname{Kern}(A-I) = \operatorname{Kern}\begin{pmatrix} 0 & \mathrm{i} & -\mathrm{i} \\ -\mathrm{i} & 0 & 1 \\ \mathrm{i} & 1 & -2 \end{pmatrix} \xrightarrow{\longleftarrow} ^+ \\ &= \operatorname{Kern}\begin{pmatrix} 0 & 0 & 0 \\ -\mathrm{i} & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \xleftarrow{\longleftarrow} \overset{\longleftarrow}{\longleftarrow} \\ &= \operatorname{Kern}\begin{pmatrix} 1 & 0 & \mathrm{i} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{lin}\left\{\begin{pmatrix} \mathrm{i} \\ -1 \\ -1 \end{pmatrix}\right\}, \end{split}$$

$$E_A(2) = \operatorname{Kern}(A - 2I) = \operatorname{Kern}\begin{pmatrix} -1 & \mathrm{i} & -\mathrm{i} \\ -\mathrm{i} & -1 & 1 \\ \mathrm{i} & 1 & -3 \end{pmatrix} \xrightarrow{-\mathrm{i}}^+ = \operatorname{Kern}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ \mathrm{i} & 1 & -3 \end{pmatrix} \xrightarrow{|\cdot|_{\frac{1}{2}}}$$

$$= \operatorname{Kern} \begin{pmatrix} 1 & -i & 3i \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{lin} \left\{ \begin{pmatrix} -i \\ -1 \\ 0 \end{pmatrix} \right\},$$

$$\begin{split} E_A(-2) &= \mathrm{Kern}(A+2I) = \mathrm{Kern}\begin{pmatrix} 3 & \mathrm{i} & -\mathrm{i} \\ -\mathrm{i} & 3 & 1 \\ \mathrm{i} & 1 & 1 \end{pmatrix} \overset{+}{\smile}^+ \\ &= \mathrm{Kern}\begin{pmatrix} 0 & 4\mathrm{i} & 2\mathrm{i} \\ 0 & 4 & 2 \\ \mathrm{i} & 0 & \frac{1}{2} \end{pmatrix} \overset{+}{\mid \cdot \frac{1}{4}} \\ &= \left(\begin{matrix} 1 & 0 & -\frac{\mathrm{i}}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{matrix} \right) = \mathrm{lin} \{ \begin{pmatrix} -\frac{\mathrm{i}}{2} \\ \frac{1}{2} \\ -1 \end{pmatrix} \}. \end{split}$$

Um aus den aufspannenden Vektoren eine unitäre Matrix zu machen, müssen wir diese noch normieren. Wir wählen also

$$v_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} -i\\1\\1 \end{pmatrix}, v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} i\\1\\0 \end{pmatrix}, v_{-2} = \frac{1}{\sqrt{6}} \begin{pmatrix} i\\-1\\2 \end{pmatrix}.$$

Nach Vorlesung (Satz18.7) sind diese Eigenvektoren orthogonal zueinander. Insgesamt haben wir die Darstellung $A=SDS^{-1}$ mit

$$S = (v_1, v_2, v_{-2}) = \begin{pmatrix} \frac{-i}{\sqrt{3}} & \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

gezeigt.

(d) Ähnliche Matrizen haben nach Vorlesung (Bemerkung 18.4 (b) und Satz 18.5 (b)) dieselbe Spur und Determinante. Damit gelten

$$\det(A) = \det(D) = 1 \cdot 2 \cdot (-2) = -4 \qquad \text{und} \qquad \operatorname{spur}(A^{11}) = \operatorname{spur}(D^{11}) = 1^{11} + 2^{11} + (-2)^{11} = 1,$$

Bemerkung: Hier haben wir verwendet, dass A^{11} und D^{11} ähnlich sind. Dies gilt wegen $A^{11} = SD^{11}S^{-1}$.

Aufgabe 2 (7 + 13 = 20 Punkte):

(a) Es sei $f : \mathbb{R}^3 \to \mathbb{R}$ gegeben durch

$$f(x, y, z) = e^{xy+z} + \cos(x+z).$$

Zeigen Sie, dass es eine offene Menge $U \subseteq \mathbb{R}^2$ mit $(\pi,0) \in U$, eine offene Menge $V \subseteq \mathbb{R}$ mit $0 \in V$ und ein $g \in C^1(U,V)$ gibt mit $g(\pi,0) = 0$, sodass f(x,y,g(x,y)) = 0 gilt für alle $(x,y) \in U$. Bestimmen Sie $g'(\pi,0)$.

(b) Berechnen Sie das Maximum der Funktion $f \colon \mathbb{R}^3 \to \mathbb{R}$ mit

$$f(x, y, z) = x + xy + z^2$$

eingeschränkt auf die Menge

$$S = \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 + z^2 = 1\}.$$

Lösungsvorschlag zu Aufgabe 2:

(a) Wir verwenden den Satz über implizit definierte Funktionen. Dazu merken wir zunächst an, dass f beliebig oft differenzierbar ist als Komposition beliebig oft differenzierbarer Funktionen. Die partiellen Ableitungen berechnen wir:

$$\frac{\partial f}{\partial(x,y)}(x,y,z) = \left(y e^{xy+z} - \sin(x+z), \quad x e^{xy+z}\right), \qquad \frac{\partial f}{\partial z}(x,y,z) = \left(e^{xy+z} - \sin(x+z)\right)$$

Im Punkt $(\pi,0,0)$ ist $\frac{\partial f}{\partial z}(\pi,0,0)=1$ invertierbar. Weiter gilt $f(\pi,0,0)=0$. Damit existieren nach dem Satz über implizit definierte Funktionen offene Mengen $U\subseteq\mathbb{R}^2, V\subseteq\mathbb{R}$ mit $(\pi,0)\in U, 0\in V$ und eine Funktion $g\in C^1(U,V)$, sodass für $(x,y)\in U$ und $z\in V$ gilt: $f(x,y,z)=0\iff z=g(x,y)$. Weiter gilt

$$g'(x,y) = -\left(\frac{\partial f}{\partial z}(x,y,g(x,y))\right)^{-1} \frac{\partial f}{\partial (x,y)}(x,y,g(x,y))$$

für $(x, y) \in U$ und damit wegen $g(\pi, 0) = 0$

$$q'(\pi, 0) = (0 - \pi).$$

Bemerkung: Der Satz über implizit definierte Funktionen ist nur auf stetig differenzierbare Funktionen anwendbar. Bevor man den Satz anwenden möchte, muss man dies explizit sicherstellen.

(b) Zunächst halten wir fest, dass f und $h: \mathbb{R}^3 \to \mathbb{R}, h(x,y,z) = x^2 + y^2 + z^2 - 1$ beliebig oft differenzierbar sind als Polynomfunktionen. Weiter ist die Sphäre S kompakt. Somit nimmt f eingeschränkt auf S sein Maximum an einer Stelle (x,y,z) an. Nach dem Satz von Lagrange existiert ein $\lambda \in \mathbb{R}$ mit

$$(1+y \quad x \quad 2z) = f'(x,y,z) = \lambda h'(x,y,z) = 2\lambda (x \quad y \quad z),$$

was sich in Komponenten als

$$1 + y = 2\lambda x$$
 $x = 2\lambda y$ $z(\lambda - 1) = 0$

schreibt

Fall 1: Ist $\lambda=1$, so folgt aus x=2y, 1+y=2x=4y, dass $y=\frac{1}{3}, x=\frac{2}{3}$ gelten. Wegen $x^2+y^2+z^2=1$ folgt daraus $z=\pm\frac{2}{3}$. Wir berechnen den Funktionswert an diesen Punkten und erhalten so

$$f(\frac{2}{3}, \frac{1}{3}, \pm \frac{2}{3}) = \frac{2}{3} + \frac{2}{9} + \frac{4}{9} = \frac{4}{3}.$$

Fall 2: Ist z=0, so folgt aus $x=2\lambda y$, $1+y=2\lambda x=4\lambda^2 y$, dass $y=\frac{1}{4\lambda^2-1}$, $x=\frac{2\lambda}{4\lambda^2-1}$ gelten und insbesondere für den Nenner $4\lambda^2-1\neq 0$. Weiter ist

$$x^2 + y^2 = 1 \implies 1 + 4\lambda^2 = (4\lambda^2 - 1)^2 = 16\lambda^4 - 8\lambda^2 + 1 \implies \lambda^4 - \frac{3}{4}\lambda^2 = 0,$$

was die Lösungen $\lambda = 0, -\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}$ besitzt.

Fall 2.1: Für $\lambda = 0$ haben wir x = 0, y = -1 und damit f(0, -1, 0) = 0.

$$\textit{Fall 2.2: } \text{F\"{u}r } \lambda = \pm \tfrac{\sqrt{3}}{2} \text{ haben wir } x = \pm \tfrac{\sqrt{3}}{2}, \, y = \tfrac{1}{2} \text{ und damit } f(\pm \tfrac{\sqrt{3}}{2}, \tfrac{1}{2}, 0) = \pm \tfrac{3\sqrt{3}}{4}.$$

Ergebnis: Da alle in den Fällen gefundenen Punkte auf S liegen, ist das Maximum von f auf S gleich dem Maximum der Funktionswerte der gefundenen Punkte, also gleich

$$\max \left\{ \frac{4}{3}, 0, \frac{3\sqrt{3}}{4}, -\frac{3\sqrt{3}}{4} \right\}.$$

Wir müssen das Maximum noch ausrechnen. Dabei gilt

$$\frac{4}{3} > \frac{3\sqrt{3}}{4} \iff 16 > 9\sqrt{3} \iff 256 = 16^2 > 9^2 \cdot 3 = 243.$$

Also ist das Maximum von f auf S gleich $\frac{4}{3}$.

Aufgabe 3 (6+6+8=20 Punkte):

(a) Sei $\gamma:[0,2\pi]\to\mathbb{R}^3$ gegeben durch

$$\gamma(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \\ t \end{pmatrix},$$

und $f: \mathbb{R}^3 \to \mathbb{R}, \ f(x,y,z) = xe^z + yz$. Berechnen Sie das Kurvenintegral $\int_{\gamma} f ds$.

(b) Sei $A=\{(x,y)\in\mathbb{R}^2:\ 0\leq x\leq y\leq \sqrt{\pi}\}.$ Berechnen Sie das Integral

$$\int_{A} \sin(y^2) \, \mathrm{d}(x, y).$$

(c) Sei $K=\{(x,y,z): x^2+y^2=\sin^2(z), \frac{\pi}{4}\leq z\leq \frac{\pi}{2}\}$ und $f:K\to\mathbb{R}$ definiert durch $f(x,y)=\sqrt{1-x^2-y^2}$. Berechnen Sie das Oberflächenintegral

$$\int_K f \, \mathrm{d}o.$$

Lösungsvorschlag zu Aufgabe 3:

(a) Wir berechnen

$$\gamma'(t) = \begin{pmatrix} -\sin(t) \\ \cos(t) \\ 1 \end{pmatrix},$$

und somit ist $\|\gamma'(t)\| = \sqrt{2}$. Damit berechnen wir

$$\int_{\gamma} f ds = \int_{0}^{2\pi} f(\gamma(t)) \|\gamma'(t)\| dt$$

$$= \sqrt{2} \int_{0}^{2\pi} \cos(t) e^{t} + \sin(t) t dt$$

$$= \sqrt{2} \left[\frac{1}{2} (\sin(t) + \cos(t)) e^{t} - t \cos(t) + \sin(t) \right]_{0}^{2\pi}$$

$$= \sqrt{2} \left(\frac{e^{2\pi} - 1}{2} - 2\pi \right).$$

(b) Mit dem Satz von Fubini folgt, dass

$$\int_{A} \sin(y^{2})x^{2} d(x, y) = \int_{0}^{\sqrt{\pi}} \int_{0}^{y} \sin(y^{2}) dx dy$$
$$= \int_{0}^{\sqrt{\pi}} \sin(y^{2})y dy.$$

Wir substituieren $z = y^2$ und erhalten

$$\int_{A} \sin(y^{2}) d(x, y) = \frac{1}{2} \int_{0}^{\pi} \sin(z) dz.$$

$$= \frac{1}{2} [-\cos(z)]_{0}^{\pi}$$

$$= 1.$$

(c) Eine reguläre Parametrisierung von K ist gegeben durch $\phi:[0,2\pi]\times[\frac{\pi}{4},\frac{\pi}{2}]$ definiert durch

$$\phi(\theta, z) = \begin{pmatrix} \sin(z)\sin(\theta) \\ \sin(z)\cos(\theta) \\ z \end{pmatrix}.$$

4

Insbesondere ist ϕ surjektiv und injektiv im Inneren von $[0,2\pi] \times [\frac{\pi}{4},\frac{\pi}{2}]$. Wir berechnen

$$(\partial_{\theta}\phi, \partial_{z}\phi) = \begin{pmatrix} \sin(z)\cos(\theta) & \cos(z)\sin(\theta) \\ -\sin(z)\sin(\theta) & \cos(z)\cos(\theta) \\ 0 & 1 \end{pmatrix}.$$

Wir berechnen

$$\partial_{\theta} \phi \times \partial_{z} \phi = \begin{pmatrix} -\sin(z)\sin(\theta) \\ -\sin(z)\cos(\theta) \\ \sin(z)\cos(z) \end{pmatrix},$$

und daraus folgt $\|\partial_{\theta}\phi \times \partial_{z}\phi\| = \sqrt{\sin^{2}(z)(1+\cos^{2}(z))}$. Damit erhalten wir

$$\int_{K} f \, do = \int_{0}^{2\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2}(z)} \sqrt{\sin^{2}(z)(1 + \cos^{2}(z))} \, dz d\theta$$

$$= 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos(z) \sin(z) \sqrt{1 + \cos^{2}(z)} \, dz$$

$$= -\frac{2}{3}\pi [(1 + \cos^{2}(z))^{\frac{3}{2}}]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \frac{2}{3}\pi ((1 + \frac{1}{2})^{\frac{3}{2}} - 1)$$

$$= \pi (\sqrt{\frac{3}{2}} - \frac{2}{3}).$$

Aufgabe 4 ((8+2)+(5+5)=20 Punkte):

- (a) Die 2π -periodische Funktion $g: \mathbb{R} \to \mathbb{R}$ sei gegeben durch $g(t) = \pi |t|$ für $t \in [-\pi, \pi)$.
 - (i) Berechnen Sie die reellen Fourierkoeffizienten von g und geben Sie die Fourierreihe von g an.
 - (ii) Für welche $t \in \mathbb{R}$ konvergiert die Fourierreihe gegen g(t)?
- (b) (i) Berechnen Sie $\int_{\gamma} \frac{1}{\sin(z)} \, \mathrm{d}z$ für $\gamma \colon [0,2\pi] \to \mathbb{C}$ gegeben durch $\gamma(t) = 4\mathrm{e}^{\mathrm{i}t}.$
 - (ii) Sei $f:\mathbb{C}\to\mathbb{C}$ eine holomorphe Funktion mit Re $f\leq c$ für ein $c\in\mathbb{R}$. Zeigen Sie, dass f konstant ist.

HINWEIS: Betrachten sie die Funktion $z \mapsto e^{f(z)}$.

Lösungsvorschlag zu Aufgabe 4:

(a) (i) Da f gerade ist folgt, dass $b_k(f) = 0$ ist für alle $k \in \mathbb{N}$. Wir berechnen

$$a_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\pi - |t|) = \frac{\pi}{2}$$

und für $k \in \mathbb{N}$ berechnen wir

$$a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kt) (\pi - |t|) dt$$

$$= \frac{-2}{\pi} \int_{0}^{\pi} \cos(kt) t dt$$

$$= \frac{-2}{\pi} \left[\frac{1}{k} \sin(kt) t + \frac{1}{k^2} \cos(kt) \right]_{0}^{\pi}$$

$$= -\frac{2}{\pi k^2} ((-1)^k - 1)$$

$$= \begin{cases} \frac{4}{\pi k^2} & k = 2n - 1, \ n \in \mathbb{N} \\ 0 & k = 2n, \ n \in \mathbb{N}. \end{cases}$$

Somit ist die Fourierreihe von g gegeben durch

$$\frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{4}{\pi(2n+1)^2} \cos((2n+1)t)$$

- (ii) Da g stetig und stückweise differenzierbar ist, konvergiert die Fourierreihe nach dem Darstellunssatz für alle t gegen g(t).
- (b) (i) Wir schreiben $f(z) = \frac{1}{\sin(z)}$. Die Funktion f ist holomorph auf $\mathbb{R} \setminus \{\pi n : n \in \mathbb{Z}\}$ und damit folgt mit dem Residuensatz

$$\int_{\gamma} \frac{1}{\sin(z)} dz = 2\pi i \sum_{n \in \mathbb{Z}} \operatorname{res}(f, \pi n) \operatorname{ind}_{\gamma}(\pi n).$$

Die Kurve γ umläuft alle $z\in\{\pi n:n\in\mathbb{Z}\}$ mit $\|z\|<4$ einmal, damit gilt

$$\operatorname{ind}_{\gamma}(\pi n) = \begin{cases} 1, & |n| \leq 1, \\ 0, & \text{sonst.} \end{cases}$$

Die Funktion f hat in $n\pi$ ein Pol erster Ordnung wegen

$$\lim_{z \to \pi_n} \frac{z - \pi_n}{\sin(z)} = \frac{1}{\sin'(\pi_n)} = \frac{1}{\cos(\pi_n)} = (-1)^n,$$

woraus direkt $\operatorname{res}(f, n\pi) = (-1)^n$ folgt. Damit berechnen wir

$$\int_{\gamma} \frac{1}{\sin(z)} dz = 2\pi i \sum_{|n| \le 1} (-1)^n = -2\pi i.$$

(ii) Wir definieren $g:\mathbb{C}\to\mathbb{C}$ durch $g(z):=e^{f(z)}$. Als Verknüpfung von holomorphen Funktionen ist g holomorph. Für c gilt

$$|g(z)| = |e^{f(z)}| = e^{\operatorname{Re} f(z)} \le e^c$$

Damit folgt mit dem Satz von Liouville, dass g konstant ist. Es gilt $1=e^{f(z)}e^{-f(z)}=g(z)e^{-f(z)}$ und damit folgt $g(z)\neq 0$ für $z\in\mathbb{C}$. Wir berechnen $0=g'(z)=f'(z)e^{f(z)}$ und folgern f'(z)=0. Also ist f constant.