Institut für Analysis

apl. Prof. Dr. Peer Christian Kunstmann Marvin Schulz, M.Sc.

Höhere Mathematik II für die Fachrichtung Physik

Nachklausur

Aufgabe 1: (10 + 10 = 20 Punkte)

(a) Gegeben ist die Matrix

$$B = \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

- i) Begründen Sie, weshalb B diagonalisierbar ist, ohne die Matrix explizit zu diagonalisieren.
- ii) Bestimmen Sie alle Eigenwerte von B samt ihrer jeweiligen algebraischen Vielfachheit.
- iii) Bestimmen Sie für jeden Eigenwert λ von B eine Orthonormalbasis des zugehörigen Eigenraumes $E_B(\lambda)$.
- iv) Bestimmen Sie eine reguläre Matrix $S\in\mathbb{R}^{2\times 2}$ derart, dass $S^{-1}BS$ Diagonalgestalt hat. Geben Sie S^{-1} explizit an.
- (b) Im folgenden sei $n \in \mathbb{N}$, beweisen oder widerlegen Sie die Aussagen:
 - i) Es sei $A \in \mathbb{R}^{n \times n}$ mit $A^T = -A$, dann gilt $\lambda \in \mathbb{C} \setminus \mathbb{R}$ für jeden Eigenwert $\lambda \neq 0$ von A.
 - ii) Jede Matrix $A \in \mathbb{R}^{2 \times 2}$ hat immer mindestens einen reellen Eigenwert.
 - iii) Jede Matrix $A \in \mathbb{R}^{3\times 3}$ hat immer mindestens einen reellen Eigenwert.
 - iv) Die Abbildung $(\cdot|\cdot): \mathbb{R}^{2\times 2} \times \mathbb{R}^{2\times 2} \to \mathbb{R}$ gegeben durch

$$(A|B) = \det(AB)$$

ist ein Skalarprodukt.

Aufgabe 2: (12 + 8 = 20 Punkte)

a) Gegeben sei die Menge

$$E = \{(x, y) \in \mathbb{R}^2 : x^2 + 2y^2 = 2, y > 0 \}.$$

Bestimmen Sie das Dreieck mit den Eckpunkten (u, -v), (u, v) und $(\sqrt{2}, 0)$ für $(u, v) \in E$, welches maximalen Flächeninhalt hat. Formulieren Sie das Problem als Optimierungsproblem mit einer Nebenbedingung und wenden Sie dann die Multiplikatorenregel von Lagrange an.

HINWEIS: Sie dürfen davon ausgehen, dass es ein solches Dreieck mit maximalen Flächeninhalt gibt.

b) Es sei $g:[0,\infty)\to\mathbb{R}$ zweimal stetig differenzierbar und $f:\mathbb{R}^2\to\mathbb{R}$ mit

$$f((x_1, x_2)) := \int_0^{1+x_1} g(rx_2) dr.$$

Bestimmen Sie das Taylorpolynom zweiter Ordnung von f bei $x_0 = (0,0)$.

BITTE WENDEN!

Aufgabe 3: (8 + 12 = 20 Punkte)

a) Es sei

$$f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto \begin{cases} \frac{(\max\{x,y\})^2}{|x| + |y|} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

- i) Ist f in (0,0) stetig? Begründen Sie Ihre Antwort.
- ii) Ist f in (0,0) partiell differenzierbar? Begründen Sie Ihre Antwort.
- b) Sei $F: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch

$$F(x, y, z) = (y - z)^2 e^{(y-z)} - e^{-x^2}$$
 für alle $(x, y, z) \in \mathbb{R}^3$.

i) Zeigen Sie: Es existieren offene Mengen $U \subset \mathbb{R}^2$ mit $(1,2) \in U, V \subset \mathbb{R}$ mit $3 \in V$ und ein $\varphi \in C^1(U,V)$ so, dass

$$F(x, y, \varphi(x, y)) = 0$$
 für alle $(x, y) \in U, z \in V$.

ii) Bestimmen Sie $(\nabla \varphi)(1,2)$.

Aufgabe 4: (10 + 10 = 20 Punkte)

a) Bestimmen Sie das Integral

$$\int_A |x| \, d(x, y, z) \quad \text{für } A = \{(x, y, z) \in \mathbb{R}^3 : z \in [-1, 1], x^2 + y^2 \le z^2, y \ge 0\}.$$

b) Es sei die Menge E das von den Kurven

$$\gamma_1: [-1/\sqrt{2}, 1/\sqrt{2}] \to \mathbb{R}^2, \quad \gamma_1(t) = (t, \sqrt{2}t^2),
\gamma_2: [\pi/4, 3\pi/4] \to \mathbb{R}^2, \quad \gamma_2(t) = (\cos(t), \sin(t)),$$

berandete beschränkte Gebiet. Berechnen Sie den Flächeninhalt $|\overline{E}|$ mit Hilfe eines geeigneten Vektorfeldes $v: \mathbb{R}^2 \to \mathbb{R}^2$ und des Integralsatzes von Gauß im \mathbb{R}^2 .

HINWEIS: Begründen Sie weshalb die Kurve $\gamma = \gamma_1 + \gamma_2$ geschlossen ist.