Höhere Mathematik II für die Fachrichtungen Elektroningenieurwesen, Physik und Gedoäsie SS 2010/2011

Andreas Müller-Rettkowski e-mail: andreas.mueller-rettkowski@kit.edu

LATEX: Markus Maier

Dies ist eine Vorlesungs zusammen fassung, gedacht zur Vorlesungsbegleitung und als Gedächtnisstütze. Der Besuch der Vorlesung ist hierdurch nicht zu ersetzen: In der Vorlesung wird erklärt, begründet, veranschaulicht und eingeordnet.

Inhaltsverzeichnis

17. Vektorraume	9
17.1. Definitionen	6
17.2. Beispiele	E
17.3. Teilraum (TR) eines VR, Linearkombinationen (LK)	10
17.4. Basis, Dimension	11
18. Unitärer VR, euklidischer VR, Skalarprodukt, Norm, Orthogonalität, Vektor	
produkt	13
18.1. Definition	13
18.2. Norm	
18.3. Winkel, Orthogonalität im euklidischen Raum $(V, \langle \cdot, \cdot \rangle)$	
18.4	
18.5. Das Gram-Schmidt-Orthonormalisierungsverfahren	
18.6. Das Vektorprodukt	17
19. Lineare Abbildungen, Matrizen	19
19.1. Defintion Lineare Abbildung	19
19.2. Einfache Eigenschaften linearer Abbildungen	19
19.3. Lineare Abbildungen und Matrizen	20
19.4	21
19.5. Rechnen mit Matrizen	22
20. Lineare Gleichungssysteme, der Gaußsche Algorithmus	25
20.1	25
20.2. Der Rang einer Matrix	26
20.3. Lösen von $A\vec{x} = \vec{y}$	28
21. Reguläre Matrizen, die zu einer Matrix inverse Matrix	31
21.1. Reguläre Matrizen	31
21.2. Die zu A inverse Matrix A^{-1}	31
22. Determinanten	33
22.1. Permutationen	33
22.2. Determinante	34

23. C	Orthogonale Matrizen	37
2	3.1. Beispiele	37
2	3.2	37
2	3.3	37
24.E	igenwertprobleme, Diagonalisieren von Matrizen	39
	4.1. Beispiele	
	4.2. Definition	
	4.3	
2	4.4. Das charakteristische Polynom der Matrix $A=(a_{jk})\in\mathbb{C}^{(n,n)}$	41
2	4.5	42
2	4.6. Diagonalisieren von Matrizen	42
2	4.7. Hermitesche Matrizen sind diagonalisierbar	43
25. C	Definite Matrizen	44
	$ec{S}:S\subset \mathbb{R}^n o \mathbb{R}^m$, Stetigkeit	45
	6.1	
2	6.2	45
27. K	Kurven in \mathbb{R}^n , Die Bogenlänge	47
2	7.1	47
	7.2. Die Länge der Kurve $\vec{r}:[a,b]\to\mathbb{R}^n$	
	7.3. Parameterwechsel	
2	7.4. Parametrisieren nach der Bogenlänge s	49
28. C	Die Richtungsableitung, Partielle Ableitungen	50
	8.1. Die Richtungsableitung	50
2	8.2. Partielle Ableitungen	50
	8.3. Die Jakobi Matrix. Die Funktionaldeterminante	
20 6	Gradient, Divergenz, Rotation, Laplaceoperator, der $ abla$ -Operator	52
	9.1. Definitionen	
	9.2. Beispiele	
	9.3. rot grad, div rot, rot rot, grad div	
	$ec{S}:S\subset\mathbb{R}^n o\mathbb{R}^m$, die Ableitung	54
	0.1. Differenzierbarkeit	54
	0.2	54
	0.3. Beispiele	54
	0.4. Ableitung und Richtungsableitung	55 55
	0.5. Folgerungen	55 55
	0.6. Die Kettenregel	55 E6
3	U.1. Langentialedene einer flache in \mathbb{R}^+	90

31. Zum Taylorsatz für Funktionen in n Variablen	57
31.1. Vorbereitungen, Bezeichnungen	
31.2. Der Taylorsatz aus HMI	
31.3. Taylorsatz von Funktionen in n Variablen	
31.4. Folgerungen, Spezialisierungen	
31.5. Taylorreihe	60
32 . $f:S\subset\mathbb{R}^n o\mathbb{R}$. Extremwerte	61
32.1. Bezeichnungen, Definitionen, Notwendige Bedingungen	61
32.2. Hinreichende Bedinung	61
33. Der Satz über die inverse Funktion. Der Satz über implizite Funktionen	63
33.1. Der Inverse-Funktion-Satz	63
33.2. Der Implizite-Funktion-Satz	64
34. Extremwerte mit Nebenbedingungen, Lagrange Multiplikatoren	65
34.1. Hinführende Beispiele	65
34.2. Prolemstellung, abstrakte Voraussetzungen	65
34.3. Lagrange Multiplikatoren Satz	66
35. Integration über zweidimensionale Bereiche	67
35.1. Gebiet und Rand eines Gebietes (vgl. 26.1, 29.1, 31.3)	67
35.2. Integral über spezielle Gebiete	67
35.3. Beispiele	68
36. Kurvenintegrale (Linienintegrale)	69
36.1. Definition Kurvenintegral über ein Skalarfeld	69
36.2. Kurvenintegral über ein Vektorfeld	70
36.3. Der Gaußsche Integralsatz im \mathbb{R}^2	71
37. Folgerungen aus dem Gaußschen Satz, 36.3., aus (G)	73
37.1. Flächeninhalt von G	73
37.2. Der Stokessche Satz im \mathbb{R}^2	73
37.3. Der Divergenzsatz im \mathbb{R}^2	73
37.4. Die Greenschen Formeln im \mathbb{R}^2	74
38. Potentialfelder	75
38.1. Definition: Potential, Potentialfeld	75
38.2. Der erste Hauptsatz für Kurvenintegrale	
38.3. Der zweite Hauptsatz	
39. FLächen im \mathbb{R}^3 , Oberflächeninhalt, Oberflächenintegrale	77
39.1. (siehe auch 30.7) Flächendarstellungen	77
39.2. Oberflächenintegrale	77

40). Variablensubstitution im Gebietsintegral	79
	40.1. Die Transformationsformel	79
	40.2. Parameterdarstellung von Rotationsflächen	80
11	. Der Stokesche Integralsatz im \mathbb{R}^3	81
71	41.1. Die Voraussetzungen	
	41.2. Der Stokessche Integralsatz im \mathbb{R}^3	
	41.3. Bemerkungen zu \vec{N} und \vec{T} und ihre gegenseitige Abhängigkeit	
	41.4. Beispiel	
12	2. Volumenintegrale	83
42	42.1. Definitionen	
	42.1. Definitionen	00
43	3. Substitution im Volumenintegral	85
	43.1. Erinnerung an $n = 1, n = 2 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	
	43.2. Substitutionsregel für $n=3$	
	43.3. Beispiele	85
44	I. Der Gaußsche Integralsatz in \mathbb{R}^3	87
•	44.1. Der Gaußsche Satz	
	44.2. Beispiele	
II.	. Komplexe Analysis und Integraltransformationen	89
1.	Differenzieren im Komplexen, Die Cauchy-Riemann Differentialgleichungen	
	(CR-DGLn)	90
	1.1. $\mathbb{R}^2 = \mathcal{C}$	90
	1.2. $f: G \to \mathbb{C}$ und $\vec{f}: G \to \mathbb{R}^2$	
	1.3. Holomorphie, Die CR-DGLn	
	1.4. Folgerungen	
_		
2.	Schlichte Funktionen. Der komplexe Logarithmus. Wurzeln	93
	2.1. Schlichtheit	
	2.2. Schlichtheit der Umkehrfunktion einer schlichten Funktion	
	2.3. Der komplexe Logarithmus	
	2.4. Potenzen, Wurzeln	94
3.	Komplexe Kurvenintegrale	96
3.		96
3.	Komplexe Kurvenintegrale 3.1. Das komplexe Kurvenintegral	96
	3.1. Das komplexe Kurvenintegral	96 96
	3.1. Das komplexe Kurvenintegral	96

	4.3.	Folgerungen
		Bemerkung
	4.5.	Beispiele
	4.6.	Die Integralformel von Cauchy
5.	Die	Laurent-Entwicklung, Potenzreihenentwicklung 100
	5.1.	Bezeichnungen
	5.2.	Die Laurententwicklung
	5.3.	Die Taylorentwicklung
	5.4.	Beispiele
6.	Isoli	erte Singularitäten 103
	6.1.	Definition
	6.2.	Die verschiedenen isolierten Singularitäten
	6.3.	Beispiele
7.	Der	Residuensatz 105
	7.1.	$\operatorname{Res}(f;z_0)$: Residuum an einer isolierten Singularität z_0 von f 105
	7.2.	Der Residuensatz
8.	Die	Laplace Transformation. Definition 107
	8.1.	Die zulässigen Funktionen \mathcal{Z}
	8.2.	Beispiele
	8.3.	Das Laplace Integral
	8.4.	Die Laplace Transformation
9.	Ana	lytische Eigenschaften der Laplace Transformierten 110
	9.1.	
	9.2.	
	9.4.	Beispiel
10		eln zum Rechnen mit ${\cal L}$
		Ähnlichkeitstransformation
	10.2	Verschiebungssatz
		Dämpfungssatz
		Differentiationssatz (im Urbild)
		Differentiation im Bild
	10.6	Integralsatz (für das Urbild)
11		Anfangswertproblem für die lineare gewöhnliche Differentialgleichung 2.
		nung mit konstanten Koeffizienten 114
		Prolemformulierung, Übertragen in den Bildraum
	11.2	Lösung des Problems aus 11.1

12. Die Faltung (zu y_p in 11.2)	115
12.1. Faltungssatz	115
$12.2. y_p \text{ aus } 11.2 \dots \dots \dots \dots \dots \dots \dots \dots$	115
12.3. Beispiel	
13. Rücktransformation rationaler Funktionen. Zur Partialbruchzerlegung	(PBZ)117
13.1. Die Partialbruchzerlegung	117
13.2. Rücktransformation rationaler Feunktionen mit einfachen Polstelle	n 117
13.3. Rücktransformation von $1/(s(s+a)^n)$ $(n \in \mathbb{N}, a \neq 0)$	118
14. Bemerkungen zur Dirac (Delta) "Funktion"	120
14.1. $\delta(x-x_0)$	120
14.2. Laplace Transformierte von $\delta(t-t_0)$ $(t_0>0)$:	121
14.3. Beispiel	

17. Vektorräume

17.1. Definitionen

Ein Vektorraum (VR) ist eine nichtleere Menge V zusammen mit zwei Abbildungen

$$+: V \times V \to V,$$
 $(x, y) \mapsto x + y$ (Addition)
 $: \mathbb{C} \times V,$ $(\alpha, x) \mapsto \alpha x$ (Skalarmultiplikation)

so, dass folgende Bedingungen erfüllt sind:

1.
$$x + y = y + x \ \forall x, y, z \in V$$

2.
$$(x+y) + z = x + (y+z) \ \forall x, y, z \in V$$

3. Es gibt ein neutrales Element $0 \in V$ für $+: 0 + x = x \ \forall x \in V$

4. Zu jedem $v \in V$ gibt es bzgl. + ein Inverses $-x \in V$: (-x) + x = 0.

5.
$$1x = x$$

6.
$$(\alpha + \beta)x = \alpha x + \beta x$$

7.
$$\alpha(x+y) = \alpha x + \beta y$$

8.
$$\alpha(\beta x) = (\alpha \beta) x \ \forall \alpha, \beta \in \mathbb{C}, \ x, y \in V.$$

Die Elemente von V heißen Vektoren. Wird oben anstelle von \mathbb{C} als Skalarbereich \mathbb{R} verwendet, so sprechen wir von einem $reellen\ Vektorraum$.

17.2. Beispiele

1.
$$V = \mathbb{C}^n$$
:

$$\vec{z} \in \mathbb{C}^n \Leftrightarrow \vec{z} = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \text{ mit } z_j \in \mathbb{C}.$$

Mit $\vec{w} = \begin{pmatrix} w_1 \\ \vdots \\ v_n \end{pmatrix}$ werden definiert:

$$\vec{z} + \vec{w} = \begin{pmatrix} z_1 + w_1 \\ \vdots \\ z_n + w_n \end{pmatrix}$$
 und $\alpha \vec{z} = \begin{pmatrix} \alpha z_1 \\ \vdots \\ \alpha z_n \end{pmatrix}$

Den \mathbb{R}^2 , \mathbb{R}^3 kann man sich veranschaulichen.

2. $V = C^k([0,1])$: die auf [0,1] definierten k-mal stetig differenzierbaren Funktionen.

$$f, g \in C^k[0, 1]: (f+g)(x) := f(x) + g(x), x \in [0, 1]$$

 $\alpha \in \mathbb{C}, f \in C^k[0, 1]: (\alpha f)(x) := \alpha f(x), x \in [0, 1]$

3. P_n der VR der Polynome vom Grad $\leq n$.

17.3. Teilraum (TR) eines VR, Linearkombinationen (LK)

Definition. Es sei $(V, +, \cdot)$ ein VR. $U \subset V$ heißt Teilraum (TR) von V, wenn $(U, +, \cdot)$ ein VR ist. Es gilt

$$U$$
 ist TR von $V \Leftrightarrow aus \lambda, \mu \in \mathbb{C}, u, v \in U$ folgt: $\lambda u + \mu v \in U$.

Definition. V sei ein VR. Die Menge der Linearkombinationen (LK) der Vektoren $v_1, \ldots, v_k \operatorname{Lin}(v_1, \ldots, v_k)$ ist so definiert:

$$v \in \operatorname{Lin}(v_1, \dots, v_k) \Leftrightarrow \text{ es gibt Zahlen } \lambda_1, \dots, \lambda_k \text{ mit } v = \sum_{j=1}^k \lambda_j v_j$$

Satz 1. $\operatorname{Lin}(v_1,\ldots,v_k)$ ist ein TR von V. $\operatorname{Lin}(v_1,\ldots,v_k)$ heißt der von v_1,\ldots,v_k aufgespannte TR.

Beispiele. 1. Ist $\vec{a} \in \mathbb{R}^3$, $\vec{a} \neq \vec{0}$, so beschreibt $\text{Lin}(\vec{a})$ die Gerade durch 0 mit Richtung \vec{a} .

2. $\vec{e_i} \in \mathbb{C}^n$ ist der Vektor mit den Koordinaten

$$\delta_{jk} = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}, k = 1, \dots, n.$$

Es gilt für $\vec{x} \in \mathbb{C}^n$:

$$\vec{x} = \sum_{j=1}^{n} x_j \vec{e_j} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Man sight leicht: $\operatorname{Lin}(\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}) = \mathbb{C}^n$.

3. P_n ist ein TR von $C^1(\mathbb{R})$.

17.4. Basis, Dimension

Definition. Es sei V ein VR.

$$v_1, v_2, \dots, v_m \in V$$
 heißen linear unabhängig (l.u.) \Leftrightarrow
$$Aus \sum_{j=1}^m \lambda_j v_j = 0 \ (\lambda_j \in \mathbb{C})$$

$$folgt \ \lambda_1 = \lambda_2 = \dots = \lambda_m = 0.$$

Vektoren, die nicht l.u. sind, heißen linear abhängig (l.a). Also

$$v_1, v_2, \ldots, v_m \text{ sind l.a.} \Leftrightarrow \text{ Es gibt } \lambda_1, \ldots, \lambda_m \in \mathbb{C} \text{ mit } \sum_{j=1}^m |\lambda_j| \neq 0 \text{ und } \sum_{j=1}^m \lambda_j v_j = 0.$$

Beispiele. 1. $\vec{e_1}, \ldots, \vec{e_n}$ in \mathbb{C}^n sind l.u.

2.
$$f(x) = 1$$
, $g(x) = x$ sind in $C[0,1]$ l.u.

3.
$$b_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $b_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $b_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ sind in \mathbb{C}^3 l.u. Es gilt

$$\operatorname{Lin}(\vec{b_1}, \vec{b_2}, \vec{b_3}) = \operatorname{Lin}(\vec{e_1}, \vec{e_2}, \vec{e_3})$$

Definition. Ein r-Tupel (v_1, \ldots, v_r) von Vektoren aus V heißt Basis von V, wenn

$$v_1, \ldots, v_r \text{ sind } l.u. \text{ und}$$
 (B₁)

$$\operatorname{Lin}(v_1, \dots, v_r) = V \tag{B_2}$$

 $\it erf\"{u}llt\ sind.$

Beispiele. 1. $(\vec{e_1}, \dots, \vec{e_n})$ ist eine Basis des \mathbb{C}^n , die sog. kanonische Basis oder Standardbasis.

2. $(\vec{b_1}, \vec{b_2}, \vec{b_3})$ aus Beispiel 3) oben ist eine Basis des \mathbb{R}^3 .

Satz 2. Es sei V ein TR des VR W. Es gilt:

$$(v_1, \ldots, v_r)$$
 ist eine Basis von V

Zu jedem
$$v \in V$$
 gibt es eindeutige Zahlen $\lambda_1, \ldots, \lambda_r$ mit $v = \sum_{j=1}^r \lambda_j v_j$.

Bemerkungen. 1. Diese v eindeutig zugeordneten Zahlen $\lambda_1, \ldots, \lambda_r$ heißen die Koordinaten von v bzgl. der Basis (v_1, \ldots, v_r) .

2. Wird ohne Zusatz $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ geschrieben, so ist $\vec{x} = \sum_{j=1}^n x_j \vec{e_j}$ gemeint, d.h. x_1, \ldots, x_n sind die Koordinaten von \vec{x} bezogen auf die Standardbasis des \mathbb{C}^n .

$$\begin{pmatrix} 4 \\ 6 \\ 3 \end{pmatrix} \in \mathbb{C}^3 \text{ bezogen auf } (\vec{b_1}, \vec{b_2}, \vec{b_3}) \text{ bedeutet: } \begin{pmatrix} 4 \\ 6 \\ 3 \end{pmatrix} = 4\vec{b_1} + 6\vec{b_2} + 3\vec{b_3}.$$

Satz 3. Sind (u_1, \ldots, u_n) und (v_1, \ldots, v_m) Basen von V, so gilt m = n.

V heißt n-dimensional, wenn es eine Basis aus n Vektoren gibt. Wir schreiben $\dim(V) = n$.

V heißt unendlich-dimensional: $\dim(V) = \infty$, falls es für jedes $n \in \mathbb{N}$ n l.u. Vektoren in V gibt.

Beispiele. 1. $\operatorname{Lin}(1, x, x^2, x^3, \ldots)(x \in \mathbb{R})$ ist unendlich-dimensional.

- 2. $\dim(\mathbb{C}^n) = n$
- 3. $\dim(\operatorname{Lin}(\vec{a})) = 1 \ (\vec{a} \neq \vec{0}, \vec{a} \in \mathbb{R}^3)$

Bemerkungen. (Versuchen Sie, zu begründen)

- 1. In einem n-dimensionalen VR sind je n+1 Vektoren l.a.
- 2. In einem n-dim VR V gelten
 - a) Jede Menge unabhängiger Vektoren aus V ist Teilmenge einer Basis von V.
 - b) Jedes n-Tupel von l.u. Vektoren aus V ist eine Basis von V.

18. Unitärer VR, euklidischer VR, Skalarprodukt, Norm, Orthogonalität, Vektorprodukt

18.1. Definition

Es sei V ein VR. Eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ heißt Skalarprodukt in V, falls die folgenden Bedingungen erfüllt sind:

$$\langle u, v \rangle = \overline{\langle v, u \rangle} \quad \forall u, v \in V$$
 (S1)

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \quad \forall u, v, w \in V$$
 (S2)

$$\langle \alpha u, v \rangle = \alpha \langle u, v \rangle \quad \forall \alpha \in \mathbb{C}$$
 (S3)

$$\langle u, u \rangle > 0 \quad \forall u \in V, u \neq 0$$
 (S4)

Ein VR mit $\langle \cdot, \cdot \rangle$ wie oben heißt *unitärer VR*. Ein reeller VR mit $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ und (S1), (S2), (S3), (S4) heißt *euklidischer VR*.

Beispiele. 1. Der \mathbb{C}^n ist mit

$$\langle \vec{u}, \vec{v} \rangle := \sum_{j=1}^{n} u_j \overline{v_j}$$

ein unitärer VR. Für $\langle \vec{u}, \vec{v} \rangle$ wird in \mathbb{C}^n $\vec{u} \cdot \vec{v}$ geschrieben. Es gilt $\vec{e}_k \cdot \vec{e}_k = \delta_{kl}$.

2. Der Raum $C^0[0,1]$ ist mit

$$\langle f, g \rangle := \int_0^1 f(x) \overline{g(x)} \, \mathrm{d}x$$

ein unitärer VR.

3. Aus (S1)-(S4) folgen:

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \quad \forall u, v, w \in V$$
 (S2')

$$\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle \quad \forall u, v \in V, \alpha \in \mathbb{C}$$
 (S3')

Satz 1. Mit $v_j, w_k \in V$; $\alpha_j, \beta_k \in \mathbb{C}$ (j, k = 1, ..., n) gilt

$$\left\langle \sum_{j=1}^{n} \alpha_j v_j, \sum_{k=1}^{n} \beta_k w_k \right\rangle = \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \overline{\beta_k} \langle v_j, w_k \rangle.$$

Satz 2 (Cauchy Schwarz Ungleichung, CSU). Im unitären Raum $(V, \langle \cdot, \cdot \rangle)$ gilt

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \langle v, v \rangle.$$
 (CSU)

Hier gilt die Gleichheit genau dann, wenn u, v l.a. sind.

Übung. (Beispiele 1), 2) vorher) Schreiben Sie (CSU) auf für (\mathbb{C}^k , $\vec{u} \cdot \vec{v}$) und für $C^0[0,1]$ mit obigem Skalarprodukt.

18.2. Norm

Definition. Die für $v \in V$ im unitären Raum $(V, \langle \cdot, \cdot \rangle)$ definierte Zahl

$$||v|| := \sqrt{\langle v, v \rangle}$$

 $hei\beta t$ die Norm von v.

Sie hat die in folgendem Satz zusammengestellten Eigenschaften:

Satz 3. Es gelten für $u, v \in V$, $\alpha \in \mathbb{C}$:

$$||u|| \ge 0 \ und$$

$$||u|| = 0 \Leftrightarrow u = 0$$
(N1)

$$\|\alpha u\| = |\alpha| \|u\| \tag{N2}$$

$$||u+v|| \le ||u|| + ||v|| \tag{N3}$$

in (N3) gilt "=", falls u = 0 oder v = 0 oder $u = \alpha v$ ($\alpha > 0$) erfüllt sind.

Bemerkungen. 1. CSU (Satz 2) kann auch so geschrieben werden:

$$|\langle u, v \rangle| < ||u|| ||v||.$$

2. Für $\vec{u} = \sum_{j=1}^{n} u_j \vec{e}_j \in \mathbb{C}^n$ hat man

$$\|\vec{u}\| = \left(\sum_{j=1}^{n} |u_j|^2\right)^{1/2}$$

18.3. Winkel, Orthogonalität im euklidischen Raum $(V, \langle \cdot, \cdot \rangle)$

Definition. Der Winkel zwischen $u \neq 0, v \neq 0, u, v \in V$ ist die Zahl $\theta \in [0, \pi]$, für die

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} \tag{W}$$

gilt.

Bemerkungen. 1. Im \mathbb{R}^n sieht (W) so aus: $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$. (Im \mathbb{R}^2 , \mathbb{R}^3 kann man sieh das veranschaulichen.)

2. Man liest ab (im \mathbb{R}^n): Ist $||\vec{u}|| = 1$, so gibt $\vec{u} \cdot \vec{v}$ die Länge der orthogonalen Projektion von \vec{v} in Richtung von \vec{u} bzw. $-\vec{u}$ an, je nachdem, ob $\theta (= \angle(\vec{u}, \vec{v})) \in [0, \pi/2]$ oder $\in [\pi/2, \pi]$ ist.

Definition. $u, v \in (V, \langle \cdot, \cdot \rangle), V \text{ unitärer Raum:}$

$$u \perp v$$
 (,, u orthogonal zu v ") $\Leftrightarrow \langle u, v \rangle = 0$.

18.4.

Eine Menge $X \subset (V, \langle \cdot, \cdot \rangle)$ (unitär) heißt *Orthogonalsystem (ONS)* falls gelten:

- 1. $||u|| = 1 \ \forall u \in X$
- 2. $\langle u, v \rangle = 0 \ \forall u, v \in X, u \neq v$.

Satz 4. Je endlich viele Vektoren einer orthonormalen Menge X in einem unitären VR $(V, \langle \cdot, \cdot \rangle)$ sind l.u.

Folgerung. In einem n-dim unitären $VR(V, \langle \cdot, \cdot, \rangle)$

- besitzt jedes ONS höchstens n Elemente
- ist jedes ONS aus n Elementen eine Basis, eine sog. ON-Basis.

Satz 5. Es sei $(V, \langle \cdot, \cdot \rangle)$ ein unitärer n-dim VR und (v_1, \ldots, v_n) eine ON-Basis. Es gelten:

1. $F\ddot{u}r\ v \in V$:

$$v = \sum_{j=1}^{n} \langle v, v_j \rangle v_j$$

2. Für $v, w \in V$:

$$\langle v, w \rangle = \sum_{k=1}^{n} \langle v, v_k \rangle \overline{\langle w, v_k \rangle}$$

 $3. 2. \Rightarrow$

$$||v||^2 = \sum_{j=1}^n |\langle v, v_j \rangle|^2$$
 (Parsevalsche Gleichung)

Bemerkung. Ist $X = \{v_1, \dots, v_n\}$ ein endliches ONS im unitären $VR(V, \langle \cdot, \cdot \rangle)$, so gilt für jedes $v \in V$ die Besselsche Ungleichung:

$$\sum_{j=1}^{n} |\langle v, v_j \rangle|^2 \le ||v||^2$$

18.5. Das Gram-Schmidt-Orthonormalisierungsverfahren

Satz 6. In einem n-dim unitären $VR(V, \langle \cdot, \cdot \rangle)$ gibt es eine ON-Basis (y_1, \ldots, y_n) .

 $(y_1, \ldots y_n)$ wird wie folgt aus einer Basis (x_1, \ldots, x_n) konstruiert:

1.Schritt:

$$y_1 := \frac{x_1}{\|x_1\|}$$

2. Schritt: Sind für $1 \le r \le n-1$ $y_1, \ldots y_r$ schon konstruiert, so ist

$$y_{r+1} = \frac{x_{r+1} - \sum_{j=1}^{r} \langle x_{r+1}, y_j \rangle y_j}{\left\| x_{r+1} - \sum_{j=1}^{r} \langle x_{r+1}, y_j \rangle y_j \right\|}.$$

Die y_1, \ldots, y_n haben die Eigenschaft

$$\operatorname{Lin}(y_1, \dots, y_k) = \operatorname{Lin}(x_1, \dots, x_k) \text{ für } k = 1, \dots, n$$
(*)

Rechnen Sie nach, dass die im 1. und 2. Schritt angegebenen y_1, \ldots, y_n die geforderten Eigenschaften haben: $\langle y_j, y_k \rangle = \delta_{jk}$ und (*). Veranschaulichen Sie sich das Verfahren für $V = \mathbb{R}^2$, \mathbb{R}^3 .

18.6. Das Vektorprodukt

Für $\vec{x}, \vec{y} \in \mathbb{R}^3$, $\vec{x} = \sum_{j=1}^3 x_j \vec{e}_j$, $\vec{y} = \sum_{j=1}^3 y_j \vec{e}_j$ wird definiert

$$\vec{x} \times \vec{y} := (x_2y_3 - x_3y_2)\vec{e}_1$$

+ $(x_3y_1 - x_1y_3)\vec{e}_2$
+ $(x_1y_2 - x_2y_1)\vec{e}_3$.

 $\vec{x} \times \vec{y}$ heißt das Vektorprodukt (Kreuzprodukt) von \vec{x} und \vec{y} .

Satz 7. Für $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^3$ und $\alpha \in \mathbb{R}$ gelten:

1.
$$\vec{x} \times \vec{y} = -\vec{y} \times \vec{x} \ (\Rightarrow \vec{x} \times \vec{x} = \vec{0})$$

2.
$$(\vec{x} + \vec{y}) \times \vec{z} = \vec{x} \times \vec{z} + \vec{z} + \vec{y} \times \vec{z},$$

 $\vec{x} \times (\vec{y} + \vec{z}) = \vec{x} \times \vec{y} + \vec{x} \times \vec{z}$

3.
$$(\alpha \vec{x}) \times \vec{y} = \alpha(\vec{x} \times \vec{y}) = \vec{x} \times (\alpha \vec{y})$$

4.
$$\vec{x} \times (\vec{y} \times \vec{z}) + \vec{y} \times (\vec{z} \times \vec{x}) + \vec{z} \times (\vec{x} \times \vec{y}) = \vec{0}$$

5.
$$\vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z}$$
, $(\vec{x} \times \vec{y}) \times \vec{z} = selber \ berechnen!$

6.
$$\vec{x} \times \vec{y} \perp \vec{x} \text{ und } \vec{x} \times \vec{y} \perp \vec{y}$$
.

7.
$$\|\vec{x} \times \vec{y}\|^2 = \|\vec{x}\|^2 \|\vec{y}\|^2 - (\vec{x} \cdot \vec{y})^2$$
,
 $\|\vec{x} \times \vec{y}\| = \|\vec{x}\| \|\vec{y}\| \sin(\angle(\vec{x}, \vec{y}))$

8.
$$\vec{e}_1 \times \vec{e}_2 = \vec{e}_3$$
, $\vec{e}_2 \times \vec{e}_3 = \vec{e}_1$, $\vec{e}_3 \times \vec{e}_1 = \vec{e}_2$.

Das kann alles mit obiger Def. nachgerechnet werden. Das ist nicht schwierig, aber ermüdend.

Bemerkungen. 1. $\|\vec{x} \times \vec{y}\|$ ist der Inhalt des von \vec{x} und \vec{y} aufgespannten Parallelogramms.

2.
$$\vec{x}, \vec{y} \in \mathbb{R}^3$$
 sind l.a. $\Leftrightarrow \vec{x} \times \vec{y} = \vec{0}$

3. $|(\vec{x} \times \vec{y}) \cdot \vec{z})|$ gibt das Volumen des Spats mit den Kanten $\vec{x}, \vec{y}, \vec{z}$ an.

 $(\vec{x} \times \vec{y}) \cdot \vec{z}$ heißt das Spatprodukt von $\vec{x}, \vec{y}, \vec{z}$. Es gilt:

$$(\vec{x} \times \vec{y}) \cdot \vec{z} = x_1 y_2 z_3 + x_2 y_3 z_1 + x_3 y_1 z_2 - x_2 y_1 z_3 - x_3 y_2 z_1 - x_1 y_3 z_2$$

$$(\vec{x}, \vec{y}, \vec{z}) := (\vec{x} \times \vec{y}) \cdot \vec{z}.$$

Satz 8. 1. $(\vec{x}, \vec{y}, \vec{z}) = (\vec{y}, \vec{z}, \vec{x}) = (\vec{z}, \vec{x}, \vec{y}) = -(\vec{y}, \vec{x}, \vec{z}) = -(\vec{z}, \vec{y}, \vec{x}) = -(\vec{x}, \vec{z}, \vec{y}).$

2.
$$(\alpha, \beta \in \mathbb{R})$$
: $(\alpha \vec{x}_1 + \beta \vec{x}_2, \vec{y}, \vec{z}) = \alpha(\vec{x}_1, \vec{y}, \vec{z}) + \beta(\vec{x}_2, \vec{y}, \vec{z})$

3.
$$\vec{x}, \vec{y}, \vec{z} \text{ sind l.a.} \Leftrightarrow (\vec{x}, \vec{y}, \vec{z}) = 0.$$

4.
$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = 1$$

5.
$$(\vec{x}, \vec{y}, \vec{x} \times \vec{y}) = ||\vec{x} \times \vec{y}||^2 \ge 0.$$

Nachrechnen!

19. Lineare Abbildungen, Matrizen

19.1. Defintion Lineare Abbildung

Es seien V und W VRe. Die Funktion $f:V\to W$ heißt linear, falls für alle $u,v\in V$ und alle $\alpha,\beta\in\mathbb{C}$

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v) \tag{L}$$

erfüllt ist.

Beispiele. 1. Es sei $\vec{a} \in \mathbb{R}^3$, $||\vec{a}|| = 1$ ein fester Vektor.

$$P_{\vec{a}}: \mathbb{R}^3 \to \mathbb{R}^3, \ P_{\vec{a}}(\vec{x}) := (\vec{a} \cdot \vec{x})\vec{a}$$

ist eine lineare Abbildung ($V = W = \mathbb{R}^3$).

2. Es sei $\vec{F} \in \mathbb{R}^3$ ein fester Vektor $(\neq \vec{0})$. Die Zuordnung

$$\vec{x} \mapsto \vec{x} \times \vec{F}$$

ist eine lineare Abbildung $\mathbb{R}^3 \to \mathbb{R}^3$ ($V = W = \mathbb{R}^3$).

3. $D: C^1(\mathbb{R}) \to C^0(\mathbb{R}), \ Df:=f', \ ist \ eine \ lineare \ Abbildung \ (V=C^1(\mathbb{R}), \ W=C^0(\mathbb{R})).$

Bezeichnung. $\mathcal{L}(V,W) := \{f \mid f : V \to W, f \ linear\}$

19.2. Einfache Eigenschaften linearer Abbildungen

- A1) $\mathcal{L}(V, W)$ ist mit den für Funktionen üblichen "Addition" und "skalare Multiplikation" selbst ein VR
- A2) Für $f \in \mathcal{L}(V, W), v_1, \dots, v_n \in V \text{ und } \lambda_1, \dots, \lambda_n \in \mathbb{C} \text{ gilt:}$

$$f\left(\sum_{k=1}^{n} \lambda_k v_k\right) = \sum_{k=1}^{n} \lambda_k f(v_k)$$

(Wende (L) (n-2) mal an oder argumentiere induktiv.)

A3) Aus $f \in \mathcal{L}(V, W)$, $g \in \mathcal{L}(W, U)$ folgt $g \circ f \in \mathcal{L}(V, U)$.

A4) Ist
$$f \in \mathcal{L}(V, W)$$
 bijektiv, so ist $f^{-1} \in \mathcal{L}(W, V)$ und f^{-1} ist bijektiv

Bemerkung. Eine lineare bijektive Abbildung $f: V \to W$ heißt Isomorphismus. Zwei $VRe\ V, W$ heißen zueinander isomorph, falls es einen Isomorphismus $f: V \to W$ gibt.

Satz 1. V, W seien $VRe, (v_1, \ldots, v_n)$ sei eine Basis von V und w_1, \ldots, w_n seien Vektoren aus W. Dann gibt es genau ein $f \in \mathcal{L}(V, W)$ mit $f(v_k) = w_k, \ k = 1, \ldots, n$.

(Def von
$$f(v) := \sum_{k=1}^{n} \lambda_k w_k$$
 mit $v = \sum_{k=1}^{n} \lambda_k v_k$)

Satz 2. V, W seien $VRe, (v_1, \ldots, v_n)$ sei eine Basis und $f \in \mathcal{L}(V, W)$. Es gilt

f ist ein Isomorphismus $\Leftrightarrow (f(v_1), \dots, f(v_n))$ ist eine Basis von W

Definition. $f \in \mathcal{L}(V, W)$:

$$Kern(f) = \{ v \in V \mid f(v) = 0 \},$$

Bild(f) := $f(V) = \{ w \in W \mid f(v) = w \text{ für } ein \ v \in V \}.$

Kern(f) ist TR von V, Bild(f) ist TR von W.

Satz 3. Es seien $f \in \mathcal{L}(V, W)$ und dim(V) = n. Dann gilt:

$$\dim \operatorname{Kern}(f) + \dim \operatorname{Bild}(f) = n$$

19.3. Lineare Abbildungen und Matrizen

Eine (m, n)-Matrix A ist ein Schema von $m \cdot n$ Zahlen α_{jk} $(j = 1, \dots, m; k = 1, \dots, n)$, die wie folgt angeordnet werden:

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} = (\alpha_{lk})$$

Dabei ist l der Zeilen- und k der Spaltenindex.

Die Spaltenvektoren $\binom{\alpha_{1l}}{\alpha_{2l}} \in \mathbb{C}^m$ bezeichnen wir durch \vec{a}_l $(l=1,\ldots,n)$ und werden die Matrix oft in Spaltenform $A=[\vec{a}_1,\vec{a}_2,\ldots,\vec{a}_n]$ schreiben.

Die Elemente der Matrix A werden auch häufig durch $(A)_{lk}$ bezeichnet werden.

1. Es seien V, W VRe mit $\dim(V) = n$, $\dim(W) = m$. In V ist die Basis (v_1, \ldots, v_n) und in W die Basis (w_1, \ldots, w_m) gewählt. Es ist $f \in \mathcal{L}(V, W)$ gegeben. f wird eine (m, n)-Matrix $A = (\alpha_{lk})_{\substack{l=1,\ldots,m\\k=1,\ldots,n}}$ so zugeordnet: Der k-te Spaltenvektor \vec{a}_k ist der Koordinatenvektor von $f(v_k)$ bezogen auf die Basis (w_1, \ldots, w_m) :

$$f(v_k) = \sum_{l=1}^{m} \alpha_{lk} w_l \quad (k = 1, \dots, n)$$
 (1)

Die so unter den obigen Gegebenheiten f eindeutig zugeordnete (m,n)-Matrix A heißt die Darstellungsmatrix von f. Man berechnet den Koordinatenvektor $\overrightarrow{f(x)} =$

$$\begin{pmatrix} (f(x))_1 \\ \vdots \\ (f(x))_m \end{pmatrix} \text{ von } f(x) \text{ für ein } x = \sum_{l=1}^m x_k v_k \in V \text{ so:}$$

$$f(x) = \sum_{l=1}^{m} \left(\sum_{k=1}^{n} \alpha_{lk} x_k \right) w_l$$

$$= (f(x))_l$$

und man liest ab:

$$\overrightarrow{f(x)} = \sum_{k=1}^{n} \vec{a}_k x_k \tag{2}$$

Für 19.1, Beispiel 2), findet man, falls man in \mathbb{R}^3 im Urbild und Bild jeweils die kanonische Basis wählt, die Darstellungsmatrix

$$\begin{pmatrix} 0 & F_3 & -F_2 \\ -F_3 & 0 & F_1 \\ F_2 & -F_1 & 0 \end{pmatrix}$$

wobei $\vec{F} = \sum_{j=1}^{3} F_j \vec{e}_j$ verwendet wird.

2. Umgekehrt kann man jede (m, n)-Matrix $A = [\vec{a}_1, \dots, \vec{a}_n]$ als Darstellungsmatrix einer linearen Abbildung

$$f: (\mathbb{C}^n; (\bar{e}_1^{(n)}, \dots, \bar{e}_n^{(n)})) \to (\mathbb{C}^m, (\bar{e}_1^{(m)}, \dots, \bar{e}_m^{(m)}))$$

auffassen, indem man definiert:

$$f(\vec{e}_j^{(n)}) = \vec{a}_j \quad (j = 1, \dots, n)$$

19.4.

• Durch $\mathbb{C}^{(m,n)}$ ($\mathbb{R}^{(m,n)}$) wird die Menge der (m,n)-Matrizen mit komplexen (reellen) Elementen bezeichnet

- $\mathbb{C}^{(1,1)} = \mathbb{C}$ sind Zahlen
- $\mathbb{C}^{(m,1)} = \mathbb{C}^m$ sind die (Spalten-)Vektoren
- \bullet Die (1,n)-Matrizen heißen auch Zeilenvektoren
- Die Nullmatrix 0 hat als Einträge nur Nullen:

$$A = 0 \Leftrightarrow (A)_{lk} = 0 \ \forall l, k$$

• $A \text{ mit } (A)_{lk} = \delta_{lk}\alpha_{lk}$ heißt Diagonal matrix. Ist $A \in \mathbb{C}^{(m,m)}$, so sieht die Spaltenform so aus:

$$A = [\alpha_{11}\vec{e}_1^{(m)}, \dots, \alpha_{mm}\vec{e}_m^{(m)}].$$

Die Diagonalmatrix $[\vec{e}_1, \dots, \vec{e}_m]$ heißt Einheitsmatrix, sie wird durch E (und wenn nötig durch E_m) bezeichnet.

19.5. Rechnen mit Matrizen

1. $A, B \in \mathbb{C}^{(m,n)}, \lambda \in \mathbb{C}$

Definition. (motiviert durch den Zusammenhang zwischen Matrizen und linearen Abbildungen)

$$A = B :\Leftrightarrow (A)_{lk} = (B)_{lk} \ \forall l, k$$

$$A + B \in \mathbb{C}^{(m,n)} \leftrightarrow (A+B)_{lk} := (A)_{lk} + (B)_{lk} \ \forall l, k$$

$$\lambda A \in \mathbb{C}^{(m,n)} \leftrightarrow (\lambda A)_{lk} := \lambda (A)_{lk} \ \forall l, k$$

$$\overline{A} \in \mathbb{C}^{(m,n)} \leftrightarrow (\overline{A})_{lk} := \overline{(A)_{lk}} \ \forall l, k$$

$$A^{\top} \in \mathbb{C}^{(n,m)} \leftrightarrow (A^{\top})_{lk} := (A)_{kl} \ \forall l, k$$

 A^\top $hei\beta t$ die zu Atransponierte Matrix

$$A^* \in \mathbb{C}^{(n,m)} \leftrightarrow (A^*)_{lk} = (\overline{A})_{kl}$$

Das bedeutet $A^* = (\overline{A})^{\top}$. A^* heißt die zu A adjungierte Matrix

2. Es gelten (Übung selbst)

$$(\overline{A})^{\top} = \overline{(A^{\top})},$$

$$(A+B)^{\top} = A^{\top} + B^{\top},$$

$$(\lambda A)^{\top} = \lambda A^{\top},$$

$$(A^{\top})^{\top} = A,$$

$$(A^{*})^{*} = A$$

$$(A^{*})^{*} = A$$

3. $A \in \mathbb{C}^{(m,m)}$ heißt $\begin{cases} hermitesch, \text{ falls } A = A^* \\ symmetrisch, \text{ falls } A = A^\top \end{cases}$ gilt.

Die zu (Beispiel 19.1, 1) $P_{\vec{a}}: (\mathbb{R}^3; (\vec{e}_1, \vec{e}_2, \vec{e}_3)) \to (\mathbb{R}^3; (\vec{e}_1, \vec{e}_2, \vec{e}_3))$ gehörende (3, 3)-Matrix $A = (a_j a_k)_{j,k=1,2,3}$ ist symmetrisch.

Für $A \in \mathbb{C}^{(m,m)}$ ist $A + A^{\top}$ symmetrisch.

4. Eine (m, m)-Matrix A mit $A = -A^{\top}$ heißt schiefsymmetrisch.

Die Matrix zu Beispiel 2), 19.1 ist schiefsymmetrisch (siehe Seite 19)

Für $A \in \mathbb{C}^{(m,m)}$ ist $A - A^{\top}$ schiefsymmetrisch.

Jede Matrix $A \in \mathbb{C}^{(m,m)}$ lässt sich in einen symmetrischen und einen schiefsymmetrischen Anteil zerlegen:

$$A = \frac{1}{2}(A + A^{\top}) + \frac{1}{2}(A - A^{\top}).$$

5. Das Produkt AB für $A \in \mathbb{C}^{(m,n)}, B \in \mathbb{C}^{(n,l)}$ ist die (m,l)-Matrix mit

$$(AB)_{js} = \sum_{k=1}^{n} (A)_{jk}(B)_{ks}, \quad j = 1, \dots, m, \ s = 1, \dots, l$$
 (P)

Diese Definition wird so motiviert: Ist A die Darstellungsmatrix von $f \in \mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ und B die Darstellungsmatrix von $g \in \mathcal{L}(\mathbb{C}^l, \mathbb{C}^n)$ (in allen \mathbb{C}^k ist jeweils die kanonische Basis gewählt), so ist AB die Darstellungsmatrix von $f \circ g$. Schreibt man diese Vorgaben gemäß 19.3, 1. auf, so erhält man (P).

6. Zu 5. Bemerkungen, Beispiele, Ergänzungen.

a)
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
: $AB = 0, BA = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$

b) $A \in \mathbb{C}^{(m,n)}, B \in \mathbb{C}^{(n,l)}$:

$$(AB)^{\top} = B^{\top} A^{\top}$$
$$(AB)^* = B^* A^*.$$

c) A, B, C seien Matrizen jeweils eines Typs, so dass die folgenden Produkte und Summen definiert sind. Es gelten:

$$ABC = (AB)C = A(BC)$$

$$(A+B)C = AC + BC$$

$$A(B+C) = AB + AC$$
(*)

- d) $A \in \mathbb{C}^{(m,n)}, \vec{x} \in \mathbb{C}^n$: $A\vec{x} = \sum_{k=1}^n x_k \vec{a}_k \ (A\vec{x} \in \text{Lin}(\vec{a}_1, \dots, \vec{a}_n))$. Es folgt i. $\vec{x} \mapsto A\vec{x}, \ \mathbb{C}^n \to \mathbb{C}^m$ ist lineare Abbildung
 - ii. $A\vec{e}_r^{(n)} = \vec{a}_r$ (die r-te Spalte von A) und $(\vec{e}_j^{(m)})^\top A = j$ -te Zeile von $A = (A^\top \vec{e}_j^{(m)})^\top)$, also $(\vec{e}_j^{(m)})^\top A\vec{e}_r^{(n)} = (A)_{jr}$.
 - iii. $A \in \mathbb{C}^{(m,n)}, B \in \mathbb{C}^{(n,l)}, B = [\vec{b}_1, \dots, \vec{b}_l] \Rightarrow AB = [A\vec{b}_1, \dots, A\vec{b}_l].$
- e) E_n sei die (n,n)-Einheitsmatrix, $A \in \mathbb{C}^{(n,n)}$:

$$E_n A = A E_n = A$$
.

f) $\vec{x}, \vec{y} \in \mathbb{R}^n$:

$$\vec{x} \cdot \vec{y} = \vec{x}^\top \vec{y} = \vec{y}^\top \vec{x}$$

Dabei ist \cdot der Punkt des Skalarprodukts auf \mathbb{R}^n und das Verknüpfungszeichen der Matrixmultiplikation wird einfach weggelassen.

$$\vec{x}^{\top}\vec{x} = \|\vec{x}\|^2$$

Wir schreiben $\langle \vec{x}, \vec{y} \rangle = \vec{x}^{\top} \vec{y}$. Mit $A \in \mathbb{R}^{(n,n)}$ rechnet man nach:

$$\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^{\top} \vec{y} \rangle$$

g) Skalarprodukt in \mathbb{C}^n : $\vec{x}, \vec{y} \in \mathbb{C}^n$:

$$\vec{x} \cdot \vec{y} = \vec{x}^* \vec{y} = \vec{y}^* \vec{x}$$

Mit $\langle \vec{x}, \vec{y} \rangle = \vec{y}^* \vec{x}$ und $A \in \mathbb{C}^{(n,n)}$ sieht man:

$$\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^*\vec{y} \rangle$$

h) Wird $f \in \mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ bzgl. der Standardbasen durch $A = [\vec{a}_1, \dots, \vec{a}_n] \in \mathbb{C}^{(m,n)}$ dargestellt, so gilt

$$f(\vec{x}) = A\vec{x}$$
 für $x \in \mathbb{C}^n$.

20. Lineare Gleichungssysteme, der Gaußsche Algorithmus

20.1.

Gegeben sind die Matrix $A \in \mathbb{C}^{(m,n)}$ und $\vec{y} \in \mathbb{C}^m$. Gesucht sind $\vec{x} \in \mathbb{C}^n$ mit

$$A\vec{x} = \vec{y} \tag{1}$$

 $\vec{y} \neq \vec{0}$: (1) ist inhomogen , $\vec{y} = \vec{0}$: (1) ist homogen.

Diese Matrixgleichung beinhaltet m skalare Gleichungen für die Unbekannten x_1, \ldots, x_n . Die l-te Gleichung lautet:

$$\sum_{j=1}^{n} a_{lj} x_j = y_l, \quad l = 1, \dots, m$$

Wir haben $(A)_{lj} = a_{lj}$ gesetzt. Mit $A\vec{e}_j^{(n)} = \vec{a}_j$ schreibt sich (1) so:

$$\sum_{k=1}^{n} \vec{a}_k x_k = \vec{y} \tag{2}$$

 \Rightarrow dim Bild(A) \leq min(n, m).

Mit 19.2/ Satz 3 haben wir dim $Kern(A) + \dim Bild(A) = n. \Rightarrow$

Satz 1. Ist m < n, so besitzt das Gleichungssystem $A\vec{x} = \vec{0}$ nichttriviale Lösungen (das sind Lösungen $\vec{x} \neq \vec{0}$).

Satz 2. Es gilt

(1) ist
$$l\ddot{o}sbar \Leftrightarrow \vec{y} \in Bild(A) \Leftrightarrow \vec{y} \in Lin(\vec{a}_1, \dots, \vec{a}_n)$$
.

Anders ausgedrückt bedeutet das:

(1) ist nicht lösbar
$$\Leftrightarrow \vec{y} \notin \text{Lin}(\vec{a}_1, \dots, \vec{a}_n)$$

 $\mathcal{L}_{\vec{y}}$ bezeichnet die Lösungsmenge (= die allgemeine Lösung) der Gleichung (1):

$$\vec{x} \in \mathcal{L}_{\vec{y}} \Leftrightarrow A\vec{x} = \vec{y}$$

 $\mathcal{L}_{\vec{0}} = \operatorname{Kern}(A)$ ist dann die allgemeine Lösung des homogenen Systems $A\vec{x} = \vec{0}$. $\mathcal{L}_{\vec{0}}$ ist ein VR.

Satz 3. Es sei $\vec{x}_p \in \mathcal{L}_{\vec{y}}$ gegeben. Dann gelten:

- 1. $\vec{x}_0 + \vec{x}_p \in \mathcal{L}_{\vec{y}}$ für jedes $\vec{x}_0 \in \mathcal{L}_{\vec{0}}$
- 2. Jedes $\vec{x} \in \mathcal{L}_{\vec{y}}$ hat die Form $\vec{x}_0 + \vec{x}_p$ mit $\vec{x}_0 \in \mathcal{L}_{\vec{0}}$.
- 3. $\mathcal{L}_{\vec{v}} = {\{\vec{x}_p\}} \Leftrightarrow \operatorname{Kern}(A) = {\{\vec{0}\}}.$

 $\mathcal{L}_{\vec{y}}$ erhält man so:

- 1. Berechne Kern(A). Setzt man $r = \dim \text{Bild}(A)$ (=Anzahl der l.u. Spalten von A), so gilt $\dim \text{Kern}(A) = n r$. Es sind n r l.u. Lösungen $\vec{x}_1, \dots, \vec{x}_{n-r}$ der Gleichung $A\vec{x} = \vec{0}$ zu berechnen. Es ist dann $\text{Kern}(A) = \text{Lin}(\vec{x}_1, \dots, \vec{x}_{n-r})$.
- 2. Berechne \vec{x}_p mit $A\vec{x}_p=\vec{y}.$ Jede Lösung $\vec{x}\in\mathcal{L}_{\vec{y}}$ hat dann die Form

$$\vec{x} = \vec{x}_p + \sum_{i=1}^{n-r} \lambda_j \vec{x}_j \text{ mit } \lambda_1, \dots, \lambda_{n-r} \in \mathbb{C}.$$

(Hierfür schreiben wir auch $\mathcal{L}_{\vec{y}} = \vec{x}_p + \mathcal{L}_{\vec{0}}$.)

20.2. Der Rang einer Matrix

 $A \in \mathbb{C}^{(m,n)}$

$$\begin{split} s := & \operatorname{Spaltenrang\ von}\ A = \operatorname{Maximalzahl\ l.u.\ Spalten\ von}\ A \\ &= \dim(\operatorname{Bild}(A)) \leq \min(m,n), \\ t := & \operatorname{Zeilenrang\ von}\ A = \operatorname{Maximalzahl\ l.u.\ Zeilenvektoren\ von}\ A \\ &= \dim(\operatorname{Bild}(A^\top)) \leq \min(m,n) \end{split}$$

Bearbeitung von A mittels elementarer Zeilenumformungen: (Mit z_1, \ldots, z_m werden die Zeilen bezeichnet)

- (Z1) $z_j \leftrightarrow z_k$ (Vertausche j-te und k-te Zeile)
- (Z2) $z_j \to \alpha z_j \ (\alpha \neq 0)$ (Multipliziere j-te Zeile mit α)

(Z3)
$$z_j \to z_j + \alpha z_k \ (j \neq k)$$
 (Addiere αz_k zu z_j)

(Analog für Spaltenumformungen)

Satz 4. Durch elementare Zeilen- oder Spaltenumformungen werden t und s nicht verändert.

Satz 5. Jede Matrix lässt sich durch elementare Zeilenumformungen auf Zeilennormalform ((ZN) / unten) transformieren.

Beweis. Induktion.

Aus (ZN) liest man s und t ab und, dass stets s=t gilt. Diese eine Matrix charakterisierende Zahl (s=t) wird Rang der Matrix A genannt: Es wird rang(A)(= s=t) geschrieben.

Wegen $s = \dim \text{Bild}(A), t = \dim \text{Bild}(A^{\top})$ hat man

$$\operatorname{rang}(A) = \operatorname{rang}(A^{\top})$$

Definition (von Zeilennormalform (ZN)). Eine Matrix $A \in \mathbb{C}^{(m,n)}$ mit den Einträgen $(A)_{lk} = a_{lk}$ besitzt Zeilennormalform, wenn sie folgende Eigenschaften hat:

(Z1) Unterhalb der Diagonalen stehen nur Nullen, d.h.

$$a_{lk} = 0 \ f\ddot{u}r \ l > j$$

- (Z2) Das erste nicht-verschwindende Element jeder Zeile (von links gesehen) ist gleich 1.
- (Z3) Ist a_{lk} das erste nicht-verschwindende der l-ten Zeile, so ist

$$a_{jk} = 0$$
 für alle $j \neq l$,

d.h. oberhalb und unterhalb des Elementes $a_{lk} = 1$ stehen lauter Nullen, in der k-ten Spalte.

Beispiel. Die Matrix

$$\begin{pmatrix} 0 & 1 & * & 0 & 0 & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

hat ZN. An den mit * markierten Stellen können Nullen oder nichtverschwindende Elemente stehen.

20.3. Lösen von $A\vec{x} = \vec{y}$

Die erweiterte Matrix (A, \vec{y}) wird auf (ZN) $(\tilde{A}, \tilde{\vec{y}})$ transformiert (Gaußscher Algorithmus):

Aus (ZN) liest man alles bzgl Lösungen von (1) ab, wenn man sich vorher klargemacht hat:

Satz 6. $\mathcal{L}_{\vec{y}}$ sei die Lösungsmenge von $A\vec{x} = \vec{y}$ und $\mathcal{L}_{\tilde{y}}$ die von $\tilde{A}\vec{x} = \vec{y}$. Es gelten: $\mathcal{L}_{\vec{y}} = \mathcal{L}_{\tilde{y}}$ und: $A\vec{x} = \vec{0}$ gehört zu $\tilde{A}\vec{x} = \vec{0}$.

Lösen von $A\vec{x} = \vec{y}$ mit (ZN)

Man liest ab:

- (Z1) $\operatorname{rang}(A) = \operatorname{rang}(\tilde{A}) = r = A$ nzahl der nicht-verschwindenden Zeilen (Das sind die, die mit einer 1 beginnen)
- (Z2) Gilt $\tilde{y}_l \neq 0$ für ein $l \geq r+1$, so ist die l-te Zeile von (ZN) widersprüchlich: $A\vec{x} = \vec{y}$ ist nicht lösbar.

Das System sei lösbar (also $\tilde{y}_{r+1}=\cdots=\tilde{y}_m=0$): Löse die ersten r Zeilen nach x_{k_1},\ldots,x_{k_r} auf:

$$x_{k_j} = \tilde{y_j} - \sum_{l>k_j} \tilde{a}_{jl} x_l, \quad j = 1, \dots, r$$
(ZN)

$$x_{k_j} = -\sum_{l>k_j} \tilde{a}_{jl} x_l, \quad j = 1, \dots, r$$
 (ZNH)

((ZNH) entsteht aus der homogenen Gleichung

Gemäß Satz 3 brauchen wir ein $\vec{x}_p \in \mathcal{L}_{\vec{y}}$ und $\vec{x}_1, \dots, \vec{x}_{n-r}$ (l.u) aus $\mathcal{L}_{\vec{0}}$.

- $\vec{x}_p = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ erhält man aus (ZN), wenn man alle x_l rechts Null setzt. Es folgt dann $x_{k_j} = \tilde{y}_j \ (j = 1, \dots, r)$.
- n-r l.u. Lösungen $\vec{x}_1,\ldots,\vec{x}_{n-r}$ erhält man aus (ZNH) so:

Die n-r Koordinaten rechts werden nacheinander so gewählt

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Die restlichen r Koordinaten werden aus (ZNH) berechnet.

Beispiel. $n=m=4, A\vec{x}=\vec{y} mit$

$$A = \begin{pmatrix} 1 & 3 & -4 & 3 \\ 3 & 9 & -2 & -11 \\ 4 & 12 & -6 & -8 \\ 2 & 6 & 2 & -14 \end{pmatrix}, \ \vec{y} = \begin{pmatrix} 9 \\ -3 \\ 6 \\ -12 \end{pmatrix}$$

 $\rightarrow (\tilde{A}, \tilde{\vec{y}})$:

$$\begin{pmatrix}
1 & 3 & 0 & -5 & | & -3 \\
0 & 0 & 1 & -2 & | & -3 \\
0 & 0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$
(ZN)

Man liest ab: $r = 2, n - r = 2, k_1 = 1, k_2 = 3, \dim \mathcal{L}_{\vec{0}} = 2.$

$$x_1 = -3 - 3x_2 + 5x_4$$

 $x_3 = -3 + 2x_4$ (ZN)

$$x_1 = -3x_2 + 5x_4$$

 $x_3 = 2x_4$ (ZNH)

 \vec{x}_p : Setze in (ZN) rechts $x_2 = x_4 = 0 \Rightarrow x_1 = -3 = x_3$, also

$$\vec{x}_p = \begin{pmatrix} -3\\0\\-3\\0 \end{pmatrix}$$

 \vec{x}_1, \vec{x}_2 l.u. Lösungen aus $\mathcal{L}_{\vec{0}}$:

$$\vec{x}_1$$
: Setze in (ZNH) rechts $\begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \overset{\text{(ZNH)}}{\Rightarrow} x_1 = -3, x_3 = 0$, also

$$\vec{x}_1 = \begin{pmatrix} -3\\1\\0\\0 \end{pmatrix}$$

 \vec{x}_2 : Setze in (ZNH) rechts $\begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \overset{(\text{ZNH})}{\Rightarrow} x_1 = 5, x_3 = 2.$

$$\vec{x}_2 = \begin{pmatrix} 5\\0\\2\\1 \end{pmatrix}$$

und die allgemeine Lösung lautet dann:

$$\vec{x} = \begin{pmatrix} -3 \\ 0 \\ -3 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 5 \\ 0 \\ 2 \\ 1 \end{pmatrix} \text{ mit beliebigen } \lambda_1, \lambda_2 \in \mathbb{C}.$$

Ein abschließender Satz:

Satz 7. Es sei $A \in \mathbb{C}^{(n,n)}$. Dann gilt

$$A\vec{x} = \vec{y}$$
 ist für jedes $\vec{y} \in \mathbb{C}^n$ eindeutig lösbar

$$\Leftrightarrow A\vec{x} = \vec{0} \text{ besitzt nur die Lösung } \vec{x} = 0$$

$$\Leftrightarrow \operatorname{rang}(A) = n$$

21. Reguläre Matrizen, die zu einer Matrix inverse Matrix

21.1. Reguläre Matrizen

Definition. $A \in \mathbb{C}^{(n,n)}$ heißt regulär, falls rang(A) = n gilt. Eine nichtreguläre Matrix heißt singulär.

Beispiele. E ist regulär. A regulär $\Leftrightarrow A^{\top}$ regulär $\Leftrightarrow A^*$ regulär

Satz 1. Es sei $A \in \mathbb{C}^{(n,n)}$. Dann gilt

$$A\vec{x} = \vec{y}$$
 ist für jedes $\vec{y} \in \mathbb{C}^n$ eindeutig lösbar $\Leftrightarrow A\vec{x} = \vec{0}$ besitzt nur die Lösung $\vec{x} = 0$ $\Leftrightarrow \operatorname{rang}(A) = n$ $\Leftrightarrow A \operatorname{regul\"{a}r}$

Satz 2. Sind $A, B \in \mathbb{C}^{(n,n)}$ regulär, so ist AB regulär.

Satz 3. Es seien $A, B \in \mathbb{C}^{(n,n)}$ und AB sei regulär. Dann sind A und B regulär.

21.2. Die zu A inverse Matrix A^{-1}

Satz 4. Sind $A, B \in \mathbb{C}^{(n,n)}$ regulär, so gibt es genau eine reguläre (n,n)-Matrix X mit AX = B.

 \Rightarrow Ist A regulär, so gibt es genau eine reguläre Matrix X, die AX = E erfüllt. Dies gibt die folgende Definition:

Definition. Es sei A regulär. A^{-1} ist die reguläre Matrix, die $AA^{-1} = E$ erfüllt. A heißt in diesem Fall invertierbar und A^{-1} die zu A inverse Matrix.

Satz 5. Für reguläre Matrizen $A, B \in \mathbb{C}^{(n,n)}$ gelten:

1.
$$(AB)^{-1} = B^{-1}A^{-1}$$

2.
$$A^{-1}A = E$$

$$3. \ (A^{-1})^{-1} = A$$

4.
$$(A^{\top})^{-1} = (A^{-1})^{\top}$$

5.
$$(A^*)^{-1} = (A^{-1})^*$$
.

Es sei $A \in \mathbb{C}^{(n,n)}$ regulär. Die Zeilennormalform von A ist E.

 A^{-1} kann man so berechnen: Nimm an E die Zeilenumformungen vor, die an A zur Transformation auf Normalform durchgeführt werden müssen. Das Ergebnis ist A^{-1} .

22. Determinanten

22.1. Permutationen

 $S_n := \{ \sigma \mid \sigma \text{ ist Permutation der Zahlen } 1, \dots, n \} \ (n \in \mathbb{N})$

$$\phi \in S_n \stackrel{\text{Def}}{\Leftrightarrow} \phi : \{1, \dots, n\} \to \{1, \dots, n\} \text{ ist bijektiv.}$$

 S_n enthält n! Elemente (HMI).

Schreibweise: $\phi \in S_n$:

$$\phi = \begin{pmatrix} 1 & 2 & \dots & n \\ \phi(1) & \phi(2) & \dots & \phi(n) \end{pmatrix} \text{ oder } \phi = (\phi(1), \phi(2), \dots, \phi(n))$$

 $\phi, \psi \in S_n \Rightarrow$

$$\phi \circ \psi = (\phi(\psi(1)), \phi(\psi(2)), \dots, \phi(\psi(n))) \in S_n$$

 $id \in S_n$:

$$id = (1, 2, ..., n) \in S_n$$

Beispiele. $\phi = (1, 3, 2, 4), \psi = (2, 4, 1, 3)$

$$\phi \circ \psi = (\phi(2), \phi(4), \phi(1), \phi(3)) = (3, 4, 1, 2)$$

$$\psi \circ \phi = (\psi(1), \psi(3), \psi(2), \psi(4)) = (2, 1, 4, 3)$$

$$\phi^{-1} = (1, 3, 2, 4)$$

$$\psi^{-1} = (3, 1, 4, 2)$$

Definition. $\tau \in S_n$ heißt Transposition, falls es $p, k \in \{1, 2, ..., n\}$ so gibt, dass $\tau(j) = j \ \forall j \neq p, k \ und \ \tau(p) = k \ und \ \tau(k) = p$. Schreibweise: $\tau = (p \ k)$.

- 1. Im Beispiel oben ist $\phi = (3\ 2)$
- 2. Es gilt mit $\phi = (1, 3, 2, 4)$: $(1 \ 2) \circ \phi = (2, 3, 1, 4)$.
- 3. Für jede Transposition τ gilt $\tau^2 = \tau \circ \tau = \mathrm{id}$, also $\tau = \tau^{-1}$. In obigem Beispiel ist $\phi = \phi^{-1}$.

Satz 1. Jede Permutation $\sigma \in S_n$ kann als Produkt von Transpositionen geschrieben werden: $\sigma = \tau_1 \circ \ldots \circ \tau_k$.

Beispiel.
$$(5,3,4,1,2) = (1\ 5) \circ (2\ 3) \circ (3\ 4) \circ (4\ 5) = (1\ 2) \circ (2\ 4) \circ (2\ 3) \circ (1\ 5).$$

Satz 2. Hat man für $\sigma \in S_n$ zwei Zerlegungen in Transpositionen: $\sigma = \tau_1 \circ \ldots \circ \tau_k = \tilde{\tau}_1 \circ \ldots \circ \tilde{\tau}_l$, so sind die Zahlen k und l entweder beide gerade oder beide ungerade.

Definition. $\sigma \in S_n$. Das Vorzeichen von σ , sign (σ) , ist so definiert:

$$sign(\sigma) = (-1)^k,$$

wenn $\sigma = \tau_1 \circ \ldots \circ \tau_k$ eine Darstellung als Produkt von Transpositionen ist.

Satz 3. Es gelten

- 1. $\operatorname{sign}(\tau) = -1$ für jede Transposition $\tau \in S_n$
- 2. $\operatorname{sign}(\sigma \circ \phi) = \operatorname{sign}(\sigma) \operatorname{sign}(\phi), \ \sigma, \phi \in S_n$
- 3. $\operatorname{sign}(\sigma) = \operatorname{sign}(\sigma^{-1}), \ \sigma \in S_n$
- 4. $\operatorname{sign}(\sigma) = \prod_{j < k} \frac{\sigma(j) \sigma(k)}{j k}, \ \sigma \in S_n$.

22.2. Determinante

$$\det: \mathbb{C}^{(n,n)} \to \mathbb{C}$$

$$A \mapsto \det A \text{ (gelesen: } die \ Determinante \ von \ A)}$$

Wir fassen det als Funktion der Spalten $\vec{a}_1, \ldots, \vec{a}_n$ von A auf. $\det(A) = \det(\vec{a}_1, \ldots, \vec{a}_n)$ wird durch folgende Eigenschaften festgelegt:

$$(\det 1) \det(E) = \det(\vec{e}_1, \dots, \vec{e}_n) = 1$$

(det 2) det ist linear als Funktion jeder Spalte:

$$\det(\vec{a}_1, \dots, \vec{a}_{l-1}, \sum_{k=1}^m \lambda_k \vec{v}_k, \vec{a}_{l+1}, \dots, \vec{a}_n) = \sum_{k=1}^m \lambda_k \det(\vec{a}_1, \dots, \vec{a}_{l-1}, \vec{v}_k, \vec{a}_{l+1}, \dots, \vec{a}_n)$$
 für $l = 1, \dots, n$.

(det 3) Vertauschen zweier Spalten ändert das Vorzeichen von $\det(A)$: Für jede Transposition $\tau \in S_n$ gilt

$$\det(\vec{a}_{\tau(1)}, \dots, \vec{a}_{\tau(n)}) = \operatorname{sign}(\tau) \det(A)$$

Beispiele. Prüfe nach, dass folgende Zuordnungen für n = 2,3 im obigen Sinn Determinanten sind:

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \mapsto \det(A) := \alpha_{11}\alpha_{22} - \alpha_{21}\alpha_{12} \qquad (n=2)$$

$$A = [\vec{a}_1, \vec{a}_2, \vec{a}_3] \mapsto \det(A) = (\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3 \qquad (n = 3)$$

Folgerungen (aus (det1), (det2), det3)). (A1) $\det(\vec{a}_{\sigma(1)}, \dots, \vec{a}_{\sigma(n)}) = \operatorname{sign}(\sigma) \det(A), \ \sigma \in S_n$.

- $(A2) \det(\vec{e}_{\sigma(n)}, \dots, \vec{e}_{\sigma(n)}) = \operatorname{sign}(\sigma), \ \sigma \in S_n.$
- (A3) Aus $A\vec{e}_j = A\vec{e}_k \ (j \neq k) \ folgt \det(A) = 0.$
- (A4) Für $B = [\vec{a}_1, \dots, \vec{a}_{k-1}, \vec{a}_k + \lambda \vec{a}_j, \vec{a}_{k+1}, \dots, \vec{a}_n] \ (j \neq k, \lambda \in \mathbb{C}) \ gilt \ \det(B) = \det(A).$
- $(A5) \det(\lambda A) = \lambda^n \det(A), \ \lambda \in \mathbb{C}$
- (A6) Satz 4 (Folgerung aus (det2), (A3), (A2)). Für $A = (\alpha_{jk}) \in \mathbb{C}^{(n,n)}$ gilt

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \alpha_{\sigma(1)1} \dots \alpha_{\sigma(n)n}.$$

Zur Übung schreibe diese Formel explizit für n=2,3,4 auf. Beispiel.

$$\det\begin{pmatrix} 1 & \alpha_{12} & \cdots & \alpha_{1n} \\ 0 & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & \alpha_{n2} & \cdots & \alpha_{nn} \end{pmatrix} = \det(\vec{e}_1, \vec{a}_2, \dots, \vec{a}_n)$$

$$= \sum_{\sigma' \in S_{n-1}} \operatorname{sign}(\sigma') \alpha_{\sigma'(2)2} \dots \alpha_{\sigma'(n)n}$$

$$= \det\begin{pmatrix} \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & & \vdots \\ \alpha_{n2} & \cdots & \alpha_{nn} \end{pmatrix}$$

Dabei sind hier S_{n-1} alle Permutationen der Zahlen $2, \ldots, n$. Satz 5.

$$\det(A) = \det(A^{\top}) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \alpha_{1\sigma(1)} \dots \alpha_{n\sigma(n)}$$

(A7) A_{jk} bezeichnet die (n-1, n-1)-Matrix, die aus A durch Streichen der j-ten Zeile und k-ten Spalte entsteht. Das Beispiel vorher gibt $\det(\vec{e}_1, \vec{a}_2, \dots, \vec{a}_n) = \det A_{11}$.

Mit

$$\det(\vec{a}_1, \dots, \vec{a}_{k-1}, \vec{e}_i, \vec{a}_{k+1}, \dots, \vec{a}_k) = (-1)^{k+j} \det(A_{jk})$$

erhält man den

Satz 6 (Entwicklungssatz).

$$\det(A) = \sum_{j=1}^{n} (-1)^{k+j} \alpha_{jk} \det(A_{jk})$$
 (Entwicklung nach der *k*-ten Spalte)
$$= \sum_{j=1}^{n} (-1)^{k+j} \alpha_{kj} \det(A_{kj})$$
 (Entwicklung nach der *k*-ten Zeile)

(A8) (Folgerung aus Satz 1)

Satz 7 (Determinantenmultiplikationssatz). $A, B \in \mathbb{C}^{(n,n)}$. Es qilt

$$\det(AB) = \det(A)\det(B)$$

(A9) Ist $A \in \mathbb{C}^{(n,n)}$ regulär, so gilt

$$\det(A^{-1}) = (\det(A))^{-1}$$

- (A10) A ist regulär $\Leftrightarrow \det(A) \neq 0$.
- (A11) Der(n,n)-Matrix A wird die (n,n)-Matrix adj(A) (die Adjunkte von A) zugeordnet durch

$$(adj(A))_{kl} := (-1)^{k+l} det(A_{lk}) \quad (k, l = 1, ..., n)$$

Satz 8. Es gilt

$$adj(A)A = E det(A)$$

Folgerung. Ist A regulär, so gilt

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

(A12) Die Cramersche Regel (mit der Folgerung aus Satz 5) Es sind $A \in \mathbb{C}^{(n,n)}$, A regulär und $\vec{y} \in \mathbb{C}^n$ gegeben. $\vec{x} = A^{-1}\vec{y}$ (die Lösung von $A\vec{x} = \vec{y}$) erhält man so: $\vec{x} = \sum_{k=1}^n x_k \vec{e}_k$,

$$x_k = \frac{1}{\det(A)} \det(\vec{a}_1, \dots, \vec{a}_{k-1}, \vec{y}, \vec{a}_{k+1}, \dots, \vec{a}_n), \quad k = 1, \dots, n$$

23. Orthogonale Matrizen

23.1. Beispiele

$$A_{1} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}$$
$$A_{3} = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix} \qquad A_{4} = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

23.2.

 $A \in \mathbb{R}^{(n,n)}$ heißt orthogonal, falls $A^{\top}A = E$ gilt.

 A_1, A_2, A_3, A_4 aus 23.1 sind orthogonale Matrizen.

- 1. Ist A orthogonal, so gilt $|\det(A)| = 1$. A ist insbesondere regulär.
- 2. A ist orthogonal $\Leftrightarrow A^{\top} = A^{-1} \Leftrightarrow AA^{\top} = E \Leftrightarrow A^{-1}$ ist orthogonal $\Leftrightarrow A^{\top}$ ist orthogonal.
- 3. Sind A und B orthogonale (n, n)-Matrizen, so ist AB orthogonal.
- 4. Sind AB und B (A) orthogonal, so ist A (B) orthogonal.

23.3.

Satz 1. $A \in \mathbb{R}^{(n,n)}$. Es sind äquivalent:

- 1. A ist orthogonal
- 2. $\vec{x}^{\top} \vec{y} = (A\vec{x})^{\top} (A\vec{y}) \ \forall \vec{x}, \vec{y} \in \mathbb{R}^n$

- 3. $||A\vec{x}|| = ||\vec{x}|| \forall \vec{x} \in \mathbb{R}^n$
- 4. $||A\vec{x} A\vec{y}|| = ||\vec{x} \vec{y}|| \ \forall \vec{x}, \vec{y} \in \mathbb{R}^n$
- 5. Die Spalten von A bilden eine ON-Basis des \mathbb{R}^n
- 6. Die Zeilen von A bilden eine ON-Basis des \mathbb{R}^n
- 7. Ist $(\vec{b}_1, \ldots, \vec{b}_n)$ eine ON-Basis des \mathbb{R}^n , so ist $(A\vec{b}_1, \ldots, A\vec{b}_n)$ eine ON-Basis des \mathbb{R}^n .

Satz 2. Jede orthogonale (2,2)-Matrix ist von einer der beiden Formen

$$D = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \tag{a}$$

$$S = \begin{pmatrix} c & s \\ s & -c \end{pmatrix} \tag{b}$$

 $mit\ s^2+c^2=1.$ Die Abbildung $\vec{x}\mapsto S\vec{x}:\mathbb{R}^2\to\mathbb{R}^2$ beschreibt eine Spiegelung an der Gerade durch 0, die die Richtung $\vec{v}=\binom{c+1}{s}$ hat (das ist die Gerade durch 0 mit der Steigung $\tan\phi/2$ mit $c=\cos\phi, s=\sin\phi$).

24. Eigenwertprobleme, Diagonalisieren von Matrizen

24.1. Beispiele

1. (siehe vorher Satz 2/ Kap. 23) Mit $A = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{pmatrix}$ hat man:

$$A \begin{pmatrix} \cos \phi + 1 \\ \sin \phi \end{pmatrix} = \begin{pmatrix} \cos \phi + 1 \\ \sin \phi \end{pmatrix} \text{ und}$$
$$A \begin{pmatrix} -\sin \phi \\ \cos \phi + 1 \end{pmatrix} = \begin{pmatrix} -\sin \phi \\ \cos \phi + 1 \end{pmatrix}$$

2. Zu $A \in \mathbb{C}^{(n,n)}$ und $\vec{y} \in \mathbb{C}^n$ ist $\vec{x} \in \mathbb{C}^n$ mit $A\vec{x} = \vec{y}$ gesucht. Mit einer regulären Matrix C setze $\vec{x}' := C^{-1}\vec{x}$, $\vec{y}' := C^{-1}\vec{y}$. $A\vec{x} = \vec{y}$ wird zu einer Gleichung für \vec{x}' :

$$C^{-1}AC\vec{x}' = \vec{y}'$$

Ist $C^{-1}AC$ eine Diagonalmatrix, so erhält man sofort \vec{x}' und dann auch $\vec{x} = C\vec{x}'$.

24.2. Definition

Es seien V ein VR und $T \in \mathcal{L}(V, V)$.

 $\lambda \in \mathbb{C}$ heißt Eigenwert (EW) von T, falls es ein $x \in V \setminus \{0\}$ gibt mit $Tx = \lambda x$. Ein derartiges Element x heißt Eigenvektor (EV) zum EW λ .

Ist λ ein EW von T, so heißt $E(\lambda) := \operatorname{Kern}(T - \lambda \operatorname{id}) = \{0\} \cup \{x \mid x \text{ EV zu } \lambda\}$ der Eigenraum von T zum EW λ .

 $\dim E(\lambda)$ heißt die geometrische Vielfachheit $\gamma(\lambda)$ von λ .

Bemerkungen, Beispiele. 1. Zu 1.) / 24.1: Besitzt A n l.u. Eigenvektoren $\vec{v}_1, \ldots, \vec{v}_n$

mit den EW $\lambda_1, \ldots, \lambda_n$, so ist mit $C = [\vec{v}_1, \ldots, \vec{v}_n]$

$$C^{-1}AC = [\lambda_1 \vec{e}_1, \dots, \lambda_n \vec{e}_n] = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

- 2. Ist für $T \in \mathcal{L}(V, V)$ Kern $(T) \neq \{0\}$, so ist jeder Vektor $x \in \text{Kern}(T) \setminus \{0\}$ EV zum EW $\lambda = 0$
- 3. Für die lineare Abbildung $T: \mathbb{R}^3 \to \mathbb{R}^3$ mit $T(\vec{e}_1) = \vec{e}_1$, $T(\vec{e}_2) = \vec{e}_2$, $T(\vec{e}_3) = -\vec{e}_3$ ist jeder Vektor $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \neq \vec{0}$ EV zum EW $\lambda = 1$ und jeder Vektor $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix} \neq \vec{0}$ EV zum EW $\lambda = -1$
- 4. $D: C^{\infty}(I) \to C^{\infty}(I)$, Df = f'. Eigenvektoren (heißen in diesem Zusammenhang auch Eigenfunktionen) sind $f(x) = ce^{\lambda x}$ (c konst $\neq 0$) mit EW λ .

24.3.

Satz 1. V sei VR, $T \in \mathcal{L}(V, V)$. u_1, \ldots, u_l seien EVen und die zugehörigen EWe $\lambda_1, \ldots, \lambda_l$ seien verschieden. Dann sind die EVen u_1, \ldots, u_l l.u.

Folgerung. Gilt $\dim(V) = n$, so besitzt $T \in (V, V)$ höchstens n verschiedene EWe.

Satz 2. $T \in \mathcal{L}(V, V)$, dim(V) = n. Dann hat man:

1. Besitzt T n l.u. EVen u_1, \ldots, u_n mit den EWen $\lambda_1, \ldots, \lambda_n$, so ist die Darstellungsmatrix für $T: (V, (u_1, \ldots, u_m)) \to (V, (u_1, \ldots, u_m))$ die Matrix

$$\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \tag{*}$$

2. Gibt es in V eine Basis (v_1, \ldots, v_n) bzgl. der $T \in \mathcal{L}(V, V)$ die Darstellungsmatrix $\begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{pmatrix} = [\lambda_1 \vec{e}_1, \ldots, \lambda_n \vec{e}_n]$ besitzt, so gelten

$$Tv_k = \lambda_k v_k, \quad k = 1, \dots, n$$

24.4. Das charakteristische Polynom der Matrix

$$A = (a_{jk}) \in \mathbb{C}^{(n,n)}$$

Gesucht sind $\lambda \in \mathbb{C}$ und $\vec{x} \neq 0, \vec{x} \in \mathbb{C}^n$ mit $A\vec{x} = \lambda \vec{x}$.

Es gilt (siehe z.B. Satz 7/ Kap. 20 und A10, 22.2):

$$\lambda$$
 ist EW von $A \Leftrightarrow \operatorname{rang}(A - \lambda E) < n$
 $\Leftrightarrow \chi_A(\lambda) := \det(A - \lambda E) = 0$

 $\chi_A(\lambda)$ heißt das charakteristische Polynom von A. Die EWe von A sind die Nullstellen von χ_A .

Satz 3. Es gilt

$$\chi_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} \sum_{j=1}^n a_{jj} + \dots + \det A$$

$$\left(\sum_{j=1}^{n} a_{jj} =: \operatorname{Spur}(A)\right)$$

Zu einem EW λ von A, d.h. zu einer Nullstelle λ von χ_A , werden die zugehörigen EVen aus dem homogenen linearen Gleichungssystem $(A - \lambda E)\vec{x} = \vec{0}$ berechnet.

Hat A die verschiedenen EWe $\lambda_1, \ldots, \lambda_k$ $(k \leq n)$, so gibt es Zahlen m_j $(j = 1, \ldots, k) \in \mathbb{N}$ mit $\sum_{j=1}^k m_j = n$ und

$$\chi_A(\lambda) = (-1)^n \prod_{j=1}^k (\lambda - \lambda_j)^{m_j}$$

 $m_i := m(\lambda_i)$ heißt die algebraische Vielfachheit λ_i .

Satz 4. Es gelten (das liest man aus Satz 3 ab):

$$\det(A) = \prod_{j=1}^{k} \lambda_j^{m_j} \quad und \quad \operatorname{Spur}(A) = \sum_{j=1}^{k} m_j \lambda_j.$$

Bemerkung. Es sei λ ein EW mit der geometrischen Vielfachheit $\gamma(\lambda)$ und der algebraischen Vielfachheit $m(\lambda)$. Es gilt

$$1 < \gamma(\lambda) < m(\lambda)$$
.

Aus $\sum_{i=1}^{k} m(\lambda_i) = n$ folgt: Eine (n, n)-Matrix besitzt maximal n l.u. EVen.

24.5.

Es sei $T \in \mathcal{L}(V, V)$, dim(V) = n. $B_1 = (v_1, \dots, v_n)$, $B_2 = (u_1, \dots, u_n)$ seien Basen von V. Es gibt dann eine reguläre (n, n)-Matrix $C = ((C)_{jk})$ mit

$$u_j = \sum_{k=1}^{n} (C)_{kj} v_k, \quad j = 1, \dots, n$$

Satz 5. Ist A die Darstellungsmatrix für

$$T:(V;B_1)\to (V;B_1)$$

und B die für

$$T: (V; B_2) \to (V; B_2),$$

so gilt

$$B = C^{-1}AC.$$

Satz 6. Gilt für zwei (n,n)-Matrizen A und B mit einer regulären Matrix C die Beziehung

$$B = C^{-1}AC,$$

so sind A und B Darstellungsmatrizen derselben linearen Abbildung.

24.6. Diagonalisieren von Matrizen

Definition. $A, B \in \mathbb{C}^{(n,n)}$ heißen ähnlich, wenn es eine reguläre Matrix $C \in \mathbb{C}^{(n,n)}$ so gibt, dass

$$B = C^{-1}AC$$

gilt.

Satz 7. (Sätze 5/6) Zwei (n,n)-Matrizen sind genau dann ähnlich, wenn sie Darstellungsmatrizen derselben linearen Abbildung sind

Satz 8. Für ähnliche Matrizen A, B gilt $\chi_A = \chi_B$. Sie besitzen also dieselben EWe. Insbesondere gelten: $\det(A) = \det(B)$ und $\operatorname{Spur}(A) = \operatorname{Spur}(B)$.

Definition. A heißt diagonalisierbar, wenn A zu einer Diagonalmatrix $D = [p_1 \vec{e}_1, \dots, p_n \vec{e}_n]$ ähnlich ist.

Satz 9. Es gilt für jede Matrix $A \in \mathbb{C}^{(n,n)}$

$$A ist diagonalisierbar$$
 (1)

$$\Leftrightarrow A \text{ besitzt } nl.u.EVen$$
 (2)

⇔ für jeden EW stimmen die geom. und die algebr. Vielfachheit überein. (3)

(Verwende die Bemerkung am Ende von 24.4, Verwende Satz 2) Zu (2) \Rightarrow (1): Sind $\vec{x}_1, \ldots, \vec{x}_n$ n l.u. EVen, so gilt mit $C = [\vec{x}_1, \ldots, \vec{x}_n]$: $C^{-1}AC = D$ mit $D\vec{e}_k = \lambda_k \vec{e}_k$ und $A\vec{x}_k = \lambda_k \vec{x}_k$.

Z: Diagonalisieren der (n, n)-Matrix A

- 1. Berechne alle EVen
- 2. Gibt es n l.u. EVen $\vec{x}_1, \ldots, \vec{x}_n$, so ist $C = [\vec{x}_1, \ldots, \vec{x}_n]$ eine Matrix, mit der A auf Diagonalform transformiert wird.
- 3. Gibt es weniger als n l.u. EVen, so ist A nicht diagonalisierbar.

24.7. Hermitesche Matrizen sind diagonalisierbar

(19.5, 3) $A \in \mathbb{C}^{(n,n)}$ heißt hermitesch, falls $A = A^* (= \overline{A}^\top)$.

 $(A \in \mathbb{R}^{(n,n)} \text{ heißt } symmetrisch, \text{ falls } A = A^{\top}.)$

Satz 10. Die EWe einer hermiteschen Matrix A sind reell und EVen zu verschiedenen EWen sind zueinander orthogonal.

(Man benötigt:
$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^{\top} \overline{\vec{y}}, \ \vec{x}, \vec{y} \in \mathbb{C}^n \text{ und } \langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^* \vec{y} \rangle \ 19.5 \ 6., 7)$$
)

Satz 11. Ist $A \in \mathbb{C}^{(n,n)}$ hermitesch $(\in \mathbb{R}^{(n,n)}$ symmetrisch), so existieren $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ und eine unitäre (orthogonale) Matrix $C \in \mathbb{C}^{(n,n)}$ $(\in \mathbb{R}^{(n,n)})$ derart, dass

$$\chi_A(\lambda) = (-1)^n \prod_{j=1}^n (\lambda - \lambda_j) \ und$$

$$C^*AC = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \quad (C^\top AC = \begin{pmatrix} \lambda_1 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix})$$

gelten. Die j-te Spalte von C ist EV mit EW λ_j .

25. Definite Matrizen

Für $A \in \mathbb{R}^{(n,n)}$, $A = A^{\top}$ wird $q(\vec{x}) := \vec{x}^{\top} A \vec{x}$, $\vec{x} \in \mathbb{R}^n$ betrachtet.

Definition. 1. A heißt positiv definit, falls $q(\vec{x}) > 0 \ \forall \vec{x} \neq \vec{0}$ gilt. A heißt positiv semidefinit, falls $q(\vec{x}) \geq 0 \ \forall \vec{x}$ gilt.

- 2. A heißt negativ (semi)definit, falls -A positiv (semi)definit ist.
- 3. A heißt indefinit, falls es $\vec{x}_1, \vec{x}_2 \in \mathbb{R}^n$ mit $q(\vec{x}_1)q(\vec{x}_2) < 0$ gibt.

Satz 1. Es sei $A \in \mathbb{R}^{(n,n)}$ und $A = A^{\top}$. Es gelten:

- 1. A ist positiv definit \Leftrightarrow alle EWe sind positiv
- 2. A ist positiv semidefinit \Leftrightarrow die EWe sind nicht negativ
- 3. A ist indefinit \Leftrightarrow es gibt einen positiven und einen negativen EW.

Der Satz 1 im Fall n=2 sagt aus:

Satz 2. Für $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \neq 0, \in \mathbb{R}^{(2,2)}$ gelten:

- 1. A ist positiv definit $\Leftrightarrow a > 0$ und $ac b^2 > 0$
- 2. A ist negativ definit $\Leftrightarrow a < 0$ und $ac b^2 > 0$
- 3. A ist positiv semidefinit $\Leftrightarrow a+c \geq 0$ und $ac-b^2 \geq 0$
- 4. A ist indefinit $\Leftrightarrow ac b^2 < 0$

26. $\vec{f}:S\subset\mathbb{R}^n\to\mathbb{R}^m$, Stetigkeit

26.1.

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ \vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}. \text{ Def:}$$

$$\vec{x} \to \vec{a} \Leftrightarrow ||\vec{x} - \vec{a}|| \to 0$$

$$\Leftrightarrow \sum_{j=1}^n (x_j - a_j)^2 \to 0$$

$$\Leftrightarrow x_j \to a_j \ (j = 1, \dots, n)$$

 $B(\vec{a},r) = \{\vec{x} \mid \|\vec{x} - \vec{a}\| < r\} \ (r > 0).$ $S \subset \mathbb{R}^n$ heißt offene Menge, wenn es zu jedem Punkt $\vec{a} \in S$ eine Zahl r > 0 so gibt, dass $B(\vec{a},R) \subset S$ gilt.

 $\vec{y} = \vec{f}(\vec{x}), \ \vec{f}: S \subset \mathbb{R}^n \to \mathbb{R}^m$, sei gegeben.

$$\vec{f}(\vec{x}) \cdot \vec{e}_j^{(m)} =: f_j(\vec{x}), \ f_j : S \to \mathbb{R} \ (j = 1, \dots, n)$$

heißen die Koordinatenfunktionen von \vec{f} .

26.2.

Es ist $\vec{f}: S \subset \mathbb{R}^n \to \mathbb{R}^m$ gegeben und $\vec{a} \in S$.

$$ec{f}$$
 heißt in $ec{a}$ stetig $\overset{Def}{\Leftrightarrow} \lim_{ec{x} \to ec{a}} ec{f}(ec{x}) = ec{f}(ec{a})$ \Leftrightarrow Zu jedem $\varepsilon > 0$ gibt es ein $\delta(\varepsilon, ec{a}) > 0$ derart, dass aus $ec{x} \in S$, $||ec{x} - ec{a}|| < \delta$ folgt: $||ec{f}(ec{x}) - ec{f}(ec{a})|| < \varepsilon$

 \vec{f} heißt auf S stetig,wenn \vec{f} in jedem Punkt von S stetig ist.

Satz 1. Sind \vec{f} und $\vec{g}: S \to \mathbb{R}^m$ in $\vec{a} \in S$ stetig, so sind $\vec{f} + \vec{g}, \lambda \vec{f}$ $(\lambda \in \mathbb{R}), \vec{f} \cdot \vec{g}$ in \vec{a} stetig.

Satz 2. $\vec{f}: S \to \mathbb{R}^m, \ \vec{a} \in S$. Es gilt:

 \vec{f} ist in \vec{a} stetig \Leftrightarrow jede Koordinatenfunktion f_j (j = 1, ..., m) ist in \vec{a} stetig.

Satz 3. $\vec{g}: S \subset \mathbb{R}^n \to \mathbb{R}^m, \ \vec{f}: \vec{g}(S) \to \mathbb{R}^p$. Es seien \vec{g} in $\vec{a} \in S$ und \vec{f} in $\vec{g}(\vec{a})$ stetig.

Beispiele. 1. $A \in \mathbb{R}^{(m,n)}$ sei konstante Matrix.

$$\vec{f}: \mathbb{R}^n \to \mathbb{R}^m, \ \vec{f}(\vec{x}) := A\vec{x},$$

ist auf \mathbb{R}^n stetig.

2.

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0), \end{cases}$$

ist in (0,0) nicht stetig, obwohl \vec{f} , eingeschränkt auf eine beliebige Gerade durch (0,0), im Nullpunkt stetig ist.

3.

$$\vec{f}(x,y) := \begin{pmatrix} \frac{x^2}{\sqrt{x^2 + y^2}} \\ \frac{xy}{\sqrt{x^2 + y^2}} \\ \frac{y^2}{\sqrt{x^2 + y^2}} \end{pmatrix}, \ (x,y) \neq (0,0)$$

ist überall stetig und lässt sich durch den Wert $\vec{0}$ in (0,0) so definieren, dass \vec{f} auf ganz \mathbb{R}^2 stetig wird.

27. Kurven in \mathbb{R}^n , Die Bogenlänge

27.1.

Eine (parametrisierte) Kurve im \mathbb{R}^n ist eine stetige Abbildung

$$\vec{r}: I \subset \mathbb{R} \to \mathbb{R}^n$$

$$t \mapsto (x_1(t), \dots, x_n(t))^\top$$

 \vec{r} heißt stetig diff'bar ($\vec{r} \in C^1(I)$), falls die Koordinatenfunktionen $x_j : I \to \mathbb{R}$ stetig diff'bar sind. Es gilt für $t_0 \in I$:

$$\vec{r}'(t_0) = \lim_{\substack{t \to t_0 \\ t \in I}} \frac{\vec{r}(t) - \vec{r}(t_0)}{t - t_0} = \begin{pmatrix} x'_1(t_0) \\ \vdots \\ x'_n(t_0) \end{pmatrix}$$

 $\vec{r}(I)$ heißt die Spur von \vec{r} , $\vec{r} = \vec{r}(t)$ heißt Parameterdarstellung der Kurve.

Zu einer Kurve gehört eine Orientierung: $t_1 < t_2$ induziert die Richtung $\vec{r}(t_1) \to \vec{r}(t_2)$.

Ist I = [a, b], so heißt $\vec{r}(a)$ Anfangspunkt und $\vec{r}(b)$ Endpunkt der Kurve.

Gilt $\vec{r}(a) = \vec{r}(b)$, so heißt die Kurve geschlossen.

Ein Punkt \vec{r}_d mit $\vec{r}_d = \vec{r}(t_1) = \vec{r}(t_2)$ für $t_1 \neq t_2$ heißt *Doppelpunkt*. Ist \vec{r} injektiv, so hat die Kurve keinen Doppelpunkt. Eine solche Kurve heißt *Jordankurve*. Eine geschlossene Jordankurve hat den Anfangs- (=Endpunkt) als einzigen Doppelpunkt.

Beispiele. 1. $\vec{r}(t) = \left(\frac{-t}{\sqrt{1-t^2}}\right)$, $-1 \le t \le 1$, ist eine Jordankurve

- 2. $\vec{r}(t) = (2\cos t 1)(\frac{\cos t}{\sin t})$, $0 \le t \le 2$ ist geschlossen, aber keine Jordankurve. Doppelpunkte?
- 3. $\vec{r}(t) = \begin{pmatrix} t^2 1 \\ t^3 t \end{pmatrix}$, $t \in \mathbb{R}$ ist keine Jordankurve. Doppelpunkte?

Es sei $\vec{r}: I \to \mathbb{R}^n$ eine stetig diff'bare Kurve. Gilt für $t_0 \in I$ $\vec{r}'(t_0) \neq \vec{0}$, so ist

$$\vec{g}(t) = \vec{r}(t_0) + \vec{r}'(t_0)(t - t_0), \ t \in \mathbb{R},$$

eine Parameterdarstellung für die Tangente an \vec{r} in $\vec{r}(t_0)$. $\vec{r}'(t_0)$ heißt Tangentialvektor der Kurve an der Stelle $\vec{r}(t_0)$.

Die C^1 -Kurve $\vec{r}: I \to \mathbb{R}^n$ heißt regulär (glatt) an der Stelle $t_0 \in I$, wenn $\vec{r}'(t_0) \neq \vec{0}$ gilt.

Beispiele. 1. $\vec{r}(t) = \begin{pmatrix} t^3 \\ t^3 \end{pmatrix}$, $-1 \le t \le 1$.

2.
$$\vec{r}(t) = \begin{pmatrix} t^2 \\ t^3 \end{pmatrix}, t \in \mathbb{R}$$

3.
$$\vec{r}(t) = \begin{pmatrix} t \\ f(t) \end{pmatrix}, t \in I$$

4.
$$\vec{r}(t) = \begin{pmatrix} g(t) \\ t \end{pmatrix}, t \in I$$

5.
$$\vec{r}(t) = \begin{pmatrix} \cos t \\ \sin t \\ t \end{pmatrix}, t \in \mathbb{R}$$

27.2. Die Länge der Kurve $\vec{r}:[a,b] \to \mathbb{R}^n$

Z sei eine Zerlegung des Intervalls [a, b]: $Z = \{t_0, \dots, t_m\}$ mit $a = t_0 < t_1 < \dots < t_m = b$ (siehe auch beim Integral in HMI)

$$l(Z) := \sum_{j=1}^{m} \|\vec{r}(t_j) - \vec{r}(t_{j-1})\|$$

ist ein Näherungswert für die gesuchte Länge von $\vec{r}:[a,b]\to\mathbb{R}^n$. Die Kurve \vec{r} heißt rektifizierbar (besitzt eine Länge), falls $\{l(Z)\mid Z \text{ Zerlegung von } [a,b]\}$ beschränkt ist. Das Supremum dieser Zahlen l(Z) heißt die Länge von $\vec{r}:L(\vec{r})=L_a^b(\vec{r})$.

Satz 1. Eine C^1 -Kurve $\vec{r}:[a,b] \to \mathbb{R}^n$ ist rektifizierbar $(-\infty < a < b < \infty)$. Es gilt

$$L(\vec{r}) = \int_a^b \|\vec{r}'(u)\| \,\mathrm{d}u$$

Beispiele. 1. $\vec{r}(t) = \begin{pmatrix} -t \\ \sqrt{1-t^2} \end{pmatrix}$, $-1 \le t \le 1$. $L(\vec{r}) = \pi$.

2.
$$\vec{r}(t) = e^{-t} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, \ t \ge 0. \ L(\vec{r}) = \sqrt{2}.$$

3.
$$\vec{r}(t) = (1 + e^{-t}) \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, \ t \ge 0. \ We gen \ L(\vec{r}) \ge \int_0^\infty (1 + e^{-t}) \, dt \ gilt \ L(\vec{r}) = \infty.$$

27.3. Parameterwechsel

 $\vec{r} = \vec{r}(t), \ \vec{r} : I(\text{Intervall}) \subset \mathbb{R} \to \mathbb{R}^n$ sei eine C^1 -Kurve. $g : I \to J, \ t \mapsto \tau = g(t),$ heißt eine C^1 Parametertransformation, wenn g bijektiv und C^1 und $g^{-1} : J \to I, \ \tau \mapsto$

 $t = g^{-1}(\tau)$, ebenfalls aus C^1 ist. Die Kurve $\vec{\rho}: J \to \mathbb{R}^n$, $\vec{\rho}(\tau) := \vec{r}(g^{-1}(\tau))$, heißt eine Umparametrisierung von \vec{r} . Es gilt $\vec{\rho}(J) = \vec{r}(I)$.

g heißt orientierungstrue (orientierungsumkehrend), falls g' > 0 (g' < 0).

Beispiel. $\tau = g(t) := b + a - t$, $g : [a, b] \to [a, b]$. Die Kurve $\vec{\rho}$: $\rho(\tau) := \vec{r}(b + a - \tau)$, $\tau \in [a, b]$ wird auch durch \vec{r}^- bezeichnet.

Satz 2. Mit den Bezeichnungen oben sei $I = [a, b], \ J = [\alpha, \beta]. \ \vec{r}$ sei glatte Kurve. Es gilt

$$(L(\vec{r}) =) \int_{a}^{b} ||\vec{r}'(t)|| d\tau = \int_{\alpha}^{\beta} ||\vec{\rho}'(\tau)|| dt (= L(\vec{\rho})).$$

27.4. Parametrisieren nach der Bogenlänge s

 $\vec{r}:[a,b]\to\mathbb{R}^n$ sei glatte Kurve der Länge L,

$$s = g(t) := \int_{a}^{t} \|\vec{r}'(u)\| \, \mathrm{d}u, \ a \le t \le b.$$

Die Umparametrisierung von \vec{r} mittels g:

$$\vec{\rho}(s) = \vec{r}(g^{-1}(s)), \ 0 \le s \le L$$

heißt die natürliche Darstellung der Kurve \vec{r} . Sie ist durch $\|\vec{\rho}'(s)\| = 1, s \in [0, L]$ gekennzeichnet.

Beispiel. Die natürliche Darstellung von $\vec{r}(t) = \begin{pmatrix} \cos t \\ \sin t \\ t \end{pmatrix}, \ 0 \le t \le 2\pi, \ ist \ \vec{\rho}(s) = \begin{pmatrix} \cos(s/\sqrt{2}) \\ \sin(s/\sqrt{2}) \\ s/\sqrt{2} \end{pmatrix}, \ 0 \le s \le 2\pi\sqrt{2}.$

28. Die Richtungsableitung, Partielle Ableitungen

28.1. Die Richtungsableitung

 $S \subset \mathbb{R}^n$ sei eine offene Menge (d.h.: zu $\vec{a} \in S$ gibt es ein r > 0, so dass $\{\vec{x} \mid ||\vec{x} - \vec{a}|| < r\} \subset S$ gilt). Weiter sind $g: S \to \mathbb{R}, \ \vec{x}_0 \in S$ und $\vec{v} \in \mathbb{R}^n \setminus \{\vec{0}\}$ gegeben.

Definition. Existiert $\lim_{h\to 0} 1/h(g(\vec{x}_0+h\vec{v})-g(\vec{x}_0))$, so heißt dieser Grenzwert Richtungsableitung von g in \vec{x}_0 in Richtung \vec{v} . Er wird durch $(D_{\vec{v}}g)(\vec{x}_0)$ bezeichnet.

Gilt $(D_{\vec{v}}g)(\vec{x}_0) > 0$ $((D_{\vec{v}}g)(\vec{x}_0) < 0)$, so wächst (fällt) $g(\vec{x})$ bei \vec{x}_0 in Richtung \vec{v} .

Für ein Vektorfeld $\vec{f}: S \subset \mathbb{R}^n \to \mathbb{R}^m$, \vec{x}_0 , \vec{v} wie oben, ist $(D_{\vec{v}}\vec{f})(\vec{x}_0)$ koordinatenweise erklärt:

$$(D_{\vec{v}}\vec{f})(\vec{x}_0) \ (= \lim_{h \to 0} \frac{1}{h} (\vec{f}(\vec{x}_0 + h\vec{v}) - \vec{f}(\vec{x}_0)) \) = \begin{pmatrix} D_{\vec{v}}f_1(\vec{x}_0) \\ \vdots \\ D_{\vec{v}}f_m(\vec{x}_0) \end{pmatrix}$$

Beispiele. 1. $f(\vec{x}) = ||\vec{x}||^2$, $\vec{x} \in \mathbb{R}^n : (D_{\vec{v}}f)(\vec{x}) = 2\vec{x} \cdot \vec{v}$. $(D_{\vec{v}}^2f)(\vec{x}) = (D_{\vec{v}}(D_{\vec{v}}f))(\vec{x}) = 2||\vec{v}||^2$.

2. $A \in \mathbb{R}^{(m,n)}$ konstant. $\vec{f}(\vec{x}) = A\vec{x}$, $\vec{x} \in \mathbb{R}^n$. $(D_{\vec{v}}\vec{f})(\vec{x}) = A\vec{v}$.

28.2. Partielle Ableitungen

 \vec{f}, S seien wie oben.

Für $D_{\vec{e}_j}$ schreiben wir D_j und sprechen von der partiellen Ableitung nach der j-ten Variablen:

$$(D_j \vec{f})(\vec{x}) = \lim_{h \to 0} \frac{1}{h} (\vec{f}(\vec{x} + h\vec{e}_j) - \vec{f}(\vec{x})), \quad j = 1, \dots, n.$$

 \vec{f} heißt auf S partiell diff bar, falls $(D_k f_j)(\vec{x})$ für alle $k \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$ und alle $\vec{x} \in S$ existieren.

 \vec{f} heißt l-mal stetig partiell differenzierbar, falls alle partiellen Ableitungen bis einschließlich der Ordnung l existieren und stetig sind.

Satz 1 (Schwarz). Ist $f: S \subset \mathbb{R}^n \to \mathbb{R}$ zweimal stetig partiell diff'bar, so gelten

$$D_j D_k f = D_k D_j f$$

 $auf S f \ddot{u}r all e j, k.$

28.3. Die Jakobi Matrix. Die Funktionaldeterminante

 $\vec{f}:S\subset\mathbb{R}^n\to\mathbb{R}^m$ sei partiell diff'bar. Die (m,n)-Matrix

$$J_{\vec{f}}(\vec{x}) := [D_1 \vec{f}(\vec{x}), \dots, D_n \vec{f}(\vec{x})]$$

heißt die Jakobi Matrix von \vec{f} in \vec{x} .

Ist m=n, so heißt $\det(J_{\vec{f}}(\vec{x}))$ die Funktionaldeterminante von \vec{f} an der Stelle $\vec{x}.$

Beispiele. 1. $\vec{f}: \{(r,\phi) \mid r > 0, \ 0 < \phi < 2\pi\} \to \mathbb{R}^2$,

$$\vec{f}(r,\phi) = \begin{pmatrix} r\cos\phi\\r\sin\phi \end{pmatrix}$$
 (ebene Polarkoordinaten)

$$\det(J_{\vec{f}}(r,\phi)) = \det\left(\frac{\cos\phi - r\sin\phi}{\sin\phi + r\cos\phi}\right) = r$$

2.
$$\vec{f}$$
: $\{(r, \phi, \theta) \mid r > 0, \ 0 < \phi < 2\pi, \ -\pi/2 < \theta < \pi/2\} \to \mathbb{R}^3$

$$\vec{f}(r,\phi,\theta) = \begin{pmatrix} r\cos\phi\cos\theta \\ r\sin\phi\cos\theta \\ r\sin\theta \end{pmatrix}$$
 (räumliche Polarkoord., Kugelkoord.)

 $\det(J_{\vec{f}}(r,\phi,\theta)) = r^2 \cos \theta.$

29. Gradient, Divergenz, Rotation, Laplaceoperator, der ∇-Operator

29.1. Definitionen

29.2. Beispiele

1.
$$\nabla(\|\vec{x}\|) = \frac{\vec{x}}{\|\vec{x}\|}$$

$$2. \ \nabla^{\top} \vec{x} = n$$

3.
$$\vec{x} \in \mathbb{R}^3$$
: $\nabla \times \vec{x} = \vec{0}$

4. Mit $f: \mathbb{R} \to \mathbb{R}$ wird mit $g: \mathbb{R}^n \to \mathbb{R}$ durch $g(\vec{x}) := f(||\vec{x}||)$ definiert. Es gilt

$$(\nabla g)(\vec{x}) = f'(\|\vec{x}\|) \frac{\vec{x}}{\|\vec{x}\|}.$$

5. Produktregeln:

$$f, g: \mathbb{R}^n \to \mathbb{R}: \qquad \nabla (fg) = g\nabla f + f\nabla g$$

$$f: \mathbb{R}^3 \to \mathbb{R}, \ \vec{v}: \mathbb{R}^3 \to \mathbb{R}^3: \qquad \nabla \times (f\vec{v}) = (\nabla f) \times \vec{v} + f\nabla \times \vec{v}$$

$$f: \mathbb{R}^n \to \mathbb{R}, \ \vec{v}: \mathbb{R}^n \to \mathbb{R}^n: \qquad \nabla^\top (f\vec{v}) = (\nabla f)^\top \vec{v} + f\nabla^\top \vec{v}$$

(Zur Übung formuliere diese Regeln mit den Begriffen grad, div, rot in Satzform)

6. Es sei g wie unter 4. Es gilt

$$(\Delta g)(\vec{x}) = f''(\|\vec{x}\|) + \frac{n-1}{\|\vec{x}\|} f'(\|\vec{x}\|)$$

29.3. rot grad, div rot, rot rot, grad div

Satz 1. Es seien $f: \mathbb{R}^3 \to \mathbb{R}$ und $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ zweimal stetig diff'bare Skalar- bzw. Vektorfelder. Es gelten

- 1. $\nabla \times (\nabla f) = \vec{0} \pmod{\text{rot grad}(f)} = \vec{0}$
- 2. $\nabla^{\top}(\nabla \times \vec{v}) = 0$ (div rot(\vec{v}) = 0)

3.
$$\underbrace{\nabla \times (\nabla \times \vec{v})}_{\text{rot rot}(\vec{v})} = \underbrace{\nabla (\nabla^{\top} \vec{v})}_{\text{grad div } \vec{v}} - \Delta \vec{v}$$

Bemerkung. Es sei $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ stetig. \vec{v} heißt Potentialfeld, falls $f: \mathbb{R}^3 \to \mathbb{R}$, $f \in C^1$ mit $\vec{v} = \nabla f$ existiert. Satz 1, 1. besagt:

Für ein C^1 -Potentialfeld \vec{v} gilt $\nabla \times \vec{v} = \vec{0}$.

30. $\vec{f}:S\subset\mathbb{R}^n\to\mathbb{R}^m$, die Ableitung

30.1. Differenzierbarkeit

Es seien $S \subset \mathbb{R}^n$ offen, $\vec{x}_0 \in S$ und $\vec{h} \in \mathbb{R}^n$ so, dass $\vec{x}_0 + \vec{h} \in S$. $\vec{f}: S \to \mathbb{R}^m$ heißt in x_0 diff bar mit der Ableitung $\vec{f}'(\vec{x}) \in \mathbb{R}^{(m,n)}$, falls

$$\vec{f}(\vec{x}_0 + \vec{h}) = \vec{f}(\vec{x}_0) + \vec{f}'(\vec{x}_0)\vec{h} + R(\vec{h})$$

mit $\lim_{\vec{h}\to\vec{0}}R(\vec{h})/\|\vec{h}\|=\vec{0}$ erfüllt ist.

30.2.

- 1. Es folgt sofort: Ist \vec{f} in \vec{x}_0 diff'bar, so ist \vec{f} in \vec{x}_0 stetig.
- 2. Die Funktion

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

ist in (0,0) nicht stetig. $(D_{\vec{v}}f)(0,0)$ existiert jedoch für jedes $\vec{v} \in \mathbb{R}^2 \setminus \{(0,0)\}.$

30.3. Beispiele

- 1. $A \in \mathbb{R}^{(n,n)}$ sei eine konstante symmetrische Matrix und $f(\vec{x}) = \vec{x}^{\top} A \vec{x}, \ \vec{x} \in \mathbb{R}^n$. Es gilt $\vec{f}'(\vec{x}) = 2\vec{x}^{\top} A, \ \vec{x} \in \mathbb{R}^n$.
- 2. A sei eine konstante (m, n)-Matrix und $\vec{f}(\vec{x}) := A\vec{x}, \ \vec{x} \in \mathbb{R}^n$. Es gilt $\vec{f}'(\vec{x}) = A, \ \vec{x} \in \mathbb{R}^n$.

30.4. Ableitung und Richtungsableitung

Satz 1. Es sei $\vec{f}: S \subset \mathbb{R}^n \to \mathbb{R}^m$ in $\vec{x}_0 \in S$ (offene Menge) diff'bar. Dann existiert $(D_{\vec{v}}\vec{f})(\vec{x}_0)$ für jedes $\vec{v} \in \mathbb{R}^n \setminus \{0\}$ und es gilt

$$\vec{f}'(\vec{x}_0)\vec{v} = (D_{\vec{v}}\vec{f})(\vec{x}_0).$$

30.5. Folgerungen

1. Es sei $\vec{f}:S\subset\mathbb{R}^n\to\mathbb{R}^m$ in S diff'bar. Dann gilt

$$\vec{f}'(\vec{x}) = J_{\vec{f}}(\vec{x}), \ \vec{x} \in S. \tag{*}$$

Und weiter: Ist $J_{\vec{f}}(\vec{x})$ in \vec{x} stetig, so ist \vec{f} in \vec{x} diff'bar. Es gilt (*). (stetig diff'bar $\stackrel{\Rightarrow}{\neq}$ diff'bar $\stackrel{\Rightarrow}{\neq}$ partiell diff'bar; stetig partiell diff'bar \Rightarrow diff'bar)

2. Ist \vec{f} in S diff'bar, so gilt für $\vec{x} \in S$ und $\vec{v} \in \mathbb{R}^n, \vec{v} \neq \vec{0}$:

$$(D_{\vec{v}}\vec{f})(\vec{x}) = \vec{f}'(\vec{x})\vec{v} = ((\vec{v}^{\top}\nabla)\vec{f})(\vec{x})$$

Im Fall m = 1 kann dies so geschrieben werden:

$$(D_{\vec{v}}f)(\vec{x}) = \vec{v}^{\top}(\nabla f)(\vec{x}) = f'(\vec{x})\vec{v}$$

Satz 2. Es sei $f: S \subset \mathbb{R}^n \to \mathbb{R}$ diff'bar und $\vec{x} \in S$. Dann gelten:

$$\max\{D_{\vec{v}}f(\vec{x}) \mid ||\vec{v}|| = 1\} = ||\nabla f(\vec{x})|| = D_{\vec{w}}f(\vec{x}) \text{ und}$$
$$\min\{D_{\vec{v}}f(\vec{x}) \mid ||\vec{v}|| = 1\} = -||\nabla f(\vec{x})|| = D_{\vec{w}}f(\vec{x})$$

 $mit \ \vec{w} = \nabla f(\vec{x}) / \|\nabla f(\vec{x})\| = -\vec{u}.$

30.6. Die Kettenregel

Satz 3. Es sind $\vec{g}: U \subset \mathbb{R}^p \to \mathbb{R}^n$ und $\vec{f}: V \subset \mathbb{R}^n \to \mathbb{R}^m$ gegeben. Es sei $\vec{g}(U) \subset V$. \vec{g} sei in $\vec{x} \in U$ und \vec{f} in $\vec{g}(\vec{x}) (\in V)$ diff bar. Dann ist $\vec{f} \circ \vec{g}$ mit \vec{x} diff bar und es gilt

$$(\vec{f} \circ \vec{g})(\vec{x}) = \vec{f'}(\vec{g}(\vec{x})) \vec{g'}(\vec{x}) \ (J_{\vec{f} \circ \vec{q}}(\vec{x}) = J_{\vec{f}}(\vec{g}(\vec{x})) J_{\vec{g}}(\vec{x}))$$

30.7. Tangentialebene einer Fläche in \mathbb{R}^3

Satz 4. Ist F implizit durch f(x,y,z)=c (const) gegeben, wobei $f\in C^1$ und $\nabla f\neq \vec{0}$ erfüllt seien, so ist

$$(\vec{r} - \vec{r}_0) \cdot \nabla f(\vec{r}_0) = 0$$

eine Gleichung der Tangentialebene an F in $P \in F$, wobei $\vec{r_0}$ der Ortsvektor von P ist.

Übung. Spezialisieren Sie diese Tangentialebenengleichung auf den Fall einer expliziten Flächengleichung: $z = g(x, y), \ y = h(x, z), \ x = j(y, z).$

Satz 5. Es sei F in Parameterform gegeben: $\vec{r} = \vec{f}(u,v)$ mit $\vec{f}: U \subset \mathbb{R}^2 \to \mathbb{R}^3$, $f \in C^1$ und $D_1 \vec{f}(u,v) \times D_2 \vec{f}(u,v) \neq \vec{0}$, $(u,v) \in U$. Eine Gleichung für die Tangentialebene an F in $P: \vec{r}_0 = \vec{f}(u_0,v_0)$ ist

$$\vec{r} = \vec{t}(\mu, \sigma) = \vec{r}_0 + \mu D_1 \vec{f}(u_0, v_0) + \sigma D_2 \vec{f}(u_0, v_0), \quad \mu, \sigma \in \mathbb{R}.$$

31. Zum Taylorsatz für Funktionen in n Variablen

31.1. Vorbereitungen, Bezeichnungen

 $\vec{x} \in \mathbb{R}^n, p(\vec{x}) := (x_1 + \ldots + x_n)^j \ (j \in \mathbb{N}).$

1.
$$p(\vec{x}) = \sum_{l_1=1}^n \dots \sum_{l_j=1}^n x_{l_1} \dots x_{l_j}$$

2.
$$D_1^{k_1} \dots D_n^{k_n} p(\vec{x}) \Big|_{\vec{x} = \vec{0}} = \begin{cases} j!, & k_1 + \dots + k_n = j \\ 0, & \text{sonst} \end{cases} (k_1, \dots, k_n \in \mathbb{N} \cup \{0\})$$

3.
$$p(\vec{x}) = \sum_{\substack{j_1 + \dots + j_n = j \\ j_1, \dots, j_n \in \mathbb{N} \cup \{0\}}} \sum_{\substack{j_1 + \dots + j_n = j \\ j_1 + \dots + j_n = j \text{ ist.}}} c_{j_1 \dots j_n} x_1^{j_1} \dots x_n^{j_n}$$
. Es gilt $c_{j_1 \dots j_n} = \left. \frac{D_1^{j_1} \dots D_n^{j_n} p(\vec{x})}{j_1! \dots j_n!} \right|_{\vec{x} = \vec{0}}$ (wobei

Es folgt mit 2.:

Satz 1.

$$p(\vec{x}) = (x_1 + \dots + x_n)^j = \sum_{\substack{j_1, \dots, j_n \\ j_1 + \dots + j_n = j}} \frac{j!}{j_1! \dots j_n!} x_1^{j_1} \dots x_n^{j_n}$$

Übung. 1. Man finde in Satz 1 für n=2 den binomischen Satz aus HMI wieder: $(x_1+x_2)^j=\sum_{k=0}^j\binom{j}{k}x_1^kx_2^{j-k}$

2. Schreiben Sie explizit $(x_1 + x_2 + x_3)^4$ auf in der Form wie oben unter 1. und wie in Satz 1.

31.2. Der Taylorsatz aus HMI

Aus HMI, 14. Kapitel, benötigen wir die folgende Variante des Taylorsatzes:

Für $F \in C^{k+1}(I), I \subset \mathbb{R}$ Intervall, $0, 1 \in I$ gilt:

$$F(1) = \sum_{i=0}^{k} \frac{1}{j!} F^{(j)}(0) + \frac{1}{(k+1)!} F^{(k+1)}(\theta) \text{ mit } \theta \in (0,1)$$
 (E)

31.3. Taylorsatz von Funktionen in n Variablen

Wir setzen voraus:

(V) Es sei $f: S \subset \mathbb{R}^n \to \mathbb{R}$ aus $C^{k+1}(S)$. S offene Menge und zusammenhängend (= je zwei Punkte aus S können durch einen in S verlaufenden Streckenzug verbunden werden). Mit \vec{x} und $\vec{x}_0 \in S$ gelte $\{\vec{r}(t) = \vec{x}_0 + t(\vec{x} - \vec{x}_0), \ 0 \le t \le 1\} \subset S$.

Mit f wird $F:[0,1] \to \mathbb{R}$ durch $F = f \circ \vec{r}$ definiert. Es gelten $F(1) = f(\vec{x}), \ F(0) = f(\vec{x}_0)$ und (Kettenregel)

$$F^{(j)}(0) = ((\vec{x} - \vec{x}_0) \cdot \nabla)^j f(\vec{x}_0),$$

wobei $((\vec{x} - \vec{x}_0) \cdot \nabla)^j$ mit Satz 1 so ausgewertet werden kann: (setze $\vec{h} = (h_1, \dots, h_n)^\top = \vec{x} - \vec{x}_0$ zur Abkürzung)

$$(\vec{h} \circ \nabla)^j = \sum_{j_1 + \dots + j_n} \frac{j!}{j_1! \dots j_n!} h_1^{j_1} \dots h_n^{j_n} D_1^{j_1} \dots D_n^{j_n}$$

Wird (E) (31.2 oben) unter den Vor. (V) für $F = f \circ \vec{r}$ hingeschrieben, so ergibt sich **Satz 2** (Taylorsatz).

$$f(\vec{x}) = \underbrace{\sum_{j=0}^{k} \frac{1}{j!} ((\vec{x} - \vec{x}_0) \cdot \nabla)^j f(\vec{x}_0)}_{=T_k(f, \vec{x}_0)(\vec{x})} + \underbrace{\frac{1}{(k+1)!} ((\vec{x} - \vec{x}_0) \cdot \nabla)^{k+1} f(\vec{x}_0 + \theta(\vec{x} - \vec{x}_0))}_{=R_{k+1}}$$
(T)

Einschub (Landau Symbol "klein o")

Es seien f, g für $0 < |x - x_0| < r$ definiert mit $g(x) \neq 0$ für $0 < |x - x_0| < r$:

Definition.

$$f(x) = o(g(x)), \ x \to x_0 \stackrel{\text{Def}}{\Leftrightarrow} \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

Beispiele. • $|R_{k+1}| = o(\|\vec{x} - \vec{x}_0\|^k), \ \vec{x} \to \vec{x}_0$

- $\sin x x = o(|x|^2), \ x \to 0$
- $e^x 1 = o(1), x \to 0$

31.4. Folgerungen, Spezialisierungen

1. (T) für k = 0 lautet:

$$f(\vec{x}) - f(\vec{x}_0) = \nabla f(\vec{\xi}) \cdot (\vec{x} - \vec{x}_0)$$
 (MWS)

mit $\vec{\xi} = x_0 + \theta(\vec{x} - \vec{x}_0), \ \theta \in (0, 1).$

Satz 3. Es sei $f: S \subset \mathbb{R}^n \to \mathbb{R}$ eine C^1 -Funktion. Es gilt

$$f(\vec{x}) = const, \ \vec{x} \in S \Leftrightarrow \nabla f(\vec{x}) = \vec{0}, \ \vec{x} \in S.$$

Beispiel. $\arctan(x/y) + \arctan(y/x) = \pi/2, x > 0, y > 0.$

2.

$$T_0(f, \vec{x}_0)(\vec{x}) = f(\vec{x}_0)$$

$$T_1(f, \vec{x}_0)(\vec{x}) = f(\vec{x}_0) + (\vec{x} - \vec{x}_0) \cdot \nabla f(\vec{x}_0)$$

$$T_2(f, \vec{x}_0)(\vec{x}) = T_1(f, \vec{x}_0)(\vec{x}) + \frac{1}{2}((\vec{x} - \vec{x}_0) \cdot \nabla)^2 f(\vec{x}_0)$$
(*)

(Beachte: Die rechte Seite von (*) sind für n=2 die Punkte der Tangentialebene der Fläche $x_3=f(x_1,x_2)$ in $(x_1^0,x_2^0,f(\vec{x}_0))$; für n=1 die Punkte der Tangente an die Kurve $x_2=f(x_1)$ in $(x_1^0,f(x_1^0))$

Mit der symmetrischen Matrix

$$H_f(\vec{x}_0) = (D_j D_k f(\vec{x}_0))_{j,k=1,\dots,n}$$

(die *Hessematrix* von f in \vec{x}_0) hat man:

$$((\vec{x} - \vec{x}_0) \cdot \nabla)^2 f(\vec{x}_0) = (\vec{x} - \vec{x}_0)^\top H_f(\vec{x}_0)(\vec{x} - \vec{x}_0)$$

und also

$$f(\vec{x}) = f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0) + \frac{1}{2} (\vec{x} - \vec{x}_0)^{\top} H_f(\vec{x}) (\vec{x} - \vec{x}_0) + R_3 \text{ mit}$$

mit $R_3 = o(\|\vec{x} - \vec{x}_0\|^2)$ für $\vec{x} \to \vec{x}_0$. Oder auch:

$$f(\vec{x}_0 + \vec{x}) = f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot \vec{x} + \frac{1}{2} \vec{x}^{\mathsf{T}} H_f(\vec{x}_0) \vec{x} + o(\|\vec{x}\|^2), \ \vec{x} \to \vec{0}$$

31.5. Taylorreihe

1. Soll eine Funktion $f = f(\vec{x})$ um \vec{x}_0 bis zur Ordnung k entwickelt werden, so ist (T) aus Satz 2 verlangt.

Beispiel. Entwickle $f(x,y) = (x-1)^4(y-2)^3$ um (0,0) bis zur Ordnung 2.

2. Gilt $f \in C^{\infty}(S)$ und $R_k \to 0$ $(k \to \infty)$ für $\vec{x} \in S$, so erhält man $f(\vec{x})$ in Form einer mehrdimensionalen Potenzreihe (der Taylorreihe) (vgl. 31.1)

$$T(f, \vec{x}_0)(\vec{x}) = f(\vec{x}) = \sum_{j_1, \dots, j_n = 0}^{\infty} c_{j_1 \dots j_n} (x_1 - x_1^0)^{j_1} \dots (x_n - x_n^0)^{j_n}$$

mit
$$c_{j_1} \dots c_{j_n} = \frac{1}{j_1! \dots j_n!} D_1^{j_1} \dots D_n^{j_n} f(\vec{x}_0).$$

Ist $f(\vec{x})$ um \vec{x}_0 in eine Potenzreihe entwickelbar, so ist diese Reihe die Taylorreihe. **Beispiele.** a) Entwickle $f(x,y) = e^{x+y} + \sin(xy)$ um (0,0) in eine Potenzreihe.

b) Entwickle $f(x,y) = x^2 - y^2$ um (0,0) und um (1,2).

Antwort:
$$f(x,y) = x^2 - y^2$$
 (um $(0,0)$), $f(x,y) = -3 + 2(x-1) - 4(y-2) + (x-1)^2 - (y-2)^2$ (um $(1,2)$).

32. $f:S\subset\mathbb{R}^n\to\mathbb{R}$. Extremwerte

32.1. Bezeichnungen, Definitionen, Notwendige Bedingungen

Es sei $\vec{x}_0 \in S$. Gibt es ein r > 0 so, dass $f(\vec{x}) \leq f(\vec{x}_0)$ (\geq) gilt für alle $\vec{x} \in S$ mit $\|\vec{x} - \vec{x}_0\| < r$, so liegt bei $(\vec{x}_0, f(\vec{x}_0))$ ein lokales Maximum (lokales Minimum) von f.

Gilt $f(\vec{x}) < f(\vec{x}_0)$ (>) für $\vec{x} \in S$ mit $0 < ||\vec{x} - \vec{x}_0|| < r$, so heißt der Extremwert eigentlich oder isoliert.

Beispiel. Betrachte $f(x,y) = x^2 + y^2$ für $x^2 + y^2 < 1$.

Satz 1. Es sei $S \subset \mathbb{R}^n$ eine offene Menge und $\vec{x}_0 \in S$. Es sei $f: S \to \mathbb{R}$ in \vec{x}_0 diff'bar. Besitzt f in \vec{x}_0 ein lokales Extremum, so gilt $\nabla f(\vec{x}_0) = \vec{0}$.

Definition. Ein Punkt $\vec{x}_0 \in S$ mit $\nabla f(\vec{x}_0) = \vec{0}$ heißt stationärer (kritischer) Punkt von f.

Definition. $(\vec{x}_0, f(\vec{x}_0)), \ \vec{x}_0 \in S, \ hei\beta t \ Sattelpunkt \ von f, falls \ \vec{x}_0 \ station \ddot{a}rer \ Punkt \ von f \ ist \ und falls \ in jeder \ Umgebung \ von \ \vec{x}_0 \ Punkte \ \vec{u}, \vec{v} \in S \ liegen \ mit \ f(\vec{u}) < f(\vec{x}_0) < f(\vec{v}).$

Beispiel. Für $f(x,y) = x^2 - y^2$ liegt bei (0,0) ein Sattelpunkt

32.2. Hinreichende Bedinung

Satz 2. Es sei $\vec{x}_0 \in S$ ein stationärer Punkt von $f : S \subset \mathbb{R}^n \to \mathbb{R}$. Es sei $f \in C^2(S)$. Es gelten:

- 1. Ist $H_f(\vec{x}_0)$ (siehe 31.4) positiv definit, so liegt bei \vec{x}_0 ein eigentliches lokales Minimum.
 - Ist $H_f(\vec{x}_0)$ negative definit, so ist $(\vec{x}_0, f(\vec{x}_0))$ ein eigentlich lokales Maximum.
- 2. Ist $H_f(\vec{x}_0)$ indefinit, so ist $(\vec{x}_0, f(\vec{x}_0))$ ein Sattelpunkt.
- 3. Ist $H_f(\vec{x}_0)$ semidefinit, so ist keine allgemeine Aussage über den Charakter von $(\vec{x}_0, f(\vec{x}_0))$ möglich.

Für n=2 mit $\vec{x}_0=(x_0,y_0)\in S\subset \mathbb{R}^2$ und

$$\Delta(x_0, y_0) := \det(H_f(x_0, y_0)) = (D_1^2 f D_2^2 f - (D_1 D_2 f)^2)(x_0, y_0)$$

lautet der Satz so: (vgl. Kap 25, Satz 2)

- 1. Aus $\Delta(x_0, y_0) > 0$
 - $\bullet\,$ und $D_1^2f(x_0,y_0)>0$ folgt: bei (x_0,y_0) liegt ein eigentliches lokales Minimum
 - $\bullet\,$ und $D_1^2f(x_0,y_0)<0$ folgt: bei (x_0,y_0) liegt ein eigentliches lokales Maximum
- 2. Aus $\Delta(x_0,y_0)<0$ folgt: bei (x_0,y_0) liegt ein Sattelpunkt
- 3. Im Fall $\Delta(x_0, y_0) = 0$ ist keine allgemeine verbindliche Aussage möglich.

33. Der Satz über die inverse Funktion. Der Satz über implizite Funktionen

33.1. Der Inverse-Funktion-Satz

Ist $S \subset \mathbb{R}^n$ eine offene Menge und $\vec{x}_0 \in S$, so nennen wir

$$B(\vec{x}_0, r) = \{ \vec{x} \in S \mid ||\vec{x} - \vec{x}_0|| < r \}$$

eine offene Umgebung von \vec{x}_0 in S (vgl 26.1)

Satz 1 (Inverse-Funktion-Satz). $\vec{f}: S \subset \mathbb{R}^n \to \mathbb{R}^n$, $\vec{x} \mapsto \vec{y} = \vec{f}(\vec{x})$ sei aus $C^1(S)$ und S eine offene Menge. Es sei $\vec{x}_0 \in S$ und $\vec{f}'(\vec{x}_0) = J_{\vec{f}}(\vec{x}_0)$ sei regulär. Dann gibt es eine offene Umgebung $U \subset S$ von \vec{x}_0 derart, dass gelten:

- 1. $\vec{f}(U) =: V$ ist eine offene Menge
- 2. $\vec{f}|_U$ ist bijektiv
- 3. $\vec{f}^{-1}: V \to U$ ist stetig diff'bar. Es gilt

$$(\vec{f}^{-1})'(\vec{y}) = (\vec{f}'(\vec{f}^{-1}(\vec{y})))^{-1}, \ \vec{y} \in V$$

Übung. Finden Sie für n = 1 das entsprechende HMI-Ergebnis hierin wieder.

Beispiele. 1. $\vec{f}: S = \{(r, \phi) \mid r > 0, \ 0 < \phi < \pi\} \rightarrow \mathbb{R}^2$

$$\vec{f}(r,\phi) = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos\phi \\ r\sin\phi \end{pmatrix} \tag{*}$$

 $\vec{f'}(r,\phi)$ ist (wegen $\det J_{\vec{f}}(r,\phi)=r$) regulär für alle $(r,\phi)\in S$: (*) ist in einer Umgebung jedes Punktes $(r,\phi)\in S$ stetig diff'bar nach r,ϕ auf lösbar. Hier gilt sogar globale Injektivität: Aus $(r_1,\phi_1)\neq (r_2,\phi_2)$; $(r_1,\phi_2),(r_2,\phi_2)\in S$ folgt: $\vec{f}(r_1,\phi_1)\neq \vec{f}(r_2,\phi_2)$.

2. \vec{f} wie unter 1. jetzt mit $S=\{(r,\phi)\mid r>0,\ 0<\phi<4\pi\}$. \vec{f} ist, wie in Satz 1 formuliert, wegen $\det J_{\vec{f}}=r\neq 0$ in der Umgebung jedes Punktes $(r,\phi)\in S$ injektiv (lokal injektiv). Hier ist S "zu $gro\beta$ ": \vec{f} ist nicht global injektiv: $\vec{f}(r,\pi/4)=\vec{f}(r,9\pi/4)$.

3. (zur Übung) Betrachte mit $S = \mathbb{R}^2$ $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 - x_2^2 \\ 2x_1x_2 \end{pmatrix}$. Untersuche mit Satz 1, ob das Gleichungssystem $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \vec{f}(x_1, x_2)$ nach x_1 und x_2 auflösbar ist.

33.2. Der Implizite-Funktion-Satz

Gegeben ist

$$\vec{f}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$$

 $(\vec{x}, \vec{y}) \mapsto \vec{f}(\vec{x}, \vec{y}).$

Gefragt ist nach der Auflösbarkeit von $\vec{f}(\vec{x}, \vec{y}) = \vec{0}$ nach \vec{y} . Falls das möglich ist durch $\vec{y} = \vec{h}(\vec{x})$ mit $\vec{f}(\vec{x}, \vec{h}(\vec{x})) = \vec{0}$, sagen wir, \vec{h} wird durch $\vec{f}(\vec{x}, \vec{y}) = \vec{0}$ implizit definiert.

Zur Formulierung des nächsten Satzes führen wir die folgende Bezeichnung ein: $\vec{f}'(\vec{x}, \vec{y})$ ist die folgende (m, n+m)-Matrix:

$$J_{\vec{f}}(\vec{x}, \vec{y}) = [D_1 \vec{f}(\vec{x}, \vec{y}), \dots, D_n \vec{f}(\vec{x}, \vec{y}), D_{n+1} \vec{f}(\vec{x}, \vec{y}), \dots, D_{n+m} \vec{f}(\vec{x}, \vec{y})]$$

$$=: [\underbrace{\partial_X \vec{f}(\vec{x}, \vec{y})}_{(m,n)\text{-Matrix}}, \underbrace{\partial_Y \vec{f}(\vec{x}, \vec{y})}_{(m,m)\text{-Matrix}}]$$

Satz 2 (Implizite-Funktion-Satz). Es seien $S \subset \mathbb{R}^{n+m}$ eine offene Menge, $(\vec{x}_0, \vec{y}_0) \in S \subset \mathbb{R}^n \times \mathbb{R}^m$ und $\vec{f}: S \to \mathbb{R}^m$, $(\vec{x}, \vec{y}) \mapsto \vec{f}(\vec{x}, \vec{y})$, eine $C^1(S)$ -Funktion. Es seien erfüllt:

- 1. $\vec{f}(\vec{x}_0, \vec{y}_0) = \vec{0}$
- 2. $\partial_Y \vec{f}(\vec{x}_0, \vec{y}_0)$ ist reguläre Matrix

Dann hat man:

- a) Es gibt eine offene Umgebung $U \subset \mathbb{R}^n$ von \vec{x}_0 und eine offene Umgebung $V \subset \mathbb{R}^m$ von \vec{y}_0 und eine C^1 -Funktion $\vec{h}: U \to V, \ \vec{y} = \vec{h}(\vec{x}), \ mit \ \vec{y}_0 = \vec{h}(\vec{x}_0)$ und $\vec{f}(\vec{x}, \vec{h}(\vec{x})) = \vec{0}, \ \vec{x} \in U.$
- b) Für $\vec{x} \in U$ gilt:

$$\vec{h}'(\vec{x}) = -\left(((\partial_Y \vec{f})(\vec{x}, \vec{h}(\vec{x}))\right)^{-1}(\partial_X \vec{f})(\vec{x}, \vec{h}(\vec{x}))$$

Beispiel. $m=2,\ n=3.$ Wende Satz 2 an auf $\vec{f}(x_1,x_2,x_3,y_1,y_2)=\begin{pmatrix} 2e^{y_1}+y_2x_1-4x_2+3\\ y_2\cos y_1-6y_1+2x_1-x_3 \end{pmatrix}=\begin{pmatrix} 0\\ 0 \end{pmatrix}$ mit $(\vec{x}_0,\vec{y}_0)=(3,2,7,0,1)$.

34. Extremwerte mit Nebenbedingungen, Lagrange Multiplikatoren

34.1. Hinführende Beispiele

Beispiel (1). Gegeben ist die Fläche $F \subset \mathbb{R}^3$. Gesucht sind auf F die Punkte, die vom Koordinatenursprung minimalen Abstand haben.

Ist g(x, y, z) = 0 eine Gleichung für F, so ist das Minimum von $f(\vec{x}) = ||\vec{x}||$ unter der Nebenbedingung $g(\vec{x}) = 0$ gesucht.

Geometrische Überlegungen führen auf das Gleichungssystem

$$\nabla f(\vec{x}) = \lambda \nabla g(\vec{x})$$
$$g(\vec{x}) = 0$$

 $f\ddot{u}r \vec{x}$. (λ ist eine Hilfsgröße)

Beispiel (2). Es sind Extremwerte von f = f(x, y, z) gesucht unter den Nebenbedingungen $g_1(x, y, z) = 0$, $g_2(x, y, z) = 0$.

Geometrische Überlegungen führen auf die folgenden Gleichungen

$$\nabla f(x, y, z) = \lambda_1 \nabla g_1(x, y, z) + \lambda_2 \nabla g_2(x, y, z)$$
$$g(x, y, z) = g_2(x, y, z) = 0$$

Das sind fünf skalare Gleichungen für $x, y, z, \lambda_1, \lambda_2$, die an einer Extremalstelle erfüllt sind.

34.2. Prolemstellung, abstrakte Voraussetzungen

Es sind mit einer offenen Menge $S \subset \mathbb{R}^n$ gegeben:

$$f: S \to \mathbb{R} \text{ und } \vec{g}: S \to \mathbb{R}^m, \ \vec{g} = \begin{pmatrix} g_1 \\ \vdots \\ g_m \end{pmatrix}$$

mit: $m < n, \ f, \vec{g} \in C^1$.

(Beispiel 1: n = 3, m = 1, Beispiel 2: n = 3, m = 2)

Gesucht sind Extremalstellen der Funktion $f|_M$, wobei $M := \{\vec{x} \in S \mid \vec{g}(\vec{x}) = \vec{0}\}$ ist.

34.3. Lagrange Multiplikatoren Satz

 f, \vec{g}, m, n, M seien wie unter 34.2. Es sei erfüllt:

$$\operatorname{rang}(\vec{g}'(\vec{x})) = m, \quad \vec{x} \in S.$$

Dann gilt: Ist $\vec{x}_0 \in M$ eine Extremalstelle von f, so gibt es Zahlen $\lambda_1, \ldots, \lambda_m$ mit

$$\nabla f(\vec{x}_0) = \sum_{j=1}^{m} \lambda_j \nabla g_j(\vec{x}_0).$$

($\nabla f(\vec{x}_0) = \sum_{j=1}^m \lambda_j \nabla g_j(\vec{x}_0)$ zusammen mit $\vec{g}(\vec{x}_0) = \vec{0}$ sind n+m skalare Gleichungen für die n+m Unbekannten $\lambda_1,\ldots,\lambda_m$ und $\vec{x}_0 = (x_1^0,\ldots,x_n^0)^{\top}$.)

Beispiel (3). Gesucht sind die Extremwerte von $f(x, y, z) = x^2 + y^2$ unter den NB:

$$(g_1(x, y, z) =) z = 0$$

 $(g_2(x, y, z) =) z^2 - (y - 1)^3 = 0$

Beispiel (4). Es sei $A \in \mathbb{R}^{(n,n)}$ eine symmetrische Matrix. Gesucht sind die Extremwerte von $f(\vec{x}) = \vec{x}^{\top} A \vec{x}$ unter der Nebenbedingung $||\vec{x}|| = 1$.

Beispiel (5). Gesucht sind die Punkte des Kreises $x^2 + y^2 = 1$ und der Gerade x + y = 4, die voneinander minimalen Abstand haben.

35. Integration über zweidimensionale Bereiche

35.1. Gebiet und Rand eines Gebietes (vgl. 26.1, 29.1, 31.3)

Ein Gebiet $G \subset \mathbb{R}^n$ ist eine nichtleere, offene und zusammenhängende Menge. ∂G bezeichnet den Rand von G, der so definiert ist:

$$\vec{x}_0 \in \partial G \Leftrightarrow \text{ für jedes } r > 0 \text{ gelten } B(\vec{x}_0, r) \cap G \neq \emptyset \text{ und } B(\vec{x}_0, r) \cap (\mathbb{R}^n \setminus G) \neq \emptyset$$

Mit $\overline{G} := G \cup \partial G$ wird der Abschluss von G bezeichnet.

Beispiel. $R = (0,5) \times (0,5) = \{(x,y) \mid 0 < x < 5, \ 0 < y < 5\}$ ist ein Gebiet im \mathbb{R}^2 . Hier ist

$$\partial R = \{(0,y) \mid 0 \le y \le 5\} \cup \{(5,y) \mid 0 \le y \le 5\} \cup \{(x,0) \mid 0 \le x \le 5\} \cup \{(x,5) \mid 0 \le x \le 5\}$$
 und $\overline{R} = [0,5] \times [0,5]$

35.2. Integral über spezielle Gebiete

Es sei $G \subset \mathbb{R}^2$ ein beschränktes Gebiet mit einer stückweise glatten Randkurve. Es ist $f \in C^0(\overline{G})$ gegeben.

G ist vom Typ
$$G^{(x)}$$
, falls $G = \{(x,y) \mid a(y) < x < b(y), c < y < d\}$ mit $a, b \in C^0([c,d])$.

$$G \text{ ist } vom \ \textit{Typ } G^{(y)}, \text{ falls } G = \{(x,y) \mid c(x) < y < b(x), \ a < x < b\} \text{ mit } c,d \in C^0([a,b]).$$

Definition.

$$\begin{split} \iint_G f(x,y) \, \mathrm{d}(x,y) &:= \int_{y=c}^d \left(\int_{x=a(y)}^{b(y)} f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y \qquad \qquad \text{(für G vom Typ $G^{(x)}$)} \\ &:= \int_{x=a}^b \left(\int_{y=c(x)}^{d(y)} f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x \qquad \qquad \text{(für G vom Typ $G^{(y)}$)} \end{split}$$

Ist G ein Gebiet, das sich disjunkt in Gebiete G_1, \ldots, G_N vom Typ $G^{(x)}$ oder $G^{(y)}$ zerlegen lässt, so wird definiert:

$$\iint_{G} f(x,y) \, d(x,y) := \sum_{j=1}^{N} \iint_{G_{j}} f(x,y) \, d(x,y)$$

Bemerkungen. 1. Falls $f(x,y) \ge 0$, $(x,y) \in G$ gilt, so gibt $\iint_G f(x,y) d(x,y) dx$ Volumen des Körpers $K = \{(x,y,z) \mid 0 \le z \le f(x,y), (x,y) \in G\}$ an.

2. $\iint_G d(x,y)$ ist der Flächeninhalt I(G) von G.

35.3. Beispiele

- 1. G sei das beschränkte Gebiet, das von den Kurven $y=1/x,\ y=x,\ x=2$ berandet wird: $\iint_G x^2/y^2\,\mathrm{d}(x,y)=9/4$.
- 2. Für $f(x,y) = (x-y)/(x+y)^3$, 0 < x < 1, 0 < y < 1, rechnet man nach:

$$\int_{x=0}^{1} \left(\int_{y=0}^{1} f(x, y) \, dy \right) \, dx = 1/2,$$

$$\int_{y=0}^{1} \left(\int_{x=0}^{1} f(x, y) \, dx \right) \, dy = -1/2$$

Satz 1. Gilt $f \in C^0(\underbrace{[a,b] \times [c,d]}_{=:G})$, so hat man

$$\iint_{G} f(x, y) d(x, y) = \int_{x=a}^{b} \left(\int_{y=c}^{d} f(x, y) dy \right) dx$$
$$= \int_{y=c}^{d} \left(\int_{x=a}^{b} f(x, y) dx \right) dy$$

3. Berechne $I(G) (= 3\pi)$ für $G = \{(x, y) \mid 1 < x^2 + y^2 < 4\}.$

36. Kurvenintegrale (Linienintegrale)

36.1. Definition Kurvenintegral über ein Skalarfeld

Im Folgenden ist $G \subset \mathbb{R}^n$ ein Gebiet und γ die orientierte Bahn einer stückweise glatten Kurve, die in G verläuft. $\vec{r} = \vec{r}(t) \in C^1[a,b], \ \vec{r}'(t) \neq 0$ für $a \leq t \leq b$, sei eine Parameterdarstellung.

Es sei $f \in C^0(G)$.

Definition.

$$\int_{\gamma} f \, \mathrm{d}s := \int_{a}^{b} f(\vec{r}(t)) \|\vec{r}'(t)\| \, \mathrm{d}t$$

Bemerkung. 1. f = 1: $\int_{\gamma} f \, ds = L \ddot{a} n g e \ von \ \gamma = L(\vec{r}) \ (27.2)$.

2. $\int_{\gamma} f \, ds$ ist unabhängig von der gewählten Parameterdarstellung, d.h. ist $\vec{\rho} = \vec{\rho}(\tau)$, $\alpha \leq \tau \leq \beta$, eine andere Darstellung für γ , so gilt

$$\int_{a}^{b} f(\vec{r}(t)) \|\vec{r}'(t)\| dt = \int_{\alpha}^{\beta} f(\vec{\rho}(\tau)) \|\vec{\rho}'(\tau)\| d\tau$$

(vgl. 27.3)

3. Bezeichnet $-\gamma$ die entgegengesetzt orientierte Bahn (etwa mit der Darstellung $\rho(\tau) = \vec{r}(a+b-\tau), a \leq \tau \leq b$, wenn $\vec{r} = \vec{r}(t), a \leq t \leq b, \gamma$ darstellt), so gilt

$$\int_{-\gamma} f \, \mathrm{d}s = \int_{\gamma} f \, \mathrm{d}s$$

4. Es seien $\gamma_1, \gamma_2, \ldots$ Bahnen von glatten Kurven mit: der Endpunkt von γ_l ist der Anfangspunkt von γ_{l+1} $(l=1,2,\ldots)$, so wird definiert für $\gamma:=\gamma_1+\gamma_2+\ldots$:

$$\int_{\gamma} f \, \mathrm{d}s = \sum_{l=1}^{\dots} \int_{\gamma_i} f \, \mathrm{d}s$$

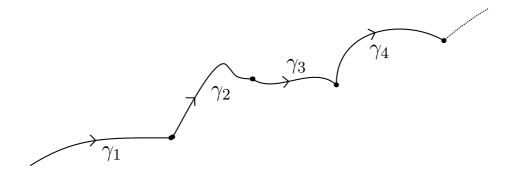


Abbildung 36.1.: Der Weg γ

5. Ist $\vec{r}:[a,b]\to G$ eine geschlossene Kurve in G mit der Bahn γ , so schreiben wir

$$\int_{\gamma} f \, \mathrm{d}s = \oint_{\gamma} f \, \mathrm{d}s = (bzw. \oint_{\gamma} f \, \mathrm{d}s)$$

je nach Orientierung

36.2. Kurvenintegral über ein Vektorfeld

Unter den Gegebenheiten aus 36.1 sei $\vec{v}: \mathbb{R}^n \to \mathbb{R}^n$ ein stetiges Vektorfeld auf G.

Definition.

$$\int_{\mathcal{I}} \vec{v} \cdot d\vec{s} := \int_{a}^{b} \vec{v}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

Mit dem Tangenteneinheitsvektor $\vec{T}(t) := \vec{r}'(t)/\|\vec{r}'(t)\|$ und 36.1 kann man das auch so schreiben:

$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{\gamma} (\vec{v} \cdot \vec{T}) ds$$

- **Beispiele.** 1. Ist \vec{v} ein Kraftfeld, so gibt $\int_{\gamma} \vec{v} \cdot d\vec{s}$ die Arbeit an, die gegen \vec{v} verrichtet werden muss, um einen Massenpunkt auf γ zu bewegen. Ist \vec{v} ein elektrisches Feld, so gibt das Integral eine Potentialdifferenz (Spannung) an (vgl. Beispiel 3. im Anschluss)
 - 2. (siehe auch 36.1, Bemerkungen 3.)

$$\int_{-\gamma} \vec{v} \cdot d\vec{s} = -\int_{\gamma} \vec{v} \cdot d\vec{s}$$

3. Es sei $f: G \to \mathbb{R}$ ein C^1 -Skalarfeld:

$$\int_{\gamma} \nabla f \cdot d\vec{s} = f(\vec{r}(b)) - f(\vec{r}(a))$$

36.3. Der Gaußsche Integralsatz im \mathbb{R}^2

Satz 1. Es sei $G \subset \mathbb{R}^2$ ein beschränktes Gebiet, das gleichzeitig vom Typ $G^{(x)}$ und $G^{(y)}$ ist. ∂G sei bezogen auf G positiv orientiert und stückweise glatt. Es seien \tilde{G} ein Gebiet mit $\overline{G} \subset \tilde{G}$ und $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in C^1(\tilde{G})$ ein Vektorfeld. Dann gilt:

$$\oint_{\partial G} \vec{v} \cdot d\vec{s} = \iint_G (D_1 v_2 - D_2 v_1)(x, y) d(x, y)$$
 (G)

Bemerkungen, Beispiele. 1. Der Satz (G) gilt für Gebiete vom Typ $G^{(x)}$ und $G^{(y)}$, sowie für Gebiete folgender Form

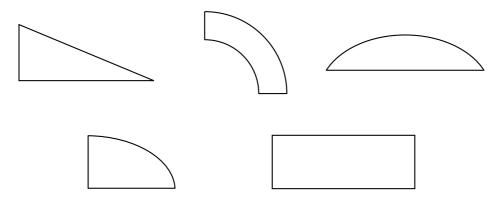


Abbildung 36.2.: Gebiete, für die (G) gilt

und für Gebiete, die sich durch endlich viele Schnitte in derartige Gebiete zerlegen lassen.

2. Es sei γ durch $r=\phi, 0 \leq \phi \leq \pi$. Wobei r, ϕ die Polarkoordinaten der (x,y)-Ebene sind. Für

$$\vec{v}(x,y) = \begin{pmatrix} x(x^2 + y^2) \\ y(x^2 + y^2) \end{pmatrix}$$

 $ist \int_{\gamma} \vec{v} \cdot d\vec{s} \ zu \ berechnen.$

Zur Lösung kann eine der folgenden Varianten angewendet werden:

a) Ergänze γ durch γ_1 : $\vec{r}(t) = \begin{pmatrix} t \\ 0 \end{pmatrix}$, $-\pi \leq t \leq 0$, zu einer geschlossenen Kurve. Wende auf das durch $\gamma + \gamma_1$ berandete Gebiet den Satz an.

- $b) \ \ \textit{L\"{o}se mit der Darstellung } \vec{r}(\phi) = \left(\begin{smallmatrix} \phi\cos\phi\\ \phi\sin\phi \end{smallmatrix}\right), \ \ 0 \leq \phi \leq \pi \ \textit{f\"{u}r } \gamma.$
- c) \vec{v} ist ein Potentialfeld. Berechne ein Potential und löse.
- 3. Für $\vec{v}(x,y) = \left(\begin{smallmatrix} -y \\ x \end{smallmatrix} \right) \frac{1}{x^2 + y^2}, \ (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \ und \ \gamma = der \ positiv \ einmal \ durch-laufene \ Kreis \ um \ \vec{0} \ mit \ Radius \ 1: \oint_{\gamma} \vec{v} \cdot \ d\vec{s} = 2\pi.$

37. Folgerungen aus dem Gaußschen Satz, 36.3., aus (G)

37.1. Flächeninhalt von G

Für $\vec{v}(x,y) = \begin{pmatrix} -y \\ x \end{pmatrix}$ liefert (G):

$$2\ I(G)\ (\textit{Flächeninhalt von }G\)\ = \oint_{\partial G} \vec{v} \cdot \, \mathrm{d}\vec{s}$$

37.2. Der Stokessche Satz im \mathbb{R}^2

 $G, \tilde{G} \subset \mathbb{R}^2$ sei wie im Satz 36.3. $\vec{v}: \tilde{G} \to \mathbb{R}^3$ sei aus $C^1(\tilde{G}), \ \partial G: \vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ 0 \end{pmatrix}$. Es gilt

$$\iint_{G} (\nabla \times \vec{v}) \cdot \vec{e}_{3} \, d(x, y) = \oint_{\partial G} \vec{v} \cdot d\vec{s}$$
 (S)

 $\oint_{\partial G} \vec{v} \cdot d\vec{s}$ heißt Zirkulation von \vec{v} längs ∂G .

37.3. Der Divergenzsatz im \mathbb{R}^2

 G, \tilde{G} seien wie vorher. $\vec{w} = \vec{w}(x, y) = \begin{pmatrix} w_1(x, y) \\ w_2(x, y) \end{pmatrix} \in C^1(\tilde{G})$.

Es sei \vec{N} auf ∂G der für G äußere Einheitsnormalenvektor (ist $\vec{t}(s) = \begin{pmatrix} x'(s) \\ y'(s) \end{pmatrix}$ der Tantenteneinheitsvektor, so gilt $\vec{N}(s) = \begin{pmatrix} y' \\ -x' \end{pmatrix}$). Setzt man in (G) $\vec{v} = \begin{pmatrix} -w_2 \\ w_1 \end{pmatrix}$, so geht (G) über in

$$\iint_{G} \nabla \cdot \vec{w} \, d(x, y) = \oint_{\partial G} \vec{w} \cdot \vec{N} \, ds$$
 (D)

37.4. Die Greenschen Formeln im \mathbb{R}^2

 G, \tilde{G} , seien wie vorher und $f, g \in C^2(\tilde{G})$ Skalarfelder.

Setzt man in (D) $\vec{w} = g\nabla f$, so geht (D) über in die 1. Greensche Formel

$$\oint_{\partial G} gD_{\vec{N}} f \, \mathrm{d}s = \iint_{G} (g\Delta f + \nabla g \cdot \nabla f) \, \mathrm{d}(x, y)$$

Vertauscht man hier f und g und subtrahiert von der 1. Greenschen Formel, so erhält man die 2. Greensche Formel

$$\oint_{\partial G} (gD_{\vec{N}}f - fD_{\vec{N}}g) \, \mathrm{d}s \iint_{G} (g\Delta f - f\Delta g) \, \mathrm{d}(x,y)$$

38. Potentialfelder

38.1. Definition: Potential, Potentialfeld

Definition. Es sei $G \subset \mathbb{R}^n$ ein Gebiet und $\vec{v}: G \to \mathbb{R}^n$ ein Vektorfeld. \vec{v} heißt Potentialfeld auf G, falls es ein diff'bares Skalarfeld $f: G \to \mathbb{R}$ mit $\vec{v} = \nabla f$ auf G gibt. f heißt Potential (Stammfunktion) für \vec{v} .

Satz 3 / 31.4 besagt, dass ein Potential bis auf eine beliebige Konstante eindeutig festliegt.

Satz 1. (Ist für n=3 die Bemerkung in 29.3) Ist \vec{v} ein $C^1(G)$ -Potentialfeld, so gilt

$$J_{\vec{v}}(\vec{x}) = J_{\vec{v}}^{\top}(\vec{x}), \quad \vec{x} \in G.$$

38.2. Der erste Hauptsatz für Kurvenintegrale

Satz 2 (1. Hauptsatz für Kurvenintegrale / 36.2 Beispiel 3). $\vec{v}: G \to \mathbb{R}^n$ sei ein stetiges Potentialfeld mit einem Potential $f: G \to \mathbb{R}$. Es seien \vec{r}_0, \vec{r}_1 die Ortsvektoren zweier Punkte aus G und $\gamma \subset G$ eine stückweise glatte Kurve, die \vec{r}_0 mit \vec{r}_1 verbindet. Es gilt

$$\int_{\gamma} \vec{v} \cdot d\vec{s} = f(\vec{r}_1) - f(\vec{r}_0).$$

Satz 3. Für ein stetiges Vektorfeld $\vec{v}: G \to \mathbb{R}^n$ sind die folgenden Aussagen äquivalent:

- 1. \vec{v} ist auf G ein Potentialfeld
- 2. Für je zwei Punkte $\vec{r}_0, \vec{r}_1 \in G$ ist $\int_{\gamma} \vec{v} \cdot d\vec{s}$ unabhängig von der \vec{r}_0 mit \vec{r}_1 verbindenen stückweise glatten Kurve $\gamma \subset G$.
- 3. Für jede geschlossene stückweise glatte Kurve $\gamma \subset G$ gilt $\oint_{\gamma} \vec{v} \cdot d\vec{s} = 0$.

38.3. Der zweite Hauptsatz

Definition (einfach zusammenhängendes Gebiet). Ein Gebiet $G \subset \mathbb{R}^n$ heißt einfach zusammenhängend, wenn jede geschlossene, doppelpunktfreie Kurve in G stetig auf einen Punkt in G zusammengezogen werden kann, ohne G zu verlassen.

(für Beispiele und Gegenbeispiele lese man nach bei Meyberg-Vachenauer Band I, Kap. 8 oder/ und Burg, Haf, Wille Band IV, Kap. 1.6)

Satz 4 (2. Hauptsatz für Kurvenintegrale). Es sei $G \subset \mathbb{R}^n$ ein einfach zusammenhängedes Gebiet und $\vec{v}: G \to \mathbb{R}^n$ aus C^1 . Es gilt

$$\vec{v}$$
 ist Potentialfeld auf $G \Leftrightarrow J_{\vec{v}}(\vec{x}) = J_{\vec{v}}^{\top}(\vec{x}), \ \vec{x} \in G.$

In Beispiel 3., 36.3 gilt in $G \setminus \{(0,0)\}$ $J_{\vec{v}} = J_{\vec{v}}^{\top}$. \vec{v} ist kein Potentialfeld. $G \setminus \{(0,0)\}$ ist nicht einfach zusammenhängend.

Bemerkung. Ist \vec{v} ein \mathbb{R}^n ein Potentialfeld, so erhält man durch

$$f(\vec{x}) = \int_0^1 \vec{v}(t\vec{x}) \cdot \vec{x} \, \mathrm{d}t$$

ein Potential.

Zur $\ddot{U}bung$ untersuche, ob $\vec{v}(x,y,z) = \begin{pmatrix} 4xyz-z^2-3y^2\\ 2x^2z-6xy+1\\ 2x^2y-2xz-2 \end{pmatrix}$ in \mathbb{R}^3 ein Potentialfeld ist. Wenn ja, berechne ein Potential auf zwei Arten.

39. FLächen im \mathbb{R}^3 , Oberflächeninhalt, Oberflächenintegrale

39.1. (siehe auch 30.7) Flächendarstellungen

 \vec{N} bezeichnet für die jeweilige Fläche einen Normalene
inheitsvektor.

• implizite Darstellung:

$$F(x, y, z) = 0, \ \vec{N}(x, y, z) = \frac{\nabla F(x, y, z)}{\|\nabla F(x, y, z)\|}$$

• explizite Darstellung:

$$z = f(x,y), \ \vec{N}_{(x,y,f(x,y))} = \frac{1}{\sqrt{1 + \|\nabla f\|^2}} \begin{pmatrix} D_1 f(x,y) \\ D_2 f(x,y) \\ -1 \end{pmatrix}$$

• Parameterdarstellung: $\vec{r} = \vec{r}(u, v)$, $\vec{r} : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ sei aus $C^1(U)$ mit rang $(\vec{r}'(u, v)) = 2$. \vec{r} heißt glattes (reguläres) Flächenstück in \mathbb{R}^3 . Wir schreiben für $\vec{r}(U)$ auch F und sprechen von der Fläche F.

$$\vec{N}(u,v) = \frac{D_1 \vec{r}(u,v) \times D_2 \vec{r}(u,v)}{\|D_1 \vec{r}(u,v) \times D_2 \vec{r}(u,v)\|}, \quad (u,v) \in U.$$

Beispiele. 1. Durch $\vec{r}(\phi, \theta) = \begin{pmatrix} \cos \phi \cos \theta \\ \sin \phi \cos \theta \\ \sin \theta \end{pmatrix}$, $0 \le \phi \le 2\pi, 0 < \theta \le \pi/2$ wird die Oberfläche der Halbkugel $x^2 + y^2 + z^2 = 1$, z > 0 beschrieben.

2. Durch $\vec{r}(u,v) = \begin{pmatrix} -u+2v \\ 3+u-2v \\ -2v-4+u \end{pmatrix}$ wird kein Flächenstück, sondern eine Gerade gegeben.

39.2. Oberflächenintegrale

Gegeben ist F durch $\vec{r} = \vec{r}(u, v), (u, v) \in U$. \vec{r} sei glatt.

 $f: F \to \mathbb{R}$ und $\vec{w}: F \to \mathbb{R}^3$ sind stetige Skalar-bzw. Vektorfelder. Die *Oberflächenintegrale* über f und \vec{w} sind so definiert:

$$\iint_{F} f \, do := \iint_{U} f(\vec{r}(u, v)) \|D_{1}\vec{r}(u, v) \times D_{2}\vec{r}(u, v)\| \, d(u, v)$$
$$\iint_{F} \vec{w} \cdot d\vec{o} := \iint_{U} \vec{w}(\vec{r}(u, v)) \cdot (D_{1}\vec{r}(u, v) \times D_{2}\vec{r}(u, v)) \, d(u, v)$$

Für f = 1 hat man in \iint_F do den Flächeninhalt von F:

$$I(F) := \iint_F do$$

 $do = ||D_1 \vec{r}(u, v) \times D_2 \vec{r}(u, v)|| d(u, v)$ heißt skalares Oberflächenelement der Fläche \vec{r} .

 $d\vec{o} = (D_1\vec{r}(u,v) \times D_2\vec{r}(u,v)) d(u,v)$ ist das vektorielle Oberflächenelement von \vec{r} .

Es gilt $d\vec{o} = \vec{N} do$

Beispiele. 1. do für z = f(x, y): do = $\sqrt{1 + \|\nabla f(x, y)\|^2} d(x, y)$

2. do für
$$\vec{r}(r,\phi) = \begin{pmatrix} r\cos\phi\\r\sin\phi\\0 \end{pmatrix}$$
: do = $r d(r,\phi)$

3. do für
$$\vec{r}(\phi, \theta) = R \begin{pmatrix} \cos \phi \cos \theta \\ \sin \phi \cos \theta \\ \sin \theta \end{pmatrix}$$
: do = $R^2 \cos \theta d(\phi, \theta)$.

40. Variablensubstitution im Gebietsintegral

40.1. Die Transformationsformel

$$\vec{\psi}: U^* \subset \mathbb{R}^2 \to \mathbb{R}^2$$

 $(\xi, \eta) \mapsto \vec{\psi}(\xi, \eta) = (u, v),$

 $\vec{\psi}(U^*) =: U$, heißt Parameter transformation, falls $\vec{\psi} \in C^2$, injektiv ist und $\det \vec{\psi}'(\xi, \eta) = D_1 \psi_1 D_2 \psi_2 - D_1 \psi_2 D_2 \psi_1 > 0$ erfüllt.

Satz 1 (Variablensubstitution im Gebietsintegral). Es sei $f \in C^0(U)$ und $\vec{\psi}$ wie oben. Dann hat man

$$\iint_{U=\psi(U^*)} f(u,v) d(u,v) = \iint_{U^*} (\vec{f} \cdot \vec{\psi})(\xi,\eta) \det \vec{\psi}'(\xi,\eta) d(\xi,\eta)$$

Man liest ab

$$I(U) = \iint_{U^*} \det \vec{\psi}'(\xi, \eta) \, d(\xi, \eta) \, (= \iint_{U} d(u, v))$$

Beispiel. $\vec{\psi}(r,\phi) = \begin{pmatrix} r\cos\phi \\ r\sin\phi \end{pmatrix}$, $\det\vec{\psi'}(r,\phi) = r$. Es sei $U = \{(x,y) \mid 1 < x^2 + y^2 < 4\}$. Dann ist

$$U^* = \{(r, \phi) \mid 1 < r < 2, \ 0 < \phi < 2\pi\}$$

und $I(U) = \int_{r=1}^{2} \int_{\phi=0}^{2\pi} r \,d\phi \,dr$.

Satz 2 (Invarianz von $\iint_F do$). Es sei $\vec{\psi}$ eine Parametertransformation wie oben. Ein reguläres Flächenstück $\vec{r}: U \to \mathbb{R}^3$ sei gegeben. Dann gilt für das reguläre Flächenstück $\vec{\rho} = \vec{r} \circ \vec{\psi}: U^* \to \mathbb{R}^3$ $(\vec{r}(U) = \vec{\rho}(U^*) = F)$:

$$(\iint_{F} do =) \iint_{U} ||D_{1}\vec{r}(u,v) \times D_{2}\vec{r}(u,v)|| d(u,v) = \iint_{U^{*}} ||D_{1}\vec{\rho}(\xi,\eta) \times D_{2}\vec{\rho}(\xi,\eta)|| d(\xi,\eta).$$

Begründung: Nachrechnen mit Kettenregel und Satz 1.

40.2. Parameterdarstellung von Rotationsflächen

Die glatte Kurve $\vec{r}(t) = \begin{pmatrix} x(t) \\ 0 \\ z(t) \end{pmatrix}, \ a \leq t \leq b$ mit x(t) > 0 rotiere um die z-Achse. Die entstehende Drehfläche hat die Darstellung $\vec{r}(t,\theta) = \begin{pmatrix} x(t)\cos\theta \\ x(t)\sin\theta \\ z(t) \end{pmatrix}, \ a \leq t \leq b, 0 \leq \theta \leq 2\pi$

Beispiele. 1. Kugel um 0 mit Radius R erhält man mit $x(t) = \sqrt{R^2 - t^2}$, z(t) = t, $-R \le t \le R$.

2. 0 < b < a. Den Torus erhält man mit $x(t) = a + b \cos t$, $z(t) = b \sin t$, $0 \le t \le 2\pi$ Übung. Berechne die Kugeloberfläche und die Torusoberfläche.

41. Der Stokesche Integralsatz im \mathbb{R}^3

41.1. Die Voraussetzungen

- (V1) Es sei $\vec{r}: U^* \subset \mathbb{R}^2 \to \mathbb{R}^3$ ein reguläres Flächenstück. Es gelten $\vec{r} \in C^2(U^*)$, \vec{r} injektiv. $F^* := \vec{r}(U^*)$.
- (V2) $U \subset U^*$ sei ein Gebiet mit einer stückweise glatten geschlossenen positiv orientierten Jordankurve als Rand. $F := \vec{r}(U)$. $\partial F = \vec{r}(\partial U)$ ist dann eine stückweise glatte geschlossene Jordankurve.
- (V3) $\vec{f}: F^* \to \mathbb{R}^3$ sei ein stetig diff'bares Vektorfeld.

41.2. Der Stokessche Integralsatz im \mathbb{R}^3

Unter den vorher formulierten Bedingungen (V1), (V2), (V3) gilt

$$\oint_{\partial F} \vec{f} \cdot \vec{T} \, \mathrm{d}s = \oint_{\partial F} \vec{f} \cdot \, \mathrm{d}\vec{s} = \iint_{F} (\nabla \times \vec{f}) \cdot \, \mathrm{d}\vec{o} = \iint_{F} (\nabla \times \vec{f}) \cdot \vec{N} \, \mathrm{d}o$$

41.3. Bemerkungen zu \vec{N} und \vec{T} und ihre gegenseitige Abhängigkeit

- 1. Hat ∂U die Darstellung $\vec{w}(t) = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$, $a \leq t \leq b$, so hat ∂F die Darstellung $\vec{\rho}(t) = \vec{r}(\vec{w}(t))$, $a \leq t \leq b$, womit $\vec{T}(t) = \vec{\rho}'(t) / \|\vec{\rho}'(t)\|$ festliegt.
 - \vec{N}_F im Satz hat dann die Richtung von $D_1\vec{r}(u,v)\times D_2\vec{r}(u,v),\ (u,v)\in U^*.$
- 2. In $P \in \partial F$ wähle in der Tangentialebene an F^* die für F äußere Einheitsnormale \vec{n} auf ∂F . \vec{N} hat dann die Richtung von $\vec{n} \times \vec{T}$.

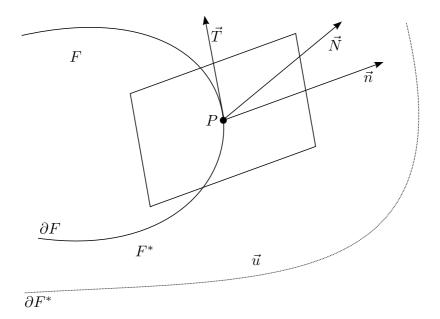


Abbildung 41.1.: Normalenvektor \vec{N}

41.4. Beispiel

Mit $h(x,y,z)=x^3-y^3+z^2$, g(x,y,z)=x+y+z und $F=\{(x,y,z)\mid x^2+y^2+z^2=1,\ z\geq 0\}$ ist $J:=\iint_F(\nabla h\times \nabla g)\cdot \vec{N}$ do zu berechnen, wobei \vec{N} die Einheitsnormale auf F ist, die nichtnegative z-Koordinate besitzt.

42. Volumenintegrale

42.1. Definitionen

Es sei $G \subset \mathbb{R}^3$ ein beschränktes Gebiet der folgenden Form

$$G := \{(x, y, z) \mid g(x, y) < z < h(x, y), \ (x, y) \in G_0\}$$

wobei G_0 ein einfach zusammenhängendes Gebiet in der (x,y)-Ebene mit stückweise glattem Rand ist. g und h sind aus $C^1(G_0)$. (G heißt in z-Richtung projizierbar)

Für $f \in C^0(\overline{G})$ (Skalar- oder Vektorfeld) wird definiert:

$$\iiint_G f \, d\tau := \iint_{(x,y)\in G_0} \left(\int_{z=g(x,y)}^{h(x,y)} f(x,y,z) \, dz \right) \, d(x,y)$$

Analog für in x-Richtung, bzw. in y-Richtung projizierbare Gebiete (permutiere oben x, y, z entsprechend).

Hat G_0 die Form: $G_0 = \{(x, y) \mid u(x) < y < v(x), \ a < x < b\}$ mit $u, v \in C^1[a, b]$, so wird

$$\iiint_{G} f \, d\tau = \int_{x=a}^{b} \left(\int_{y=u(x)}^{v(x)} \left(\int_{z=g(x,y)}^{h(x,y)} f(x,y,z) \, dz \right) \, dy \right) \, dx$$

$$(= \iiint_{G} f(x,y,z) \, d(x,y,z)).$$

$$(1)$$

Gebiete G, die nicht zu einem dieser projezierbaren Bereiche gehören, werden (sofern möglich) in derartige Gebiete zerlegt. Die einzelnen Integrale werden dann zu \iiint_G aufsummiert.

Beispiele. 1. I(G) (= Volumen von G)= $\iiint_G 1 d\tau$. Beispiel. Ist P die Pyramide mit den Eckpunkten (0,0,0), (1,0,0), (0,1,0), (0,0,1),

Beispiel. Ist P are Pyramiae mit aen Eckpunkten (0,0,0), (1,0,0), (0,1,0), (0,0,1), so erhält man

$$I(P) = \int_{x=0}^{1} \left(\int_{y=0}^{1-x} \left(\int_{z=0}^{1-x} 1 - x - y \, dz \right) \, dy \right) \, dx = \frac{1}{6}$$

2. G habe die Form wie für (1) verlangt. Es sei $x_0 \in (a,b)$ beliebig.

$$\alpha(x_0) := \int_{y=u(x_0)}^{v(x_0)} \left(\int_{z=g(x_0,y)}^{h(x_0,y)} dz \right) dy$$

gibt den Flächeninhalt von $G \cap \{x = x_0\}$ an. Es gilt somit (vgl. mit (1)):

$$I(G) = \int_{x=a}^{b} \alpha(x) dx$$
 (Satz von Cavalieri)

- a) Im Beispiel der Pyramide ist $\alpha(x) = (1-x)^2/2$.
- b) Rotiert $\{(x,y) \mid 0 \le y \le f(x), \ a \le x \le b\}, \ f \in C^0[a,b]\}$ um die x-Achse, so entsteht der Rotationskörper $G_{\rm rot}$. Hierbei ist $\alpha(x) = \pi f(x)^2$, also $I(G_{\rm rot}) = \pi \int_a^b f(x)^2 \, \mathrm{d}x$.

 $\pi \int_a^b f(x)^2 dx.$ Beispiele (hierzu). • Volumen von $\{(x,y,z) \mid x^2 + y^2 + z^2 \leq R^2\}$. Mit $f(x) = \sqrt{R^2 - x^2}, -R \leq x \leq R$, erhält man $I = 4/3\pi R^3$.

• Torusvolumen: Rotation von $\{(x,y) \mid x^2+(y-b)^2 \le a^2\}$ um die x-Achse (0 < a < b), so folgt mit $f_{1/2} = b \pm \sqrt{a^2-x^2}$

$$I(Torus) = \pi \int_{-a}^{a} (f_1^2(x) - f_2^2(x)) dx = 2\pi^2 a^2 b$$

3. Berechne $J = \iiint_K z \, d(x, y, z) \, f \ddot{u} r \, K = \{(x, y, z) \mid x^2/a^2 + y^2/b^2 + z^2/c^2 \le 1, z \ge 0\}$ $(a, b, c > 0 \, konst)$

43. Substitution im Volumenintegral

43.1. Erinnerung an n = 1, n = 2

n=1: HMI Substitutionsregel für Integrale

n=2: Satz 1 40. Kapitel

43.2. Substitutionsregel für n = 3

 G,G^* sind beschränkte Gebiete im \mathbb{R}^3 . Es sei $f\in C^0(G)$ und beschränkt. $\vec{\psi}:G^*\to G,\ \vec{\psi}(\xi,\eta,\zeta)=\left(egin{array}{c} u\\v\\w \end{array}\right)$ sei C^1 , injektiv mit $\det\vec{\psi}'(\xi,\eta,\zeta)\neq 0$ für $(\xi,\eta,\zeta)\in G^*$. Es gilt:

$$\iiint_{G=\vec{\psi}(G^*)} f(u,v,w) \, \mathrm{d}(u,v,w) = \iiint_{G^*} ((f \circ \vec{\psi})(\xi,\eta,\zeta)) |\det \vec{\psi}'(\xi,\eta,\zeta)| \, \mathrm{d}(\xi,\eta,\zeta)$$

43.3. Beispiele

Wir setzen zur Abkürzung $\vec{u} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \vec{\xi} = \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix}, \vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ d\vec{u} = d(u, v, w), \dots$

1. Es sei A eine reguläre konstante (3,3)-Matrix.

$$\vec{u} = \vec{\psi}(\vec{\xi}) = A\vec{\xi} + \vec{b}$$

 $(\vec{b} \in \mathbb{R}^3, \, \text{konst})$ mit $\vec{\psi}'(\vec{\xi}) = A$ gibt der Satz 43.2

$$\iiint_{\vec{\psi}(G^*)} f(\vec{u}) \, \mathrm{d}\vec{u} = \iiint_{G^*} f(A\vec{\xi} + \vec{b}) |\det A| \, \mathrm{d}\vec{\xi}$$

Für f=1 besagt dies: $I(G)=I(\psi(G^*))=|\det(A)|I(G^*)$. Ist $\vec{\psi}$ eine Bewegung ($|\det A|=1$), so heißt das: Das Volumen eines Körpers ist bewegungsinvariant.

2. Integration rotations sysmmetrischer Funktionen $0 < r_1 < r_2$: $f: [r_1, r_2] \to \mathbb{R}$ sei stetig. $\|\vec{x}\|^2 = x^2 + y^2 + z^2$. Es gilt

$$\iiint_{r_1 \le \|\vec{x}\| \le r_2} f(\|\vec{x}\|) \, d\vec{x} = 4\pi \int_{r_1}^{r_2} r^2 f(r) \, dr$$

44. Der Gaußsche Integralsatz in \mathbb{R}^3

44.1. Der Gaußsche Satz

Es sei $G \subset \mathbb{R}^3$ ein beschränktes Gebiet, das sich durch endlich viele Schnitte in Bereiche zerlegen lässt, die gleichzeitig in x-, y-, z-Richtung projizierbar sind. Die Oberfläche ∂G von G bestehe aus endlich vielen geschlossenen stückweise glatten Flächen. \vec{N} bezeichne den Normalenvektore der Länge Eins auf ∂G , der ins äußere von G weist. \vec{v} sei ein in einer Umgebung von G definiertes C^1 -Vektorfeld. Es gilt:

$$\iiint_{G} \nabla \cdot \vec{v} \, d\tau = \underbrace{\iint_{\partial G} \vec{v} \cdot \vec{N} \, do}_{\text{Fluss von } \vec{v} \, \text{durch}}$$

$$\underset{\partial G \text{ nach Außen}}{\text{Fluss von } \vec{v} \, \text{durch}}$$
(1)

44.2. Beispiele

1. Genau wie in 37.4 erhält man mit Skalarfeldern $f,g\in C^2(\overline{G})$ aus (1) mit $\vec{v}=g\nabla f$ die Greenschen Formeln

$$\iint_{\partial G} g D_{\vec{N}} f \, do = \iiint_{G} (g \Delta f + \nabla g \cdot \nabla f) \, d\tau,$$

$$\iint_{\partial G} (g D_{\vec{N}} f - f D_{\vec{N}} g) do = \iiint_{G} (g \Delta f - f \Delta g) \, d\sigma.$$

2. Für $\vec{v} \in C^2(G) \cap C^1(\overline{G})$ gilt wegen $\nabla \cdot (\nabla \times v) = 0$ und (1)

$$\iint_{\partial G} (\nabla \times \vec{v}) \cdot d\vec{o} = 0$$

Übung. Versuche, dies Ergebnis mittels des Stokesschein Satzes zu begründen. Warum ist dies dann ein besseres Ergebnis?

3. Setzt man in (1) $\vec{v} = \vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, so folgt wegen $\nabla \cdot \vec{v} = 3$

$$I(G)$$
 (= Volumen von G) = $\frac{1}{3} \iint_{\partial G} \vec{x} \cdot \vec{N} \, do$

Ist speziell $G = \{\vec{x} \in \mathbb{R}^3 \mid ||\vec{x}|| < R\}$ und rechnet man mit Kugelkoordinaten, so folgt leicht $I(G) = 4/3\pi R^3$.

4. Es sei $G \subset \mathbb{R}^3$ ein Gebiet, auf das der Satz 44.1 anwendbar ist, und es gelte $\vec{0} \notin \partial G$. Dann gilt

$$\iint_{\partial G} \frac{\vec{x} \cdot \vec{N}}{\|\vec{x}\|^3} \, \mathrm{d}o = \begin{cases} 4\pi, & \text{falls } \vec{0} \in G \\ 0, & \text{falls } \vec{0} \notin G. \end{cases}$$

Man benötigt (siehe auch 29.2) $\nabla \cdot \vec{x}/\|\vec{x}\|^3 = 0$ für $\vec{x} \neq \vec{0}$. Gilt $\vec{0} \in G$, so wird (1) mit $\vec{v} = \underline{\vec{x}}/\|\vec{x}\|^3$ angewendet mit $G \setminus \overline{B(0,\varepsilon)}$ anstelle von G, wobei $\varepsilon > 0$ so klein ist, dass $\overline{B(0,\varepsilon)} \subset G$ gilt. (Warum ist das möglich?)

Teil II.

Komplexe Analysis und Integraltransformationen

1. Differenzieren im Komplexen, Die Cauchy-Riemann Differentialgleichungen (CR-DGLn)

1.1. $\mathbb{R}^2 = \mathbb{C}$

Wir werden häufig den \mathbb{R}^2 mit \mathbb{C} identifizieren, d.h. ausnutzen, dass die Zuordnung

$$\mathbb{C} \to \mathbb{R}^2$$
$$z \mapsto \begin{pmatrix} \operatorname{Re}(z) \\ \operatorname{Im}(z) \end{pmatrix}$$

eine bijektive (lineare) Abbildung ist.

Wir schreiben z.B. wahlweise G ist Gebiet in \mathbb{R}^2 oder in \mathbb{C} .

Beispiel. Mittels dieser Zuordnung wird dem Produkt der komplexen Zahlen $\xi = a + ib, z = x + iy \ (a, b, x, y \in \mathbb{R})$ das Element $\left(\begin{smallmatrix} a & -b \\ b & a \end{smallmatrix} \right) \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \in \mathbb{R}^2$ zugeordnet.

1.2. $f:G\to\mathbb{C}$ und $\vec{f}:G\to\mathbb{R}^2$

Es sei $G \subset \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C}$, w = f(z) eine Funktion. Setze

$$u(x,y) := \operatorname{Re}(f(x+iy)),$$

$$v(x,y) := \operatorname{Im}(f(x+iy)) \qquad ((x,y) \in G)$$

Wir ordnen f das Vektorfeld $\vec{f}: G \to \mathbb{R}^2$ mit

$$\vec{f}(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}, \quad (x,y) \in G$$

zu.

Beispiele. 1. $f(z) = e^z \rightarrow \vec{f}(x,y) = \begin{pmatrix} e^x \cos y \\ e^x \sin y \end{pmatrix}$

2.
$$f(z) = z^2 \rightarrow \vec{f}(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}$$

3.
$$f(z) = \sin(z) \rightarrow \vec{f}(x, y) = \left(\frac{\sin x \cosh y}{\cos x \sinh y}\right)$$

1.3. Holomorphie, Die CR-DGLn

Die komplexe Funktion $f: G \subset \mathbb{C} \to \mathbb{C}$ heißt in $z_0 \in G$ diff bar, falls

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

existiert. In diesem Fall wird der Grenzwert durch $f'(z_0)$ bezeichnet und die erste Ableitung von f in z_0 genannt.

Bemerkungen. 1. Ist f in z_0 diff bar, so ist f in z_0 stetig.

- 2. Die aus dem Reellen bekannten Regeln wie z.B.: Produktregel, Quotientenregel, Kettenregel, Differenzieren von Potenzreihen: gelten wörtlich hier in diesem allgemeineren Rahmen.
- 3. **Definition.** f heißt in $z_0 \in G$ holomorph, falls f in einer Umgebung von z_0 diff bar ist. f heißt holomorph in G, falls f in jedem Punkt $z \in G$ holomorph ist.

Setzt man die (reelle) Diff'barkeit von f(x+iy) als Funktion von x und y in Beziehung zur Diff'barkeit von f(z), so erhält man:

Satz 1. Es seien $G \subset \mathbb{C}$ (\mathbb{R}^2) ein Gebiet und $u, v : G \subset \mathbb{R}^2 \to \mathbb{R}$ gegebene Funktionen. Definiert man $w = f(z), z \in G$ durch u(x,y) = Re f(x+iy), v(x,y) = Im f(x+iy), (also f = u + iv), so gilt:

$$f:G\subset\mathbb{C}\to\mathbb{C}$$
 ist in G holomorph \Leftrightarrow u,v sind in G diff'bar, und es sind die Cauchy-Riemann DGLn $D_1u(x,y)=D_2v(x,y)$ $D_2u(x,y)=-D_1v(x,y)$ $(x,y)\in G$

Dann gilt $f'(x + iy) = (D_1 u)(x, y) + i(D_1 v)(x, y)$.

 $erf\ddot{u}llt$

1.4. Folgerungen

1. $f: G \subset \mathbb{C} \to \mathbb{C}$ sei in G holomorph. Mit $\vec{f} = \begin{pmatrix} u \\ v \end{pmatrix}$ (siehe oben 1.2) gilt

$$\det \vec{f}'(x,y) = |f'(x+iy)|^2, \quad (x,y) \in G.$$

- 2. Ist f = u + iv im Gebiet G holomorph, so gilt $\nabla u(x,y) \cdot \nabla v(x,y) = 0$. (Die Kurvenscharen u(x,y) = konst und v(x,y) = konst sind zueinander orthogonale Scharen)
- 3. Holomorphe Funktionen und harmonische Funktionen: $u \in C^2(G)$ mit $\Delta u(x,y) = D_1^2 u(x,y) + D_2^2 u(x,y) = 0$, $(x,y) \in G$, heißt harmonisch in G.

Wir verwenden im Vorgriff auf noch zu Begründendes, dass gilt: Ist f in G holomorph, so ist auch f' in G holomorph. Daraus folgt: u = Re(f), v = Im(f) sind auch $C^{\infty}(G)$.

Satz 2. Ist $f: G \subset \mathbb{C} \to \mathbb{C}$ mit u = Re(f) und v = Im(f) in G holomorph, so sind u und v in G harmonisch.

Satz 3. (vgl. Satz 4 / Kap. 38) Es seien $G \subset \mathbb{C}$ ein einfach zusammenhängendes Gebiet und u eine in G harmonische Funktion. Dann gibt es eine Funktion v: $G \to \mathbb{R}$ derart, dass f = u + iv in G holomorph ist. (eine solche Funktion v ist harmonisch (Satz 2): sie heißt auch zu u konjugiert harmonisch).

Beispiel. $u(x,y)=x^2-y^2-y$. $f(z)=z^2+iz+i\alpha\ (\alpha\in\mathbb{R})\ mit\ v(x,y)=2xy+x+\alpha$.

2. Schlichte Funktionen. Der komplexe Logarithmus. Wurzeln

2.1. Schlichtheit

 $f:G\to\mathbb{C},\ w=f(z)$ heißt schlicht auf G, falls f auf G holomorph und injektiv ist.

Beispiele. 1. $w = f(z) = z^2$ ist auf $G_1 = \{z \mid 0 < \arg(z) < 3\pi/2\}$ nicht schlicht, da für $z_1 = e^{i\pi/4}$ und $z_2 = e^{i5\pi/4}$ gelten: $z_1, z_2 \in G, z_1 \neq z_2$ und $z_1^2 = z_2^2 (=i)$.

- 2. $w = f(z) = z^2$ ist auf $G_2 = \{z \mid \text{Im}(z) > 0\}$ schlicht.
- 3. $w = f(z) = e^z$ ist auf $(\alpha, \beta \in \mathbb{R})$ $P := \{z \in \mathbb{C} \mid \alpha < \text{Im}(z) < \alpha + \beta\}$ genau dann schlicht, falls $0 < \beta \le 2\pi$ erfüllt ist.

2.2. Schlichtheit der Umkehrfunktion einer schlichten Funktion

(Umformulierung des Satzes 1, Kapitel 33, für $\vec{f} = \left(\begin{smallmatrix} u \\ v \end{smallmatrix} \right)$ auf f = u + iv)

Satz 1. $f: G \to \mathbb{C}, w = f(z)$ sei schlicht auf dem Gebiet G. Dann gelten: f(G) ist ein Gebiet, die Umkehrfunktion $g(=f^{-1})$: $f(G) \to G$ ist schlicht und es gilt

$$g'(w) = \frac{1}{f'(g(w))}, \quad w \in f(G)$$

Bemerkung. Aus "f schlicht auf G" folgt $f'(z) \neq 0 \ \forall z \in G$. Aber: Aus " $f'(z) \neq 0, \forall z \in G$ " folgt i.A. nicht: f schlicht auf G. Beispiel?

2.3. Der komplexe Logarithmus

Es sei $\alpha \in \mathbb{R}$ beliebig, fest und $k \in \mathbb{Z}$. Definiere

$$P_{\alpha,k} := \{ z \in \mathbb{C} \mid \alpha + 2k\pi < \text{Im}(z) < \alpha + 2(k+1)\pi \}$$

$$\mathbb{C}_{\alpha} := \{ z \in \mathbb{C} \mid z \neq 0, \alpha < \arg(z) < \alpha + 2\pi \}$$

$$= \mathbb{C} \setminus \{ z \mid z = re^{i\alpha}, r \geq 0 \}$$

Satz 2. α , k seien (wie oben und) beliebig, fest. Es gelten:

$$\exp: P_{\alpha,k} \to \mathbb{C}_{\alpha}$$

ist schlicht und surjektiv.

Satz 3. Für jedes $\alpha \in \mathbb{R}$ und $k \in \mathbb{Z}$ wird durch

$$w = \log(z) := \ln|z| + i(\arg(z) + 2k\pi), \quad z \neq 0, \alpha < \arg(z) < \alpha + 2\pi$$

die Funktion $\log : \mathbb{C}_{\alpha} \to P_{\alpha,k}$ mit $\exp(\log(z)) = z, \ z \in \mathbb{C}_{\alpha}$, definiert.

Da exp auf $P_{\alpha,k}$ schlicht ist und $\exp'(z) = \exp(z)$ gilt, ist nach Satz 1 log schlicht, und es gilt

$$\log'(z) = \frac{1}{z}.$$

Dies kann man für $w = \log(z), z \in \mathbb{C}_{-\pi}, k = 0$ (z.B.) explizit nachrechnen.

Hierbei sind die CR-DGLn in Polarkoordinaten nützlich:

Ist $f(re^{i\phi}) = u(r,\phi) + iv(r,\phi)$ holomorph, so gelten

$$rD_1u(r,\phi) = D_2v(r,\phi)$$
$$D_2u(r,\phi) = -rD_1v(r,\phi)$$

Bemerkung. Wählt man in Satz 3 $\alpha = 0, k = 0$ oder $\alpha = -\pi, k = 0$, so nennt man diese Logarithmusfunktion(en) Hauptzweig des Logarithmus.

2.4. Potenzen, Wurzeln

Es sei $a \in \mathbb{C}$.

Definition.

$$z^a := e^{a\log(z)}, \quad z \in G,$$

G ist ein Gebiet, in dem log definiert ist. Also etwa $z \neq 0, -\pi < \arg(z) < \pi \ (z \in \mathbb{C}_{-\pi})$ oder $z \neq 0, 0 < \arg(z) < 2\pi \ (z \in \mathbb{C}_0)$

Es sei z.B. $z \in \mathbb{C}_{-\pi}$. Für jedes $k \in \mathbb{Z}$ wird durch

$$z^a = e^{a(\ln|z| + i\arg(z) + i2k\pi)}, \quad z \in \mathbb{C}_{-\pi}$$

die holomorphe Funktion $(z^a)_k$ definiert. Für $(z^a)_0$, für den Hauptzwei von z^a , schreiben wir z^a . Mit $a = 1/n, n \in \mathbb{N}$, sind

$$(\sqrt[n]{z})_k = \sqrt[k]{|z|} e^{i\left(\frac{\arg(z)}{n} + \frac{2k\pi}{n}\right)}, \quad k = 0, 1, \dots, n-1$$

für $z \in \mathbb{C}_0$ (oder $\mathbb{C}_{-\pi}$) die n verschiedenen Lösungen w der Gleichung $w^n = z$ (Vergleiche mit 6.4).

Vorsicht mit aus dem Reellen bekannten Regeln zum Rechnen mit Logarithmen und Potenzen. Diese sind – ohne genaue "Zusatzbetrachtungen" – i.A. falsch:

- **Beispiele.** 1. $n\log(z_1z_2) = \log z_1 + \log z_2$ ": $Ist \log(z) = \ln |z| + i \arg(z), z \neq 0, -\pi < \arg(z) < \pi$, so gilt $\log(i(-1+i)) = \ln \sqrt{2} i3\pi/4$, aber $\log i + \log(-1+i) = \ln \sqrt{2} + i5\pi/4$.
 - 2. $n\log(z^a) = a\log(z)$ ": $Mit \log(z) = \ln|z| + i\arg(z), \ z \neq 0, \pi/2 < \arg(z) < 5\pi/2$ würde man erhalten: $i\pi = \log(-1) = 1/4\log(-1)^4 = 1/4\log(1) = i\pi/2$!

3. Komplexe Kurvenintegrale

3.1. Das komplexe Kurvenintegral

 $G \subset \mathbb{C}$ ist ein Gebiet und $\gamma : \xi = z(t) = x(t) + iy(t), \ a \leq t \leq b, z \in C^1[a,b], z'(t) \neq 0$ für $a \leq t \leq b$ (bis auf höchstens endlich viele t), $z(t) \in G$ für $a \leq t \leq b$: ist eine Kurve in G. $f: G \to \mathbb{C}, \ f = u + iv$, ist eine auf G definierte stetige Funktion.

Definition.

$$\int_{\gamma} f(\xi) \, \mathrm{d}\xi := \int_{a}^{b} f(z(t)z'(t) \, \mathrm{d}t = \int_{\gamma} \begin{pmatrix} u \\ -v \end{pmatrix} \cdot \, \mathrm{d}\vec{s} + i \int_{\gamma} \begin{pmatrix} v \\ u \end{pmatrix} \cdot \, \mathrm{d}\vec{s}$$

3.2. Beispiele

1.
$$\gamma: z(t) = e^{it}, \ 0 \le t \le \pi/2. \int_{\gamma} \bar{\xi}^2 d\xi = 1 + i$$

2.

$$\frac{1}{2\pi i} \oint_{|\xi-a|=r} \frac{\mathrm{d}\xi}{(\xi-a)^k} = \begin{cases} 1, & k=1\\ 0, & k \neq 1, k \in \mathbb{Z} \end{cases}$$

4. Der Cauchysche Integralsatz, Die Cauchysche Integralformel

4.1. Erinnerung an Kap 38

4.2. Der Integralsatz von Cauchy

Es sei f holomorph im einfach zusammenhängendem Gebiet $G \subset \mathbb{C}$. Dann gilt für jede in G verlaufende stückweise glatte geschlossene Kurve γ :

$$\oint_{\gamma} f(\xi) \, \mathrm{d}\xi = 0$$

Zur Begründung verwende Definition 3.1 und, dass für f = u + iv holomorph die Felder $\binom{u}{-v}$ und $\binom{u}{v}$ Potentialfelder sind.

4.3. Folgerungen

Wir verwenden die folgende Bezeichnung. Ist γ eine geschlossene positiv orientierte Jordankurve, so bezeichnet int (γ) das Gebiet, das beschränkt ist und γ als Rand hat.

Folgerung (aus Satz 4.2). Es seien $\gamma, \gamma_1, \dots, \gamma_m$ geschlossene positiv orientierte stückweise glatte doppelpunktfreie Kurven mit

$$\gamma_i \subset \operatorname{int}(\gamma) \ (j=1,\ldots,m) \ und \ \operatorname{int}(\gamma_k) \cap \operatorname{int}(\gamma_l) = \emptyset \ (k \neq l).$$

Dann gilt:

$$\oint_{\gamma} f(\xi) \, \mathrm{d}\xi = \sum_{k=1}^{m} \oint_{\gamma_m} f(\xi) \, \mathrm{d}\xi,$$

falls alle Kurven $\gamma, \gamma_1, \ldots, \gamma_m$ und die Punkte zwischen γ und den Kurven $\gamma_k(k = 1, \ldots, m)$ ganz in einem Gebiet liegen, in dem f holomorph ist.

4.4. Bemerkung

(4.3 mit m=1 und γ, γ_1 konzentrische Kreise) $f: G \to \mathbb{C}$ sei holomorph im Gebiet \mathbb{C} . Der Kreisring $\{z \mid r \leq |z-z_0| \leq R\}$ liege in G. Es gilt:

$$\oint_{|\xi-z_0|=r} f(\xi) d\xi = \oint_{|\xi-z_0|=R} f(\xi) d\xi$$

4.5. Beispiele

1. (3.2, 2)) γ sei geschlossene doppelpunktfreie positiv orientierte Kurve. Es gelte $a \in \text{int}(\gamma)$. Dann hat man

$$\oint_{\gamma} \frac{\mathrm{d}\xi}{(\xi - a)^k} = \begin{cases} 2\pi i, & k = 1 \\ 0, & k \neq 1 \end{cases} (k \in \mathbb{Z})$$

2. γ sei positiv orientierte geschlossene doppelpunktfreie Kurve mit $\{0,1\}\subset \operatorname{int}(\gamma)$. Es gilt

$$\oint_{\gamma} (2\xi - 1)/(\xi^2 - \xi) \,d\xi = 4\pi i.$$

Schreibe

$$\frac{2\xi - 1}{\xi^2 - \xi} = \frac{1}{\xi} + \frac{1}{\xi - 1}.$$

Schließe 0 durch γ_1 und 1 durch γ_2 ein mit int $\gamma_1 \cap \text{int } \gamma_2 = \emptyset$ und $\gamma_1 \subset \text{int}(\gamma), \ \gamma_2 \subset \text{int}(\gamma)$. Verwende 4.3, 4.2 und 4.5,1).

4.6. Die Integralformel von Cauchy

Es sei $G \subset \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C}$ eine holomorphe Funktion. $\gamma \subset G$ sei eine stückweise glatte doppelpunktfreie positiv orientierte geschlossene Kurve mit $\operatorname{int}(\gamma) \subset G$. Dann gilt

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\xi)}{\xi - z} d\xi, \quad z \in int(\gamma).$$

Zur Begründung: Es sei $z \in \operatorname{int}(\gamma)$. Wähle $\rho > 0$ so klein, dass $\{\xi \mid |\xi - z| \leq \rho\} \subset \operatorname{int}(\gamma)$. Mit 4.3 (m = 1) gilt:

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \oint_{|\xi - z| = \rho} \frac{f(\xi)}{\xi - z} d\xi$$

$$= \underbrace{\frac{1}{2\pi i} \oint_{|\xi - z| = \rho} \frac{f(z)}{\xi - z} d\xi}_{f(z) (3.2,2)} + \underbrace{\frac{1}{2\pi i} \oint_{|\xi - z| = \rho} \frac{f(\xi) - f(z)}{\xi - z} d\xi}_{\rightarrow 0(\rho \to 0)}$$

Beispiel. Behandle Beispiel 4.5,2) mit 4.6.

5. Die Laurent-Entwicklung, Potenzreihenentwicklung

5.1. Bezeichnungen

 $\sum_{k=-\infty}^{\infty} \mu_k (= \sum_{k=-\infty}^{-1} \mu_k + \sum_{k=0}^{\infty} \mu_k = \sum_{k=1}^{\infty} \mu_{-k} + \sum_{k=0}^{\infty} \mu_k) \text{ ist konvergent (gegen L)},$ wenn $\sum_{k=1}^{\infty} \mu_{-k} \text{ und } \sum_{k=0}^{\infty} \mu_k \text{ konvergieren und}$

$$\sum_{k=1}^{\infty} \mu_{-k} + \sum_{k=0}^{\infty} \mu_k = L$$

gilt.

5.2. Die Laurententwicklung

Satz 1. Es seien $1/R_1$ der Konvergenzradius der Reihe $\sum_{k=1}^{\infty} a_{-k} w^k$ und R_2 der der Reihe $\sum_{k=0}^{\infty} a_k w^k$. Dann gelten:

- 1. $f(z) = \sum_{k=-\infty}^{+\infty} a_k z^k$ ist konvergent für alle z mit $R_1 < |z| < R_2$
- 2. Gilt $R_1 < R_2$, so ist f im Kreisring $A = \{z \mid R_1 < |z| < R_2\}$ holomorph.

Satz 2 (Die Laurententwicklung). Ist f holomorph in $A = \{z \mid R_1 < |z - z_0| < R_2\}$, dann besitzt f(z) für $z \in A$ die eindeutige Darstellung

$$f(z) = \sum_{k=-\infty}^{+\infty} a_k (z - z_0)^k$$

mit

$$a_k = \frac{1}{2\pi i} \oint_{|\xi - z_0| = \rho} \frac{f(\xi)}{(\xi - z_0)^{k+1}} d\xi.$$

Hierbei ist ρ eine beliebige Zahl mit $R_1 < \rho < R_2$.

5.3. Die Taylorentwicklung

Satz 3 (Taylorentwicklung). (Setze in Satz 2 $R_1 = 0$) Ist f in $D = \{z \mid |z - z_0| < R_2\}$ holomorph, so gilt

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad z \in D,$$

mit

$$a_k = \frac{1}{k!} f^{(k)}(x_0) = \frac{1}{2\pi i} \oint_{|\xi - z_0| = \rho} \frac{f(\xi)}{(\xi - z_0)^{k+1}} d\xi, \quad k = 0, 1, 2, \dots, 0 < \rho < R_2$$

Folgerung. Eine holomorphe Funktion ist in ihrem Definitionsberech beliebig of diff 'bar

Folgerung. Ist f holomorph auf $\{z \mid |z - z_0| < R_2\}$, so gilt für ρ mit $0 < \rho < R_2$:

$$f^{(k)}(z_0) = \frac{k!}{2\pi i} \oint_{|\xi - z_0| = \rho} \frac{f(\xi)}{|\xi - z_0|^{k+1}} d\xi, \quad k = 0, 1, 2, \dots$$

5.4. Beispiele

- 1. Entwickle f(z) = 1/((z-1)(z-2)) um $z_0 = 0$ in
 - a) |z| < 1
 - b) 1 < |z| < 2
 - c) |z| > 2
- 2. Gib die Reihe für f(z) = 1/((z-1)(z-2)) um $z_0 = 1$ an, die in
 - a) in 3/2
 - b) in 5/2

konvergiert. (Gesucht ist bei a) die Laurentreihe um $z_0=1$ in 0<|z-1|<1 in b) die um $z_0=1$ in |z-1|>1)

3.
$$\oint_{|\xi|=3} e^{\xi}/\xi^4 d\xi = \pi i/3$$

4.
$$\oint_{|\xi|=3} e^{-\xi}/(\xi+2)^3 d\xi = \pi i e^2$$

Antwort zu 2)

a)
$$f(z) = -1/(z-1) - \sum_{k=0}^{\infty} (z-1)^k$$

b)
$$f(z) = \sum_{k=0}^{\infty} (z-1)^{-k-2}$$

6. Isolierte Singularitäten

6.1. Definition

f hat in z_0 eine isolierte Singularität, falls f in $\{z \mid 0 < |z - z_0| < R\}$ (für ein geeignetes R) holomorph ist, aber nicht in $\{z \mid |z - z_0| < R\}$

6.2. Die verschiedenen isolierten Singularitäten

Es sei z_0 eine isolierte Singularität und

$$f(z) = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z - z_0)^k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

die Laurent-Reihe in $0 < |z - z_0| < R$.

 z_0 heißt hebbare Singularität, falls $a_{-k}=0,\ k=1,2,\ldots$

 z_0 heißt $Pol\ der\ Ordnung\ p\in\mathbb{N},$ falls $a_{-p}\neq 0$ und $a_k=0$ für k<-p.

 z_0 heißt wesentliche Singularität, falls $a_k \neq 0$ für unendlich viele Indizes k < 0.

6.3. Beispiele

- 1. $z_0 = 0$ ist für $f(z) = 1/\sin(1/z)$ eine nichtisolierte Singularität (als Limes der isolierten Singularitäten $z_k = 1/(k\pi), \ k = 1, 2, \ldots$)
- 2. $f(z) = \sin(z)/z$ hat in $z_0 = 0$ eine hebbare Singularität:

$$f(z) = \begin{cases} \frac{\sin z}{z}, & z \neq 0\\ 1, & z = 0 \end{cases}$$

ist überall holomorph.

- 3. $f(z) = \frac{1}{\sin(z)}$ hat in $z_0 = 0$ einen Pol 1. Ordnung.
- 4. $f(z) = \exp(1/z) = \sum_{k=0}^{\infty} 1/(k!)z^{-k}$ hat in $z_0 = 0$ eine wesentliche Singularität.

7. Der Residuensatz

7.1. $\operatorname{Res}(f;z_0)$: Residuum an einer isolierten Singularität z_0 von f

 z_0 sei eine isolierte singuläre Stelle von f und

$$f(z) = \sum_{k=-\infty}^{+\infty} a_k (z - z_0)^k$$

die Laurententwicklung von f um z_0 in $\{z \mid 0 < |z - z_0| < R\}$.

Definition.

$$Res(f; z_0) := a_{-1}$$

Ist γ eine geschlossene doppelpunktfreie z_0 umlaufende Kurve in $0 < |z - z_0| < R$, so gilt

$$\operatorname{Res}(f; z_0) = \frac{1}{2\pi i} \oint_{\gamma} f(\xi) \,\mathrm{d}\xi$$

Satz 1. Hat f in z_0 einen Pol der Ordnung p, so gilt

Res
$$(f; z_0) = \frac{1}{(p-1)!} \lim_{z \to z_0} D^{p-1}((z-z_0)^p f(z))$$

Im Fall p = 1 besagt das:

$$\operatorname{Res}(f; z_0) = (z - z_0)f(z)|_{z = z_0}$$

Satz 2. g, h seien holomorphe Funktionen mit $g(z_0) \neq 0, h(z_0) = 0, h'(z_0) \neq 0$. Es gilt

Res
$$\left(\frac{g}{h}; z_0\right) = \frac{g(z_0)}{h'(z_0)}$$

(Die Vor besagt, dass g/h in z_0 einen Pol 1. Ordnung hat)

Beispiel. $f(z) = 1/(1+z^n)$ $(n \in \mathbb{N})$ hat die Polstellen $z_k = \exp((i\pi + i2(k-1)\pi)(1/n)), k = 1, \ldots, n$. Sie sind alle von 1. Ordnung. Es gilt $\operatorname{Res}(f; z_k) = -z_k/n, k = 1, \ldots, n$.

7.2. Der Residuensatz

Es sei f bis auf isolierte Singularitäten im Gebiet G holomorph. $\gamma \subset G$ sei eine positiv orientierte doppelpunktfreie geschlossene Kurve, die endlich viele Singularitäten z_1, \ldots, z_S umschließt und selbst durch keine Singularität verläuft. Es gilt dann

$$\oint_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{S} \operatorname{Res}(f; z_k)$$

Satz 3. $R = R(x,y), \ x,y \in \mathbb{R}, \ sei \ eine \ rationale \ Funktion \ in \ x,y.$ Es sei $g(t) := R(\sin t, \cos t) \ stetig \ f\"ur \ 0 \le t \le 2\pi.$ Definiere

$$f(z) := \frac{1}{iz} R\left(\frac{z^2 - 1}{2iz}, \frac{z^2 + 1}{2z}\right).$$

Es gilt

$$\int_0^{2\pi} R(\sin t, \cos t) \, \mathrm{d}t = \oint_{|z|=1} f(z) \, \mathrm{d}z$$

Beispiel.
$$I = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\mathrm{d}t}{a^2 - 2a\cos t + 1} \ (a \in \mathbb{R}) = \begin{cases} \frac{1}{1 - a^2}, & |a| < 1 \\ \frac{1}{a^2 - 1}, & |a| > 1 \end{cases}$$

Satz 4. Es sei $G \subset \mathbb{C}$ ein Gebiet mit $\{z \mid \text{Im } z \geq 0\} \subset G$. $f: G \to \mathbb{C}$ sei holomorph bis auf höchstens endlich viele Polstellen, von denen keine reell ist. z_k , $k = 1, \ldots, S$ seien die Polstellen mit $\text{Im } z_k > 0$. Es sei

$$\lim_{R \to \infty} \int_0^{\pi} f(Re^{it}) Re^{it} dt = 0$$

erfüllt. Dann gilt

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) dx = \sum_{k=1}^{S} \operatorname{Res}(f; z_k)$$

Beispiel. $\int_{-\infty}^{\infty} dx/(1+x^4) = \pi\sqrt{2}/2$.

8. Die Laplace Transformation. Definition

8.1. Die zulässigen Funktionen \mathcal{Z}

Definition (der für das folgende zulässigen Funktionen \mathcal{Z}). $f \in \mathcal{Z} \Leftrightarrow$

- 1. $f: \mathbb{R} \to \mathbb{C}$, f(t) = 0 für t < 0.
- 2. f, f' sind stetig bis auf Sprungunstetigkeiten. In jedem endlichen Intervall gibt es höchstens endlich viele Sprungstellen.
- 3. f ist für $t \to \infty$ höchstens von exponentiellem Wachstum: es gibt eine reelle Konstante σ derart, dass

$$|f(t)| \le Me^{\sigma t}, \quad t \ge 0 \tag{E}$$

erfüllt ist. M ist eine geeignete Konstante.

- **Bemerkungen.** 1. Sind $f, g \in \mathbb{Z}$ und $\alpha, \beta \in \mathbb{C}$, so ist auch $\alpha f + \beta g \in \mathbb{Z}$. (\mathbb{Z} ist ein komplexer Vektorraum mit + (Addition von Funktionen) und der üblichen skalaren Multiplikation bei Funktionen)
 - 2. Gilt (E), so gilt (E) für alle $\sigma' > \sigma$. Die kleinste Zahl σ_0 mit: (E) gilt für jedes $\sigma > \sigma_0$ heißt der Wachstumskoeffizient von f
 - 3. $F\ddot{u}r f(t) = \exp(\exp(t))$ oder $f(t) = \exp(t^2)$ ist (E) nicht erfüllbar.

8.2. Beispiele

- 1. $h(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$ (Heavyside Funktion) $h \in \mathcal{Z}, \ \sigma_0 = 0$.
- 2. $n \in \mathbb{N}$. $f(t) = h(t)t^n$, $f \in \mathcal{Z}$, $\sigma_0 = 0$
- 3. $f(t) = h(t)e^{at} \ (a \in \mathbb{C}, a = \alpha + i\beta, \alpha, \beta \in \mathbb{R}) \ f \in \mathcal{Z}, \ \sigma_0 = \alpha$

8.3. Das Laplace Integral

Satz 1. Es sei $f \in \mathcal{Z}$ mit dem Wachstumskoeffizient σ_0 . Es sei $s = \sigma + i\omega$, $\sigma, \omega \in \mathbb{R}$. Dann ist

$$F(s) := \int_0^\infty e^{-st} f(t) \, \mathrm{d}t \tag{1.1}$$

absolut konvergent für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > \sigma_0$.

8.4. Die Laplace Transformation

Die hierdurch für s mit $\operatorname{Re}(s) > \sigma_0$ definierte Funktion F heißt die Laplace Transfor $mation \ von \ f$. Hierfür schreiben wir auch

$$F(s) = \mathcal{L}(f)(s)$$

oder mittels des Doetsch Symbols in der folgenden Form

$$f(t) \circ - F(s)$$
.

Die Zuordnung $f \stackrel{\mathcal{L}}{\mapsto} F$ heißt Laplace Transformation. \mathcal{L} ist linear:

$$\mathcal{L}(\alpha f + \beta g) = \alpha \mathcal{L}(f) + \beta \mathcal{L}(g), \quad f, g \in \mathcal{Z}, \alpha, \beta \in \mathbb{C}$$

1. $\mathcal{L}(h)(s) = H(s) = 1/s$, Re(s) > 0. Das wird auch so geschrieben: Beispiele.

$$1 \circ - \frac{1}{s} \quad (\operatorname{Re}(s) > 0)$$

2. $f_n(t) := h(t)t^n, n \in \mathbb{N}$.

$$h(t)t^{n} \circ \underbrace{-n!}_{s^{n+1}} \quad (\operatorname{Re}(s) > 0)$$

3. $f(t) = h(t)e^{at} \ (a \in \mathbb{C}, \operatorname{Re}(a) = \alpha)$

$$h(t)e^{at} \circ - \underbrace{\frac{1}{s-a}} \quad (\operatorname{Re}(s) > \alpha)$$

4. $(\omega \in \mathbb{R})$

$$h(t)\sin\omega t \circ - \frac{\omega}{s^2 + \omega^2} \quad (\operatorname{Re}(s) > 0)$$

$$h(t)\sin \omega t \circ - \frac{\omega}{s^2 + \omega^2} \quad (\operatorname{Re}(s) > 0)$$

$$h(t)\cos \omega t \circ - \frac{s}{s^2 + \omega^2} \quad (\operatorname{Re}(s) > 0)$$

5. Es sei $f: \mathbb{R} \to \mathbb{C}$ wie folgt gegeben:

$$\begin{cases} f(t) = 0, & t < 0 \\ f = f(t) & 0 \le t < T \\ f(t) = f(t+T), & t \ge 0 \end{cases}$$

(Das ist die T-periodische Fortsetzung von f[0,T] auf $[0,\infty]$)

Satz 2.

$$F(s) = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$$

Testen Sie sich und die Formel mit $f(t) = h(t) \sin \omega t$. (oben Beispiele 4.)

9. Analytische Eigenschaften der Laplace Transformierten

9.1.

Satz 1. Es sei F die Laplace Transformierte einer Funktion $f \in \mathcal{Z}$ mit dem Wachstumskoeffizienten σ_0 . Dann ist F holomorph in der Halbebene $\{s \in \mathbb{C} \mid \operatorname{Re}(s) > \sigma_0\}$. Es gilt

$$F'(s) = \int_0^\infty -te^{-st} f(t) \, \mathrm{d}t,$$

d.h.

$$-tf(t)\circ -F'(s),$$

falls $f(t) \circ - F(s)$.

9.2.

Satz 2. Ist $f \in \mathcal{Z}$, so gilt $\lim_{s \to \infty} F(s) = 0$, wobei $s \to \infty$ in dem Sinn zu verstehen ist, dass $\operatorname{Re}(s) \to \infty$ gilt.

9.3.

Satz 3. Aus $f_1, f_2 \in \mathcal{Z}$ und $\mathcal{L}(f_1) = \mathcal{L}(f_2)$ folgt $f_1(t) = f_2(t)$ für alle t, in denen f_1 und f_2 stetig sind.

Bemerkung. Zwei Funnktionen aus \mathcal{Z} , die sich höchstens an ihren Unstetigkeitsstellen unterscheiden, werden als gleich definiert.

Der Satz vorher gibt dann eine eindeutige Zuordnung

$$F(=\mathcal{L}(f))\mapsto f$$

$$\mathcal{L}(\mathcal{Z})\to\mathcal{Z}$$

Diese Zuordnung heißt die inverse Laplace Transformation. Sie wird durch \mathcal{L}^{-1} bezeichnet: $\mathcal{L}^{-1}(F) = f$, falls $\mathcal{L}(f) = F$.

9.4. Beispiel

Aus f stetig für t > 0 und $f, f' \in \mathcal{Z}$ und $f(t) \circ - \bullet F(s)$ folgt

$$f'(t) \circ - \bullet sF(s) - f(0+) \tag{*}$$

Hiermit kann das Problem

$$y'(t) - y(t) = 1, \quad t \ge 0$$
$$y(0) = 0$$

Laplace transformiert werden. Es ergibt sich für $Y=\mathcal{L}(y)$ die folgende Gleichung:

$$sY(s) - Y(s) = \frac{1}{s}$$

 \Rightarrow

$$Y(s) = \frac{1}{s(s-1)} = \frac{1}{s-1} - \frac{1}{s}$$

Mit Satz 3 und $e^{at} \circ - - \bullet 1/(s-a)$, $1 \circ - - \bullet 1/s$ (8.5) folgt

$$y(t) = e^t - 1, \quad t \ge 0.$$

10. Regeln zum Rechnen mit \mathcal{L}

10.1. Ähnlichkeitstransformation

$$f(t) \circ - F(s), c \text{ konst } > 0, f \in \mathcal{Z}$$

$$\Rightarrow f(ct) \circ - F(s), c \text{ konst } > 0, f \in \mathcal{Z}$$

10.2. Verschiebungssatz

 $f \in \mathcal{Z}, \ f(t) \circ - F(s)$. Es gilt für jedes T > 0:

$$f(t-T) \circ - e^{-sT} F(s)$$

Beispiel. A > 0, konst. f(t) = nA, $(n-1)T \le t \le nT$, n = 1, 2, ..., f(t) = 0, t < 0.

$$\Rightarrow F(s) = \frac{A}{s} \frac{1}{1 - e^{-sT}} \quad (\operatorname{Re}(s) > 0)$$

10.3. Dämpfungssatz

Mit $f \in \mathcal{Z}, \sigma_0, a \in \mathbb{C}$ und $f(t) \circ - F(s)$, Re $(s) > \sigma_0$ folgt

$$e^{at}f(t) \circ -F(s-a) \quad (\operatorname{Re}(s) > \sigma_0 + \operatorname{Re}(a))$$

10.4. Differentiationssatz (im Urbild)

Es sei f für t > 0 n-mal diff'bar, $\mathcal{L}(f^{(n)})(s)$ existiere für $s = \sigma_0 > 0$. Dann konvergiert $\mathcal{L}(f)(s)$ für $s = \sigma_0$, es existieren

$$\lim_{t \to 0+} f^{(k)}(t) = f^{(k)}(0+) \quad (k = 0, \dots, n-1),$$

und es gilt

$$f^{(n)}(t) \circ - \bullet s^n F(s) - \sum_{k=0}^{n-1} s^k f^{(n-1-k)}(0+)$$

für $s = \sigma_0$ und s mit $\text{Re}(s) > \sigma_0$.

Begründung mit 9.4 (*) (n = 1) und vollständiger Induktion

Beispiele. 1. $\sin \omega t$ ist die Lösung des Problems

$$\begin{cases} y''(t) + \omega^2 y(t) = 0, & t \ge 0 \\ y(0) = 0, & (\omega \in \mathbb{R}) \\ y'(0) = \omega \end{cases}$$

Für $Y = \mathcal{L}(y)$ folgt: $s^2Y(s) - \omega + \omega^2Y(s) = 0$, oder:

$$Y(s) = \frac{\omega}{s^2 + \omega^2} \tag{8.5, 4}$$

2. $n \in \mathbb{N}, \ t \ge 0 \ F\ddot{u}r \ f(t) = t^n \ gelten \ f^{(n)}(t) = n! \ und \ f^{(k)}(0+) = 0, \ k = 0, \dots, n-1.$

$$\Rightarrow \mathcal{L}(f^{(n)})(s) = \frac{n!}{s} = s^n \mathcal{L}(t^n)$$

$$\Rightarrow t^n \circ \underbrace{--\bullet}_{s^{n+1}} \underbrace{n!}_{s^{n+1}}$$
(8.5, 2)

10.5. Differentiation im Bild

$$(-t)^n f(t) \circ - F^{(n)}(s)$$

Beispiel. Mit $e^{at} \circ - \bullet 1/(s-a)$ folgt

$$t^n e^{at} \circ \underbrace{--\bullet}_{(s-a)^{n+1}}$$

10.6. Integralsatz (für das Urbild)

$$\int_0^t f(\tau) \, \mathrm{d}\tau \circ - \underbrace{F(s)}_s$$

Das Anfangswertproblem für die lineare gewöhnliche Differentialgleichung 2. Ordnung mit konstanten Koeffizienten

11.1. Prolemformulierung, Übertragen in den Bildraum

 a,b,c,y_0,y_0' sind gegebene Konstanten, $f=f(t)\in\mathcal{Z}$ ist gegeben.

Gesucht ist y = y(t) mit

(P)
$$\begin{cases} ay''(t) + by'(t) + cy(t) = f(t), & t \ge 0 \\ y(0) = y_0, \\ y'(0) = y'_0 \end{cases}$$

Es sei $Y(s) = \mathcal{L}(y)(s), F(s) = \mathcal{L}(f)(s)$. Wende \mathcal{L} auf (P) an. Man erhält:

$$Y(s) = \frac{as+b}{as^2+bs+c}y_0 + \frac{a}{as^2+bs+c}y_0' + \frac{F(s)}{as^2+bs+c}$$

11.2. Lösung des Problems aus 11.1

Mit

$$y_1(t) \circ \underbrace{--\bullet \frac{as+b}{as^2+bs+c}},$$

$$y_2(t) \circ \underbrace{--\bullet \frac{a}{as^2+bs+c}}, \text{ und}$$

$$y_p(t) \circ \underbrace{--\bullet \frac{F(s)}{as^2+bs+c}}$$

erhält man als Lösung von (P):

$$y(t) = y_0 y_1(t) + y_0' y_2(t) + y_p(t)$$

12. Die Faltung (zu y_p in 11.2)

12.1. Faltungssatz

Für $f, g \in \mathcal{Z}$ ist

$$(f * g)(t) := \int_0^t f(\tau)g(t-\tau) d\tau, \quad t \in \mathbb{R},$$

ebenfalls aus \mathcal{Z} . Es gilt

$$\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g).$$

Bemerkungen. θ . $f * g hei\beta t$ Faltung von f und g.

1. Es gelten

$$f * g = g * f$$

 $(f * g) * p = f * (g * p)$
 $f * (g + p) = f * g + f * p$

2. Es gilt i.A. nicht f * 1 = f und $f * f = f^2$. f * f kann negativ sein. Beispiele. a) Berechne 1 * 1 und mit $f(t) = t^2$, g(t) = 1 die Faltung f * g.

b) Es sei $f(t) = \cos t$. Diskutiere f * f.

12.2. y_p aus **11.2**

Es ist (11.2)

$$y_p(t) = \left(f * \frac{y_2}{a}\right)(t)$$

12.3. Beispiel

$$\frac{\omega}{s^2 + \omega^2} \frac{1}{s + \alpha} = \frac{\omega}{(s^2 + \omega^2)(s + \alpha)} \bullet - \circ ? \quad (\omega, \alpha \in \mathbb{R})$$

Mit $\omega/(s^2 + \omega^2) \bullet - \circ \sin \omega t := u(t), 1/(s + \alpha) \bullet - \circ e^{-\alpha t} =: v(t)$ folgt
$$f(t) = (u * v)(t) = \frac{\alpha \sin \omega t - \omega \cos \omega t + \omega e^{-\alpha t}}{\alpha^2 + \omega^2}$$

13. Rücktransformation rationaler Funktionen. Zur Partialbruchzerlegung (PBZ)

13.1. Die Partialbruchzerlegung

Es seien p und q Polynome mit grad p < grad q und ohne gemeinsame Nullstellen.

Zerlege

$$q(x) = \prod_{j=1}^{l} (x - a_j)^{k_j}.$$

 a_1, \ldots, a_l sind die verschiedenen Nullstellen von q mit den Vielfachheiten k_j ; $k_j \in \mathbb{N}, k_1 + \ldots + k_l = \operatorname{grad}(q)$.

Es gibt dann eindeutig Zahlen γ_{km} mit

$$\frac{p(x)}{q(x)} = \sum_{j=1}^{l} \left(\frac{\gamma_{j1}}{(x - a_j)^1} + \dots + \frac{\gamma_{jk_j}}{(x - a_j)^{k_j}} \right)$$
 (*)

Die Ausdrücke $1/(x-a_j)^k$ heißen Partialbrüche. (*) ist die Partialbruchzerlegung von p/q.

13.2. Rücktransformation rationaler Feunktionen mit einfachen Polstellen

Gesucht ist f(t) mit

$$f(t) \circ - F(s) = \frac{G(s)}{N(s)}.$$

Hier sind G, N Polynome ohne gemeinsame Nullstellen, mit grad(G) < grad(N) =: n.

N besitze nur einfache Nullstellen: s_1, \ldots, s_n .

Also:

$$N(s) = (s - s_1) \dots (s - s_n)$$

Der PBZ-Ansatz für F lautet hier:

$$\frac{G(s)}{N(s)} = \sum_{j=1}^{n} \frac{\gamma_j}{s - s_j}$$

Man findet $\gamma_k = G(s_k)/N'(s_k)$, also

$$F(s) = \sum_{k=1}^{n} \frac{G(s_k)}{N'(s_k)} \frac{1}{s - s_k}$$

und mit $1/(s-s_k)$ •— $\circ e^{s_k t}$ erhält man

$$f(t) = \sum_{k=1}^{n} \frac{G(s_k)}{N'(s_k)} e^{s_k t}$$

13.3. Rücktransformation von $1/(s(s+a)^n)$ $(n \in \mathbb{N}, a \neq 0)$

Es sei $a \neq 0$. Zu

$$F(s) = \frac{1}{s(s+a)^n}$$

ist f(t) mit $\mathcal{L}(f)(s) = F(s)$ gesucht. Der PB-Ansatz ist hier

$$F(s) = \frac{\gamma_0}{s} + \sum_{k=1} n \frac{\gamma_k}{(s+a)^k}.$$

f(t) ist wegen

$$\frac{1}{s} - \circ h(t) \text{ und}$$

$$\frac{1}{(s+a)^k} - \circ \frac{1}{(k-1)!} t^{k-1} e^{-at} h(t)$$

kein Problem. Man findet: $\gamma_0 = \lim_{s \to 0} s F(s) = 1/a^n$ und

$$\gamma_k = \frac{1}{(n-k)!} \lim_{s \to -a} D^{n-k} [(s+a)^n F(s)]$$
$$= -\frac{1}{a^{n-k+1}}, \quad k = 1, \dots, n$$

Übung. Löse mittels Anwendung der Laplace Transformation

$$y''(t) - 3y'(t) + 2y(t) = h(t) - h(t-1) + h(t-2) - h(t-3) + h(t-4) - h(t-5)$$
$$y(0) = y'(0) = 0$$

Was heißt hier eigentlich "Lösung"?

14. Bemerkungen zur Dirac (Delta) "Funktion"

14.1. $\delta(x-x_0)$

 $\delta(x-x_0)(=\delta(x_0-x))$ wird durch die Wirkung auf eine stetige Funktion $f:I\to\mathbb{R}$ mit $x_0\in I$ definiert durch:

$$\int_{-\infty}^{\infty} \delta(x_0 - x) f(x) \, \mathrm{d}x = f(x_0),$$

wobei das Integral als Grenzwert $\lim_{a\to 0+} \int_{-\infty}^{\infty} \delta_a(x_0-x) f(x) \, \mathrm{d}x$ zu verstehen ist. Hierbei sind $\delta_a: \mathbb{R} \to \mathbb{R} \ (a>0)$ Funktionen mit folgenden Eigenschaften:

- (D1) $\delta_a \ge 0 \ \forall a$
- (D2) $\int_{\mathbb{R}} \delta_a(x) \ x = 1 \ \forall a$
- (D3) Für jedes r>0 gilt $\lim_{a\to 0+}\int_{\mathbb{R}\backslash\{|x|< r\}}\delta_a(x)\,\mathrm{d}x=0$

Deutet man δ_a als Dichten von Massenverteilungen, so besagt (D2), dass für jedes a die Gesamtmasse konstant 1 ist, und (D3), dass sich die Gesamtmasse mit $a \to 0$ im Nullpunkt konzentriert.

Beispiele für mögliche Funktionen δ_a ("Realisierungen für $\delta(x-x_0)$):

$$\delta_a^{(1)}(x) = \frac{1}{a} \frac{1}{\sqrt{\pi}} e^{-\frac{x^2}{a^2}},$$

$$\delta_a^{(2)}(x) = \frac{a}{\pi} \left(\frac{1}{x} \sin \frac{x}{a}\right)^2,$$

$$\delta_a^{(3)}(x) = \frac{a}{\pi} \frac{1}{a^2 + x^2},$$

$$\delta_a^{(4)}(x) = \frac{2}{\pi a} \frac{1}{e^{x/a} + e^{-x/a}},$$

$$\delta_a^{(5)}(x) = \begin{cases} \frac{1}{2a}, & |x| \le a \\ 0, & |x| > a \end{cases}$$

14.2. Laplace Transformierte von $\delta(t-t_0)$ $(t_0>0)$:

$$\delta(t - t_0) \circ - \int_0^\infty e^{-st} \delta(t - t_0) \, \mathrm{d}t = e^{-st_0}$$

Dies kann man realisieren z.B. mit

$$\delta_a^{(6)}(t) = \begin{cases} \frac{1}{a}, & 0 \le t \le a \\ 0, & t < 0, t > a \end{cases}$$

 $(\delta_a^{(6)}$ hat die Eigenschaften (D1), (D2), (D3)) und es gilt

$$\delta_a^{(6)}(t) = \frac{1}{a}(h(t) - h(t-a)) \circ - \frac{1}{a} \left(\frac{1}{s} - e^{-as} \frac{1}{s}\right) \to 1 \ (a \to 0)$$

und mit 10.2

$$\delta_a^{(6)}(t-t_0) \circ - \bullet e^{-st_0} \frac{1}{a} \left(\frac{1}{s} - e^{-as} \frac{1}{s} \right) \to e^{-st_0} (a \to 0)$$

14.3. Beispiel

$$Ly(t) := y''(t) - 4y'(t) + 4y(t) = 3\delta(t-1) + \delta(t-2),$$

$$y(0) = y'(0) = 1$$

Lösungen:

$$y(t) = e^{2t}(1-t)h(t) + 3(t-1)e^{2(t-1)}h(t-1) + (t-2)e^{2(t-2)}h(t-2)$$

Diese "Lösung" ist so zu verstehen:

- $0 \le t < 1$: $y(t) = y_1(t) := e^{2t}(1-t)$ löst Ly = 0 mit y(0) = y'(0) = 1
- $1 \le t < 2$: $y(t) = y_2(t) := e^{2t}(1-t) + 3(t-1)e^{2(t-1)}$ löst Ly = 0 mit $y_1(1) = y_2(1)$ und $y_2'(1) y_1'(1) = 3$
- $2 \le t$: $y(t) = y_3(t) := y_2(t) + (t-2)e^{2(t-2)}$ löst Ly = 0 mit $y_2(2) = y_3(2)$, $y_3'(2) y_2'(2) = 1$.

Wird durch die Gleichung die Bewegung eines Teilchens der Masse 1 (Koeffizient bei y''(t)) beschrieben, so besagt die rechte Seite $3\delta(t-1)+\delta(t-2)$, wie sich der Impuls des Teilchens zur Zeit t=1 und zur Zeit t=2 ändert: zur Zeit t=1 springt die Geschwindigkeit um 3, zur Zeit t=2 springt die Geschwindigkeit um 1

Ein paar zusätzliche Literaturanregungen zu den Wochen 11 - 14:

- Harici / Jeltsch: Komplexe Analysis für Ingenieure: 2 Bände. Insbesondere der letzte Teil von Band 2 (Basel 1980)
- Ameling: Laplace-Transformation (Braunschweig 1979)
- Davies: Integral Transforms and their Applications (New York 1978)
- Doetsch: Einführung in Theorie und Anwendungen der Laplace-Transformation (Stuttgart 1976)