Formelsammlung Höhere Mathematik III Physik

1) Lineare Differentialgleichung (DGL) erster Ordnung

$$y'(x) = a(x)y(x) + b(x),$$

 $y(x_0) = y_0.$

Allgemeine Lösung der homogenen Gleichung (b=0): $y_h(x)=ce^{\int a(x)\,\mathrm{d}x}$ mit $c\in\mathbb{R}$. Spezielle Lösung der inhomogenen Gleichung: $y_p(x)=c(x)e^{\int a(x)\,\mathrm{d}x}$, wobei $c(x)=\int \frac{b(x)}{z(x)}\,\mathrm{d}x$ und $z(x)=e^{\int a(x)\,\mathrm{d}x}$.

Allgemeine Lösung: $y = y_h + y_p$.

Explizite Lösung für das Anfangswertproblem (AWP): $y(x) = y_0 e^{A(x)} + e^{A(x)} \int_{x_0}^x e^{-A(t)} b(t) dt$, wobei $A(x) = \int_{x_0}^x a(\xi) d\xi$ ist.

2) Differentialgleichung mit getrennten Veränderlichen / Trennung der Variablen

$$y'(x) = f(x)g(y(x)),$$

$$y(x_0) = y_0.$$

Wir erhalten die Formel $\int_{\eta_0}^{y(x)} \frac{d\eta}{g(\eta)} = \int_{\tau_0}^{x} f(t) dt$.

3a) Bernoulli-Differentialgleichung

$$y'(x) + g(x)y(x) + h(x)y(x)^{\alpha} = 0.$$

Nach Multiplikation mit $(1-\alpha)y^{-\alpha}$ und Substitution $z=y^{1-\alpha}$, bekommen wir die lineare DGL

$$z'(x) + (1 - \alpha) g(x)z(x) + (1 - \alpha) h(x) = 0.$$

Nachdem wir die Lösung z bestimmt haben lösen wir die ursprüngliche DGL durch $y(x)=z(x)^{\frac{1}{1-\alpha}}$.

3b) Riccati-Differentialgleichung

$$y'(x) + g(x)y(x) + h(x)y(x)^{2} = k(x).$$

Sei ϕ eine Lösung. Wir setzen $u := y - \phi$. Durch Einsetzen in die obige DGL ergibt sich

$$u'(x) + [g(x) + 2\phi(x)h(x)]u(x) + h(x)u(x)^{2} = 0.$$

Dies ist eine Bernoulli-Differentialgleichung, d.h. wir können sie wie in 3a) lösen.

4) Exakte Differentialgleichungen

$$P(x,y) dx + Q(x,y) dy = 0, (x,y) \in D \subset \mathbb{R}^2$$

heißt exakt in D genau dann, wenn das Vektorfeld $\vec{v}(x,y) = \begin{pmatrix} P(x,y) \\ Q(x,y) \end{pmatrix}$ in D ein Potentialfeld ist.

Ist D einfach zusammenhängend und gilt $\partial_y P = \partial_x Q$ in D, so ist die Gleichung exakt in D.

Ist F ein Potential des Vektorfelds \vec{v} , so sind alle Lösungen implizit gegeben durch F(x,y)=c mit $c\in\mathbb{R}$.

Ist die DGL nicht exakt, so kann man versuchen einen integrierenden Faktor μ (mit $\mu \neq 0$ auf D) so zu finden, dass

$$\mu(x, y)P(x, y) dx + \mu(x, y)Q(x, y) dy = 0$$

exakt in D ist.

5) Reduktionsverfahren von d'Alembert:

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x).$$

Sei $y_1 \neq 0$ eine bekannte Lösung dieser DGL mit f = 0. Dann ist für geeignetes v auch $y(x) = v(x)y_1(x)$ eine Lösung. Wir erhalten durch Einsetzen in die obige DGL die folgende DGL für u = v':

$$u'(x) + \left(\frac{2y_1'(x)}{y_1(x)} + p(x)\right)u(x) = \frac{f(x)}{y_1(x)}.$$

Die Funktion u lässt sich wie in 1) bestimmen.

6) Lineare Differentialgleichung höherer Ordnung mit konstanten Koeffizienten

$$y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \ldots + a_1y'(x) + a_0y(x) = f(x)$$

(1) Homogener Fall (f = 0): Ein Fundamentalsystem erhält man wie folgt: Der Ansatz $y(x) = e^{\lambda x}, \lambda \in \mathbb{C}$, führt auf $p(\lambda) = 0$ mit dem charakteristischen Polynom

$$p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0.$$

• Ist λ reelle Nullstelle von p mit Vielfachheit $k \in \mathbb{N}$, so nehme man die k Funktionen

$$e^{\lambda x}, xe^{\lambda x}, \dots, x^{k-1}e^{\lambda x}$$

zum Fundamentalsystem hinzu.

• Ist $\lambda = \mu + i\tau$ mit $\mu, \tau \in \mathbb{R}$ nicht-reelle Nullstelle der Vielfachheit $k \in \mathbb{N}$, so nehme man die 2k Funktionen

$$e^{\mu x}\sin(\tau x), xe^{\mu x}\sin(\tau x), \dots, x^{k-1}e^{\mu x}\sin(\tau x)$$
 und $e^{\mu x}\cos(\tau x), xe^{\mu x}\cos(\tau x), \dots, x^{k-1}e^{\mu x}\cos(\tau x)$

zum Fundamentalsystem hinzu. Die Nullstelle $\overline{\lambda}$ wird dann nicht mehr berücksichtigt.

(2) Inhomogener Fall: Ist die Inhomogenität f von der Form

$$f(x) = q(x)e^{\sigma x}\sin(\omega x)$$
 oder $f(x) = q(x)e^{\sigma x}\cos(\omega x)$,

wobei q ein Polynom vom Grad $m \in \mathbb{N}_0$ und $\sigma, \omega \in \mathbb{R}$ sind, so ergibt sich eine spezielle Lösung y_p durch folgenden Ansatz.

• 1. Fall: $\lambda = \sigma + i\omega$ keine Nullstelle von p:

$$y_p(x) = r_1(x)e^{\sigma x}\sin(\omega x) + r_2(x)e^{\sigma x}\cos(\omega x),$$

wobei r_1, r_2 zwei Polynome vom Grad $\leq m$ sind.

• 2. Fall: $\lambda = \sigma + i\omega$ ist k-fache Nullstelle von p:

$$y_p(x) = x^k [r_1(x)e^{\sigma x}\sin(\omega x) + r_2(x)e^{\sigma x}\cos(\omega x)],$$

wobei r_1, r_2 zwei Polynome vom Grad $\leq m$ sind.

7) Eulersche Differentialgleichung

$$x^n y^{(n)}(x) + a_{n-1} x^{n-1} y^{(n-1)}(x) + \dots + a_1 x y'(x) + a_0 y(x) = f(x)$$
 auf $(0, \infty)$.

Die Substitution $x = e^t, u(t) = y(e^t)$ führt auf eine lineare DGL mit konstanten Koeffizienten für u, die wie in 6) gelöst werden kann. Durch Rücksubstitution erhalten wir $y(x) = u(\ln(x))$.

8) Abgewandelter Potenzreihenansatz

$$x^{2}y''(x) + xp(x)y'(x) + q(x)y(x) = 0,$$

wobei $p(x) = \sum_{j=0}^{\infty} p_j x^j$ und $q(x) = \sum_{j=0}^{\infty} q_j x^j$ für |x| < R konvergente Potenzreihen seien $(p_j, q_j \in \mathbb{R})$. Wir machen den Ansatz $y(x) = x^{\rho} \sum_{k=0}^{\infty} c_k x^k$ mit $c_0 \neq 0$. Einsetzen und Koeffizientenvergleich für k=0 führt auf die determinierende Gleichung $f(\rho) = 0$ mit $f(\rho) := \rho(\rho-1) + p_0\rho + q_0$. Für $k \in \mathbb{N}$ erhalten wir durch Koeffizientenvergleich eine rekursive Gleichung für die Koeffizienten. Seien ρ_1, ρ_2 die Nullstellen der determinierenden Gleichung, wobei $\rho_1 \geq \rho_2$, falls beide reell sind.

Falls $\rho_1, \rho_2 \in \mathbb{R}$, so gibt es für 0 < |x| < R ein Fundamentalsystem der Gestalt

$$y_1(x) = |x|^{\rho_1} \sum_{k=0}^{\infty} c_k x^k, \quad y_2(x) = A(\ln|x|)y_1(x) + |x|^{\rho_2} \sum_{k=0}^{\infty} d_k x^k,$$

mit $A \in \{0,1\}$, wobei

$$\begin{cases} A = 0, c_0 \neq 0, d_0 \neq 0, & \text{falls } \rho_1 - \rho_2 \notin \mathbb{N}_0, \\ A = 1, c_0 \neq 0, d_0 = 0, & \text{falls } \rho_1 = \rho_2, \\ A \in \{0, 1\}, c_0 \neq 0, d_0 \neq 0, & \text{falls } \rho_1 - \rho_2 \in \mathbb{N}. \end{cases}$$

9) Lineare Differentialgleichungssysteme mit konstanten Koeffizienten

$$\vec{y}'(t) = A\vec{y}(t) + \vec{b}(t),$$

wobei $A \in \mathbb{C}^{n \times n}$.

- (1) Homogenes System $(\vec{b} = \vec{0})$:
 - Man bestimme die Eigenwerte (als Nullstellen des charakteristischen Polynoms $p(\lambda) = \det(A \lambda I)$).
 - Sei $\lambda_0 \in \mathbb{C}$ ein Eigenwert mit algebraischer Vielfachheit m. Man bestimme eine Basis $\vec{v}_1, \ldots, \vec{v}_m$ des Hauptraums $\operatorname{Kern}(A \lambda_0 I)^m$. Dazu bestimme man zunächst eine Basis $\vec{v}_1, \ldots, \vec{v}_k$ von $\operatorname{Kern}(A \lambda_0 I)$ und erweitere diese, falls k < m, zu einer Basis von $\operatorname{Kern}(A \lambda_0 I)^2$ usw. Dann sind

$$\vec{\phi}_j(t) = e^{\lambda_0 t} \sum_{k=0}^{m-1} \frac{t^k}{k!} (A - \lambda_0 I)^k \vec{v}_j, \quad j = 1, \dots, m,$$

linear unabhängige Lösungen von $\vec{y}'(t) = A\vec{y}(t)$.

- Führt man dies für jeden Eigenwert durch, ergeben sich n linear unabhängige Lösungen. Schreibt man diese als Spalten in eine Matrix $\Phi(t)$, so ist diese ein Fundamentalsystem für das homogene System und es gilt $e^{tA} = \Phi(t)\Phi(0)^{-1}$ für alle $t \in \mathbb{R}$.
- \bullet Falls $A \in \mathbb{R}^{n \times n}$ ist, erhält man ein reellwertiges Fundamentalsystem folgendermaßen:
 - Ist oben $\lambda_0 \in \mathbb{R}$, so bestimmt man eine reelle Basis des Hauptraums und damit reellwertige $\vec{\phi}_j, j = 1, \dots, m$.
 - Ist oben $\lambda_0 \in \mathbb{C} \setminus \mathbb{R}$, so nehme man

$$\operatorname{Re} \vec{\phi}_1, \dots, \operatorname{Re} \vec{\phi}_m$$
 und $\operatorname{Im} \vec{\phi}_1, \dots, \operatorname{Im} \vec{\phi}_m$.

Der Eigenwert $\overline{\lambda_0}$ wird dann nicht mehr berücksichtigt.

- Allgemeine Lösung des homogenen Systems: $\vec{y}_h(t) = \Phi(t)\vec{c}$ mit $\vec{c} \in \mathbb{C}^n$ (bzw. $\vec{c} \in \mathbb{R}^n$, falls $A \in \mathbb{R}^{n \times n}$, Φ ein reelles Fundamentalsystem und reellwertige Lösungen gesucht sind).
- (2) Inhomogenes System: Eine spezielle Lösung ist gegeben durch $\vec{y}_p(t) = \Phi(t)\vec{c}(t)$, wobei $\vec{c}(t) = \int \Phi(\tau)^{-1}\vec{b}(\tau) d\tau$. Die allgemeine Lösung ist dann gegeben durch $\vec{y} = \vec{y}_h + \vec{y}_p$.
- (3) Anfangswertproblem: $\vec{y}'(t) = A\vec{y}(t) + \vec{b}(t)$, $\vec{y}(t_0) = \vec{y}_0$, hat die Lösung

$$\vec{y}(t) = e^{(t-t_0)A} \vec{y}_0 + \int_{t_0}^t e^{(t-\tau)A} \vec{b}(\tau) d\tau.$$

10) Lineare Transportgleichung mit konstanten Koeffizienten im \mathbb{R}^n

$$\partial_t u\left(\vec{x},t\right) + \vec{a} \cdot \nabla_{\vec{x}} u\left(\vec{x},t\right) = g\left(\vec{x},t\right), \quad (\vec{x},t) \in \mathbb{R}^n \times \mathbb{R},$$
$$u\left(\vec{x},0\right) = f\left(\vec{x}\right), \quad \vec{x} \in \mathbb{R}^n.$$

Lösungsformel: $u(\vec{x},t) = f(\vec{x} - t\vec{a}) + \int_{0}^{t} g(\vec{x} - (t-r)\vec{a},r) dr$ für $(\vec{x},t) \in \mathbb{R}^{n} \times \mathbb{R}$.

11) Quasilineare Differentialgleichungen erster Ordnung

$$\vec{a}(\vec{x}, u) \cdot \nabla_{\vec{x}} u(\vec{x}) = b(\vec{x}, u), \quad \vec{x} \in D,$$

$$u(\vec{\xi}) = f(\vec{\xi}), \quad \vec{\xi} \in \Gamma,$$

wobei $D \subseteq \mathbb{R}^n$, $\vec{a}: D \times J \to \mathbb{R}^n$, $b: D \times J \to \mathbb{R}$ gegeben sind, $J \subseteq \mathbb{R}$ ein Intervall ist und $\Gamma \subseteq D$ eine glatte Hyperfläche ist.

- $s \mapsto \vec{k}(s)$ Grundcharakteristik; $w(s) := u(\vec{k}(s))$.
- Charakteristisches System:

$$\vec{k}'(s) = \vec{a} \left(\vec{k}(s), w(s) \right),$$

 $w'(s) = b \left(\vec{k}(s), w(s) \right).$

mit Anfangswerten (für jedes $\vec{\xi} \in \Gamma$)

$$\vec{k}(0) = \vec{\xi},$$

$$w(0) = f(\vec{\xi}).$$

• Lösungen seien $\vec{k}(s,\vec{\xi}), w(s,\vec{\xi})$. Setze dann

$$u(\vec{x}) = w(s, \vec{\xi})$$
 für $\vec{x} = \vec{k}(s, \vec{\xi})$.

• Lösbarkeit (z. B. von $\vec{x} = \vec{k}(s, \vec{\xi})$) ist hier zu diskutieren. Ebenso ist eine Probe zu machen.

12) Wärmeleitungsgleichung

Das Anfangswertproblem

$$u_t(x,t) - u_{xx}(x,t) = 0 \quad (x \in \mathbb{R}, t > 0)$$
$$u(x,0) = f(x) \quad (x \in \mathbb{R})$$

mit $f \in C(\mathbb{R})$ beschränkt besitzt die Lösung

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^2}{4t}} f(y) dy.$$

13) Wellengleichung

Das Anfangswertproblem

$$u_{tt}(x,t) - u_{xx}(x,t) = 0 \quad ((x,t) \in \mathbb{R}^2)$$
$$u(x,0) = f(x) \quad (x \in \mathbb{R})$$
$$u_t(x,0) = g(x) \quad (x \in \mathbb{R})$$

mit $f\in C^2(\mathbb{R}), g\in C^1(\mathbb{R})$ besitzt die eindeutige Lösung

$$u(x,t) = \frac{1}{2} \left(f(x-t) + f(x+t) + \int_{x-t}^{x+t} g(s)ds \right).$$

14) Eigene Formeln