Lineare Algebra und Analytische Geometrie II (SS 2011) Aufgaben für die Tutorien zum 3. Übungsblatt

Themen: Minimalpolynom, Haupträume, Jordansche Normalform

Vorschlag 1.

Man berechne jeweils Haupträume und Minimalpolynom der folgenden Matrizen:

$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 1 & 1 & 3 & 0 \\ -1 & -1 & 0 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 0 & -1 & 0 \\ 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

Vorschlag 2.

Für die reelle Matrix

$$A = \left(\begin{array}{cccc} 0 & 1 & -1 & 1 \\ 0 & 2 & -1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

bestimme man die JNF \tilde{A} sowie eine reguläre Matrix S mit $S^{-1}AS = \tilde{A}$.

Vorschlag 3.

Es sei A eine reelle quadratische Matrix mit charakteristischem Polynom

$$p = (c_1 - X)^5 (c_2 - X)^7,$$

wobei $c_1, c_2 \in \mathbb{R}$ paarweise verschieden sein. Weiter gelte dim $E_{c_1} = 2$, dim $E_{c_2} = 4$. Außerdem gebe es mindestens ein Kästchen der Länge 3 zum EW c_1 bzw. c_2 .

Man bestimme die JNF und das Minimalpolynom von A.

Vorschlag 4.

 Φ sei ein Endomorphismus eines n-dimensionalen \mathbb{K} -Vektorraums. Man zeige:

- (a) Für $n \leq 3$ ist die JNF von Φ durch das char. Polynom und die Dimension der Eigenräume eindeutig bestimmt.
- (b) Für $n \le 6$ ist die JNF von Φ durch das char. Polynom, die Dimension der Eigenräume und das Minimalpolynom eindeutig bestimmt.
- (c) Für $n \ge 7$ gilt das nicht mehr.

Vorschlag 5.

Sei $\Phi:\mathbb{C}^9\to\mathbb{C}^9$ linear mit zugehöriger JNF

$$\tilde{A} = \begin{pmatrix} c & 0 & 0 & 0 & & & & \\ 1 & c & 0 & 0 & & & & \\ 0 & 1 & c & 0 & & & & \\ 0 & 0 & 1 & c & & & & \\ & & & c & 0 & & \\ & & & & 1 & c & & \\ & & & & & c \end{pmatrix}$$

bezüglich der Jordanbasis $\{b_1, \ldots, b_9\}$.

Was kann man aussagen über das char. Polynom, das Minimalpolynom, den Index von H_c sowie über $\dim E_c$, $\dim \operatorname{Kern}(\Phi - c \cdot \operatorname{id})^2$, $\dim \operatorname{Kern}(\Phi - c \cdot \operatorname{id})^3$ und $\dim \operatorname{Kern}(\Phi - c \cdot \operatorname{id})^4$? Hinweis: Die Anzahl der Kästchen, die die Länge $\geq k$ haben, ist gegeben durch $\dim \operatorname{Kern}(\Phi - c \cdot \operatorname{id})^k - \dim \operatorname{Kern}(\Phi - c \cdot \operatorname{id})^{k-1}$.