

Institut für Algebra und Geometrie Dr. Rafael Dahmen M.Sc. Maximilian Wackenhuth

Lineare Algebra 2

Wintersemester 2023/24

Übungsblatt 6

31.05.2024

Aufgabe 1 (8 Punkte)

Es sei

$$A := \begin{pmatrix} 2 & -2 & -1 \\ -2 & 2 & 1 \\ -10 & 10 & 5 \end{pmatrix}$$

und $\phi: \mathbb{R}^3 \to \mathbb{R}^3, v \mapsto Av$.

- a) Finden Sie eine geordnete Basis B_1 von \mathbb{R}^3 so, dass $M_{B_1,B_1}(\phi)$ eine Diagonalmatrix ist.
- b) Finden Sie eine geordnete Orthonormalbasis B_2 von \mathbb{R}^3 mit Standardskalarprodukt, sodass $M_{B_2,B_2}(\phi)$ eine obere Dreiecksmatrix ist.
- c) Zeigen Sie, dass keine Orthonormalbasis B von \mathbb{R}^3 mit Standardskalarprodukt so existiert, dass $M_{B,B}(\phi)$ eine Diagonalmatrix ist.

Aufgabe 2 (*Lemma 2.4.3*) (8 *Punkte*)

Es sei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ und $n \in \mathbb{N}$. Zeigen Sie:

- a) Die Menge $S \coloneqq \{A \in \mathbb{K}^{n \times n} \mid A = A^*\}$ ist ein $\mathbb{R}\text{-Vektorraum}.$
- b) Wenn $A, B \in \mathbb{K}^{n \times n}$ selbstadjungiert sind, so ist AB genau dann selbstadjungiert, falls AB = BA.
- c) Die Diagonaleinträge jeder selbstadjungierten Matrix sind reell.
- d) Für jede komplexe Matrix $A \in \mathbb{C}^{n \times n}$ gibt es selbstadjungierte Matrizen $X, Y \in \mathbb{C}^{n \times n}$ mit A = X + iY. Diese Zerlegung ist eindeutig.