

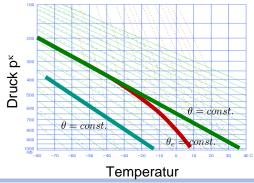
Vorlesung "Allgemeine Meteorologie"

Prof. Michael Kunz

Kapitel 8: Thermodynamische Grundlagen

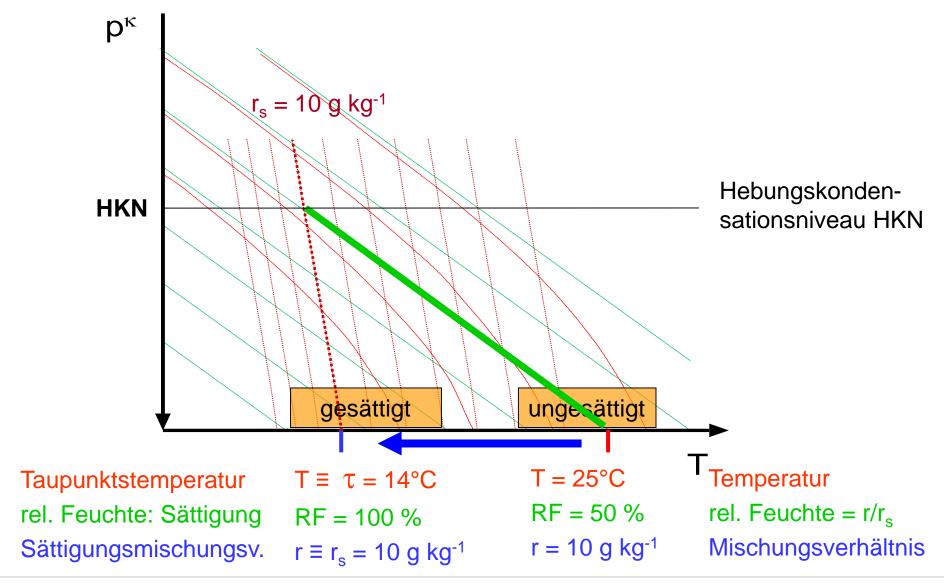
Letzte Vorlesung...

- Spezifische Wärme: notw. Wärmemenge, um Temperatur einer Masseneinheit um 1 K zu erhöhen
- Trockenadiabatischer Temperaturgradient:
- Potentielle Temperatur: thermische + potentielle Energie
 - → Temperatur eines Luftpakets, wenn es trockenadiab. auf 1000 hPa gebracht wird
 - → bleibt bei Hebung Luftpaket ohne Sättigung erhalten
- Pseudopotentielle Temperatur: thermische + potentielle + latente Energie (1. H.S. $c_p dT v dp + L_V dr_s = 0$) \rightarrow bleibt bei gesättigter Hebung Luftpaket erhalten
- Pseudoadiabatischer Temperaturgradient nicht konstant (0.4 0.98 K/100 m) da ~ Mischungsverhältnis r_s ; bei tiefen Temperaturen (geringe Feuchte): $\theta_e \approx \theta$
- **Stüve-Diagramm**: x-Achse lineare Temperaturskala, y-Achse Druck p^{κ} ; $\kappa = R_l/c_p = 0.286$; wegen p^{κ} sind Trockenadiabaten ($\theta = \text{const.}$) gerade Linien
- Thermodynamische (vereinfachte) Erklärung Föhn: ab Hebungskondensationsniveau (HKN) im Luv pseudoadiabatische Hebung; trockenadiabatisches Absinken im Lee → Erwärmung

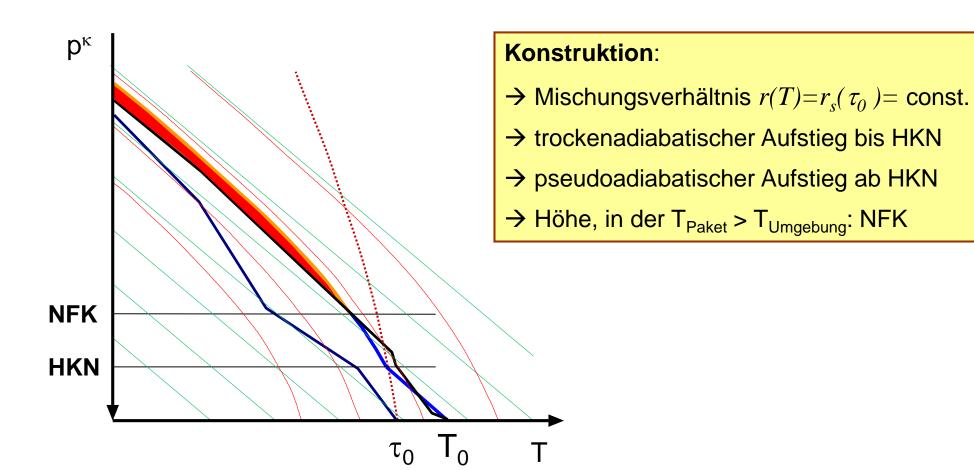

isobar isochor Gaskonstante

$$c_p = c_v + R_l$$

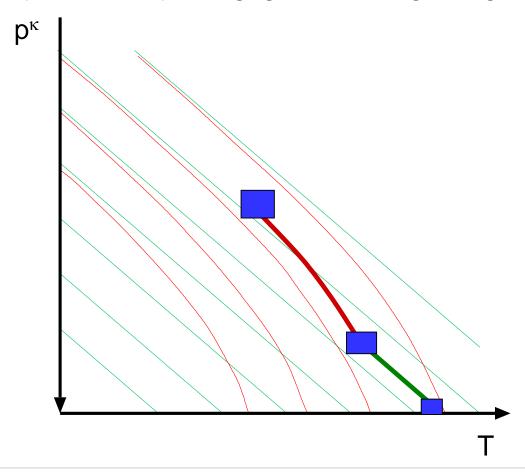
$$-\frac{dT}{dz} = \Gamma_d = \frac{g}{c_p} = 0.98 \text{K}/100 \text{m}$$


$$\theta = T \left(\frac{p_0}{p}\right)^{R_l/c_p}$$

$$\theta_e \approx \theta \cdot \exp\left(\frac{r_s L_v}{c_p T}\right)$$



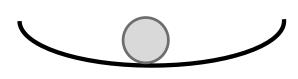
Hebungskondensationsniveau (HKN)



Niveau der freien Konvektion (NFK)

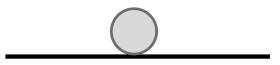
Erzwungene Hebung eines Luftpakets vom Boden bis zu einer Höhe, ab der freier Auftrieb herrscht (T_{Paket} > T_{Umgebung})

- Bisher: Betrachtung Temperaturänderung eines vertikal ausgelenkten Luftpakets unabhängig von der Umgebung
- Jetzt: Betrachtung Temperatur Luftpaket gegenüber Umgebung

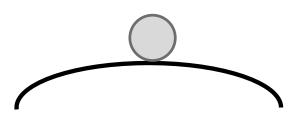

Fragen über Fragen...

- Was bedeutet Labilität?
- Wie kann eine labile Schichtung erreicht werden?
- Welche Vertikalgeschwindigkeiten können bei Konvektion (Gewitter) beobachtet werden?

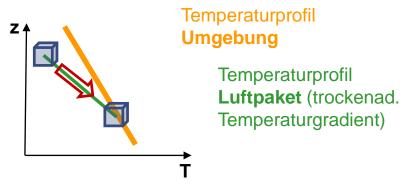
Mechanik

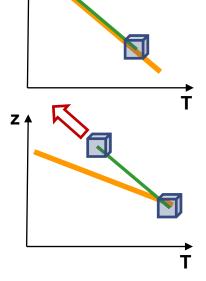

Stabil

... Luftpaket kälter als Umgebung (höhere Dichte), kehrt zurück in Ausgangslage

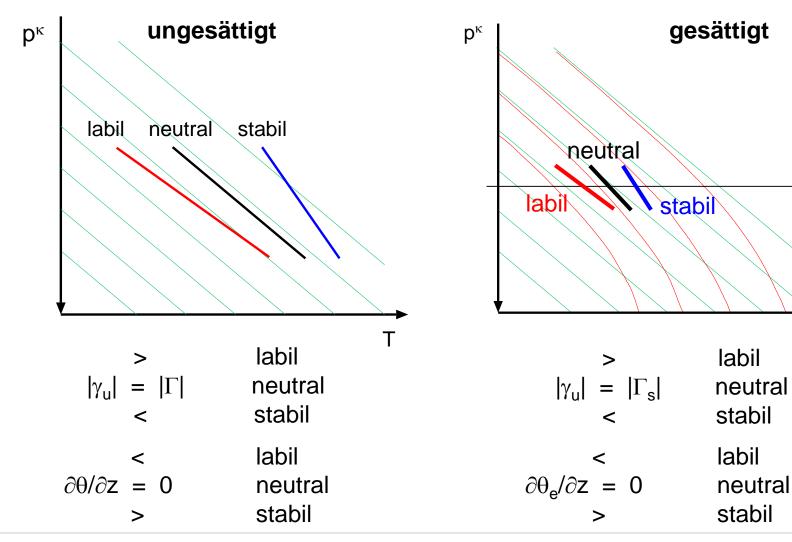

Neutral

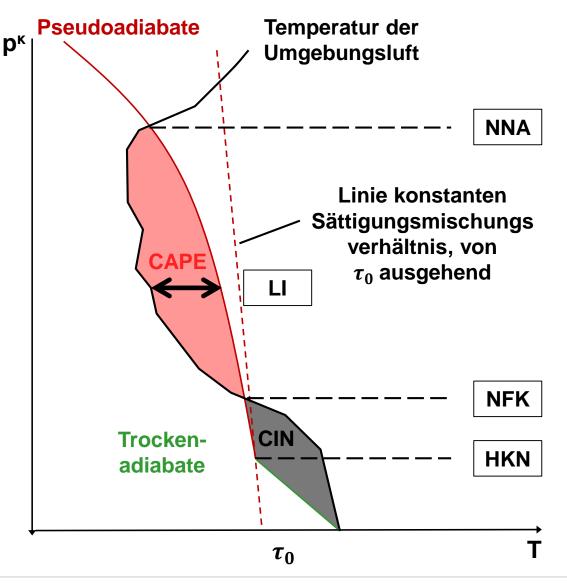
... Temperatur Luftpaket = Temperatur Umgebung; verbleibt an neuer Position




Labil

... Luftpaket wärmer als Umgebung (geringere Dichte) entfernt sich weiter von Ausgangslage


Luftpaket



Folie M. Augenstein, 2022

Stabil, labil, neutral im Stüve-Diagramm

Lifted Index: Temperaturdifferenz 500 hPa

$$LI = T_{500hPa,LP} - T_{500hPa,Ug}$$

Niveau neutraler Auftrieb: Wolkenobergrenze

CAPE: konvektive verfügbare potentielle Energie

$$CAPE = \int_{NFK}^{NNA} g \left(\frac{T_{V,LP} - T_{V,Ug}}{T_{V,Ug}} \right) dz$$

CIN: konvektive Sperre; Überwindung durch äußere Kräfte

Niveau der freien Konvektion: ab hier Beschleunigung

Hebungskondensationsniveau: Wolkenuntergrenze

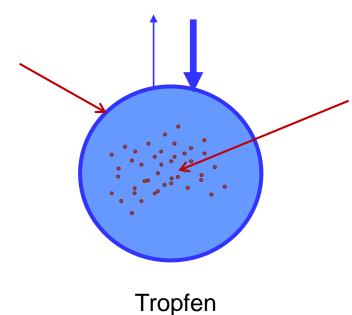
Vorlesung "Allgemeine Meteorologie"

Prof. Michael Kunz

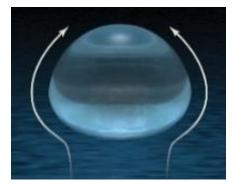
Kapitel 9: Kondensationsprozesse in der Atmosphäre

Agenda heute...

9 Kondensationsprozesse in der Atmosphäre


- 9.1 Krümmungs- und Lösungseffekt bei Tröpfchen
- 9.2 Wolkentröpfchen
- 9.3 Tropfenwachstum in warmen Wolken
- 9.4 Tropfenwachstum über Eisphase
 - 9.4.1 Eiskristalle in Wolken
 - 9.4.2 Bergeron-Findeisen-Prozess
- 9.5 Entstehung von Hagel ©
 - * Neues aus der Hagelforschung

Wassermoleküle eines Tropfens


Folge: Veränderung Sättigungsdampfdruck und damit Phasenflüsse

Wassermoleküle auf **gekrümmter Fläche** haben geringere Bindungsenergie gegenüber Moleküle im Inneren

Lösungen (z.B.hygroskopisch) verstärken die Bindungen der Moleküle im Tropfen

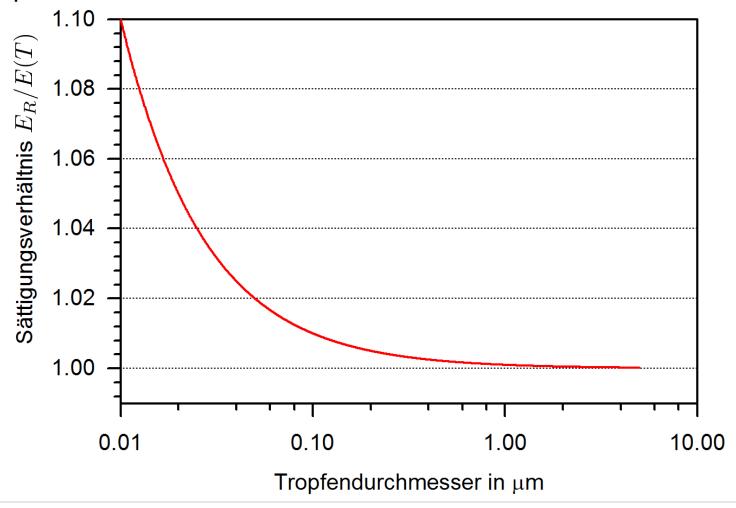
Krümmungseffekt

- Bindung Moleküle bei gekrümmten Oberflächen schwächer gegenüber ebener Wasserfläche
 - ⇒ Wassermoleküle gelangen leichter von Wassertropfen in Dampfphase
 - \Rightarrow Erhöhung Sättigungsdampfdruck E über gekrümmter Oberfläche
 - ⇒ Für Kondensation ist Übersättigung notwendig
- lacktriangle Übersättigung E_R : Formel von Kelvin

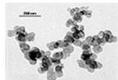
 R_w : Gaskonstante Wasserdampf = 461,6 J kg⁻¹ K⁻¹ R: Radius; E(T): Sättigungsdampfdruck ebene Fläche; σ : Oberflächenspannung; ρ_w : Dichte Wasser

$$E_R = E(T) \exp\left(\frac{2\sigma}{\rho_w R_w T R}\right)$$

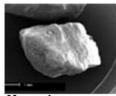
Annäherung Kelvin Formen durch Form


$$\frac{E_R}{E(T)} \approx 1 + \frac{\text{const.}}{R} > 1$$

- Bei gekrümmten Oberflächen ist Sättigungsverhältnis $E_R/E > 1$ → Übersättigung notwendig damit Tropfen nicht wieder verdunstet
- Kleinen Tröpfchen: E_R sehr hoch (= hohe Übersättigung notwendig); geht für große Tropfen asymptotisch gegen E (geringe Übersättigung notwendig)

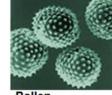

Krümmungseffekt


Reiner Wassertropfen ohne Aerosol



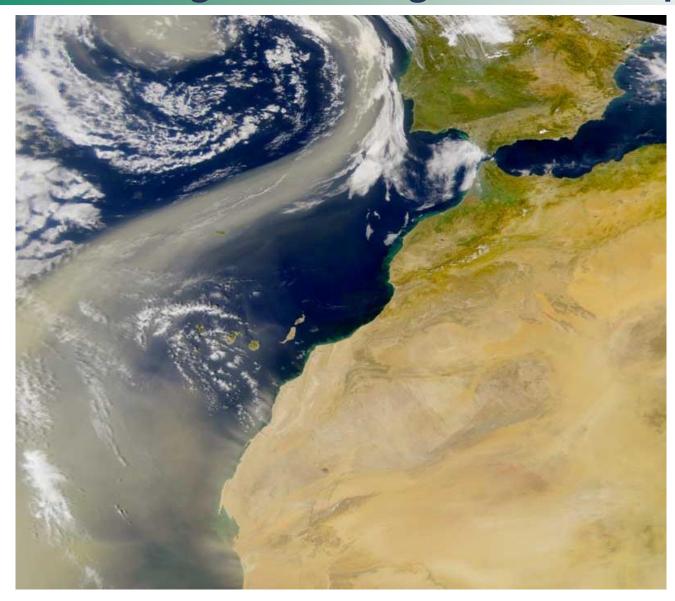
Heterogene Nukleation

- Beteiligung eines Partikels (Aerosol); 2 Möglichkeiten für Entstehung Nukleus:
 - (a) Aerosol benetzbar (Oberflächenspannung zwischen Wasser und Aerosol sehr klein):
 - ⇒ Erhöhter Anfangsradius sorgt für Verringerung der notwendigenÜbersättigung (siehe Gleichung für homogene Nukleation)
 - → Verringerung Krümmungseffekt
 - (a) Aerosol löslich: Lösung verringert Sättigungsdampfdruck E
 - → Lösungseffekt



Ammoniumsulfat

Meersalz



Bakterien

Pollen

Mineralstaub

Verschiedene Aerosole unter dem Mikroskop. Quelle: PSI.



→ Siehe Vortrag von Lisa Muth am Ende der VL heute

- Aerosole für Nukleation / Kondensation (= Kondensationskerne, CCN)
 - Zersprühen / Verdunsten von Tröpfchen aus Gischt Meerwasser
 - Chemische Rauchgase
 - Verbrennungsprozesse (Ruß!)
 - Aufwirbelung von feinem Staub (Mineralstaub, z.B. aus Sahara)

Größenverteilung des Aerosols:

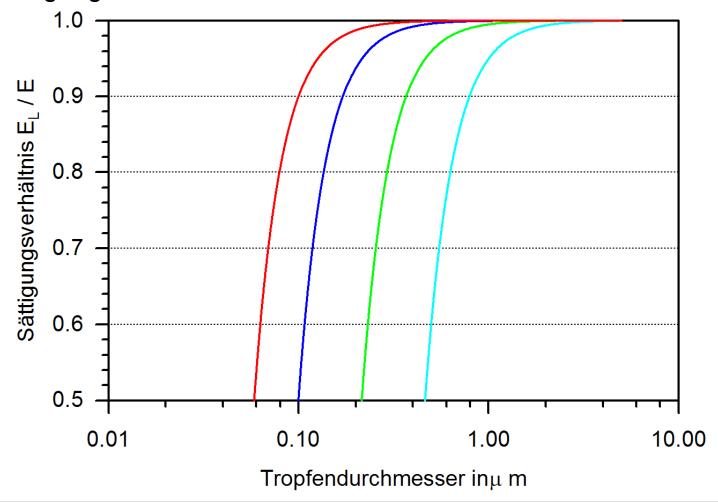
Lösungseffekt

- Verringerung Sättigungsdampfdruck E bei Lösung Aerosol in Wasser, z.B. hygroskopische Substanzen (alle Salze)
- Erniedrigung von E durch Lösung (E_L) ; beschrieben durch Raoultsches Gesetz:

$$\rightarrow n = \frac{m}{M} = \frac{\text{Masse Tropfen}}{\text{molare Masse}} = \frac{4/3\pi R^3 \rho_w}{18,02 \text{ g mol}^{-1}} = \text{const.} \cdot R^3 \quad (2)$$

$$\frac{E_L}{E(T)} = 1 - \frac{n_L}{n + n_L} < 1$$
 (1)

n_L: Anzahl Mole gelöste Substanzn: Anzahl Mole Wasser

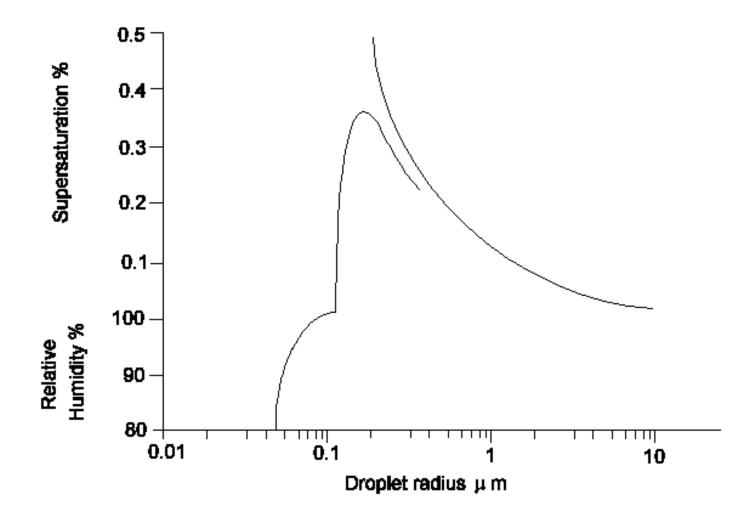

- Wachsender Tropfen: n nimmt zu, n_L bleibt konstant
- Daraus folgt: $\frac{E_L}{E(T)} = 1 \frac{n_L}{n+n_L} \approx 1 \frac{n_L}{n}$ approx., da $n>>n_L$ Gleichung (2)

$$\Rightarrow \frac{E_L}{E(T)} = 1 - \frac{\text{const.}}{R^3}$$

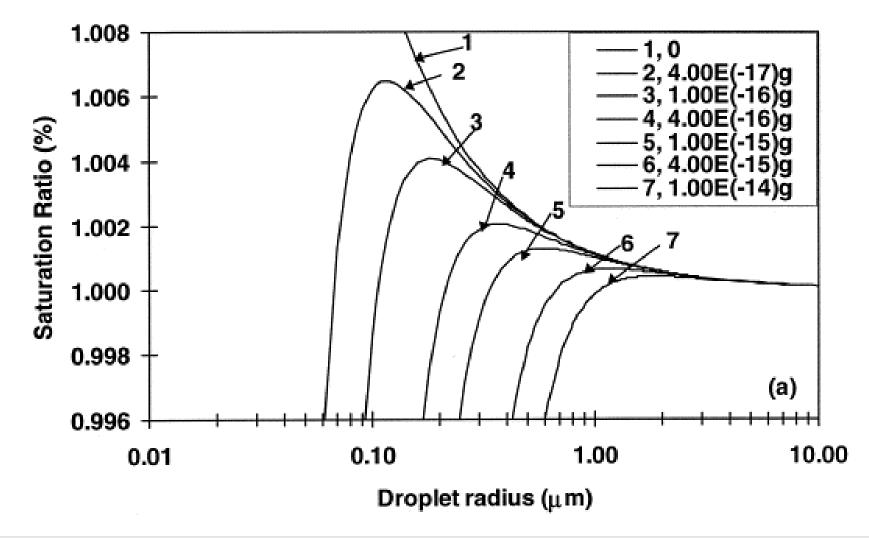
- Sättigungsverhältnis $E_L/E < 1$ bei Lösungen
- Bei kleinen Tröpfchen wächst E_L rasch an und geht asymptotisch gegen E

Lösungseffekt

Verschiedene Ausgangskonzentrationen von NaCl


Krümmungs- und Lösungseffekt zusammen: Köhler-Gleichung

Notwendige Übersättigung für Tropfenwachstum:


$$\widetilde{S} \equiv \frac{E_{Tr}}{E(T)} - 1 = \frac{\hat{a}}{R} - \frac{\hat{b}}{R^3} \qquad \qquad \hat{a}, \ \hat{b}: \ \text{Konstanten} \ \text{(gering abh. von T)}$$
 Übersättigung Krümmungs- Lösungs- effekt

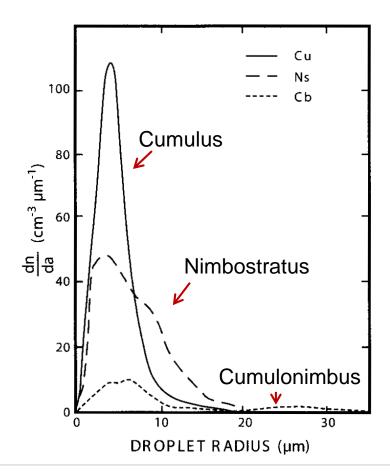
- Lösungs- und Krümmungseffekt haben entgegengesetzte Wirkung (unterschiedliche Vorzeichen):
 - Kleine Tropfen: Lösungseffekt überwiegt gegenüber Krümmungseffekt
 - Zunehmender Radius: Salzkonzentration nimmt stärker ab (~ R⁻³) als Effekt durch Krümmung (~ R⁻¹)

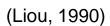
Köhler-Diagramm: Krümmungs- und Lösungseffekt zusammen

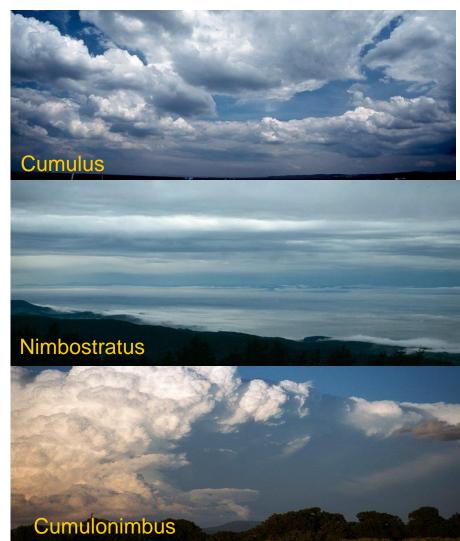
Abhängig von Radius und Konzentration (verschiedene Kurven) NaCl

9.2 Wolkentröpfchen

Eigenschaften Wolken

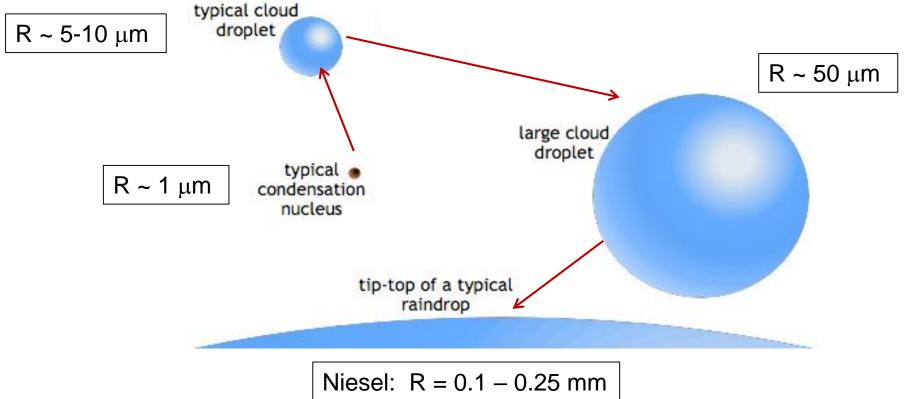

- Kolloides System: Wolkenpartikel gelöst in Gas
- Hohe Anzahldichte an Wolkentröpfchen: ~10⁹ m⁻³
- Tropfengrößenverteilung abhängig von:
 - Intensität Vertikalbewegung (stratiform vs. konvektiv)
 - Turbulenzgrad in der Wolke
 - Temperatur Umgebung
 - Alter der Wolke
- Da Bedingungen in Wolke nicht homogen
 - ⇒ unterschiedliche Größenverteilung (=Spektrum) mit Radien zwischen ~1 und 50 μm




9.2 Wolkentröpfchen

Größenspektrum Wolkentröpfchen für verschiedene Wolkenarten

Typischer Radius Wolkentröpfchen: 1-10 (50) μm; maritime Spektren schmäler als kontinentale



9.2 Wolkentröpfchen

Größenvergleich Hydrometeore (und Aerosol)

■ Unterscheidung Wolken-/Niederschlag durch Aufwind: wenn Aufwind stark genug ist, dass er Hydrometeore vom Fallen abhält → Wolkenpartikel

Regen: R > 0.25 mm

(A) Kondensation und Diffusion

- Diffusion von Wasserdampf der Umgebung zu Tröpfchen notwendig; dazu: größerer Wasserdampfpartialdruck Umgebung gegenüber direkter Umgebung Tröpfchen
- Annahme: Tröpfchen besitze Mindestgröße, so dass Krümmungsund Lösungseffekt unbedeutend sind
- **Wasserdampffluss** F_d pro Volumen- und Zeiteinheit (Ficksche Diffusion)
 - → Antrieb Diffusion: Gradient Wasserdampfdichte in radialer Richtung (dR)

$$F_d = -D\frac{d\rho_d}{dR}$$

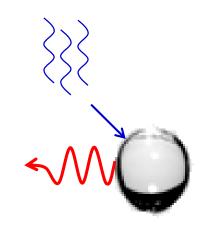
D: Diffusionskonstante ρ_d : Wasserdampfdichte

R: Radius

(A) Kondensation und Diffusion

mittlere Massenänderungsrate:

- wenn $e_{\infty} > e_0 \equiv E$: Kondensation
- wenn $e_{\infty} < e_0 \equiv E$: Verdunstung

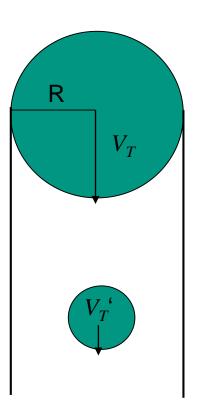


Dampfdruck Dampfdruck Umgebung Oberfl. Tropfen

$$\frac{dm}{dt} = -AF_d = 4\pi R^2 D \frac{d\rho_d}{dR} \quad \text{mit} \quad F_d = -D \frac{d\rho_d}{dR}$$

$$\frac{d\overline{m}}{dt} = \frac{4\pi RD}{R_d} \left(\frac{e_\infty}{T_\infty} - \frac{e_0}{T_0} \right)$$
 kontinuierl. Umgebung Oberfl. Wachstum

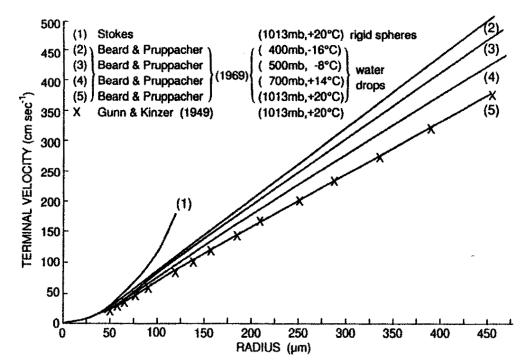
- **Kondensation**: Freisetzung latenter Wärme (= $L_V dr_s$)
 - \rightarrow Zunahme T_0
 - \rightarrow aber: gleichzeitig stärkere Zunahme $e_0 \equiv E(T_0)$ (exp-Form)
- Folgen:
 - Verlangsamung Massenänderungsrate (Tropfenwachstum)
 - Folge: Begrenzung Radius Wolkentröpfchen (siehe Spektren; ~ 10 μm)
 - Kein Wachstum bis Regentropfengröße durch Diffusion möglich


(B) Wachstum Tropfen durch Koaleszenz: Theorie von Langmuir

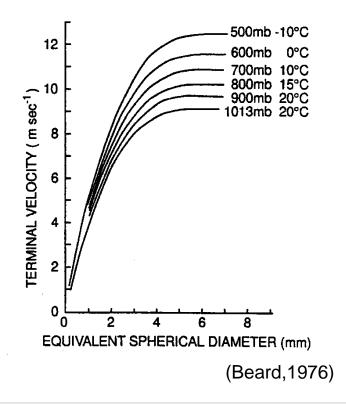
- Nollision der Tropfen aufgrund unterschiedlicher Fallgeschwindigkeiten V_T und V_T und anschließendem Zusammenfließen (= Koaleszenz)
- Endfallgeschwindigkeit V_T Tropfen: Annahme für kleine Tropfen in Luft (R > 0.1 mm), Stokessche Reibung
 - ⇒ Reibungskraft = Gewichtskraft Auftrieb

$$\Rightarrow V_T = \frac{2}{9} \frac{\rho_{Fl} - \rho_{Luft}}{\mu} gR^2$$

μ: dynamische Zähigkeit


g: Schwerebeschleunigung

(B) Wachstum Tropfen durch Koaleszenz: Theorie von Langmuir

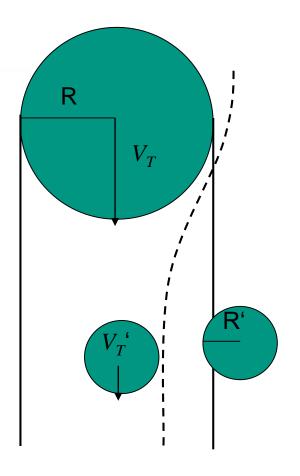

Endfallgeschwindigkeiten Wolken- und Regentropfen für Tropfen R < 0.1 mm (kleinster Radius Niesel) sehr gering</p>

kleine Tröpfchen < 500 μm

(Beard und Pruppacher, 1969)

Regentropfen > 500 μm

(B) Wachstum Tropfen durch Koaleszenz: Theorie von Langmuir


Massenänderungsrate durch Koaleszenz; Annahme kontinuierliches Wachstum

$$rac{dm}{dt} = arepsilon w_l \pi (R+R')^2 (V_T-V_T')$$
 $m=$ Masse $w_l=$ Flüssigwassergehalt

- Kollektionseffizienz ε berücksichtigt:
 - Koaleszenzeffizienz: berücksichtigt Abprallen von Tropfen
 - Kollisionseffizienz: bestimmt durch Strömung um Tropfen; z.B. kleine Tropfen strömen um großen Tropfen herum
- Langsamer Prozess, v.a. bei kleinen Tropfen (Beginn)

- große Vertikalgeschwindigkeit
- hoher Flüssigwassergehalt (Tropen)
- hohe vertikale M\u00e4chtigkeit der Wolke unterhalb Gefriergrenze

Wir fassen zusammen...

- Stabil: Gehobenes Luftpaket geringere Temperatur als Umgebung
- Labil: Gehobenes Luftpaket hat höhere T als Umgebung → Aufsteigen
- Konvektion: wenn Luftpaket ab dem Niveau der freien Konvektion (NFK) wärmer ist als Umgebung kommt es zum freien Auftrieb (= Beschleunigung)
- Erhöhung Sättigungsdampfdruck über gekrümmter Oberfläche (Oberflächenspannung):
 Krümmungseffekt ~ 1/R (R = Radius)
- Lösungseffekt führt zur Erniedrigung Sättigungsdampfdruck; Effekt ~ 1/R³
- Nöhler-Gleichung: Krümmungs- und Lösungseffekt $S=rac{E_{Tr}}{E(T)}=1-rac{\hat{b}}{R^3}+rac{\hat{a}}{R}$
- Köhler-Diagramm: Gleichgewichtskurven
- Tropfenwachstum in warmen Wolken: Diffusion und Kollision/Koaleszenz;
 langsames Wachstum; abhängig von Tropfenspektrum (breite Spektren effektiv) und Vertikalbewegungen (z.B. tropische Wolken)