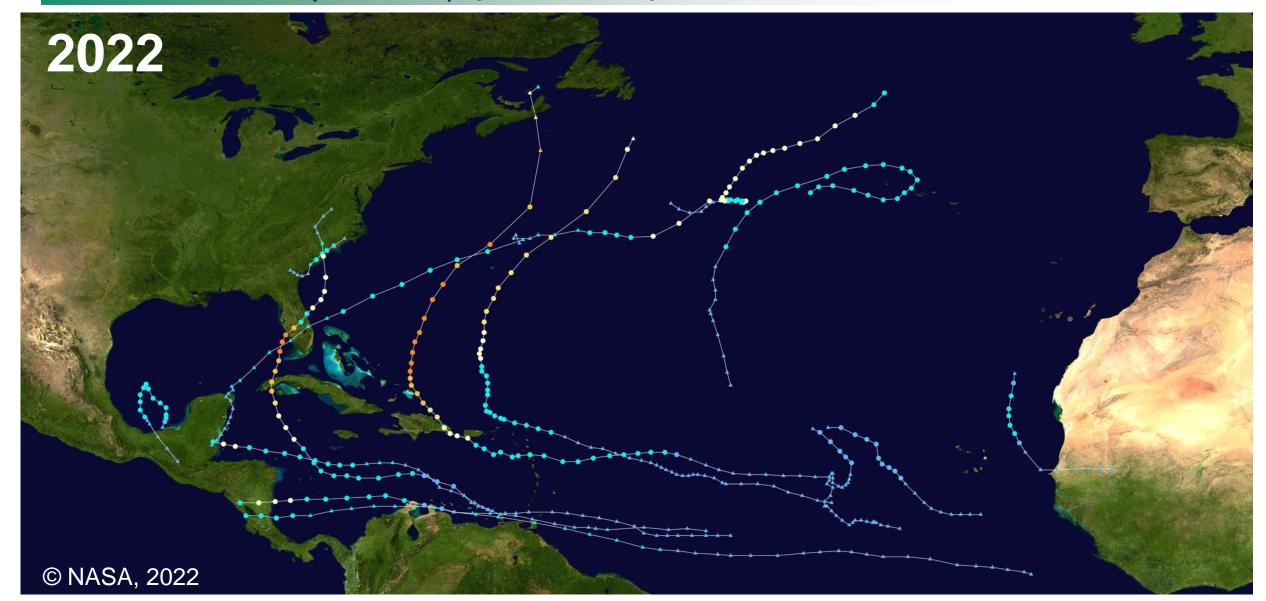


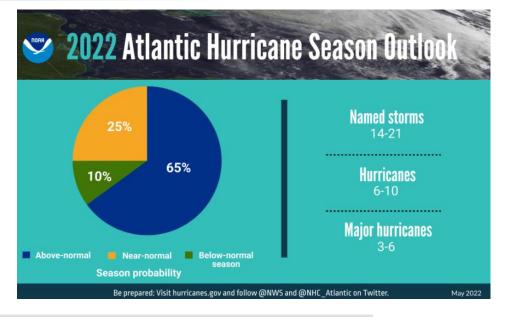
Vorlesung "Allgemeine Meteorologie"

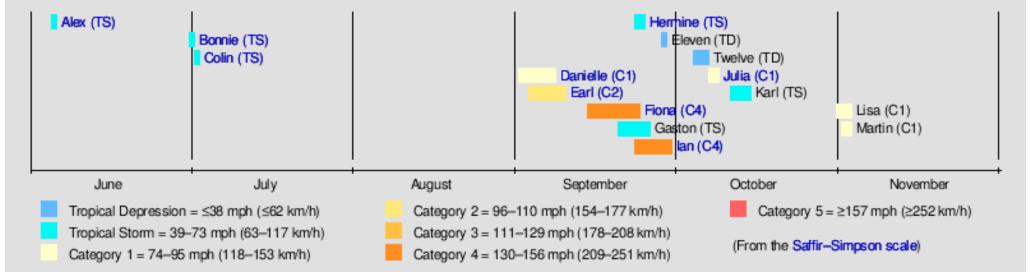
Prof. Michael Kunz



Das Wetter...

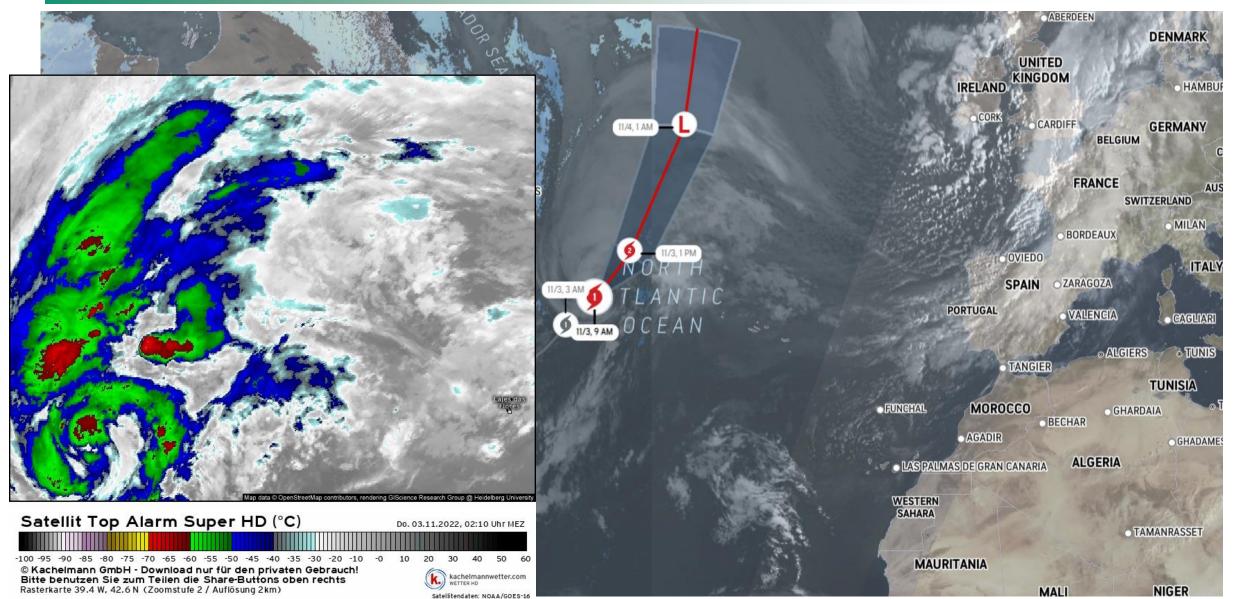
Hurrikan Saison (Atlantik): 30 Juni bis 30 November

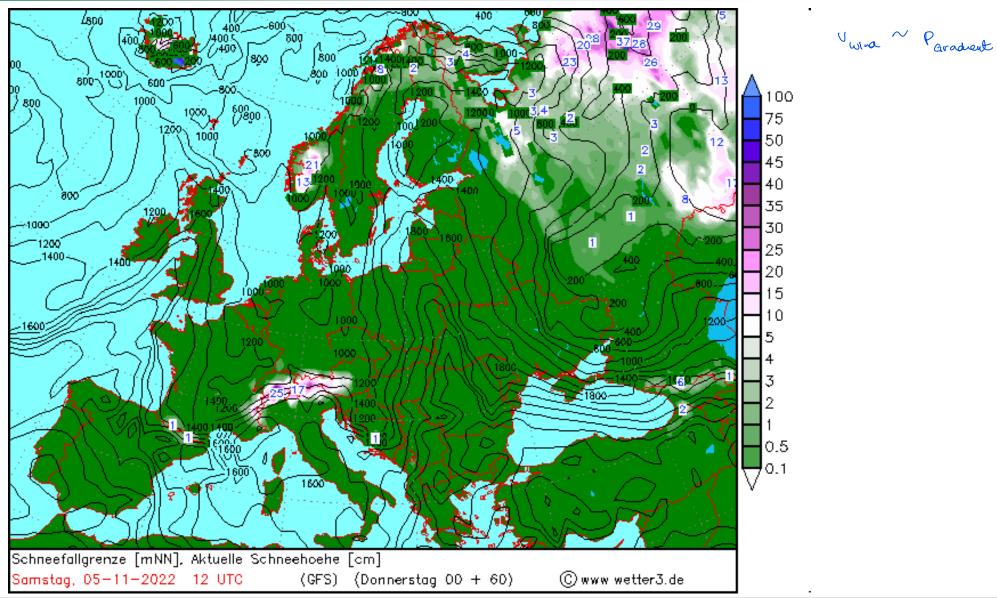



Hurrikan Saison (Atlantik)

NOAA predicts above-normal 2022 Atlantic Hurricane Season

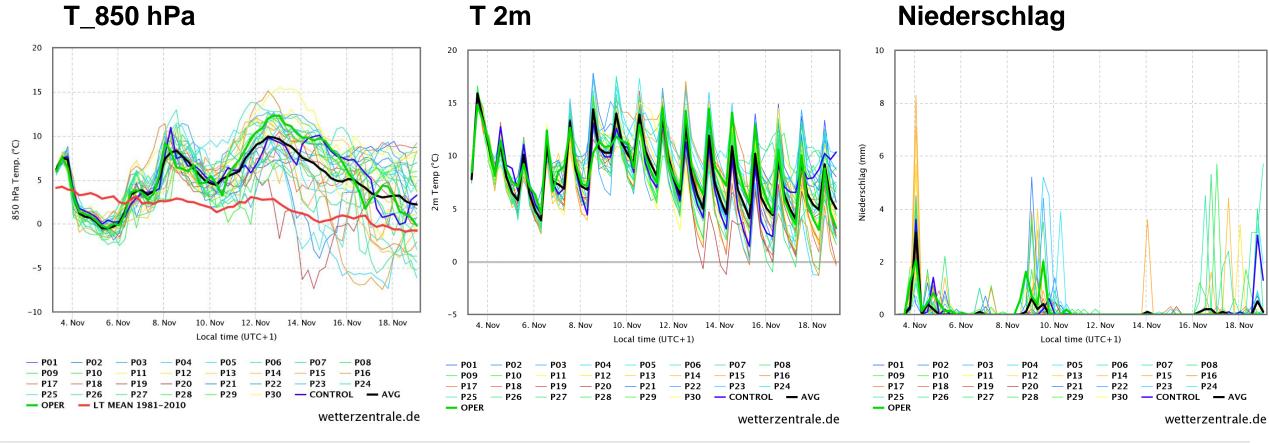
Ongoing La Niña, above-average Atlantic temperatures set the stage for busy season ahead





Hurrikan Martin

Bodenwetterkarte



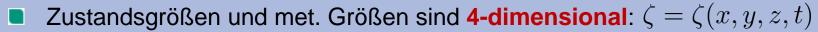
Vorhersage: Ensembles

- Modell GFS (Global Forecast System) des amerik. Wetterdienstes NOAA
- 30 Ensemble Läufe
- Gitterpunkt Karlsruhe

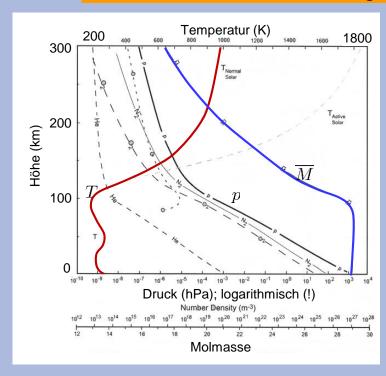
Vorlesung "Allgemeine Meteorologie"

Prof. Michael Kunz

Kapitel 3: Zustandsvariablen, Zustandsgleichung und meteorologische Größen



...Wiederholung


Letzte Vorlesung...

- Luft: Gemisch aus **Gasen (v.a.:** N₂, O₂, Ar)

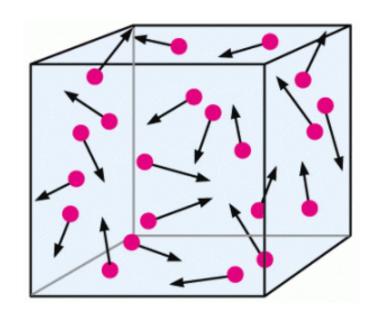
 Volumenanteile + Eigenschaften + molare Masse konstant bis rund 100 km
 - → Ausnahmen: Ozon, Wasserdampf
- Wasserdampf: Verteilung sehr variabel, fkt (T,V); wichtigstes Treibhausgas des natürlichenTreibhauseffekts
- Thermodynamische Zustandsgrößen (Temperatur, Luftdruck, Dichte bzw. Volumen) beschreiben vollständig den Zustand im thermodynamischen Gleichgewicht (stationär, keine Energie/Masseflüsse)

- **Dichte**: Masse / Volumen $ho = \frac{m}{V}$
- **Luftdruck**: Folge der Gewichtskraft der darüber liegenden Luft (mikroskopisch: Stoßprozesse); $p = \frac{1}{A}$ Einheit: hPa = 100 Pa = 100 N m⁻² = 100 kg m⁻¹ s⁻²
- Erhebliche Massenänderungsraten durch Tiefdruckgebiete (Bsp. Friedhelm)

agenda

3.1 Meteorologische Zustandsvariablen

- 3.1.1 Dichte (Volumen)
- 3.1.2 Luftdruck
- 3.1.3 Temperatur
- 3.2 Zustandsgleichung für ideale Gase
- 3.3 Zustandsgleichung einer Mischung idealer Gase
- 3.4 Wind (siehe auch Kap. 7)
- 3.5 Niederschlag (siehe auch Kap. 9)


Fragen über Fragen...

- Was ist die mittlere freie Weglänge?
- Und wie lange ist diese (ca.)?
 - 0,0001 mm
 - 0,01 mm
 - 1 mm
- Wie hoch ist die Molekulargeschwindigkeit (z.B. Stickstoff bei Normalbedingungen)?
 - $-5,2 \text{ m s}^{-1}$
 - -52 m s^{-1}
 - $-(520 \text{ m s}^{-1})$

Kinetische Gastheorie

- Mikroskopischer Zugang zur Wärmelehre ausgehend von Gesetzen aus der Mechanik; theoretische Ableitung und Berechnung der makroskopischen Eigenschaften der Gase aus Statistik
- Gasatome / -moleküle bewegen sich mit großer Geschwindigkeit vollkommen regellos im Raum umher, wobei sie oft miteinander zusammenstoßen
- Zwischen Stößen: geradlinige Bewegung auf der Strecke der mittleren freien Weglänge
- Mittlere freie Weglänge (Luft bei Normalbedingungen): ~10⁻⁷ m
- Zusammenhang zw. Volumen, Druck, Temperatur, innerer Reibung...

■ **Temperaturdefinition** (T in K) nach der kinetischen Gastheorie: **mittlere kinetische Energie** der Moleküle eines Gases

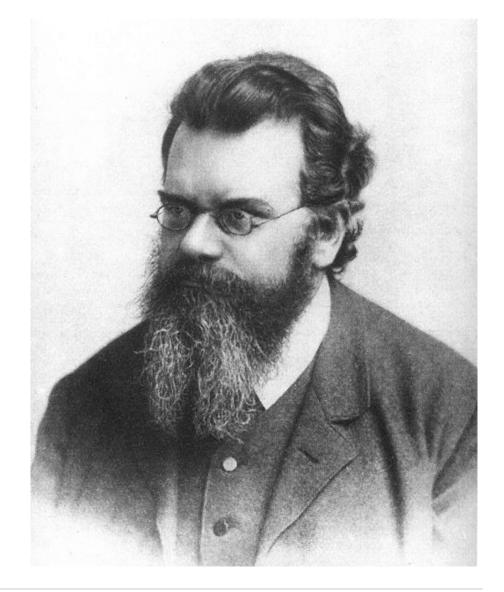
$$\overline{E} = \frac{3}{2}kT \quad \rightarrow \quad T = \frac{2\overline{E}}{3k}$$
 Theilestrands

- E: mittlere kinetische Energie eines Gasmoleküls
- -T: absolute Temperatur in K (Kelvin)
- Vorfaktor 3/2: drei Freiheitsgrade der Translation; pro Freiheitsgrad ist die mittlere kinetische Energie: ½ kT
- k: Boltzmannkonstante (= 1,3803 * 10⁻²³ J K⁻¹)

Temperaturdefinition (T in K) nach der kinetischen Gastheorie: mittlere kinetische Energie der Moleküle eines Gases

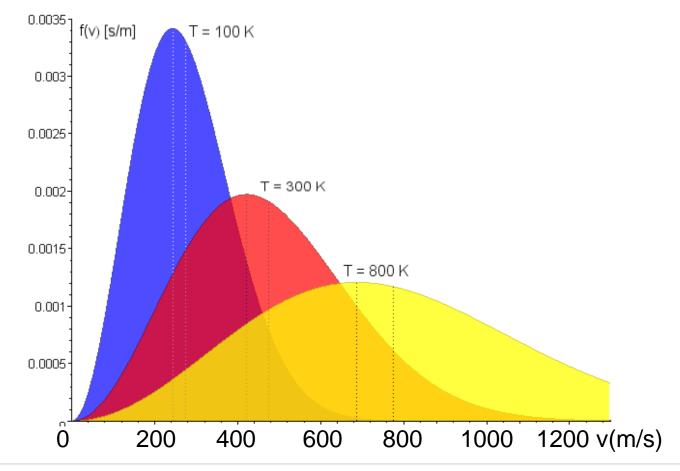
$$\overline{E} = \frac{3}{2}kT \quad \rightarrow \quad T = \frac{2\overline{E}}{3k}$$

■ Definition kinetische Energie: wenn *m* die Masse des Moleküls und V seine mittlere Geschwindigkeit ist, dann gilt auch:

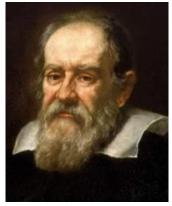

$$\overline{E} = \frac{1}{2}m\overline{v^2} \quad \Rightarrow \quad T = \frac{m\overline{v^2}}{3k}$$

Ludwig Boltzmann (1844-1906)

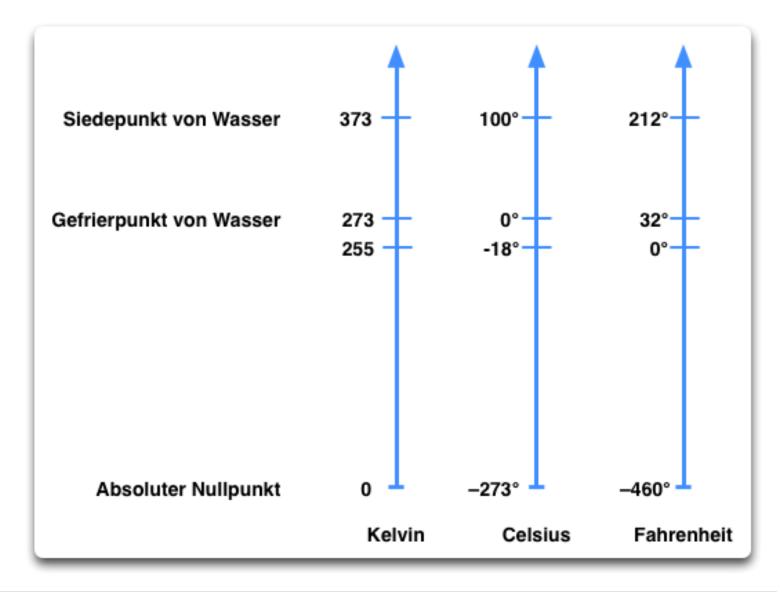
- österr. Physiker und Philosoph
- wichtige Arbeiten zu Thermodynamik (Boltzmann-Statistik) und Strahlung (Stefan-Boltzmann Gesetz)
- Entropie als Maß für die Unordnung eines Systems, proportional zur Zahl Ω der möglichen Mikrozustände


$$S = k \ln \Omega$$

Entropie Bann nur abnehmen (2.B. Baputte Kreide setzt sich nicht wieder zem)


- Beispiel: mittlere Geschwindigkeit eines Stickstoffmoleküls bei Normalbedingungen (T = 273,15 K, p = 1013,25 hPa) → Übung; Prüfung (!)
- mittlere Geschwindigkeit folgt Maxwell-Boltzmann-Verteilung

(wikipedia, 2020)


Temperaturskalen

G. Galilei (1564 – 1642) 1592 Erfindung des Thermometers

Anders Celsius (1701-1744)

■ **Temperaturskalen**: Umrechnung °C in °F:

$$\vartheta(\text{in } ^{\circ}C) = \frac{5}{9}(X(\text{in } ^{\circ}F) - 32)$$

- Fixpunkte auf der Skala von 0-100:
 - Bluttemperatur $\vartheta = 37.7^{\circ}C = 100^{\circ}F$
 - tiefste von Fahrenheit gemessene Temperatur:
 θ = -17,78°C = 0°F (gemessen im Winter 1708/1709 bei Danzig; später reproduziert aus Gemisch Eis, Wasser und Salmiak)
 - Gebräuchlich nur in USA und einigen wenigen engl.-sprachigen Ländern

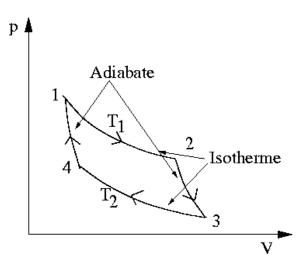
Daniel Gabriel Fahrenheit (1686-1736)

Fragen über Fragen...

- Was ist ein ideales Gas? heine noecholwinkung zw. Teithen (vaw-krighte nersolwinden)
- Welche Zustandsänderungen kennen Sie?

isothern isothern isother

Was sagt die Zustandsgleichung aus?

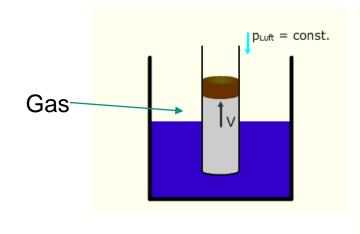

verknigtt Zustandsgrigen

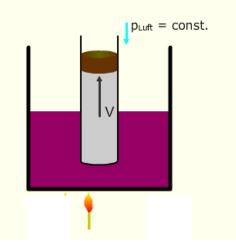
■ Wie setzt sich der Luftdruck eines Gasgemischs zusammen?

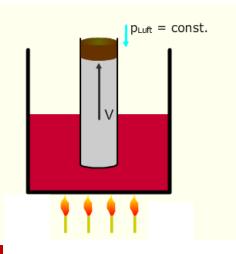
Zustandsänderung

- **Zustandsänderungen**: Übergang eines Systems von einem Zustand in einen anderen
 - isobar (p = const.)
 - isotherm (T = const.)
 - isochor (V = const.)
 - adiabatisch (kein Austausch Wärmeenergie)

- ...



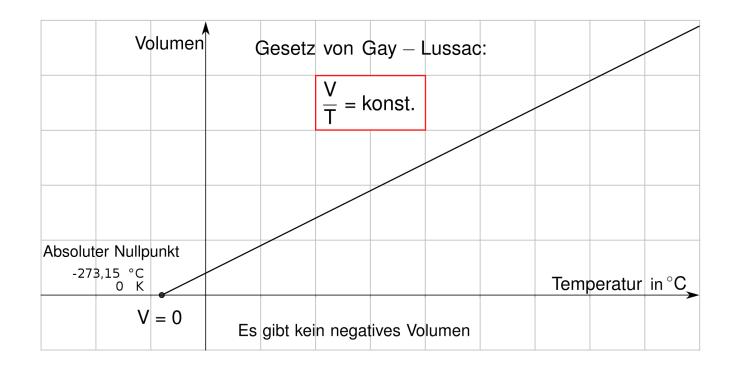

- Annahme: ideales Gas
 - Gasteilchen als ausdehnungslose Massepunkte angenommen
 - hochverdünnt
 - keine Kräfte zwischen den Molekülen (Van-der-Waals Kräfte)
 - → geradlinige Bewegung mit konstanter Geschwindigkeit zwischen Zusammenstößen


20

A Isobare Zustandsänderung (p = const.)

Empirische Bestimmung der Temperatur

- Beobachtung: das **Volumen** (idealer) Gase ist **proportional zur Temperatur** (wenn p = const.)



Auf empirischem Weg gefundenes Gesetz von Gay-Lussac

 $rac{V}{T}=rac{V_0}{T_0}=const.$ $rac{lpha}{T}=rac{lpha_0}{T_0}=const.$ wenn p=const.

A Isobare Zustandsänderung (p = const.)

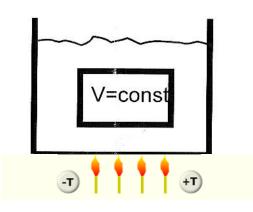
Empirische Bestimmung der Temperatur: Gesetz von Gay-Lussac

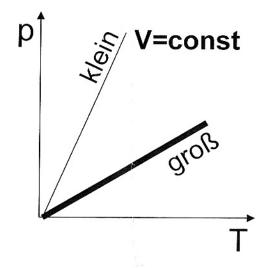
$$\frac{V}{T} = \frac{V_0}{T_0} = const.$$
 $\frac{\alpha}{T} = \frac{\alpha_0}{T_0} = const.$ wenn $p = const.$

Joseph Louis Gay-Lussac

(1778-1850)

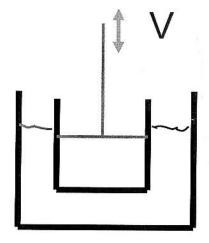
- franz. Chemiker und Physiker
- Gasmengenbestimmung bei Elektrolyse (zusammen mit Humboldt)
- Grundlagen für eine Vielzahl von später aufgestellten Gesetzmäßigkeiten, z. B:
 - Bestimmung absoluter Nullpunkt
 - Avogadrosches Gesetz
 - Joulsches Gesetz

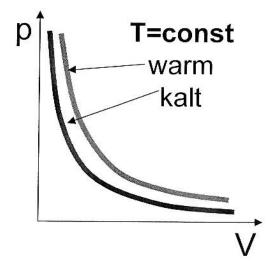



B Isochore Zustandsänderung (V = const.)

■ Amontons-Gesetz (analog zum Gesetz von Gay-Lussac): Druck p ist proportional zu Temperatur T, wenn der Volumen V = const. ist

$$\frac{p}{T} = \frac{p_0}{T_0} = const.$$
 wenn $V = const.$




C Isotherme Zustandsänderung (T = const.)

■ Gesetz von Boyle-Mariotte: Druck p ist proportional zum Volumen V, wenn die Temperatur T = const. ist

$$pV = p_0 V_0 = const.$$
 wenn $T = const.$

C Isotherme Zustandsänderung (T = const.)

■ Gesetz von Boyle-Mariotte: Druck p ist proportional zum Volumen V, wenn die Temperatur T = const. ist

$$pV = p_0V_0 = const.$$
 wenn $T = const.$ $\alpha = \frac{V}{m}$

Edme Mariotte (1620 - 1684) franz. Geistlicher + Physiker

Robert Boyle (1626-1691), irischer Naturforscher

Zustandsgleichung: Herleitung (eine von mehreren Möglichkeiten)

- Boyle-Mariotte (T = const.) $p\alpha = p_0\alpha_0 = const.$
 - ightharpoonup isotherme Zustandsänderung $p_1\alpha_1=p_2\alpha_2$ mit $T_1=T_2$ (1)
- Gay-Lussac (p = const.) $\frac{\alpha}{T} = \frac{\alpha_0}{T_0} = const.$
 - ightharpoonup isobare Zustandsänderung $\frac{\alpha_2}{T_2} = \frac{\alpha_3}{T_3}$ mit $p_2 = p_3$ $\Leftrightarrow \alpha_2 = \frac{\alpha_3 T_2}{T}$ (2)

(2)
$$\rightarrow$$
 (1): $p_1\alpha_1 = \frac{p_2\alpha_3T_2}{T_3} = \frac{p_3\alpha_3T_1}{T_3}$ $da\ T_1 = T_2$ $und\ p_2 = p_3$

$$\Rightarrow \frac{p_1\alpha_1}{T_1} = \frac{p_3\alpha_3}{T_3} = \frac{p_0\alpha_0}{T_0} = const. = R \Rightarrow p\alpha = RT \Leftrightarrow p = \rho RT$$

individuelle Gaskonstante

(verschieden je nach Gas)

ein ideales Gas (Slang: ideale Gasgleichung ⓒ)

Zustandsgleichung für

Zustandsgleichung

R: individuelle Gaskonstante

- abhängig von Gas
- proportional zur Masse

$$p = \rho RT \Leftrightarrow pV = mRT$$

- Definition (stoffunabhängige) universelle Gaskonstante $R^* = R \cdot M = R \cdot \frac{m}{m}$ = 8,314 J Mol⁻¹ K⁻¹ mit M = molare Masse, m = Masse, n = Anzahl Mole
- Allgemeine Zustandsgleichung:

mit molarer Masse:

mit molarem Volumen:
$$V^* = \frac{V}{n} =$$
 22,41 l mol⁻¹ (Satz von Avogadro für ideale Gase bei Normalbed.)

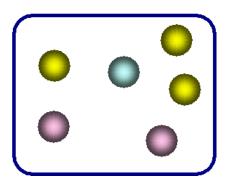
$$pV = nR^*T$$

$$\Leftrightarrow pV = \frac{m}{M}R^*T$$

$$\Leftrightarrow pV^* = R^*T$$
 - with windstig

tein Hersegrät für Luftlichte (bem nur lonednet narden)

3.3 Zustandsgleichung einer Mischung idealer Gase


Gasgemisch: Betrachtung als Summe über alle i Komponenten

- Jedes Gas i ist überall im Volumen enthalten
- Das Gas i übt einen bestimmten Druck aus, den Partialdruck p_i
- Daltonsches Gesetz: Gesamtdruck p ist Summe der Partialdrücke p_i

$$p = \sum_{i} p_{i}$$

- Gasgemisch idealer Gase ist auch ein ideales Gas!
- Keine Wechselwirkung zwischen den Gasen!

John Dalton (1766-1844): engl. Naturforscher und Lehrer

3.3 Zustandsgleichung einer Mischung idealer Gase

Gasgemisch: Betrachtung als Summe über alle i Komponenten

Jedes Gas i in einem Volumen V hat die gleiche Temperatur T bei einem Partialdruck p_i (bei V = const.); dann folgt für die Zustandsgleichung

- Partialdruck Gas i

$$p_i = \frac{m_i}{M_i} \frac{T}{V} R^*$$

- beliebiges Gasgemisch

$$p = \frac{m}{M} \frac{T}{V} R^*$$

- Verhältnis Gas i zu Gasgemisch

$$\frac{p_i}{p} = \frac{m_i}{m} \frac{M}{M_i} = \frac{n_i}{n}$$

M = molare Masse, m = Masse, n = Anzahl Mole

3.3 Zustandsgleichung einer Mischung idealer Gase

$$p_i = \frac{m_i}{M_i} \frac{T}{V} R^*$$

Gasgemisch: Betrachtung als Summe über alle i Komponenten

Gasgemisch:

$$V(p_1 + p_2 + p_3 + \dots) = \left(\frac{m_1}{M_1} + \frac{m_2}{M_2} + \frac{m_3}{M_3} + \dots\right) R^*T$$

daraus ergibt sich

$$\Leftrightarrow V \sum p_i = pV = \sum \frac{m_i}{M_i} R^* T$$

mit Gesamtmasse

und mittlerer molarer Masse $(x_i = Volumenanteil)$

$$m = \sum_{i} m_{i}$$

$$\overline{M} = \sum_{i} x_{i} M_{i}$$

$$pV = \frac{m}{\overline{M}} R^{*}T$$

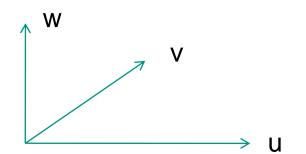
lacktriangle Für trockene Luft mit individueller Gaskonstante R_l

$$R_l = \frac{R^*}{\overline{M_l}} = \frac{8,314}{0,02896} \text{J kg}^{-1} \text{ K}^{-1} = 287,15 \text{ J kg}^{-1} \text{ K}^{-1}$$

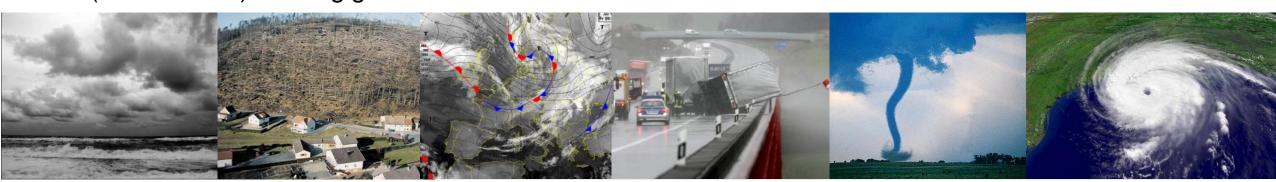
$$pV = mR_l T \Leftrightarrow p = \rho R_l T$$

für feuchte Luft: siehe Kapitel 5.1 (VL 7)

Fragen über Fragen...

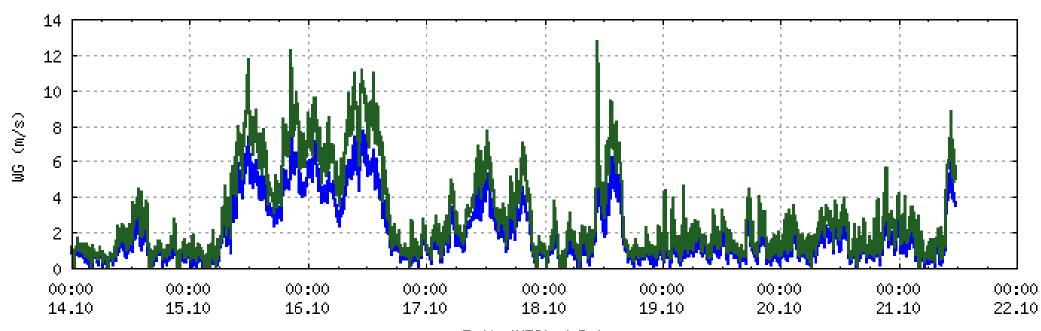

- Was war der bisher tiefste beobachtete Luftdruck auf Meeresniveau? Bei welchem Wettersystem?
- Wo liegt die physikalische Obergrenze für die Windgeschwindigkeit? Was war die höchste je gemessene horiz. Windgeschwindigkeit? Schallgeschwindigkeit
- Wie hoch ist der mittlere Jahresniederschlag von Karlsruhe?

Vertikal: 200 km nox. genessen


Torrado mex 1km austehnng (verigs, nox 1 h)

Hurricane lois 2 Wodren

- **D**reidimensionaler **Vektor**: $ec{v} = u ec{i} + v ec{j} + w ec{k}$
- bei mittleren Verhältnissen ist w << u, v U ~ 10 m s⁻¹, w ~ 10 cm s⁻¹ Aber: Vertikalkomponente wichtig für Entwicklung Wettersysteme (Wolken, Niederschlag); extreme Vertikalgeschw. in Gewittern



- Anzugeben: Betrag $|\vec{v_h}| = \sqrt{u^2 + v^2}$ und Richtung β (oder Vektor)
 - → in Meteorologie üblich: Angabe der Richtung, aus der der Wind kommt, z.B. SW bedeutet Strömung von Südwest nach Nordost gerichtet
- Mittlerer Wind (üblich: 10 min Mittel) vs. Böengeschwindigkeit (~ s und weniger); Bögkeit (= Turbulenz) abhängig von Stabilität

- Windgeschwindigkeit: mittlerer Wind (10-min) vs Böen (s)
- Schadenrelevant bei Stürmen: Böen; Schaden ~ v³

Windgeschwindigkeit

Zeit (UTC) / Datum

SV2: Aktualisiert um 12:11 Uhr (UTC), 21.10.2019

10min-Mittel Windspitzen (Bir)

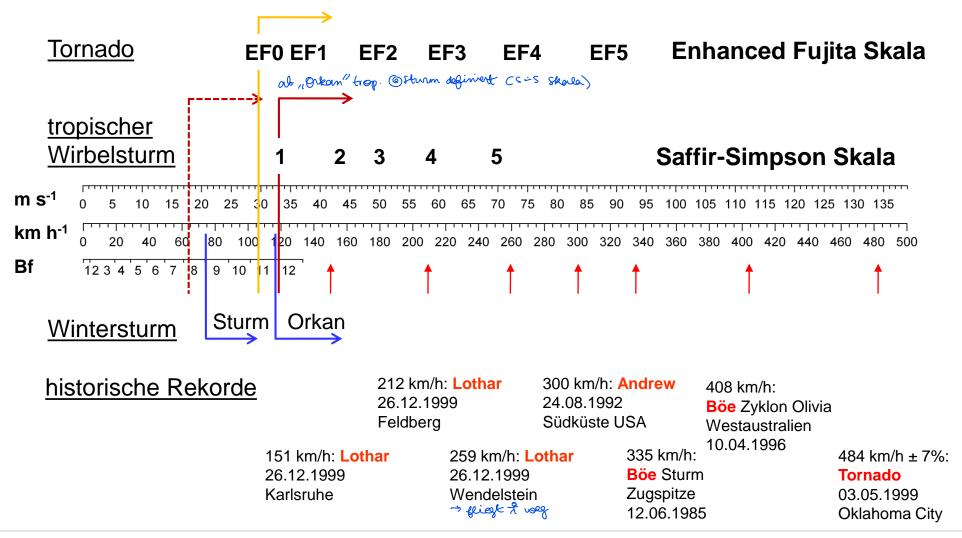
IMK-Station Rheinstetten 14.-22.10.2019

Einheiten der Windgeschwindigkeit

- SI-System: Meter/Sekunde, m s⁻¹
- gebräuchlich: km h⁻¹

 1 m s⁻¹ = 3,6 km h⁻¹

 (einfache Umrechnung: X m s⁻¹ x 4 10% = Y km h⁻¹) $\frac{20 \frac{\pi}{5}}{5} = 72 \frac{6\pi}{10}$
- See- und Luftfahrt: Knoten (kn)
- 1 kn = 1 Seemeile/Stunde = 1.858 km $h^{-1} \approx 0.5$ m s^{-1} Faustformel: 1 kn \approx 2 km $h^{-1} \approx 0.5$ m s^{-1}


Windgeschwindigkeit: Einteilung nach Beaufortskala (F. Beaufort, 1806)

Stärke	Bezeichnung		geschw. in ca.1 hem Gelände	r Auswirkungen des Windes im Binnenland	
		kn	m/s	km/h	
0	Windstille	0 – 1	0 - 0,2	0 - 1	Rauch steigt senkrecht auf
1	leiser Zug	1 – 3	0,3 – 1,5	1 – 5	Windrichtung angezeigt durch den Zug des Rauches
2	leichte Brise	4 – 6	1,6 – 3,3	6 – 11	Wind im Gesicht spürbar, Blätter und Windfahnen bewegen sich
3	schwache Brise schwacher Wind	7 – 10	3,4 – 5,4	12– 19	Wind bewegt dünne Zweige und strecktWimpel
4	mäßige Brise mäßiger Wind	11 – 15	5,5 – 7,9	20 – 28	Wind bewegt Zweige und dünnere Äste,hebt Staub und loses Papier
5	frische Brise frischer Wind	16 – 21	8 – 10,7	29 – 38	kleine Laubbäume beginnen zu schwanken, Schaumkronen bilden sich auf See
6	starker Wind	22 – 27	10,8 – 13,8	39 – 49	starke Äste schwanken, Regenschirme sind nur schwer zu halten, Telegrafenleitungen pfeifen im Wind

Windgeschwindigkeit: Einteilung nach Beaufortskala (F. Beaufort, 1806)

Stärke	Bezeichnung	offenem, flack	nem Gelände		Auswirkungen des Windes im Binnenland
		kn	m/s	km/h	
7	steifer Wind	28 – 33	13,9 – 17,1	50 – 61	fühlbare Hemmungen beim Gehen gegen den Wind, ganze Bäume bewegen sich
8	stürmische Wind	34 – 40	17,2 – 20,7	62 – 75	Zweige brechen von Bäumen, erschwert erheblich das Gehen im Freien
9	Sturm	41 – 47	20,8 – 24,4	75 – 88	Äste brechen von Bäumen, kleinere Schäden an Häusern (Dachziegel oder Rauchhauben abgehoben)
10	schwerer Sturm	48 – 55	24,5 – 28,4	89 – 102	Wind bricht Bäume, größere Schäden an Häusern
11	orkanartiger Sturm	56 – 63	28,5 - 32,6	103 – 117	Wind entwurzelt Bäume, verbreitet Sturmschäden
12	Orkan	> 64	> 32,7	> 118	schwere Verwüstungen

Skalen der Windgeschwindigkeiten, historische Rekorde

Wir fassen zusammen...

- lacktriangle Kinetische Gastheorie: Temperatur ist **mittlere kinetische Energie** der Moleküle $T=rac{m\overline{v^2}}{3k}$
- Ideales Gas: ausdehnungslose Massepunkte; hochverdünnt; keine Van-der-Waals Kräfte
- Einheiten Temperatur: °C, °F, K
- Gesetz von **Gay-Lussac** für p = const. $\frac{V}{T} = \frac{V_0}{T_0} = const.$
- Gesetz von **Amontons** für V = const. $\frac{p}{T} = \frac{p_0}{T_0} = const.$
- **Boyle-Mariotte** für T = const. $p\alpha = p_0\alpha_0 = const.$
- **Zustandsgleichung** für ein ideales Gas $p = \rho RT \Leftrightarrow pV = mRT = \frac{m}{M}R^*T$
- lacksquare Zustandsgleichung für ein Gasgemisch (trockene Luft) $p=
 ho R_l T$ $R_l=287,15~{
 m J~kg^{-1}~K^{-1}}$
- Wind: dreidimensional; mittlerer Wind vs. Böen; m/s = 3,6 km/h ≈ 2 kn
- Skalen: Beaufort-Skala (Bf1-12); Saffir-Simpson-Skala (1-5) für tropische Wirbelstürme (Kat 1 ≥ 119 km/h); (Ehanced) Fujita Skala (0-5) für Tornados