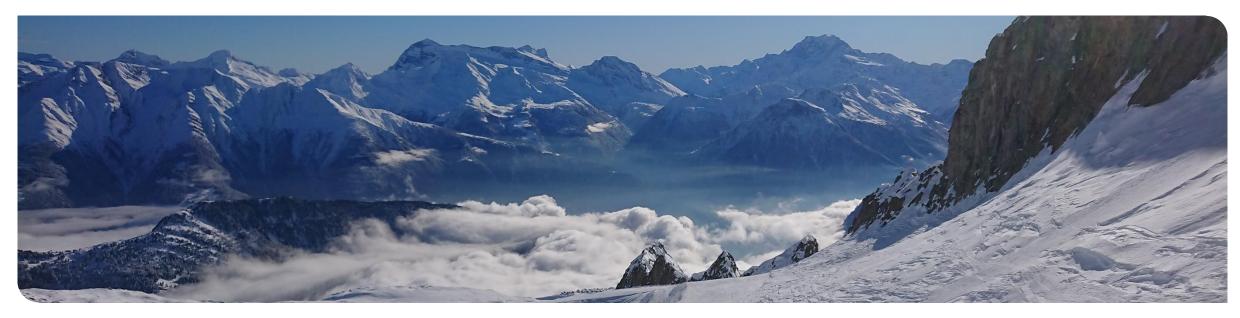
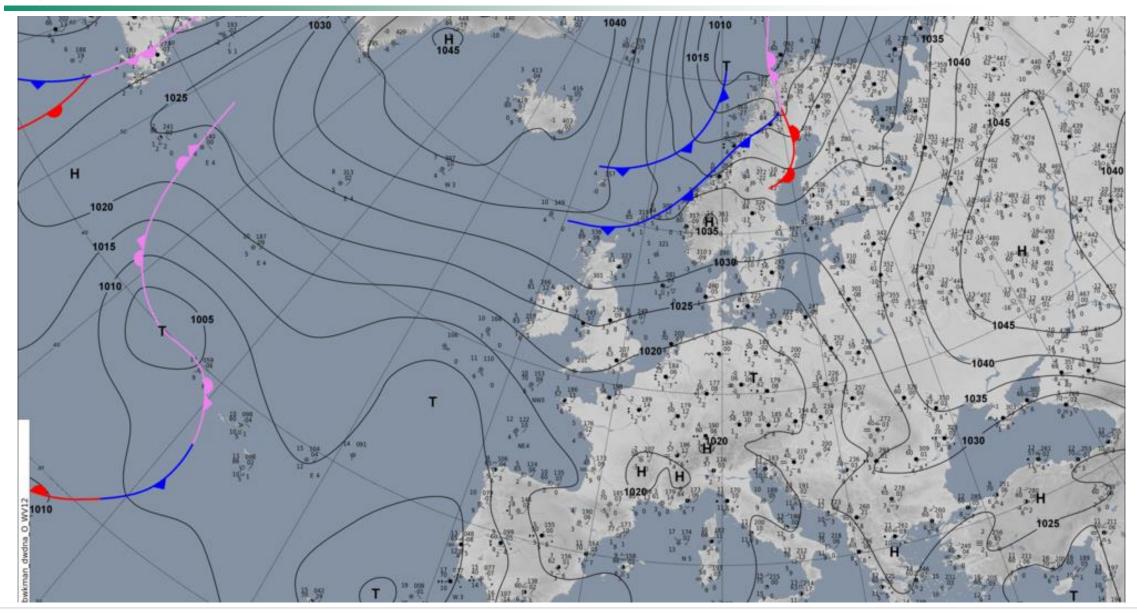
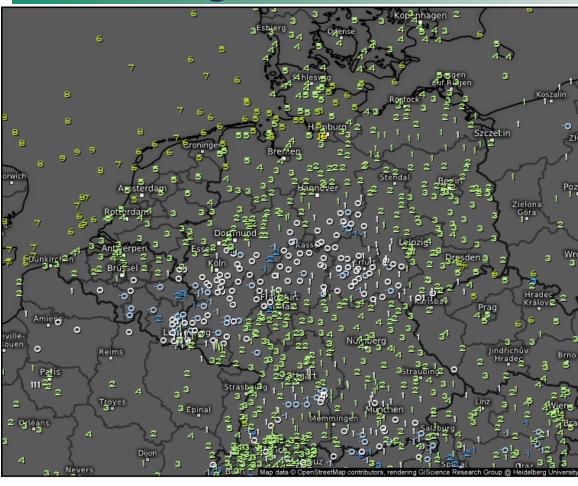


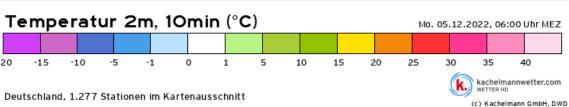
Vorlesung "Allgemeine Meteorologie"

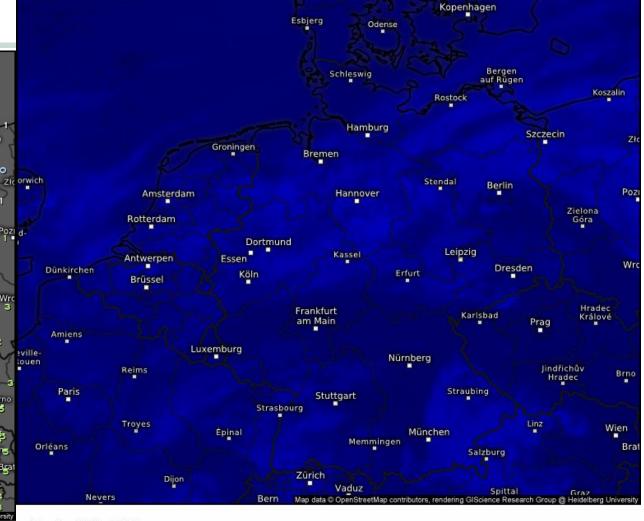

Prof. Michael Kunz



Das Wetter...

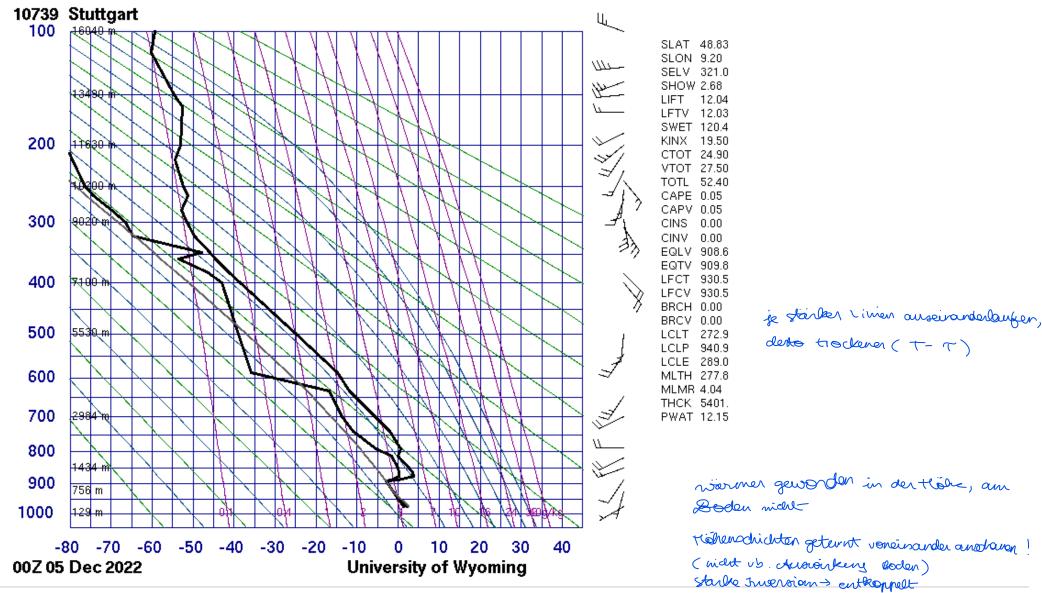



Bodenwetterkarte



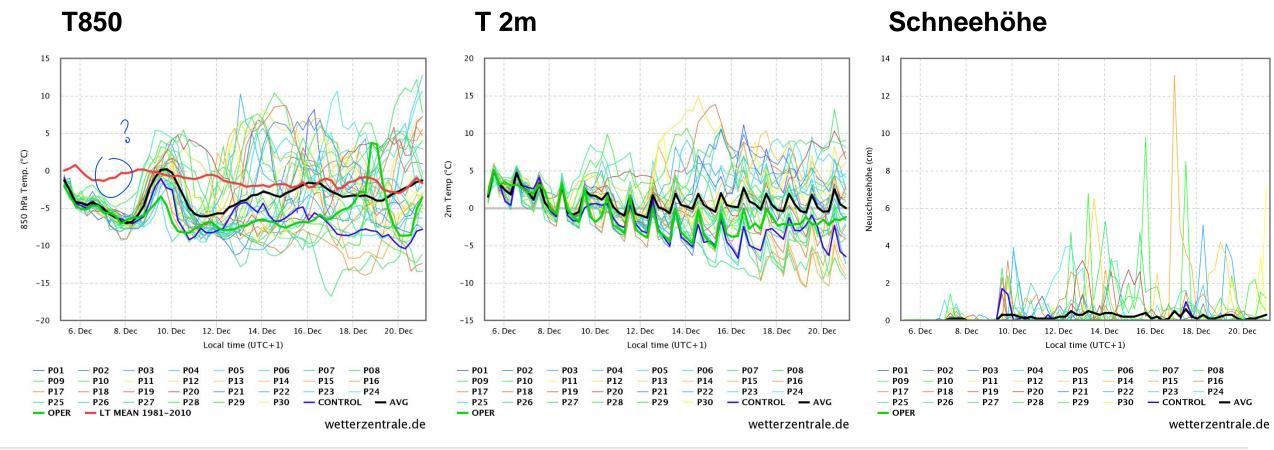
Beobachtungen aktuell

Satellit HD


Mo. 05.12.2022, 07:00 Uhr MEZ

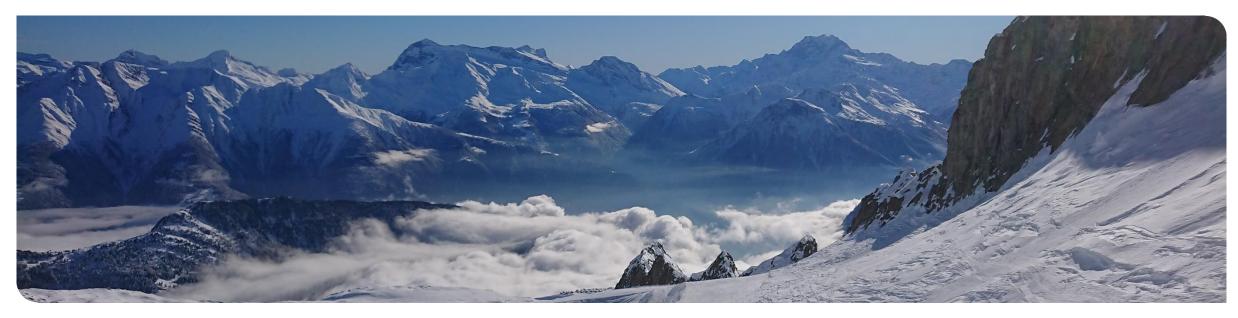
© Kachelmann GmbH - Download nur für den privaten Gebrauch! Bitte benutzen Sie zum Teilen die Share-Buttons oben rechts

Deutschland


Beobachtungen aktuell

Vorhersage: Ensembles

- Modell GFS (Global Forecast System) des amerik. Wetterdienstes NOAA
- 30 Ensemble Läufe
- Gitterpunkt Karlsruhe



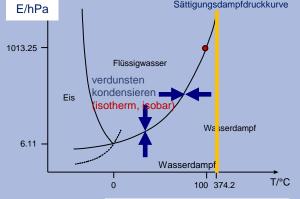
Vorlesung "Allgemeine Meteorologie"

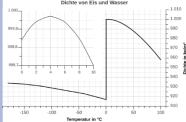
Prof. Michael Kunz

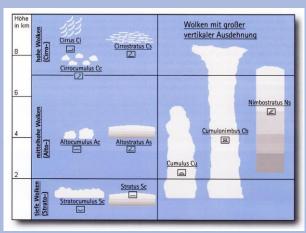
Kapitel 6: Strahlung

...Wiederholung

Letzte Vorlesung...






- Integration Clausius-Clapeyron-Gleichung: Sättigungsdampfdruck *E(T)* → → → Gleichgewichtskurve (≠ Zustandskurve; Zustand beliebig im Diagramm)
 - Verringerung E(T) über Eis; Schmelzkurve negative Steigung dE/dT

$$E_W(\vartheta) = 6,1070 \cdot \exp\left(\frac{17,15\vartheta}{\vartheta + 234,9}\right) \quad \vartheta \ge \vartheta_t \quad E_E(\vartheta) = 6,1064 \cdot \exp\left(\frac{21,88\vartheta}{\vartheta + 265,5}\right) \quad \vartheta < \vartheta_t$$

- (Dichte)anomalie Wasser: maximale Dichte bei ca. 4°C; Druckerhöhung → Schmelzen
- Dunst vs. Nebel: Schwellenwert Sichtweite 1 km
 - Dunst: Tröpfchenradius 0,1 1 μm; z.T. Rayleighstreuung (bläulich)
 - Nebel: Tröpfchenradius 5-10 μm; Mie-Streuung (weißlich)
- Nebelarten: Strahlungsnebel; Advektionsnebel; Zufuhr Wasserdampf (z.B. Seerauch); Hochnebel
- Wolkenklassifikation: Deskriptiv nach Höhe, Art, Form, Aussehen
 - 4 Wolkenfamilien (Klassifikation Höhe)
 - 10 Wolkengattungen (Klass. Höhe und Art/Form)
 - 14 Wolkenarten, viele Unterarten

agenda

6 Strahlung

- **6.1 Einführung und Definitionen**
- 6.2 Schwarzkörperstrahlung und Strahlungsgesetze
 - 6.2.1 Plancksches Strahlungsgesetz
 - 6.2.2 Stefan-Boltzmann-Gesetz
 - 6.2.3 Wiensches Verschiebungsgesetz
 - 6.2.4 Graue Körper Kirchhoffs Gesetz
- 6.3 Solare Strahlung
 - 6.3.1 Solarkonstante
 - 6.3.2 Albedo
 - 6.3.3 Einfache Strahlungsmodelle
 - 6.3.4 Streuung
 - 6.3.5 Absorption
 - 6.3.6 Extinktionsgesetz nach Beer / Bouguer-Lambert
 - 6.3.7 Globalstrahlung
- 6.4 Terrestrische Strahlung
- 6.5 Strahlungs- und Energiebilanz
- 6.6 Geometrische Strahlungsgesetze und optische Phänomene

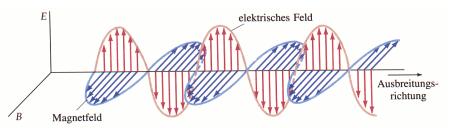
Fragen über Fragen...

- Welches sind die wirksamen Strahlungskörper, die für die Erdatmosphäre relevant sind?
- Ist das System Sonne Erde im Strahlungsgleichgewicht? nein (treibhauffelt)
- In welchem Wellenlängenbereich ist das Licht für den Menschen sichtbar?
- In welchem Wellenlängenbereich strahlt die Erde aus?

```
languelles infraret (exare absorbieren eureline spektrallenien)
Sonne in Sichtbarbereich
```


Wichtige Strahlungs(körper) in der Atmosphäre

- Sonnenoberfläche
 - Strahlungstemperatur ca. 6000 K
 - kurzwellige Strahlung (sichtbar)
- Erdoberfläche
 - Strahlungstemperatur ca. 290 K
 - langwellige Strahlung (IR, unsichtbar)
- Atmosphärische Gase
 - Linienspektren
- Wolken-, Niederschlags-, Aerosolteilchen



linear polarisiert

Elektromagnetische Wellen

 Gekoppelte Schwingungen elektrischer/ magnetischer Felder (E/B-Feld)

- Beschreibung Wellen durch
 - Wellenlänge λ (in m, μ m, nm)
 - Frequenz v (in Hz = s⁻¹)
 - Wellenzahl k (in m⁻¹, μ m⁻¹, nm⁻¹)
 - Winkelfrequenz ω (in rad s)

$$c = \lambda \stackrel{\sim}{\nu} \qquad k = \frac{1}{\lambda} \qquad \omega = \frac{2\pi}{T} = 2\pi \nu$$

c: Phasengeschwindigkeit Licht = 299 792 458 m s⁻¹ (im Vakuum)

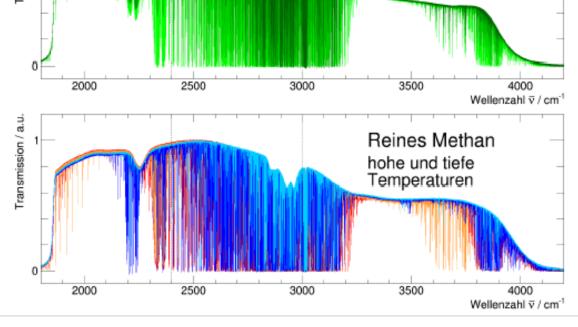
T: Periodenlänge

■ Ausbreitungsgeschwindigkeit in Luft unabhängig von der Wellenlänge → aber: Refraktion

wellenlängenabhängig

(Aldenking winked)

CO2 niculso viel, FCKW viel mehr


Spektrum elektromagnetischer Wellen

- Linienspektrum: Strahlung definierter Wellenlägen; einzelne, abgegrenzte Spektrallinien
 - Absorption/Emission von Gasen (z.B. Schwingungs-Rotationsbanden, Elektronenübergänge)
 - spektrale Energiedichte I_{λ} ; beschreibt Energieverteilung für engen Bereich d λ

$$\lim_{\Delta\lambda \to 0} \frac{\Delta E_{\lambda}}{\Delta\lambda} = \frac{dE_{\lambda}}{d\lambda} = I_{\lambda}$$

Linienspektrum mit nur kleinem Untergrund im blau-grünen Bereich (Kaltlichtlampe)

(Darko Dubravic, IMK-ASF, 2017a)

H₂O

HBr N₂O

CH,

Reines Methan

Raumtemperatur

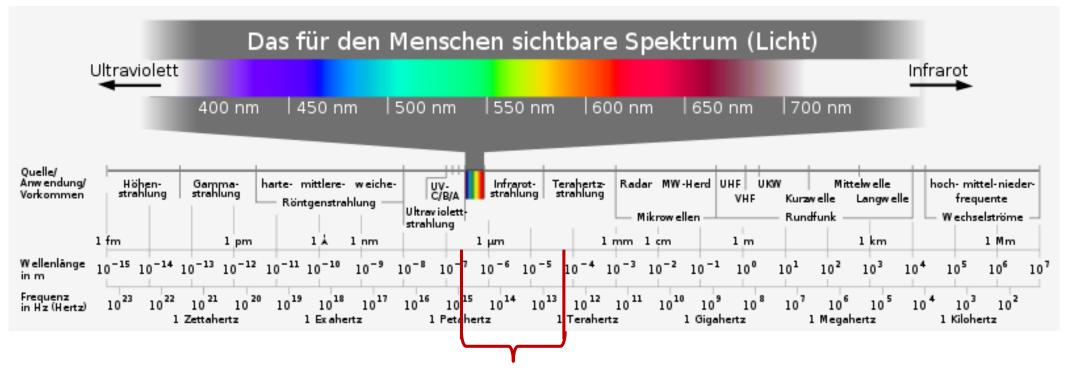
Spektrum elektromagnetischer Wellen

- Kontinuierliches Spektrum: Gesamtheit aller möglichen monochromatischen Bestandteile der Gesamtstrahlung
 Lei wirten Tolkierpen
 - elektromagnetische Strahlung, am Ort der Entstehung im thermischen Gleichgewicht mit Materie;
 vielfache Abfolge elementarer Strahlungsprozesse; Absorption, Emission, Streuung
 - bei schwarzen Körpern: ausschließlich Funktion der Temperatur
 - keine gegenseitige Beeinflussung der verschiedenen Wellenlängen

1.6 - Enirsi enispek . Seme an Berein Atmesph Roud

Special Advance of the seminary of the sem

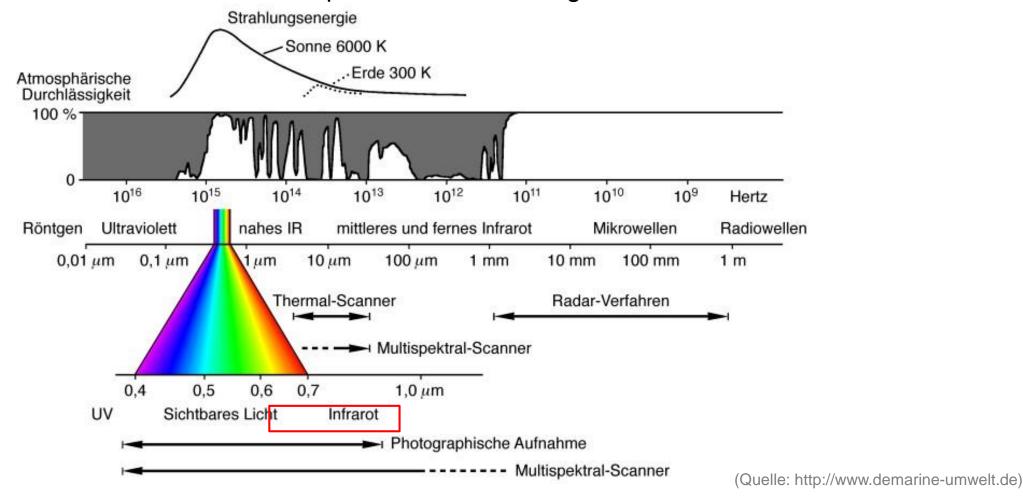
WAVELENGTH (nm)


kontinuierliches Spektrum (Solarstrahlung)

Spektrum elektromagnetischer Wellen

Kapitel 6: Strahlung

- Wellenlängen erstrecken sich über viele Größenordnungen (Zehnerpotenzen); hier: von 10⁻¹⁵ bis 10⁷ m
- Sichtbares Licht (Empfindlichkeit Retina Menschen): 380 780 nm (0,38 0,78 μm)



Bereich ~0,2 bis 100 μm bedeutsam für **Atmosphäre** (außer: Hochatmosphäre)

Spektrum elektromagnetischer Wellen

Wellenlängenbereich, der für die Atmosphäre von Bedeutung ist

Nomenklatur

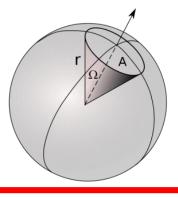
- Strahlung (Energie): durch Strahlung transportierte Energie,unabhängig von der Wellenlänge (spektral: ... einer bestimmten Wellenlänge)
- Strahlungsfluss E (Leistung):
 Strahlung (Energie) pro Zeiteinheit

Einheiten

 $J (Joule) = kg m^2 s^{-2} = W s$

W (Watt) = $J s^{-1} = kg m^2 s^{-3}$

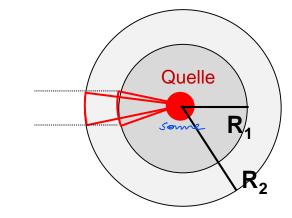
Strahlungsflussdichte F:


Strahlung pro Zeit- und Flächeneinheit (Dichte hier: Flächeneinheit)

■ Strahldichte B: Strahlung pro Zeit- und Flächeneinheit und Raumwinkel

sr: Steradiant; Einheit Raumwinkel ges. Raumwinkel Ω Einheitskugel = 4π sr

$$W m^{-2} = kg s^{-3}$$


W m⁻² sr⁻¹

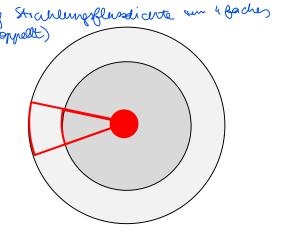
Strahlungsflussdichte F:

→Beide Kugeln R₁ und R₂ erhalten gleiche Menge an Strahlungs(fluss) auf ihrer gesamte Oberfläche

gesamle Obemache
$$E = \iint_{A_1} F_1 \, dA_1 = 4\pi R_1^2 F_1 = 4\pi R_2^2 F_2$$

$$\Rightarrow \frac{F_1}{F_2} = \left(\frac{R_2}{R_1}\right)^2$$

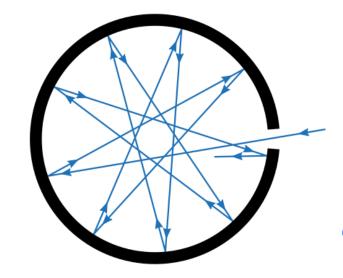
Bsp:
$$R_1 = 5 \text{ km}$$
, $R_2 = 10 \text{ km} \Rightarrow \text{F1/F2} = 4$


- $\Rightarrow \frac{F_1}{F_2} = \left(\frac{R_2}{R_1}\right)^2$ $\Rightarrow \text{bei Verdoppelung Abstand folgt Verringerung}$ Strahlungsflussdichte um Faktor 4
- → Strahlungsflussdichte ändert sich bei senkrecht orientierter Fläche

Strahldichte B:

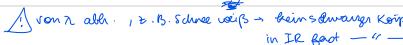
- → Öffnungswinkel ändert sich mit Abstand nicht
- → Strahldichte bleibt mit Abstand zur Quelle konstant

(Annahme: keine Absorption / Streuung im Volumen)


Schwarzer Körper

- Definition: idealisierter K\u00f6rper, der die gesamte einfallende Strahlung vollst\u00e4ndig absorbiert (und emittiert)
- Strahlungsquelle, die elektromagnetische Strahlung mit charakteristischem, nur von der Temperatur abhängigen Spektrum (Intensität in Abhängigkeit von Frequenz/Wellenlänge) emittiert
- Schwarzkörperstrahlung ist isotrop, d.h. unabhängig von der Raumrichtung
- Realisierung: Hohlraumstrahlung

Kapitel 6: Strahlung


Permanente Absorption und Emission an Wänden

Strahlung im Inneren im thermischen Gleichgewicht mit Wänden des Körpers

möglichst geringe Störung des thermischen Gleichgewichts, daher nur kleine Öffnung

(bleiner Eintsittswinkel)

Wichtigste Untersuchungsergebnisse Planck

Oszillatoren (quasielastisch gebundene Elektronen) können nur bestimmte Energien annehmen:

$$E = nh\nu$$

E: Energie

n: Quantenzahl (ganzzahlig)

h: Planck'sches Wirkumsquantum = 6,6 10⁻³⁴ J s

v: Frequenz Oszillator

1 Quant: koeinstrigt. DE

Energie wird nicht kontinuierlich, sondern nur in Quanten abgestrahlt; z.B. Emission eines Quants, wenn Oszillator in einen anderen Energiezustand übergeht

Energie eines Quants $\Delta E = h \nu \qquad \text{(bei n = 1)}$

Evergie quantisient

Max Planck, 1858-1947 deutscher Physiker, Begründer der Quantenphysik, 1918 Nobelpreis

Plancksches Strahlungsgesetz

$$B_{\nu}(T) = \frac{\partial B}{\partial \nu} = -\frac{2h\nu^3}{c^2 \left(e^{\frac{h\nu}{kT}} - 1\right)}$$

 B_{y} : spektrale Emission = spektrale Strahldichte

c: Lichtgeschwindigkeit = 299 792 458 m s⁻¹

h: Planck'sches Wirkungsquantum = 6,63 10⁻³⁴ J s

v: Frequenz Strahlung

k: Boltzmann-Konstante = 1,38 10⁻²³ J K⁻¹ - anch bei kin-

T: Temperatur in K

 h_{V} : Energie Strahlungsquant

½ kT: mittlere Energie pro Molekül und Freiheitsgrad

- Spektrale Strahldichte B, beschreibt die pro Zeit-, Flächen- und Raumwinkel- und Frequenzeinheit emittierte Energie unpolarisierter Strahlung eines schwarzen Körpers in Normalenrichtung
- B_{ν} hängt bei gegebenem ν allein von der Temperatur T ab l

Plancksches Strahlungsgesetz

$$B_{\nu}(T) = \frac{\partial B}{\partial \nu} = -\frac{2h\nu^3}{c^2 \left(e^{\frac{h\nu}{kT}} - 1\right)}$$

$$B_{\lambda}(T) = -\frac{c}{\lambda^2}B_{\nu}$$
 und damit

 B_{y} : spektrale Emission = spektrale Strahldichte

c: Lichtgeschwindigkeit = 299 792 458 m s⁻¹

h: Planck'sches Wirkungsquantum = 6,63 10⁻³⁴ J s

v: Frequenz Strahlung

k: Boltzmann-Konstante = 1,38 10⁻²³ J K⁻¹

T: Temperatur in K

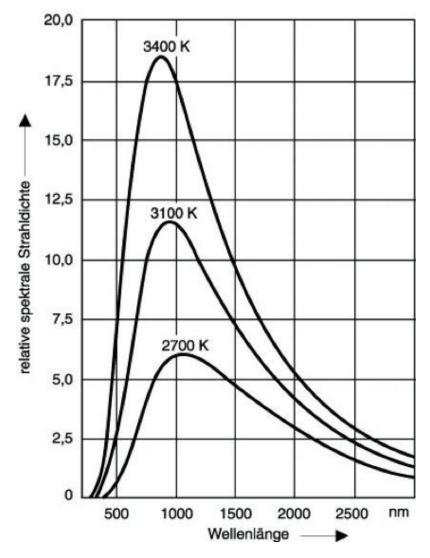
$$B_{\lambda}(T) = \frac{dB}{d\lambda} = \frac{2hc^2}{\lambda^5 \left(e^{\frac{hc}{k\lambda T}} - 1\right)}$$

Einheiten und Nomenklatur:

$$- B: = W m^{-2} sr^{-1}$$

$$-B_{\lambda}$$
: = W m⁻² sr⁻¹ m⁻¹

$$-B_{v}$$
: = W m⁻² sr⁻¹ Hz⁻¹

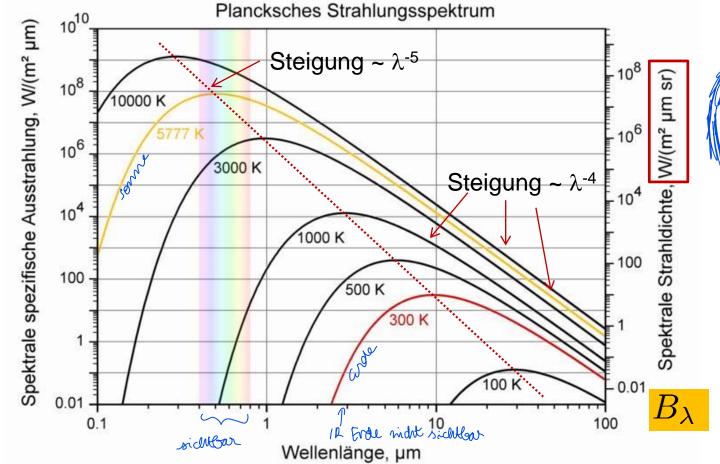

spektrale Strahldichte

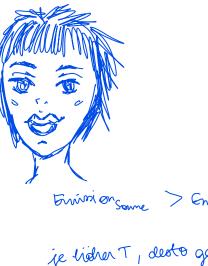
Plancksches Strahlungsgesetz

$$B_{\lambda}(T) = \frac{\partial B}{\partial \lambda} = \frac{2hc^2}{\lambda^5 \left(e^{\frac{hc}{k\lambda T}} - 1\right)}$$

- Starke Zunahme der spektralen Strahldichte mit Temperatur wegen ~ exp(c/T)
- Verschiebung der Maxima der Strahldichte zu kürzeren Wellenlängen bei höheren Temperaturen
- Planck-Kurven schneiden sich nicht (!)

(Quelle: spektrum.de; Strahlungsgesetze)




$$B_{\lambda}(T) = \frac{\partial B}{\partial \lambda} = \frac{2hc^2}{\lambda^5 \left(e^{\frac{hc}{k\lambda T}} - 1\right)}$$

Plancksches Strahlungsgesetz

Doppelt-logarithmische Darstellung (wg. großen Wertebereichs B_{λ})

Prilling

Stefan-Boltzmann Gesetz

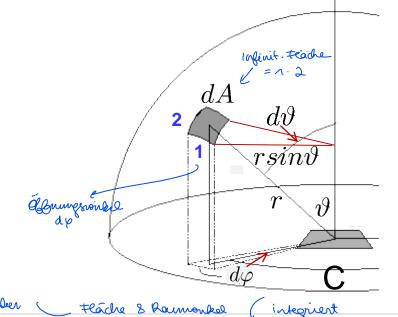
- Experimentell von Stefan entdeckt, von Boltzmann aus Gesetzen der Thermodynamik / Maxwell-Gleichungen hergeleitet
- Gesamter Strahlungsfluss eines schwarzen Körpers
 - Integriert über alle Wellenlängen (Frequenzen)
 - Ausstrahlung in Halbraum
- Integration Plank'sches Strahlungsgesetz

$$F(T) = \int_{\Omega} \int_{0}^{\infty} B_{\lambda}(T) \cos \vartheta \, d\Omega \, d\lambda$$

Josef Stefan (1835-1898) österr. Mathematiker und Physiker

Ludwig E. Boltzmann (1844-1908) öster. Physiker und Philosoph

Vorlesung Allgemeine Meteorologie



Stefan-Boltzmann Gesetz: Integration über Halbraum

- Strahlungsflussdichte: Strahldichte B von Fläche C ausgehend in Normalenrichtung (Zenitwinkel ϑ = 0; bei beliebigem Winkel: $B\cos\vartheta$) integriert über differentiellen Raumwinkel d Ω : $F=\int_{\Omega}B\cos\vartheta d\Omega$
- Raumwinkel $\Omega = \frac{A}{r^2} \Rightarrow d\Omega = \frac{dA}{r^2} = \frac{1}{r^2} r \sin \vartheta \ d\varphi \ r d\vartheta = \frac{\sin \vartheta \ d\vartheta \ d\varphi}{2}$ (Einheit: sr; A = Teilfläche Kugeloberfl.)
 - Daraus folgt für Strahlungsflussdichte

$$F = \int_{\Omega} B \cos \vartheta d\Omega = B \int_{0}^{2\pi} \int_{0}^{\vartheta_{0}} \cos \vartheta \sin \vartheta d\vartheta \, d\varphi$$
$$= 2\pi B \left[\frac{1}{2} \sin^{2} \vartheta \right]_{0}^{\vartheta_{0}} = \pi B \sin^{2} \vartheta_{0}$$

■ Für Halbraum: $\vartheta_0 = \pi/2$? $\Rightarrow F = \pi B$

Herleitung Stefan-Boltzmann Gesetz aus Planck Str.-Gesetz

- (a) Integration über alle Wellenlängen
- (b) Integration über Halbraum

$$F(T) = \int_0^\infty \int_{\Omega} B_{\lambda}(T) \cos \theta \, d\Omega \, d\lambda$$

$$B(T) = \int_0^\infty B_\lambda(T) \, d\lambda = \int_0^\infty \frac{2hc^2}{\lambda^5 \left(e^{\frac{hc}{k\lambda T}} - 1\right)} \, d\lambda \qquad \text{(1)} \quad \text{Planck. Mollingiages}$$
 Substitution: $x = x(\lambda) = \frac{hc}{kT\lambda} \Rightarrow \lambda(x) = \frac{hc}{kTx} \qquad \text{(2)}; \quad \text{Differential} \quad d\lambda = -\frac{hc}{kTx^2} \qquad \text{(3)}$
$$(2) + \text{(3) in (1):} \quad B(T) = -\int_0^\infty \frac{2hc^2}{e^x - 1} \frac{k^4 T^4 x^3}{h^3 c^2} \frac{hc}{kTx^2} \, dx$$
 ... und kürzen

Konstanten vor Integral ziehen:
$$=\frac{2k^4T^4}{h^3c^2}\int_0^\infty \frac{x^3}{1-e^x}\,dx \qquad =\frac{2(k\,T\,\pi)^4}{15h^3c^2}=B(T)$$

$$=\frac{\pi^4}{15} \text{ This patient of } dx$$

Herleitung Stefan-Boltzmann Gesetz aus Planck Str.-Gesetz

- (a) Integration über alle Wellenlängen
- (b) Integration über Halbraum

$$B(T) = \frac{2(kT\pi)^4}{15h^3c^2}$$

$$F(T) = B \int_0^{2\pi} \int_0^{\vartheta_0} \cos \vartheta \sin \vartheta d\vartheta \, d\varphi = \pi B(T)$$
$$= \frac{2k^4 \pi^5}{15h^3 c^2} \cdot T^4 = \sigma T^4$$
$$= \sigma = 5,67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

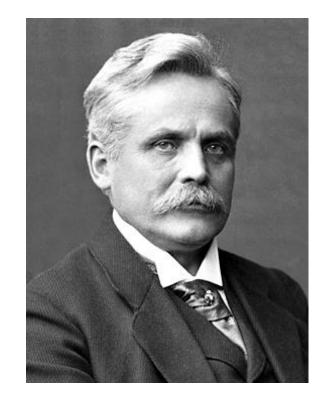
Stefan-Boltzmann Gesetz:

Energieflussdichte eines schwarzen Körpers

$$F(T) = \sigma T^4 \quad (\mathrm{W} \; \mathrm{m}^{-2})$$

-> planck. Kurven

unterschied, ob base in unteren oder lighten Kuft schichten eautheren (T



28

Wiensches Verschiebungsgesetz

- Berechnung der Maxima der spektralen Verteilung
- Ansatz: Bestimmung Maximum der Planck-Kurve

$$\frac{dB_{\lambda}(T)}{d\lambda} = 0$$

Wilhelm Carl Werner Otto Fritz Franz Wien (1864-1928); dt. Physiker; 1911 Nobelpreis

Wiensches Verschiebungsgesetz $\frac{dB_{\lambda}(T)}{d\lambda} = 0$

$$\frac{dB_{\lambda}(T)}{d\lambda} = 0$$

Planck mit Näherung
$$B_{\lambda}(T)=\dfrac{2hc^2}{\lambda^5\left(e^{\frac{hc}{kT\lambda}}-1\right)} \quad \approx \dfrac{2hc^2}{\lambda^5} \cdot \exp\left(-\dfrac{hc}{kT\lambda}\right)$$
 >> 1

Ableitung:
$$\frac{dB_{\lambda}(T)}{d\lambda} = 0 = -\frac{5 \cdot 2hc^2}{\lambda^6} \cdot \exp() + \frac{2hc^2}{\lambda^5} \cdot \exp() \frac{hc}{kT\lambda^2}$$

(Produkt und Kettenregel!)

$$\Rightarrow 5 = \frac{hc}{kT\lambda} \Rightarrow T \cdot \lambda = \frac{hc}{5k} = 2898 \ \mu \text{m K}$$

$$\Leftrightarrow \lambda_{max} = \frac{2898 \ \mu \text{m K}}{T}$$

→ Maximum Emissionsenergie verschiebt sich mit höherer Temperatur zu kürzeren Wellenlängen

Wiensches Verschiebungsgesetz

- Abschätzung Temperatur Strahlungsquelle
- Bsp: Temperatur Sonne

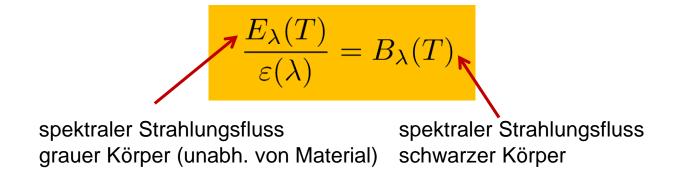
$$\lambda_{\text{max}} = 0.475 \ \mu\text{m}$$

$$T = \frac{2898 \ \mu \text{m K}}{\lambda_{max}} = \frac{2898 \ \text{K}}{0,475} = 6100 \ \text{K}$$

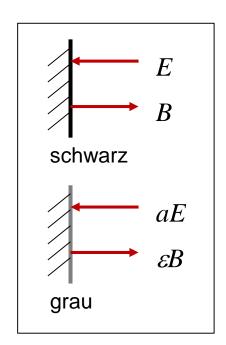
- Wegen Asymmetrie des Schwarzkörperspektrums erscheint Sonne nicht blau-grün, sondern gelb
- Sterne, die kälter als die Sonne sind, emittieren Strahlung bei größeren Wellenlängen und erscheinen rötlich (und umgekehrt)
- Solare Strahlung: ultraviolett sichtbar Infrarot
- Strahlung Erde und Atmosphäre: Infrarot

Kirchhoffsches Gesetz

- lacktriangle Graue Strahler: Absorptionsvermögen $\ arepsilon(\lambda) < 1$
- Für eine gegebene Wellenlänge und gegebene Temperatur steht die Emission $E_{\lambda}(T)$ eines Körpers in einem ganz bestimmten Verhältnis zu seinem Absorptionsvermögen ε , wobei dieses **Verhältnis** unabhängig vom Material des Körpers und gleich der Schwarzkörperemission ist



Gustav Robert Kirchhoff (1824-1887); dt. Physiker



Kirchhoffsches Gesetz

- lacktriangle Graue Strahler: Absorptionsvermögen $\ arepsilon(\lambda) < 1$
- Für eine gegebene Wellenlänge und gegebene Temperatur steht die Emission $E_{\lambda}(T)$ eines Körpers in einem ganz bestimmten Verhältnis zu seinem Absorptionsvermögen ε , wobei dieses **Verhältnis** unabhängig vom Material des Körpers und gleich der Schwarzkörperemission ist

- Daraus folgt: $\varepsilon(\lambda) = a(\lambda)$
 - spektrales Emissionsvermögen = Absorptionsvermögen

Wir fassen zusammen...

- Schwarzer Körper: absorbiert (und emittiert) alle einfallende Strahlung
- Strahlungsflussdichte *F*: Energie / (Zeit x Fläche); W m⁻² Strahldichte *I*, *B*: Energie / (Zeit x Fläche x Raumwinkel); W m⁻² sr⁻¹
- Planck'sches Gesetz: berücksichtigt Quantennatur der Strahlung
- Plancksches Strahlungsgesetz: spektrale Strahldichte (Strahlung pro Steradiant und Wellenlänge)
 - Starke Zunahme B mit Temperatur T
 - kürzere Wellenlängen bei zunehm. T
- Integration Planck über alle Wellenlängen und über Halbraum
 → Stefan-Boltzmann Gesetz
- Ableitung Strahlungsgesetz Planck → Wiensches Verschiebungsgesetz
- Kirchhoffsches Gesetzt: berücksichtigt graue Körper

$$B_{\lambda}(T) = \frac{dB}{d\lambda} = \frac{2hc^2}{\lambda^5 \left(e^{\frac{hc}{k\lambda T}} - 1\right)}$$

$$F(T) = \int_{\Omega} \int_{0}^{\infty} B_{\lambda}(T) \cos \vartheta \, d\lambda \, d\Omega$$

$$F(T) = \sigma T^4$$
 , $\sigma = 5,67 \cdot 10^{-8}$ W m⁻² K⁻⁴

$$\frac{dB_{\lambda}(T)}{d\lambda} = 0 \qquad \lambda_{max}T = 2898 \ \mu \text{m K}$$

$$\frac{E_{\lambda}(T)}{\varepsilon(\lambda)} = B_{\lambda}(T)$$

05.12.2022