

Prof. Dr.-Ing. J. Becker

becker@kit.edu

Karlsruher Institut für Technologie (KIT)

Digitaltechnik

Mathematische Grundlagen - Relationen -

www.kit.edu

Was sind Relationen?

- **Relationen verallgemeinern** die Prinzipien von **Vorschriften** wie x < y oder $A \subseteq B$ und stellen sie auf eine **formale Grundlage**
- **zweistellige Relation** zwischen zwei Mengen X und Y:
 - \rightarrow Vorschrift α für beliebige Elemente $\mathbf{x} \in \mathbf{X}$ und $\mathbf{y} \in \mathbf{Y}$
 - \rightarrow setzt fest, ob x in Beziehung α zu y steht
- Steht x in der Beziehung α zu y,

so schreibt man: $x \alpha y$

sonst: $x \overline{\alpha} y$

- Gilt X = Y
 - → so spricht man von einer Relation auf oder in einer Menge

Eigenschaften von Relationen

■ Bei zweistelligen Relationen auf einer Menge interessiert man sich für einige spezielle Eigenschaften

Reflexivität

wenn $\mathbf{x} \propto \mathbf{x}$ für beliebige \mathbf{x} gilt, so ist die Relation α reflexiv

- \blacksquare ,=' ist eine **reflexive Relation**, da x = x immer gilt
- \blacksquare , \leq ' ist reflexiv auf den reellen Zahlen, da $x \leq x$ für alle x gilt
- , ist reflexiv, da jede Menge Untermenge von sich selbst ist

Eigenschaften von Relationen

Symmetrie

Wenn aus x α y auch y α x folgt
→ so ist die Relation α symmetrisch

- ,=' ist symmetrisch
- Die Relation "ist Freund von" ist meist symmetrisch

Eigenschaften von Relationen

Antisymmetrie

- Wenn aus $\mathbf{x} \propto \mathbf{y}$ und $\mathbf{y} \propto \mathbf{x}$ folgt, dass $\mathbf{x} = \mathbf{y}$ ist \rightarrow so ist α antisymmetrisch
- Antisymmetrie ist nicht das Gegenteil von Symmetrie

- ,=' ist sowohl symmetrisch als auch antisymmetrisch!
- ,<' ist antisymmetrisch
- ,≥' ist antisymmetrisch

Eigenschaften von Relationen

Transitivität

■ Wenn aus $\mathbf{x} \alpha \mathbf{y}$ und $\mathbf{y} \alpha \mathbf{z}$ folgt, dass $\mathbf{x} \alpha \mathbf{z}$ gilt \rightarrow so ist α transitiv

- =,=' ist transitiv
- ,<' ist transitiv
- ■,⊆' ist transitiv
- Die Relation "ist älter als" ist transitiv

Typen von Relationen

Anhand der vorgestellten Eigenschaften können Relationen bestimmten Typen zugeordnet werden

Ordnungsrelation

- Eine Ordnungsrelation muss folgende Eigenschaften besitzen:
 - reflexiv
 - antisymmetrisch
 - transitiv

- ,=' ist Ordnungsrelation
- ,≤' ist Ordnungsrelation
- Die Relation "ist mindestens so alt wie" ist Ordnungsrelation

Strenge Ordnungsrelation

- Eine **strenge Ordnungsrelation** muss folgende Eigenschaften besitzen:
 - **antireflexiv** $(x \alpha x \text{ gilt für kein } x)$
 - antisymmetrisch
 - transitiv
- Die meisten Relationen, die man auch instinktiv als ordnend bezeichnen würde sind entweder eine Ordnungsrelation oder eine strenge Ordnungsrelation

- ,<' ist eine strenge Ordnungsrelation
- Die Relation "ist schneller als" ist eine strenge Ordnungsrelation

Äquivalenzrelation

- Eine Äquivalenzrelation muss folgende Eigenschaften besitzen:
 - reflexiv
 - symmetrisch
 - transitiv
- Als Zeichen für ,a' wird bei Äquivalenzrelationen ,≡' verwendet
- Teilt die Elemente in disjunkte Teilmengen auf -> Äquivalenzklassen

- =,=' ist selbstverständlich eine Äquivalenzrelation
- \blacksquare ,, $x \propto y \Leftrightarrow |x| = |y|$ ist für Vektoren eine Äquivalenzrelation

Verträglichkeitsrelation

- Eine Verträglichkeitsrelation muss folgende Eigenschaften besitzen:
 - reflexiv
 - symmetrisch
 - nicht transitiv
- Als Zeichen für ,a' wird bei Verträglichkeitsrelationen häufig ,~' verwendet

- Relation für Menschen "verträgt sich mit" ist Verträglichkeitsrelation
- Verträglichkeitsrelationen treten bei Problemen auf, bei denen bestimmte Paarungen ausgeschlossen sind
 - → z.B.: "zwei Leitungen führen zur gleichen Zeit ein Signal"

Überdeckungsproblem

- Ein häufig auftretendes Grundproblem
 - → das sogenannte Überdeckungsproblem

- → "wie viele Parties man mindestens feiern muss, um alle Freunde so einzuladen, dass keine zwei Freunde, die sich nicht vertragen, zur gleichen Party eingeladen werden"
- Die Grundlage des Problems:
 - → eine Verträglichkeitsrelation

Überdeckungsproblem

Problemstellung

- Es sei M die Menge der Freunde fi
 - \blacksquare M = { $f_i | f_i$ ist Freund }
- Gesucht sind Gästelisten (Teilmengen G_i)
 - -> nur Freunde (f_i) enthalten, für welche paarweise die Verträglichkeitsrelation erfüllt ist
 - **The second Proof of Second P**
- Eine Menge τ von solchen Parties (G_j) wird Überdeckung von M genannt, wenn jeder Freund (f_i) in einer Gästeliste ($G_i \in \tau$) enthalten ist

$$\mathbf{T} = \{ \mathbf{G}_{j1}, \mathbf{G}_{j2}, ..., \mathbf{G}_{jn} \}$$

$$\blacksquare \ \forall \ \ f_i \in M \quad \text{gilt} \quad -> \quad \exists \ \ \textbf{G}_j \in \tau \quad \text{mit} \quad \ f_i \in \textbf{G}_j$$

Überdeckungsproblem

 G_1

Beispiel:

■ Gäste:

$$M = \{ a, b, c, d, e \}$$

■ Verträglichkeit:

$$a \overline{\alpha} c$$

$$b \overline{\alpha} c$$

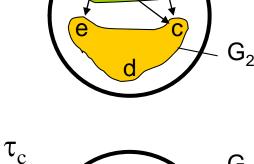
$$b \overline{\alpha} c$$
 $a \overline{\alpha} e$

■ Gästelisten:

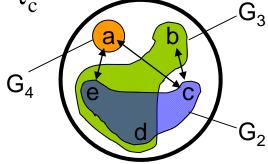
$$G_1 = \{ a, b \}$$

 $G_2 = \{ c, e, d \}$
 $G_3 = \{ b, d, e \}$
 $G_4 = \{ a \}$

$$\tau_a = \{ G_1, G_2 \}$$
 $\tau_b = \{ G_2, G_3 \}$
 $\tau_c = \{ G_2, G_3, G_4 \}$



 $\tau_{\rm a}$



ist Überdeckung ist keine Überdeckung ist Überdeckung

Überdeckungsproblem

Überdeckungsrelation

- bestimmtes Element f_i von einer Teilmenge G_j überdeckt
 - → eine Relation zwischen der Menge der Elemente aus M
 und der Menge der Teilmengen τ
- Diese Relation wird Überdeckungsrelation genannt
- Sie wird zweckmäßigerweise als "τ x M"-Matrix dargestellt

Struktur der Überdeckungstabelle:

Überdeckende Mengen ∈ τ	Überdeckte Größen ∈ M				
	f_1	f_2		fj	
G_1 G_2					
Gj				ist $f_j \in G_j$?	

Überdeckungsrelation

Beispiele:

$ au_{a}$	а	b	С	d	е
G ₁	Х	X			
G ₂			Х	Х	Х

$ au_{c}$	а	b	С	d	е
G_2			X	Х	Х
G_3		Х		Х	Х
G ₄	Х				

• τ_{b} ist keine Überdeckung, da "a" von keiner Teilmenge überdeckt wird

$ au_{b}$	а	b	С	d	е
G_2			Х	Х	Х
G_3		X		X	X