

Prof. Dr.-Ing. Dr. h. c. J. Becker becker@kit.edu

Karlsruher Institut für Technologie (KIT)

# Digitaltechnik

Mathematische Grundlagen - Relationen -

www.kit.edu



#### Was sind Relationen?

- **Relationen verallgemeinern** die Prinzipien von **Vorschriften** wie x < y oder  $A \subseteq B$  und stellen sie auf eine **formale Grundlage**
- **zweistellige Relation** zwischen zwei Mengen X und Y:
  - $\rightarrow$  Vorschrift  $\alpha$  für beliebige Elemente  $x \in X$  und  $y \in Y$
  - $\rightarrow$  setzt fest, ob x in Beziehung  $\alpha$  zu y steht
- Steht x in der Beziehung  $\alpha$  zu y, so schreibt man:  ${}^{\mathcal{X} \alpha y}$  sonst:  ${}^{\mathcal{X} \alpha y}$
- $\blacksquare$  Gilt X = Y
  - → so spricht man von einer Relation auf oder in einer Menge





#### Eigenschaften von Relationen

■ Bei zweistelligen Relationen auf einer Menge interessiert man sich für einige spezielle Eigenschaften

#### Reflexivität

wenn  $\mathbf{x} \propto \mathbf{x}$  für beliebige  $\mathbf{x}$  gilt, so ist die Relation  $\alpha$  reflexiv

- $\blacksquare$ ,=' ist eine reflexive Relation, da x = x immer gilt
- $\blacksquare$ ,  $\leq$ ' ist reflexiv auf den reellen Zahlen, da  $x \leq x$  für alle x gilt
- ■,⊆' ist reflexiv, da jede Menge Untermenge von sich selbst ist



# Eigenschaften von Relationen



# **Symmetrie**

Wenn aus x α y auch y α x folgt
 → so ist die Relation α symmetrisch

- ,=' ist symmetrisch
- Die Relation "ist Freund von" ist meist symmetrisch



# Eigenschaften von Relationen



# **Antisymmetrie**

- Wenn aus  $\mathbf{x} \propto \mathbf{y}$  und  $\mathbf{y} \propto \mathbf{x}$  folgt, dass  $\mathbf{x} = \mathbf{y}$  ist  $\rightarrow$  so ist  $\alpha$  antisymmetrisch
- Antisymmetrie ist nicht das Gegenteil von Symmetrie

- =,=' ist sowohl **symmetrisch** als auch **antisymmetrisch**!
- ,<' ist antisymmetrisch
- ■,≥' ist antisymmetrisch



# Eigenschaften von Relationen



#### **Transitivität**

■ Wenn aus  $\mathbf{x} \propto \mathbf{y}$  und  $\mathbf{y} \propto \mathbf{z}$  folgt, dass  $\mathbf{x} \propto \mathbf{z}$  gilt  $\rightarrow$  so ist  $\alpha$  transitiv

- =,=' ist transitiv
- ,<' ist transitiv
- ■,⊆' ist transitiv
- Die Relation "ist älter als" ist transitiv



# Typen von Relationen



Anhand der vorgestellten Eigenschaften können Relationen bestimmten Typen zugeordnet werden

### **Ordnungsrelation**

- Eine Ordnungsrelation muss folgende Eigenschaften besitzen:
  - reflexiv
  - antisymmetrisch
  - transitiv

- ,=' ist Ordnungsrelation
- ,≤' ist Ordnungsrelation
- Die Relation "ist mindestens so alt wie" ist Ordnungsrelation





#### **Strenge Ordnungsrelation**

- Eine **strenge Ordnungsrelation** muss folgende Eigenschaften besitzen:
  - **antireflexiv**  $(x \alpha x gilt für kein x)$
  - antisymmetrisch
  - **■** transitiv
- Die meisten Relationen, die man auch instinktiv als ordnend bezeichnen würde sind entweder eine Ordnungsrelation oder eine strenge Ordnungsrelation

- ,<' ist eine strenge Ordnungsrelation
- Die Relation "ist schneller als" ist eine strenge Ordnungsrelation





# Äquivalenzrelation

- Eine Äquivalenzrelation muss folgende Eigenschaften besitzen:
  - reflexiv
  - symmetrisch
  - transitiv
- Als Zeichen für ,α' wird bei Äquivalenzrelationen ,≡' verwendet
- Teilt die Elemente in disjunkte Teilmengen auf -> Äquivalenzklassen

- =,=' ist selbstverständlich eine Äquivalenzrelation
- $\blacksquare$  ,, $x \alpha y \Leftrightarrow |x| = |y|$ " ist für Vektoren eine Äquivalenzrelation





### Verträglichkeitsrelation

- Eine Verträglichkeitsrelation muss folgende Eigenschaften besitzen:
  - **■** reflexiv
  - symmetrisch
  - nicht transitiv
- Als Zeichen für ,a' wird bei Verträglichkeitsrelationen häufig ,~' verwendet

- Relation für Menschen "verträgt sich mit" ist Verträglichkeitsrelation
- Verträglichkeitsrelationen treten bei Problemen auf, bei denen bestimmte Paarungen ausgeschlossen sind
  - → z.B.: "zwei Leitungen führen zur gleichen Zeit ein Signal"





# Überdeckungsproblem

- Ein häufig auftretendes Grundproblem
  - → das sogenannte Überdeckungsproblem

- → "wie viele Parties man mindestens feiern muss, um alle Freunde so einzuladen, dass keine zwei Freunde, die sich nicht vertragen, zur gleichen Party eingeladen werden"
- Die Grundlage des Problems:
  - → eine Verträglichkeitsrelation



# Überdeckungsproblem



# **Problemstellung**

- Es sei M die Menge der Freunde fi
  - $\blacksquare$  M = {  $f_i | f_i \text{ ist Freund } \}$
- Gesucht sind Gästelisten (Teilmengen G<sub>i</sub>)
  - -> nur Freunde (f<sub>i</sub>) enthalten, für welche paarweise die Verträglichkeitsrelation erfüllt ist
  - für alle  $f_k$ ,  $f_m \in G_j$  gilt:  $f_k \alpha f_m$
- Eine Menge  $\tau$  von solchen Parties ( $G_j$ ) wird Überdeckung von M genannt, wenn jeder Freund ( $f_i$ ) in einer Gästeliste ( $G_j \in \tau$ ) enthalten ist

$$\mathbf{T} = \{ \mathbf{G}_{j1}, \mathbf{G}_{j2}, ..., \mathbf{G}_{jn} \}$$



# Überdeckungsproblem Beispiel:



#### **■** Gäste:

$$M = \{ a, b, c, d, e \}$$

#### ■ Verträglichkeit:

$$a \overline{\alpha} c$$

$$b \overline{\alpha} c$$

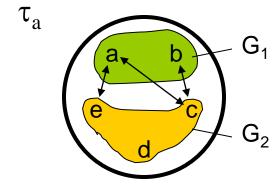
$$a \overline{\alpha} e$$

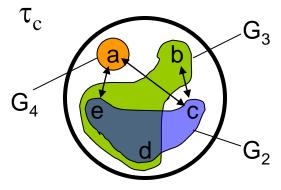
#### **■** Gästelisten:

$$G_1 = \{ a, b \}$$
  
 $G_2 = \{ c, e, d \}$   
 $G_3 = \{ b, d, e \}$   
 $G_4 = \{ a \}$ 



$$\tau_a = \{ G_1, G_2 \}$$
 $\tau_b = \{ G_2, G_3 \}$ 
 $\tau_c = \{ G_2, G_3, G_4 \}$ 





ist Überdeckung ist keine Überdeckung ist Überdeckung



# Überdeckungsproblem Überdeckungsrelation



- bestimmtes Element f<sub>i</sub> von einer Teilmenge G<sub>i</sub> überdeckt
  - ightarrow eine Relation zwischen der Menge der Elemente aus M und der Menge der Teilmengen au
- Diese Relation wird Überdeckungsrelation genannt
- Sie wird zweckmäßigerweise als "τ x M"-Matrix dargestellt

# Struktur der Überdeckungstabelle:

| Überdeckende      | Überdeckte Größen ∈ M |       |     |                     |  |
|-------------------|-----------------------|-------|-----|---------------------|--|
| $Mengen \in \tau$ | $f_1$                 | $f_2$ | ••• | fj                  |  |
| G <sub>1</sub>    |                       |       |     |                     |  |
| $G_2$             |                       |       |     |                     |  |
|                   |                       |       |     |                     |  |
| Gj                |                       |       |     | ist $f_j \in G_j$ ? |  |



# Überdeckungsrelation



# **Beispiele:**

| $	au_{a}$      | а | b | С | d | е |
|----------------|---|---|---|---|---|
| G <sub>1</sub> | X | X |   |   |   |
| $G_2$          |   |   | Х | Х | Х |

| $	au_{c}$ | а | b | С | d | е |
|-----------|---|---|---|---|---|
| $G_2$     |   |   | Х | Х | Х |
| $G_3$     |   | Х |   | Х | X |
| $G_4$     | Х |   |   |   |   |

•  $\tau_{b}$  ist keine Überdeckung, da "a" von keiner Teilmenge überdeckt wird

| $	au_{b}$ | а | b | С | d | е |
|-----------|---|---|---|---|---|
| $G_2$     |   |   | Х | Х | Х |
| $G_3$     |   | Х |   | Х | Х |