

Prof. Dr.-Ing. Dr. h. c. J. Becker

becker@kit.edu

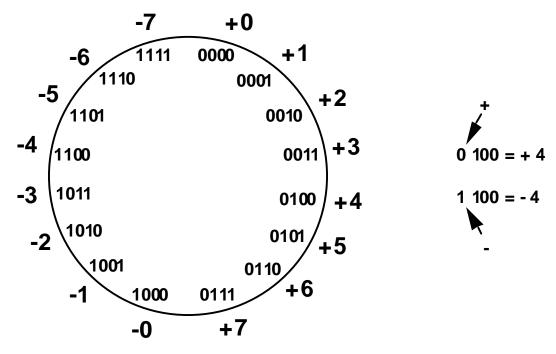
Karlsruher Institut für Technologie (KIT)

Institut für Technik der Informationsverarbeitung (ITIV)

Digitaltechnik

Zahlendarstellung und Komplement

Betrags- und Vorzeichendarstellung



- Höchstes Bit ist Vorzeichen: 0 = positiv (oder NULL), 1 = negativ
- Die restlichen Bits der Betrag: 0 (000) bis 7 (111)
- Zahlenbereich für n Bits = +/- 2
- Darstellung der Null: 0000 und 1000

Schwierigkeiten bei Betrags- und Vorzeichendarstellung:

- Schwerfällige Addition/Subtraktion
- Vergleich der Beträge nötig zur Bestimmung des Vorzeichens vom Ergebnis

Abhilfe durch 1er Komplement

■ N ist positive Zahl, dann ist N zugehöriges negatives 1er Komplement

$$\overline{N} = (2^n - 1) - N$$

$$2^4 = 10000$$

$$-1 = 00001$$

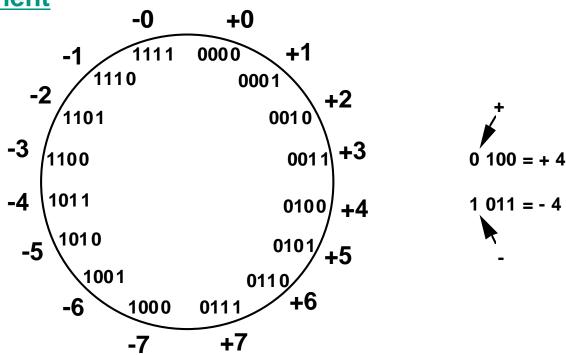
Bsp.: 1er Komplement von 7

$$1000 = -7 \text{ in 1er Komp.}$$

- Schnelle Methode:
 - Komplement einfach bitweises berechnen:

 $0111 \rightarrow 1000$

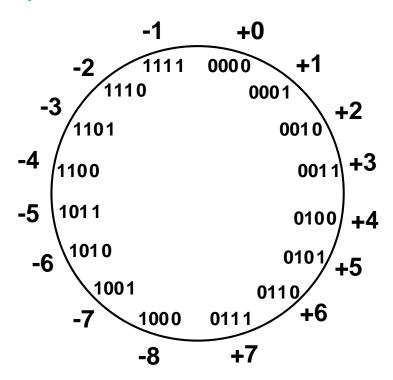
1er Komplement

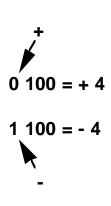


- Subtraktion realisiert durch Addition und 1er Komplement
- Zwei Darstellungen der Null: Macht Probleme !!!
- Addition ist nicht einfach durchzuführen !!!

2er Komplement (K2)

wie 1er Kompl.,
zusätzlich jedoch
um eine Position
im Gegenuhrzeigersinn
verschoben





- Nur eine Darstellung der Null
- Eine negative Zahl mehr als positive

2er Komplement (K2) Zahlen

$$N^* = 2^n - N$$

$$2^4 = 10000$$

sub
$$7 = 0111$$

$$1001 = -7 \text{ im } 2er \text{ Kompl.}$$

$$2^4 = 10000$$

$$sub -7 = 1001$$

$$0111 = 7 \text{ im } 2er \text{ Kompl.}$$

Schnelle Methode:

2er Komplement = Bitweises Komplement + 1

$$0111 \rightarrow 1000 + 1 \rightarrow 1001$$
 (Darstellung von -7)

$$1001 \rightarrow 0110 + 1 \rightarrow 0111$$
 (Darstellung von 7)

Addition und Subtraktion

Vorzeichen und Betrag

Ergebnisvorzeichenbit
entspricht den
Vorzeichenbits der
Operanden

Addition und Subtraktion von binären Zahlen

2er Komplement Berechnungen

Wenn Carry-in = Carry-out dann ignoriere Carry!	4	0100	-4	1100
	<u>+ 3</u>	0011	+ <u>(-3)</u>	1101
	7	0111	-7	11001
Wenn Carry-in ≠ Carry-out dann Überlauf!	4	0100	-4	1100
	3_	1101	+ 3	0011
	1	10001	-1	1111

Einfaches Vorgehen bei der Addition macht die 2er-Komplement-Darstellung zur ersten Wahl für Integer-Berechnung in digitalen Systemen

Addition und Subtraktion von binären Zahlen im 2er Komplement

- Warum kann Carry-Out ignoriert werden?
 - -M + N wenn N > M:
 M* + N = (2ⁿ M) + N = 2ⁿ + (N M)
 Ignorieren des Carry-out ist wie Subtraktion von 2ⁿ
 - -M + -N wobei N + M < oder = 2^{n-1} -M + -N = M* + N* = $(2^n - M) + (2^n - N)$ = $2^n - (M + N) + 2^n$
 - Nach dem Ignorieren des Carry die richtige K2-Darstellung für -(M + N)!

Überlauf Bedingungen:

5	0 1 1 1 0 1 0 1	-7	1000 1001
3	0011	<u>-2</u>	1110
-8	1000	7	1 0 1 1 1
Überlaı	uf	Überlauf	
5	0 0 0 0 0 1 0 1	-3	1 1 1 1 1 1 0 1
<u>2</u>	0010	<u>-5</u>	1011
7	0111	-8	11000

Kein Überlauf

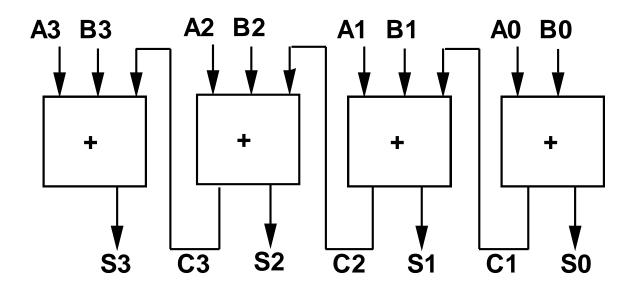
Kein Überlauf

Überlauf, wenn Carry-In ≠ Carry-Out!!!

Schaltungen für binäre Addition

Voll-Addierer:

GeschachtelterMulti-bit Addierer



■ Allgemein: Addition von mehr als zwei Bits notwendig
→ Volladdierer wird benötigt