

Hinweise zur Klausur

Hilfsmittel

Als Hilfsmittel zur Prüfung sind vier Seiten vorgegebene und **zwei Seiten** selbst geschriebene Formelsammlung zugelassen. Nicht erlaubt hingegen ist die Verwendung eines Taschenrechners, zusätzliche Unterlagen und jegliche Kommunikation mit anderen Personen.

Prüfungsdauer

Die Prüfungsdauer beträgt 120 Minuten.

Prüfungsunterlagen

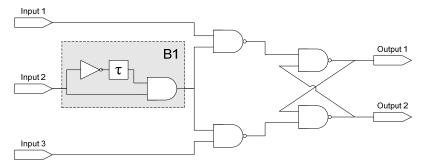
Die Prüfungsunterlagen bestehen aus insgesamt 26 Seiten Aufgabenblättern (einschließlich diesem Titelblatt).

Bitte vermerken Sie vor der Bearbeitung der Aufgaben auf jeder Seite oben Ihren Namen, auf der ersten Seite zusätzlich die Matrikelnummer!

Auf jedes zusätzliche Lösungsblatt ist neben dem Namen auch die Aufgaben- und die Seitennummer mit einzutragen. Vermeiden Sie das Beschreiben der Rückseiten.

Am Ende der Prüfung sind die 26 Seiten Aufgaben- und Lösungsblätter und alle verwendeten zusätzlichen Lösungsblätter abzugeben.

Verwenden Sie zum Bearbeiten der Aufgaben lediglich dokumentenechte Schreibgeräte – keinen Bleistift sowie Rotstifte!


Auf	gabe 1	Allgemeines	\bigcup
Aufg	gabe 1.1	Allgemeine Fragen	
Beant	worten Sie folg	gende Fragen:	
A)		Unterschied zwischen Top-Down Entwurf und Bottom-Up Entwu beiden Möglichkeiten wird beim Entwurf digitaler Systeme her ewendet?	
B)		nler n können mit einem Code der eine minimale Hamming-Distanz vesitzt, erkannt und korrigiert werden?	von
C)	Wieviele Bir Fehlererkennu	närstellen sind mindestens nötig um 7 Zeichen zu codieren (ohung)?	nne

D) Welche Anzahl an zusätzlichen Bits wird benötigt, um die minimale binäre Darstellung von 7 Zeichen zu erkennen und zu korrigieren, wenn maximal 2 Fehler auftreten können?

E) Was ist die grundlegende Eigenschaft des Gray Codes?

F) Welchen Vorteil bietet die Verwendung des Gray Codes bei der Digitalwandlung eines stetigen analogen Signals?

G) Welches digitale Funktionselement ist in folgender Abbildung dargestellt?

H)	Welche Funktio	n hat Logikblock	R1 in der	ohigen Dai	retalluna?
11/	W CICILC I UIIKUU	II IIai Logikolock	DI III UCI	odigen Dai	stellung:

Name:

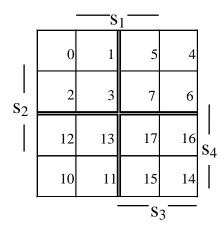
- I) Erläutern Sie in Stichworten die Eigenschaften der folgenden Signale.
 - a) zeitkontinuierliches, wertdiskretes Signal
 - b) kontinuierliches Signal
 - c) zeitdiskretes, wertdiskretes Signal
 - d) zeitdiskretes, wertkontinuierliches Signal

J) Welche der oben genannten Signale werden als Digitalsignale bezeichnet?

Aufgabe 1.2 Boolesche Algebra

A) Zeigen Sie durch algebraische Umformung, dass folgender Ausdruck gilt (geben Sie angewendete Regeln an):

$$f(a,b,c) = (a \cdot b + c) \oplus \left[(b+c) \cdot \overline{a} \right]$$

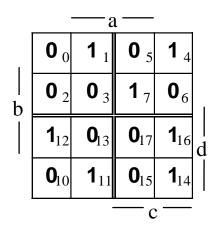

$$=a \cdot c + b \cdot c$$

Aufgabe 2 Minimierung

Für eine unvollständig definierte Schaltfunktion G sei die Menge der Einsstellen (E) und die Menge der Freistellen (F) in **dezimaler** Indizierung wie folgt gegeben. Mit Hilfe des Nelson-Verfahrens sollen nun alle Primimplikanten der Funktion ermittelt werden.

A) Tragen Sie hierzu zunächst die Eins-, Null- und Freistellen in folgendes Symmetriediagram ein.

B) Bilden Sie die Nullblocküberdeckung $\tau_0(s_1,s_2,s_3,s_4)$ der Funktion G. (Freistellen werden hierzu nicht genutzt)


C) Bilden Sie nun die Einsvervollständigung g^E :

Matrikelnummer:	Name:	

D) Distribuieren Sie nun schrittweise den in Teil C) gefundenen Ausdruck aus. Formen Sie dabei geeignet um und streichen Sie alle redundanten Terme bzw. Termanteile. Geben Sie anschließend alle gefundenen Primimplikanten an. Verwendete Umformungsregeln müssen nicht angegeben werden.

Aufgabe 2.1 Verfahren nach Petrick

Gegeben sei folgendes Symmetriediagramm der Schaltfunktion K:

A) Das Nelson-Verfahren lieferte dabei die in der obigen Abbildung bereits eingetragenen Terme. Vervollständigen Sie nun die folgende Überdeckungstabelle. Bilden Sie die Kostenfunktionswerte für die Primterme, indem Sie die Variablen *a* mit "1" und die Variablen *b*, *c* und *d* mit "2" bewerten.

Präsenz-		Nullstellen (oktale Indizes)							Kosten			
variable		0	2	3	5	6	10	13	15	17		Kosten
p_1	d+c+a											
p_2	c+b+a											
p_3	$d+c+\overline{b}$											
p_4	$d + \overline{b} + a$											
p ₅	$c + \overline{b} + \overline{a}$											
p_6	$\overline{c} + b + \overline{a}$											
p ₇	$\overline{d} + \overline{b} + \overline{a}$											
p_8	$\overline{d} + \overline{c} + \overline{a}$											

Tabelle 1

B) Ermitteln Sie nun die Kernimplikate aus Tabelle 1, indem Sie zunächst die Spaltendominanzen ausnutzen. Markieren Sie die Kernimplikate durch einen Kreis. Streichen Sie alle Zeilen, die von den ermittelten Kernimplikaten bereits vollständig überdeckt werden.

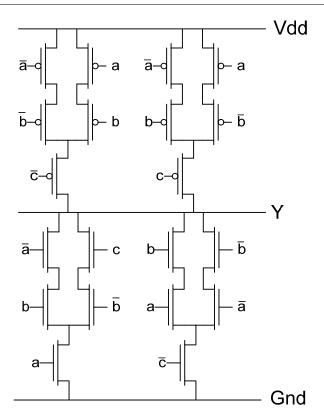
Matrikelnummer: Name: C) Tragen Sie das im Aufgabenteil B) ermittelte Zwischenergebnis als Resttabelle in die								
Tab	elle 2 ein teigend an):	(ordnen S				-		
Präsenz- Nullstellen (oktale Indizes)								
variable								Kosten

			Tabe	elle 2	•	•	*	
eine dazı Zeil	zen Sie nun kostenmini zuerst alle en übe ittelten Real	imale Reali e dominiert rdeckten M	sierung der en Zeilen u laxterme. V	Schaltfun and danach Velche Ko	ktion <i>G</i> a erst di sten ent	zu erh e durch estehen	alten. Str die dom bei der	eichen Sie inierenden von Ihnen
zuge	ehörige KMl gte Präsenzv	F an.						F 11 222 22 22
Kosten	der Realisi	erung:						

zugehörige KMF:

Aufgabe 3 CMOS-Schaltnetze

Als Ingenieur einer Halbleiterfirma sind Sie verantwortlich für den Entwurf einer Standardzellenbibliothek. Ihre Aufgabe besteht in dem Entwurf eines OAI211 Gatters, welches die folgende Funktion realisiert.


$$Y = \overline{a \& b \& (c \lor d)}$$

A) Erstellen Sie zunächst den Strukturausdruck für das obige Gatter.

B) Ermitteln Sie für die oben gebende Funktion die Pull-Up-Funktion F.

C) Bestimmen Sie nun die Pull-Down-Funktion G. Zeichnen Sie anschließend das vollständige Pull-Up- als auch das Pull-Down-Netz des CMOS Schaltkreises.

Matrike	elnummer: Nar	ne:
		·· ··
D)	Als leitender Ingenieur haben Sie darüber	hinaus die Aufgabe sicherzustellen, dass
D)		sgruppe entstammen, fehlerfrei für die
	Ein Kollege ihrer Arbeitsgruppe hat ihnen lein XOR Gatter mit 3 Eingängen – zukomm	hierzu einen Entwurf eines XOR3 Gatters – nen lassen.
	Überprüfen Sie die nachstehende Schaltung	g auf Vollständigkeit bzw. Kurzschlüsse.

Matrikelnummer:	Name:	
-----------------	-------	--

Aufgabe 4 Zahlensysteme

A)	Vervollständigen Sie die Tabelle 3, indem Sie die offenen Felder durch Konvertierung
	ergänzen.

Dezimal	Binär	Oktal	Hexadezimal
			2EB _H
		1617 _O	
	10000000 B		
53 _D			

Tabelle 3

B)	Wandeln	Sie	die	im	IEEE	754-Gleitkommaformat	gegebene	Hexadezimalzahl	
3EA00000 _H in eine Dezimalzahl um. Geben Sie alle Rechenschritte an.									

Matrikelnummer:	Name
Matikellullilet.	ivanie

C) Addieren Sie die im Dezimalsystem gegebenen Zahlen 6789_D und 5492_D im BCD Code. Stellen Sie ihren Lösungsweg – inklusive eventuell notwendiger Korrekturschritte - ausführlich dar.

D) Subtrahieren Sie die im Dezimalsystem gegebene Zahl 241_D von 211_D. Führen Sie diese Rechnung im binären Zahlensystem durch! Stellen Sie ihren Lösungsweg – inklusive aller notwendigen Schritte - ausführlich dar. Geben Sie anschließend das Ergebnis im dezimalen Zahlensystem an.

Matrikelnummer:	Name:		
Aufgabe 5	Mengen & Relationen		
Aufgabe 5.1	Multiple Choice		
	ir die nachstehenden Aussagen an, ob sie ortung wird als fehlerhafte Antwort gewertet.	wahr oder fa	lsch sind. Die
	Aussage	Wahr	Falsch
_	Vereinigung paarweise disjunkter Mengen e der Mächtigkeiten der Einzelmengen.		
Die leere Menge ist	Геilmenge jeder Menge.		
Die leere Menge i Potenzmenge ist.	st die einzige Menge, die gleich ihrer		
Eine Relation ka antisymmetrisch sein	nn nur entweder symmetrisch oder n, niemals beides gemeinsam.		
Eine Relation kann sein, niemals beides	nur entweder reflexiv oder antireflexiv gemeinsam.		
Aufgabe 5.2	Relationen		

Geben Sie die definierenden Eigenschaften einer Verträglichkeitsrelation an.

A)

Matrikelnummer:	Name
Matikeliuiiilei.	Ivaille

B)	Was versteht man unter dem "Überdeckungsproblem"?
D)	was versione man unter dem "Seerdeekangsprootein".

C)	Was unterscheidet eine	\wedge 1 1 α'	• ,	\cap 1 \cdot 0
(')	Was linterscheidet eine	i irdniingereiafion w	on einer strenge	1 Irdniingereighton 7
\sim $^{\prime}$	was unterscrictact crite	Orunungsicianon v	on chici suchige	Orumungsicianon:

Aufgabe 5.3 Mengen

Gegeben sind die folgenden Mengen:

A = { x | x ist reelle Zahl,
$$x^2+1=0$$
}
B = { 2, 4, 6, 8,}

$$C = \{\ n \mid n \ ist \ nat \"{u}rliche \ Zahl, \ n \ mod \ 2 = 1\}$$

$$D = \{1,\,2,\,3,\,5,\,7,\,11,\,13,\,17,\,19,\,23,\,\ldots\}$$

$$E = \{2, 3, 5, 9\}$$

$$F = \{a, x, p\}$$

$$B) \qquad \text{Geben Sie die Mengen } B \cup C \text{ und } B \cap C \text{ an}.$$

Matrike	elnummer:	Name:	
C)	Sind die Mengen C und D gleich mächti Begründen Sie Ihre Antwort!	g? Falls nicht, welche ist mächtiger?	
D)	Geben Sie das kartesische Produkt $E \times F$	der Mengen E und F an.	
E)	Wie hersehnet men elleemein die Mächt	igkait das kartasisahan Produkts von Mangan	
E)	aus den Kardinalitäten der Einzelmenger	igkeit des kartesischen Produkts von Mengen n?	

Aufgabe 6 Automaten

Aufgabe 6.1 Zustandsdiagramm

Ein Automat soll bei seriellem Empfang einer Bitfolge eine Mustererkennung durchführen. Es wird immer nur das aktuell empfangene Bit überprüft. Nach jedem Zustandswechsel steht das folgende Bit b_{i+1} zur Verfügung.

Nachdem die Bitfolge "1011" empfangen wurde, wird mit dem Empfang des letzten Bits des Musters einen Takt lang die korrekte Erkennung des Musters mit Q="1" signalisiert. Überlappende Bitmuster (1011011) sollen nicht erkannt und signalisiert werden! Der Automat verfügt über einen priorisierten Reset-Eingang rst über den er jederzeit zurückgesetzt werden kann.

Folgende Eingabevariablen stehen zur Verfügung:

rst = 0/1; kein Reset / Automat wird in den Grundzustand übergeführt b = 0/1; Wert des aktuell anliegenden Bits des sequentiellen Bitstroms

Folgende Ausgangsvariable steht zur Verfügung:

Q = 0/1; kein gültiges Muster vollständig erkannt / gültiges Muster vollständig erkannt

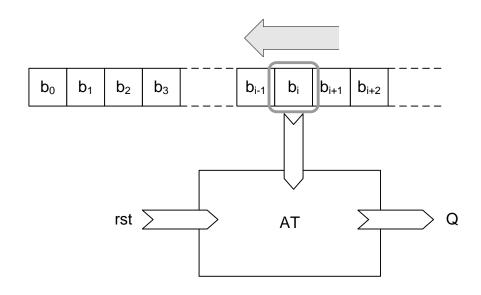


Abbildung 1: Funktionsbild der Musterkennung

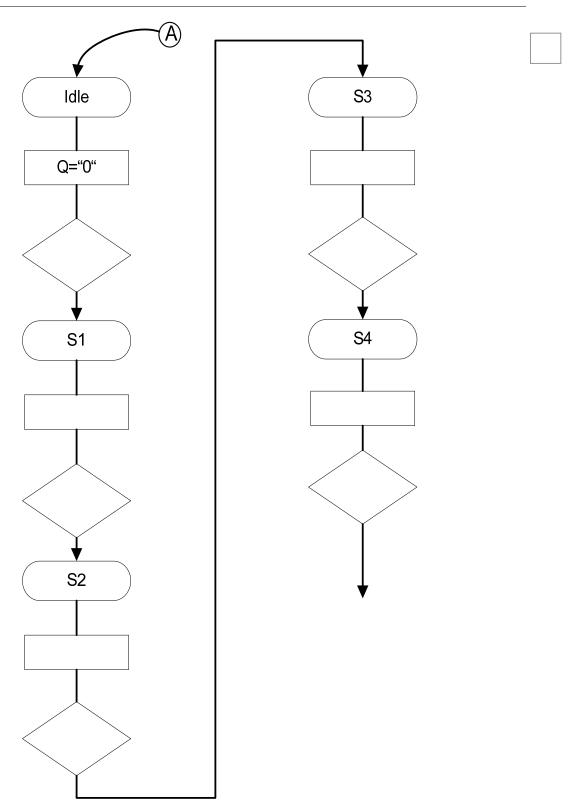


Abbildung 2

Matrike	elnummer:	Name:	
A)	Vervollständigen Sie in Abbildung 2. Fügen Sie nur die minimale Anzahl b	das Ablaufdiagramm eines endlichen Automaten enötigter Zuständen hinzu!	
	Verwenden Sie die Signale und dere des Automaten.	en Bezeichner aus oben gegebener Beschreibung	
Aufga	abe 6.2 Automatentheori	e	
A)	Welchen Automatentyp repräsentie Begründen Sie Ihre Antwort.	ert das Ablaufdiagramm aus Abbildung 2?	
B)	Welche weiteren Automatentypen gi aus Aufgabe A)?	bt es? Und worin unterscheiden Sie sich zu dem	

C) Ist es möglich die Mustererkennung aus Aufgabe A) mit den Automatentypen aus B) auszuführen? Bitte begründen Sie Ihre Antwort!

Aufgabe 6.3 Erweiterter Automat

A) Ergänzen Sie in Abbildung 3 den endlichen Automaten so, dass auch überlappende Bitmuster (1011011) erkannt werden können. Die Signalisierung des korrekten Empfangs eines Musters erfolgt wieder mit dem letzten Bit des Bitmusters 1011! Fügen Sie nur die minimale Anzahl benötigter Zuständen hinzu!

Verwenden Sie die Signale und deren Bezeichner aus der gegebener Beschreibung des Automaten aus Aufgabe 6.1.

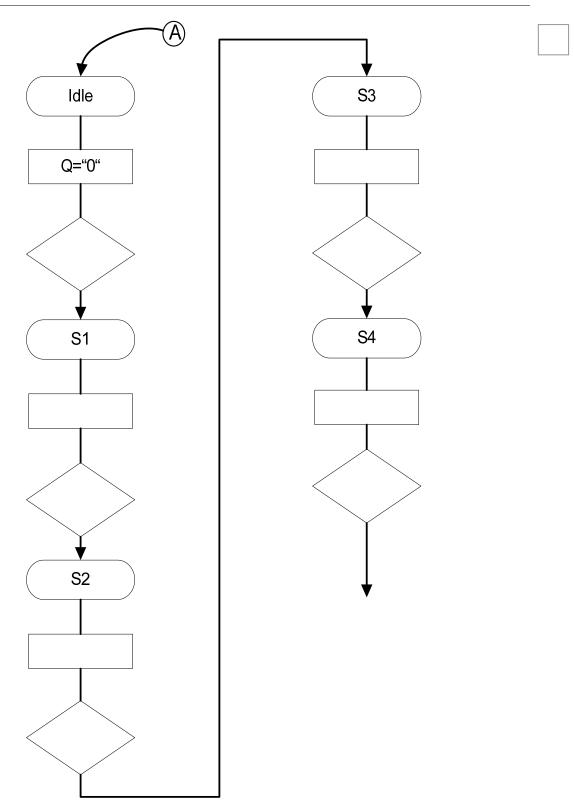
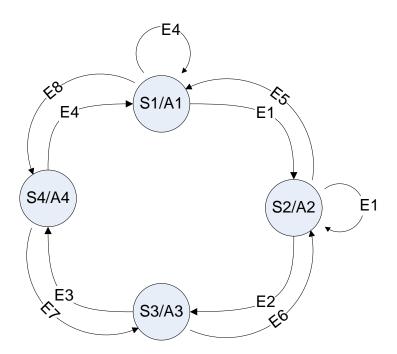



Abbildung 3

Aufgabe 6.4 Technische Realisierung eines Automaten

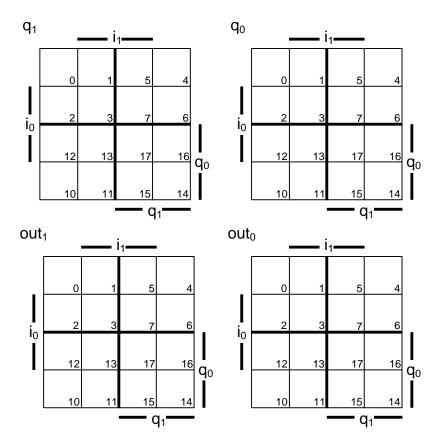
Nachfolgend ist der Graph eines Automaten zur Dekodierung eines Quadratursignals gezeigt.

	in ₁	in_0
E1, E6	0	1
E2, E7	1	1
E3, E8	1	0
E4, E5	0	0

	out_1	out_0
A1	0	0
A2	0	1
A3	1	0
A4	1	1

	\mathbf{q}_1	$\mathbf{q_0}$
S 1	0	0
S2	0	1
S 3	1	1
S4	1	0

Abbildung 4


Matrikelnummer:	Name:

A) Füllen Sie die Ansteuertabelle aus, indem Sie die Zustandsübergänge aus dem Graphen (Abbildung 4) in die Tabelle übertragen. Eventuell nicht definierte Übergänge sind mit "Don't Cares" zu belegen, Inputkombinationen die diese Übergämge erzeugen würden sind verboten.

Bestimmen Sie anschließend die notwendigen Werte zur Ansteuerung der T-FlipFlops und der D-FlipFlops.

							,	\mathbf{q}_1	$q_{\scriptscriptstyle{0}}$	\mathbf{q}_1	\mathbf{q}_0
in ₁	in ₀	\mathbf{q}_1	q_0	q ₁ '	q ₀ '	out ₁	out ₀	Т	Т	D	D
0	0	0	0								
0	0	0	~								
0	0	1	0								
0	0	1	1								
0	1	0	0								
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	0	0	0								
1	0	0	1								
1	0	~	0								
1	0	~	τ-								
1	1	0	0								
1	1	0	1								
1	1	1	0								
1	1	1	1								

B) Übertragen Sie die Ansteuerfunktion der D-Flipflops und die Ausgabefunktionen in die nachfolgenden Symmetrie-Diagramme.

C) Bilden Sie nun basierend auf den obigen Symmetrie-Diagrammen die disjunktive Minimalform (DMF). Tragen Sie hierzu zunächst die jeweilige Blocküberdeckung in das Symmetrie-Diagramm ein. Verfügen Sie eventuell enthaltene Freistellen so, dass Sie eine minimale Anzahl von Blöcken erhalten!

 $q_1 =$

 $\mathbf{q}_0 = \underline{\hspace{1cm}}$

 $\mathbf{out}_1 = \underline{\hspace{1cm}}$

 $\mathbf{out_0} = \underline{\hspace{1cm}}$

Matrikelnummer:	Name:	

D) Vervollständigen Sie den unten stehende Schaltplanvorlage mit Verbindungen und Gattern. Geben Sie eindeutige Namen für die verwendeten Signale und Gatter an. Verwenden Sie zum Zeichnen ausschließlich die vorgezeichneten Linien und Platzhalter!

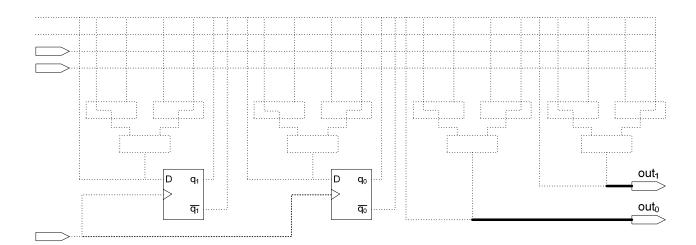


Abbildung 5

Aufgabe 7 Optimale Codes

In einem Angelverein im Großraum Karlsruhe wurde ein neuer Vorsitzender gewählt. In der nachfolgenden Tabelle ist die Stimmverteilung auf die verschiedenen Kandidaten gegeben.

Kandidat	Initialen	Anzahl der erhaltenen Stimmen	
Adam, Robert	RA	21	
Baer, Walther	WB	65	
Bentz, Gernot	GB	29	
Dietrich, Manuel	MD	22	
Herweh, Frank	FH	10	
Lemmer, Andreas	AL	270	
Nagel, Günther	GN	28	
Pfaff, Sandra	SP	20	
Traub, Johannes	JT	74	

Tabelle 4

A) Bestimmen Sie für die in Tabelle 4 gegebene Verteilung eine Huffman-Codierung und tragen Sie diese in die offizielle Ergebnisliste (Tabelle 5) ein.

Zu berücksichtigende Hinweise zur Ermittelung der Huffman-Codierung:

- Benutzen Sie zur Kennzeichnung die Initialen der verschiedenen Kandidaten
- Sortieren Sie die Liste der Stimmenanzahl aufsteigend von rechts nach links.
- Auch hinzugefügte Knoten müssen (der Stimmenanzahl entsprechen) aufsteigend von rechts nach links aufsteigend sortiert werden.
- Weisen Sie den jeweils linken Ästen des entstehenden Baumes die "0" zu, den jeweils rechten Ästen die "1".

Matrikelnummer:	Name:					
Lösungsblatt, Huffman Codierung:						

Kandidat	Anzahl der erhaltenen Stimmen	Ermittelte Huffman- Codierung
Lemmer, Andreas (AL)	270	
Traub, Johannes (JT)	74	
Baer, Walther (WB)	65	
Bentz, Gernot (GB)	29	
Nagel, Günther (GN)	28	
Dietrich, Manuel (MD)	22	
Adam, Robert (RA)	21	
Pfaff, Sandra (SP)	20	
Herweh, Frank (FH)	10	

Tabelle 5

B)	Geben Sie die Formel zur Berechnung der mittleren Codewortlänge für die Codierung	
	an. Berechnen Sie anschließend diesen Wert.	

29 / 32

Matrikelnummer:			Name:							
C)	Anhand	welcher	Quelleneigenschaft	kann	die	Effizienz	der	gefundenen	Huffman-	

Codierung beurteilt werden? Geben Sie deren Namen sowie deren formale

Beschreibung an.

Matrikelnummer:	Name:	
-----------------	-------	--

Zusätzliches Lösungsblatt 1:

Matrikelnummer:	Name:	
-----------------	-------	--

Zusätzliches Lösungsblatt 2: