

Klausur	
Di., 31.08.2010	
Lösungsblätter	

Hinweise zur Klausur Hilfsmittel

Als Hilfsmittel zur Prüfung sind vier Seiten vorgegebene und <u>ein DIN A4 Blatt</u> selbst geschriebene Formelsammlung zugelassen. Nicht erlaubt hingegen sind die Verwendung eines Taschenrechners, zusätzliche Unterlagen und jegliche Kommunikation mit anderen Personen.

Prüfungsdauer

Die Prüfungsdauer beträgt für die Klausur 120 Minuten.

Prüfungsunterlagen

Die Prüfungsunterlagen bestehen aus insgesamt 29 Seiten Aufgabenblättern (einschließlich diesem Titelblatt und zusätzlicher Lösungsblätter). Weiterhin sind 4 zusätzliche Seiten Formelsammlung enthalten.

Bitte vermerken Sie vor der Bearbeitung der Aufgaben auf jeder Seite oben Ihren Namen, auf der ersten Seite zusätzlich die Matrikelnummer!

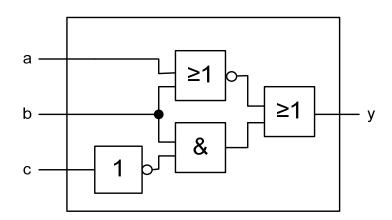
Auf jedes zusätzliche Lösungsblatt ist neben dem Namen auch die Aufgabennummer mit einzutragen. Vermeiden Sie das Beschreiben der Rückseiten.

Am Ende der Prüfung sind die 29 Seiten Aufgaben- und Lösungsblätter und alle verwendeten zusätzlichen Lösungsblätter abzugeben.

Verwenden Sie zum Bearbeiten der Aufgaben lediglich dokumentenechte Schreibgeräte – keinen Bleistift sowie Rotstifte!

Aufgabe 1	Boolsche Algebra	5		~11%
Aufgabe 2	Minimierung	8		~14%
Aufgabe 3	Optimale Codes	12		~10%
Aufgabe 4	Mengen, Relationen und Graphen	15		~10%
Aufgabe 5	Polyadische Zahlensysteme	18		~11%
Aufgabe 6	Automaten	20		~21%
Aufgabe 7	CMOS-Schaltnetze	24		~8%
Aufgabe 8	Schaltnetze	26		~15%
			Σ	

Matrikelnummer:	Name:	
	(pro zusätzliches Lösungsblatt nu	ur eine Aufgabe!)
Aufgabe		
		'


Matrikelnummer:	Name:
Zusätzliches Lösungsblatt 2:	: (pro zusätzliches Lösungsblatt nur eine Aufgabe!)
Aufgabe	

Matrikelnummer: N	ame:
Zusätzliches Lösungsblatt 3: (pro zusätzliche	es Lösungsblatt nur eine Aufgabe!)
Aufgabe	

Aufgabe 1 Boolsche Algebra

Aufgabe 1.1 Schaltnetze

Gegeben sei das folgende Schaltnetz:

A) Erstellen Sie zu dem gegebenen Schaltnetz eine entsprechende Wahrheitstabelle mit geeigneten Zwischenwerten. Verwenden Sie Tabelle 1-1.

а	b	С		у
1	1	1		
1	1	0		
1	0	1		
1	0	0		
0	1	1		
0	1	0		
0	0	1		
0	0	0		

Tabelle 1-1: Wahrheitstabelle

B) Geben Sie die Disjunktive Normalform (DNF) für den Wert von y an:

DNF: y(a, b, c) =

Matrikelnummer:	Name:
-----------------	-------

C) Entspricht der gefundene DNF-Ausdruck aus Teilaufgabe B) dem unten angegebenen Ausdruck? Begründen Sie Ihre Aussage durch eine Rechnung.

$$\overline{(a \lor b) \land (\overline{b} \lor c)} =$$

Aufgabe 1.2 Entwicklungssatz

A) Entwickeln Sie den Ausdruck

$$y(c,b,a) = b\bar{c} \vee \bar{a}\bar{b}$$

mit Hilfe des Booleschen Entwicklungssatzes in der Reihenfolge b, a, c. Geben Sie alle Zwischenergebnisse an.

B)	Eingangs	ickelte Funk sliterale a,b,o Sie die <u>min</u>	c ausschließ	Slich als St	euersignale		
	Zeichhen		irriale Mullip	Diexerscriai	turig.		
						 — у	
		1					

Aufgabe 2 Minimierung

Aufgabe 2.1 Primterme und KMF

Gegeben sei folgendes Symmetriediagramm der Schaltfunktion G:

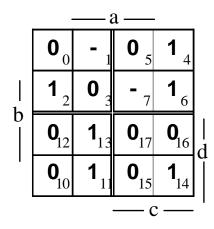


Abbildung 2-1: Symmetriediagramm

			_				s Abbild	dung 2-	1 an. V	erwend	en Sie
Zui B	IOCKO	illaurig	auch o	ile Fie	eisteilei	1.					
Gebe	n Si	e ein	e möd	liche	Üherd	eckuna	mit e	iner m	inimale	n Anza	ahl an
			_			eckung en falls				<u>n</u> Anza den.	ahl an
			_			_					ahl an
			_			_					ahl an
			_			_					ahl an
			_			_					ahl an
			_			_					ahl
			_			_					ahl ar

Aufgabe 2.2 Petrickausdruck

Ohne Streichungsregeln anzuwenden, hat ein Entwickler aus der Überdeckungstabelle einer Schaltfunktion den folgenden Petrickausdruck gebildet:

$$PA = (a \lor b) \& (a \lor c \lor e) \& (b \lor c \lor d) \& (a \lor d \lor e) \& (a \lor e \lor f) \& e$$

Um den Ausdruck nicht vollständig ausdistribuieren zu müssen, soll zunächst die Überdeckungstabelle wiedergewonnen werden.

A) Ergänzen Sie die untenstehende Überdeckungstabelle entsprechend des gegebenen Petrickausdrucks, ohne diesen zu vereinfachen. Die überdeckenden Größen sind durch die Präsenzvariablen a, b, c, d, e und f gegeben.

Die zu überdeckenden Größen E_i werden entsprechend der Reihenfolge wie Sie im Petrickausdruck auftauchen (links nach rechts), aufsteigend von E_1 bis E_n indiziert.

pi∖Ei				
а				
b				
С				
d				
е				
f				

Tabelle 2-1: Überdeckungstabelle 1

B)	Bestimmen	Sie	alle	Kernspalten	aus	Tabelle 2-1	und	markieren	Sie	die
	entsprechen	ide(n) Zel	le(n)						

Kernspalte(n):

Aufgabe 2.3 Verfahren nach Petrick

In den folgenden Teilaufgaben sollen verschiedene Schritte des Petrick-Verfahrens durchgeführt werden.

A) Wenden Sie die Spaltendominanzregel auf Tabelle 2-2 an. Welche Spalte(n) können gestrichen werden? Streichen Sie die entsprechende(n) Spalte(n) und geben Sie die dominierte(n) und zugehörigen dominierende(n) Spalte(n), sowie die streichbaren Spalte(n) an.

p _i \E _i	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀
а			Χ					X		
b	Χ		Χ	Χ				X		X
С	X					Χ	Χ			X
d			Χ							
е		Χ			Χ	Χ			Χ	X
f	Χ			Χ	Χ		Χ			
g	X	X				Χ				X
h			X	Χ				X	Χ	
i	Χ	Χ			Χ	Χ				Χ

Tabelle 2-2: Überdeckungstabelle 2

Dominierende Spalte(n):				
Dominierte Spalte(n):				
Streichbare Spalte(n):				

Kernspalte(n):

Matrikelnummer:	Name:

Aufgabe 3 Optimale Codes

Ein Mikrocontroller soll für bestimmte Anwendungszwecke optimiert werden. Dabei soll auch der benötigte Speicherplatz (ROM/RAM) der Software minimiert werden, ohne dass die Funktionalität der Software eingeschränkt oder verändert werden muss.

Aus statistischen Erhebungen ergeben sich folgende Auftrittshäufigkeiten der Maschinenbefehle für die eingesetzte Software, die in der Tabelle 3-1 aufgelistet sind.

Maschinenbefehl	Auftrittshäufigkeit (%)	Ermittelte Codierung
Load	18	
Store	16	
Jump	22	
Compare	17	
Add/Sub	13	
Mul	7	
Logic	4	
Shift	3	

Tabelle 3-1: Auftrittshäufigkeiten der Maschinenbefehle des Mikrocontrollers

A)	Zuerst soll untersucht werden, welche mittlere Codewortlänge sich für eine Codierung ergibt, bei der alle Codewörter binär und mit gleicher Länge codiert
	würden. Geben Sie die minimale mittlere Codewortlänge unter diesen Voraussetzungen an.

Anhand der Auftrittshäufigkeiten aus Tabelle 3-1 soll nun eine optimale Codierung für die Maschinenbefehle entwickelt werden, die den Speicherbedarf der eingesetzten Software minimieren soll.

B) Bestimmen Sie die optimale Codierung nach dem Shannon-Fanø-Verfahren für die Auftrittshäufigkeiten aus Tabelle 3-1 und tragen Sie diese in Tabelle 3-1 ein. Der Lösungsweg muss nachvollziehbar sein!

Hinweise:

- Sortieren Sie die Elemente zu Beginn entsprechend den Auftrittshäufigkeiten abfallend von links nach rechts. Falls unterschiedliche Knoten dieselbe Auftrittshäufigkeiten haben, sortieren Sie diese bitte alphabetisch.
- Teilen Sie eine Menge immer so auf, dass die Differenz zwischen den Summen der Auftrittshäufigen der Teilmengen minimiert wird. Verändern sie die Reihenfolge der Sortierung/Ordnung während der Anwendung des Verfahrens nicht.
- Weisen Sie den linken Ästen des entstehenden Baumes die "0" zu, den rechten Ästen die "1".

Matrikelnummer:

C) Geben Sie die Formel zur Berechnung der mittleren Codewortlänge an. Berechnen Sie anschließend die mittlere Codewortlänge für die im Aufgabenteil B) entwickelte Codierung.

D) Wie kann ermittelt werden, ob die Codierung aus Aufgabenteil B) eine ideale Lösung bezogen auf die mittlere Codewortlänge darstellt? Geben Sie eine Formel an und begründen Sie Ihre Antwort. Berechnungen müssen nicht durchgeführt werden!

	be 4 Mengen, Relationen und Graphen	
ja	pe 4.1 Fragen und Definitionen	
\ 8	eien A und B endliche Mengen und A echte Teilmenge/Untermenge /elche Aussage lässt sich daraus über die relative Mächtigkeit der bleiten? Wie unterscheidet sich die "echte Untermenge" von der allge Jntermenge"?	Mengei
	/as ist der Unterschied zwischen einer einfachen, offenen Kantenprog nd einer Wegprogression auf einem gerichteten Graphen?	gressio
	/elche Eigenschaften muss eine Verträglichkeitsrelation erfüllen?	

Aufgabe 4.2 Graphen

Gegeben sei folgender Graph als Grundlage einer Planungsstrategie. Gesucht ist die <u>maximale</u> Durchführungszeit eines Prozesses (worst case execution time).

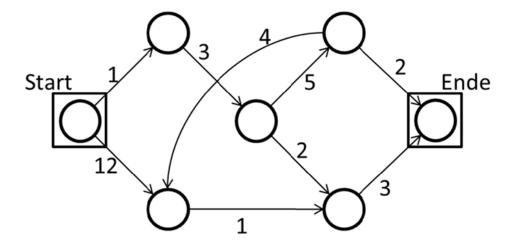
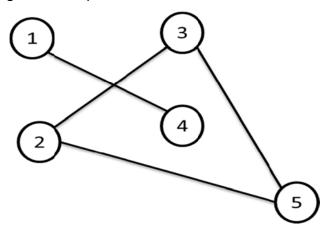



Abbildung 4-1: Gerichteter und gewichteter Graph

A)	Führen Sie die in der Vorlesung eingeführte Planungsstrategie (Längster-Weg-Suche) auf dem Graphen aus Abbildung 4-1 durch. Dazu sind Start- und Endknoten schon markiert. Markieren Sie die nötigen Kanten im Graphen. Geben Sie die maximale Durchführungszeit auch für die Teilschritte an.	
	Maximale Durchführungszeit:	
B)	Welche Eigenschaft muss ein Graph erfüllen, damit ein dualer Graph dazu konstruiert werden kann?	

Gegeben sei nun folgender Graph:

Abbildung 4-2: Ausgangsgraph

C) Konstruieren Sie zum gegebenen Graphen aus Abbildung 4-2 einen dualen Graphen. Wählen Sie dabei ggf. zunächst eine geeignete Darstellung des Graphen. Benennen/kennzeichnen Sie die entsprechenden Gebiete und geben Sie den dualen Graphen an.

Aufgabe 5	Polyadische Zahlensysteme	
Aufgabe 5.1	BCD	

Name:

A) Addieren Sie die im Dezimalsystem gegebenen Zahlen 8657_D und 4943_D im BCD Code. Stellen Sie ihren Lösungsweg – inklusive aller notwendigen Korrekturschritte – ausführlich dar.

Matrikelnummer:

Aufgabe 5.2 Konvertierung

A) Wandeln Sie die gegebenen Zahlen aus Tabelle 5-1 in das angegebene Zahlensystem um. Geben Sie Ihre Rechenschritte eindeutig an.

Gegebene Zahl	Ziel- Zahlensystem	Rechenweg	Konvertierte Zahl
58 _D	5		
132 ₀	9		

Tabelle 5-1: Konvertierungstabelle 1

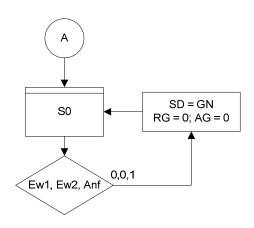
B) Vervollständigen Sie die Tabelle 5-2, indem Sie die offenen Felder durch die entsprechend konvertierten Zahlen ergänzen.

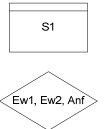
Dezimal	Binär	Oktal	BCD
		511 ₀	
	11 0110 0000 _B		

Tabelle 5-2: Konvertierungstabelle 2

Matrikelnummer:	Name:

Aufgabe 6 Automaten


Aufgabe 6.1 Erstellen eines endlichen Automaten


Es soll die Steuerung eines Getränkeautomaten entworfen werden. Der Automat akzeptiert 50 ct- und 1 €-Münzen und gibt ein Getränk aus, sobald der Getränkepreis von 1,50 € eingeworfen und anschließend die Anforderungstaste gedrückt wurde. Er besitzt ein Display, das den bereits eingeworfenen Betrag anzeigt. Die Anzeige des Betrags wird auf 0,00 € zurückgesetzt, sobald das Getränk ausgegeben wird.

Übersteigt der eingeworfene Betrag nach Einwurf einer Münze den Getränkepreis, so wird die Münze zurückgegeben. Auf dem Display erscheint dann die Meldung "ungültiger Betrag". Drückt man die Anforderungstaste, bevor der vollständige Getränkepreis eingeworfen wurde, erscheint auf dem Display "Geld nachwerfen".

Die Automatensteuerung besitzt folgende Ports:

Eingä	nge		
Ew1		Einwurf einer 50ct-Münze	
Ew2		Einwurf einer 1€-Münze	
Anf		Anfordern des Getränks	
Ausgä	inge		
SD		Status-Display, siehe Tabelle auf Seite 21	
RG		Rückgabe der zuletzt eingeworfenen Münze	
AG		Ausgabe des Getränks	
A)	hierbei Signale Ausgal	eren Sie das Ablaufdiagramm als Mealy-Automat. Verwenden Sie nur die oben beschriebenen Signale und nehmen Sie an, dass die e Ew1, Ew2 und Anf nicht gleichzeitig aktiv sein können. Stellen Sie die ben als Blöcke dar. Verwenden Sie die vorgegebene Abbildung 6-1 und gebenen Abkürzungen für die Display-Ausgaben (siehe folgende Seite).	
B)	Wie viele JK-Flip-Flops werden mindestens benötigt, um den Automaten aus Aufgabenteil A) zu implementieren?		
C)	Ist der Antwoi	Automat auch als Moore-Automat realisierbar? Begründen Sie Ihre t.	

Mögliche Display-Ausgaben:

Ausgabe	Abkürzung
0,00€	0EC
0,50 €	50EC
1,00 €	100EC
1,50 €	150EC
Geld nachwerfen	GN
Ungültiger Betrag	UB

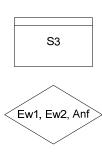
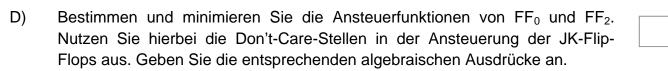


Abbildung 6-1: Ausgangsgraph des Automaten

Aufgabe 6.2 Analyse eines Automaten

Gegeben sei die Zustandsübergangstabelle eines Schaltwerks mit drei Speicherelementen.

Die Zustände des Schaltwerks werden direkt zur weiteren Nutzung ausgegeben. Es werden zwei vorderflanken-gesteuerte JK-Flip-Flops und ein T-Flip-Flop zur Speicherung der Zustände verwendet. FF $_0$ enthält hierbei den Wert von Q_0 , FF $_1$ den Wert von Q_1 und FF $_2$ den Wert von Q_2 .


Die Zustandsübergänge sind in der folgenden Tabelle gegeben:

	Q^{o}			Q ^{υ+1}			FF ₂		FF ₁		FF ₀	Ausgabe		
	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	T_0	y ₂	y ₁	y ₀
0	0	0	0	0	0	1						0	0	0
1	0	0	1	0	1	1						0	0	1
2	0	1	0	1	1	0						0	1	0
3	0	1	1	0	1	0						0	1	1
4	1	0	0	0	0	0						1	0	0
5	1	0	1	1	0	0						1	0	1
6	1	1	0	1	1	1						1	1	0
7	1	1	1	1	0	1						1	1	1

Tabelle 6-1: Zustandstabelle

A)	Realisieren Sie die Ansteuerung jedes JK-Flip-Flops in jedem Zustand für die spätere Minimierung mit mindestens einer Don't-Care-Stelle.	
B)	Welcher spezielle Zähler wird durch die Zustandstabelle (Tabelle 6-1) beschrieben?	

C)	Um welchen Automatentyp handelt es sich? Begründen Sie Ihre Antwort.

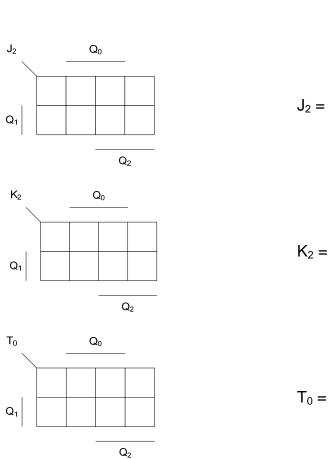


Tabelle 6-2: KV-Diagramme

Aufgabe 7 CMOS-Schaltnetze

Bei einem CMOS-Schaltkreis ist nur das Pull-Up-Schaltnetz vorhanden. In mehreren Teilaufgaben soll nun die Pull-Down-Funktion bestimmt und das entsprechende Schaltnetz realisiert werden.

Gegeben sei folgender CMOS-Schaltnetz:

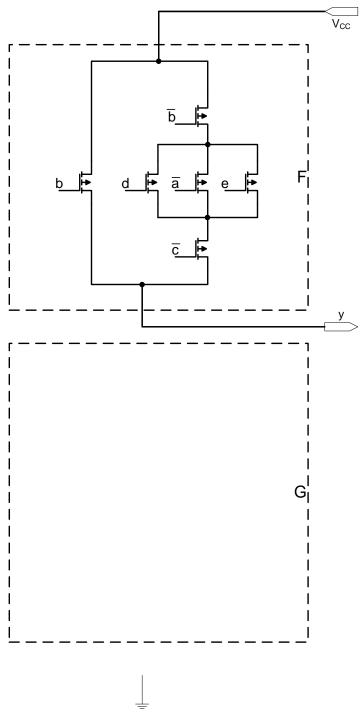


Abbildung 7-1: CMOS-Schaltnetze

- A) Geben Sie für die vorliegende Schaltung die Pull-Up-Funktion F in disjunktiver Minimalform (DMF) an.
- B) Welche Bedingungen müssen die Pull-Up- (F) / Pull-Down-Funktionen (G) erfüllen, damit das CMOS-Schaltnetz für alle möglichen Eingangsbelegungen einen definierten Ausgangspegel hat?

C) Gegeben ist nun eine Pull-Up-Funktion F'. Bestimmen Sie für diese Pull-Up-Funktion die dazugehörende Pull-Down-Funktion G', so dass die CMOS-Schaltung wohldefiniert und kurzschlussfrei ist. Geben Sie G' in der DMF an.

$$F' = c(a\overline{b}e + cd)$$

D) Gegeben ist nun die Pull-Down-Funktion G. Vervollständigen sie das CMOS-Schaubild in Abbildung 7-1, in dem Sie die Pull-Down-Funktion unter Verwendung von nMOS-Feldeffekttransistoren einzeichnen.

$$G = b(\overline{b} + \overline{c} + \overline{ade})$$

Aufgabe 8 Schaltnetze

Aufgabe 8.1 Strukturausdruck und PAL-Realisierung

Gegeben ist das Schaltnetz in Abbildung 8-1.

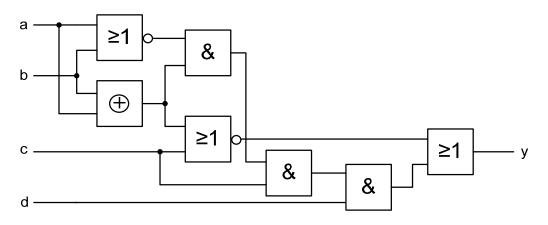


Abbildung 8-1: Schaltnetz mit Grundgattern und Komplexgattern

A) Ermitteln Sie den Strukturausdruck y des in Abbildung 8-1 gegebenen Schaltnetzes.

Hinweis: Der Ausdruck muss nicht vereinfacht werden. Sowohl einfache, als auch komplexe boolesche Operatoren dürfen verwendet werden.

B) Wandeln Sie den in Teilaufgabe A) gefundenen Strukturausdruck so um, dass ein minimales zweistufiges UND/ODER-Schaltnetz entsteht, das sich anschließend als PAL realisieren lassen würde. Der Lösungsweg muss nachvollziehbar sein.

C) Geben Sie nun die PAL-Realisierung des gefundenen minimalen Ausdrucks aus Teilaufgabe B) an. Verwenden Sie dazu Abbildung 8–2.

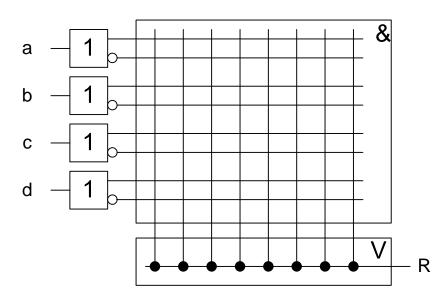


Abbildung 8–2: PAL-Schaltnetz

Aufgabe 8.2 3:1 Multiplexer-Realisierung

Sie sollen nun in mehreren Schritten einen 3:1 Multiplexer aus NAND-Gattern (Full-NAND) realisieren. Das Blockschaltbild und die Schaltfunktion des Multiplexers sind in Abbildung 8–3 dargestellt. Die Eingangssignale a, b und c haben eine Breite von einem Bit.

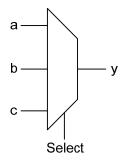


Abbildung 8-3: Blockschaltbild des 3:1 Multiplexer

A)	Welche Bitbreite ist minimal für die Ansteuerung des Select-Signals des zu entwerfenden 3:1 Multiplexer nötig?	
B)	Geben Sie die Schaltfunktion y des Multiplexers in Abhängigkeit der Eingänge a, b, c und Select. Verwenden Sie die in der vorherigen Teilaufgabe ermittelte Bitbreite für das Select-Signal. Jeder Eingang soll dabei mit genau einer Kombination der Select-Bits durchgeschaltet werden, für alle übrigen Select-Bitkombinationen soll am Ausgang y eine "0" anliegen. Verwenden Sie	

folgende Bezeichnung für die Bits des Select-Eingangs: s0, s1, s2 ...

C)	ausschließlich mit NAND3-Gattern (NAND-Gatter mit drei Eingängen) realisiert
	werden kann.

D) Zeichnen Sie die Schaltung des 3:1 Mulitplexers in Full-NAND-Technik. Verwenden Sie dazu eine minimale Anzahl an NAND3-Gattern.