Digitaltechnik Klausur Sommersemester 2013

Institut für Technik der Informationsverarbeitung – ITIV Prof. Dr.-Ing. Dr. h. c. Jürgen Becker

Digitaltechnik

Datum: 02.09.2013

Name: Matrikel-Nr.:

ID: Hörsaal:

Sitzplatznummer.:

Hinweise zur Klausur

Hilfsmittel

Als Hilfsmittel zur Prüfung sind drei Seiten vorgegebene und ein DIN A4 Blatt selbst geschriebene Formelsammlung zugelassen. Nicht erlaubt hingegen sind die Verwendung eines Taschenrechners, zusätzliche Unterlagen und jegliche Kommunikation mit anderen Personen.

Prüfungsdauer

Die Prüfungsdauer beträgt für die Klausur 120 Minuten.

Prüfungsunterlagen

Die Prüfungsunterlagen bestehen aus insgesamt 30 Seiten Aufgabenblättern (einschließlich diesem Titelblatt und zusätzlicher Lösungsblätter). Weiterhin sind 3 zusätzliche Seiten Formelsammlung enthalten.

Bitte prüfen Sie vor der Bearbeitung der Aufgaben auf jeder Seite oben Ihren Namen sowie ihre Matrikelnummer.

Auf jedes zusätzliche Lösungsblatt ist neben dem Namen auch die Aufgabennummer mit einzutragen. Vermeiden Sie das Beschreiben der Rückseiten.

Am Ende der Prüfung sind die 30 Seiten Aufgaben- und Lösungsblätter und alle verwendeten zusätzlichen Lösungsblätter abzugeben.

Verwenden Sie zum Bearbeiten der Aufgaben lediglich dokumentenechte Schreibgeräte – keinen Bleistift sowie Rotstifte!

Prüfungsaufgaben

Wenn nicht anders vorgegeben ist zu jeder Aufgabe ein detaillierter Rechenweg anzugeben. Lösungen ohne Rechenweg können trotz richtigem Ergebnis zu Punktabzug führen.

			<u> </u>
Aufgabe 1	Fehlererkennung und -korrektur		~10%«Nächster
Aufgabe 2	Mengen, Relationen, Graphen		~10%«Nächster
Aufgabe 3	Boolsche Algebra		~11%«Nächster
Aufgabe 4	Zahlensysteme		~14%«Nächster
Aufgabe 5	Minimierung digitaler Funktionen		~13%«Nächster
Aufgabe 6	Optimale Codes		~12%«Nächster
Aufgabe 7	Schaltnetze und Schaltwerke		~16%«Nächster
Aufgabe 8	CMOS-Schaltungen		~14%«Nächster
		Σ	

Matr	-Nr.:	Name:	ID:	
Aufgabe 1		Fehlererkennung und -k	korrektur	
Aufg	gabe 1.1	Allgemeine Fragen		
A)		en Verfahren können Burstfehler e ts beeinflussen? Nennen Sie 2 Ver		
В)		urstfehler können mit der Sicheru egründen Sie Ihre Antwort.	ng durch ein Paritätsbit erkannt	

Die folgende Tabelle zeigt die Auftrittswahrscheinlichkeit von gesendeten Symbolen eines Datenübertragungssystems.

Platz	Symbol	Relative Häufigkeit
1	Е	60,0%
2	N	20,0%
3	1	12,0%
4	S	5,0%
5	R	3,0%

Tabelle 1-1: Auftrittswahrscheinlichkeiten

A)	Wie hoch ist die Entropie der Quelle? Geben Sie alle verwendeten Formeln
	und Ihren Rechenweg an. Das Endergebnis muss nicht ausgerechnet werden.

B)	Wie hoch ist der Informationsgehalt des Zeichens "E"? Geben Sie alle verwendeten Formeln und Ihren Rechenweg an.
A£	gabe 1.3 Overhead durch Fehlerbehandlung
serie habe	Übertragungssystem sendet kritische Sensordaten bei denen eine erkorrektur durchgeführt werden soll. Die Daten werden vom Sensor Bitweise, ell mit einer konstanten Frequenz von 50 MHz ausgegeben. Untersuchungen en gezeigt, dass mindestens 15 Bit fehlerfrei übertragen werden bevor ein elnes Bit fehlerhaft beim Empfänger ankommt.
A)	Wie hoch ist der minimale und maximale Overhead wenn Blocksicherung zur Fehlerkorrektur eingesetzt werden soll? Geben Sie die verwendeten Formeln und Ihren Rechenweg vollständig an. Gehen Sie von einer Datenblockgröße von 16 Bit aus.

Matr.-Nr.:

Name:

ID:

Matr1	Nr.:	Name:		ID:	
		ing Codierung zu aufgeteilt und ver	m Einsatz kommen. Da sendet.	bei werden die Daten	
B)	Bestimmen Sie Systems korrigie		nmingdistanz um alle r	nöglichen Fehler des	
C)	Fin die Codien			on Wie beek iet der □	
C)		ing mussen 4 Pri ead in diesem Fal	üfbits verwendet werde I?	en. vvie noch ist der	
D)	Was ist die ma	ximale Nutzdaten	rate des Gesamtsyster	ms wenn eine Ritzeit □	
<i>υ</i> ,	20ns beträgt?	Aimaic Huizdaten	rate des desamisyster	ns wern eine Bitzeit	

abe 2.1	Allgemeines		
Geben Sie	e für folgende Aussagen an, ob diese wahr oder fa	lsch sind	
Bei falsche Punkten b	er Antwort gibt es Punktabzug. Die Aufgabe wird mewertet.	ninimal m	it O
		Wahr	Falsch
Zwei Me	engen S und T sind disjunkt, wenn gilt: S ∩ T ≠ ø		
	ige aller Untermengen einer Menge M heißt nenge P von M.		
J	erichteter Graph kann immer mit einem ten Graphen dargestellt werden.		
Ein Bau Graph.	m ist ein zyklenfreier, nicht zusammenhängender		
≤ ist ein	e Ordnungsrelation		
-	oh und sein Dualer Graph haben immer die Anzahl an Knoten		
	Tabelle 2-1: Allgemeines	•	•
Geben Sie	e die exakte Definition eines bipartiten Graphen an		
	llt eine Menge M eine Verträglichkeitsrelation dan nden Eigenschaften und definieren Sie sie formal.	? Nenne	n Sie die

Matr.-Nr.:

Name:

ID:

,	Was ist die dualen Graph	Voraussetzung nen?	für	die	Überführung	eines	Graphen	G	in	einen	
	·										
•											

Aufgabe 2.2 Graphen

Gegeben sei der folgende gerichtete Graph:

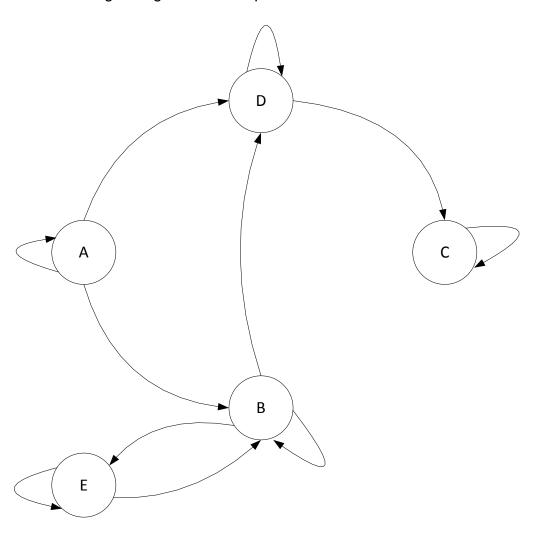


Abbildung 2-1: Gerichteter Graph

A)	Geben Sie den Grad des Knotens B aus Abbildung 2-1 an.			

Der Graph in Abbildung 2-2 sei nun unvollständig und soll in eine <u>strenge</u> <u>Ordnungsrelation</u> überführt werden.

B)	Nennen Sie die Eigenschaften einer strengen Ordnungsrelation.	
C)	Streichen Sie genau 5 Kanten und geben Sie an, welche Eigenschaft an eine strenge Ordnungsrealtion verletzt wird	
D)	Fügen Sie genau 4 Kanten zum Graph hinzu und geben Sie an, welche Eigenschaft dadurch erfüllt wird.	

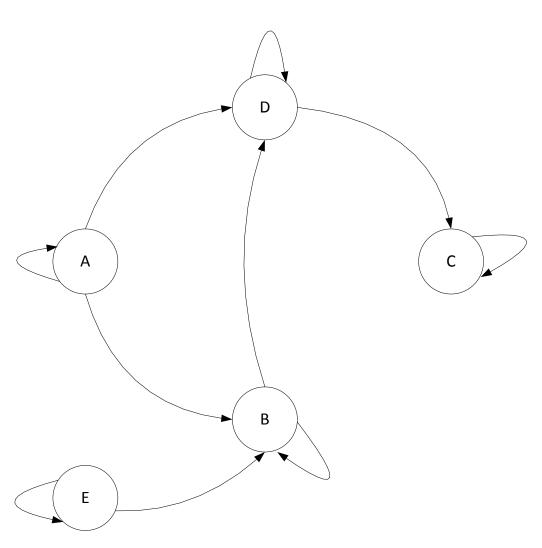


Abbildung 2-2: Graph einer strengen Ordnungsrelation

Matr	Nr.:	Name:	ID:	
Au	fgabe 3	Boolsche Alge	ebra	
Auf	gabe 3.1	Symmetriediagra	amm	
A)	indem Sie d	_	obildung 3-1 gegebene Symmetriediagramı ninzufügen. Benutzen Sie die in der Vorlesur	
		Abbildung 3-	1: Symmetriediagram	
B)	Geben Sie	e für die gegebene Sch	naltfunktion alle Primimplikanten an.	
C)	Bilden Sie Minimalfor		e Auswahl der Primimplikanten die Disjunkti	ve
		(Divil).		<u> </u>
Auf	gabe 3.2	Entwicklungss	satz	
Geg	eben sei folg	ende boolsche Funktio	on:	
	\boldsymbol{x}	$(d,c,b,a)=(a\rightarrow b)c\overline{a}$	$\overline{d} \vee a(c \equiv d) \vee \overline{a}cd \vee (\overline{b \vee \overline{c} \vee d})$	
A)	Entwicklur	· · · · · · · · · · · · · · · · · · ·	(d,c,b,a) so um, dass er sich mit de on entwickeln lässt. Also so, dass nur noo verwendet werden.	

Gegeben sei folgende boolsche Funktion:

MatrNr.:	Name:	ID:
----------	-------	-----

												_		_	
vl	A	c	h	a`	\ — <u>च</u>	h	· ~)	1/	$\overline{a}cd \setminus$	/ hzd	1/4	ah	CV	(A)	١
Λl	u,	, L	, <i>U</i>	, u	, — u	\mathcal{U}	L)	v	ucu v	vuu	V (ıυ(ιv	u	,

B)	Minimieren Sie die Funktion x(d,c,b,a), indem Sie ausmultiplizieren und dann	
	geeignete Axiome anweden.	

Gegeben sei folgende boolsche Funktion:

$$y(d,c,b,a) = a\overline{b} \vee ac \vee a\overline{d} \vee \overline{b}c\overline{d} \vee \overline{a}b\overline{c} \vee \overline{a}bd$$

C) Entwickeln Sie den Ausdruck y mit Hilfe des Booleschen Entwicklungssatzes in der Reihenfolge d, c, b, a. Geben Sie alle Zwischenergebnisse an.

MatrN	lr.:	Name:	ID:				
Aufg	abe 4	Zahlensysteme					
Aufgabe 4.1		Umrechnung von Zahlensystemen					
,		digen Sie die untere Tabelle, indem Sie die offenen Fe ung ergänzen.	elder durch				

Dezimal	Binär	Oktal	Hexadezimal
790 _D			
	1110001111 _B		
		207 ₀	
			7CF _H

Tabelle 4-1: Umrechnung von Zahlensystemen

Aufgabe 4.2 BCD Code

A)	Addieren	Sie	die im	Dezir	malsyst	tem gegebene	en Zahlen	153 _D	und 371_D im	
	BCD Cod	de. S	Stellen	Sie	Ihren	Lösungsweg	inklusive	aller	notwendigen	
	Korrekturschritte ausführlich dar.									

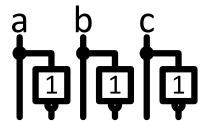
Aufgabe 4.3 Gleitkommazahlen

A) Wandeln Sie die im IEEE 754-Gleitkommaformat gegebene Hexadezimalzahl CE390000_H in eine Dezimalzahl um. Geben Sie alle Rechenschritte an. Vereinfachen Sie Brüche so weit wie möglich, die Angabe als Kommazahl ist nicht notwendig.

Aufgabe 4.4 Zweierkomplement

A) Berechnen Sie 79_D - 177_D. Führen Sie diese Rechnung komplett im binären Zahlensystem mit Hilfe des Zweierkomplements durch. Stellen Sie Ihren Lösungsweg inklusive aller notwendigen Schritte ausführlich dar. Geben Sie anschließend das Ergebnis im dezimalen Zahlensystem an.

Aufgabe 5 Minimierung digitaler Funktionen


Gegeben sei folgendes

Symmetriediagramm:

	a							
	1 0	0,	1,5	1 4				
b	0,	0 3	1,	0 6				
	C							

Abbildung 5-1: Symmetriediagramm

A) Zeichnen Sie die zugehörige Schaltung zur Disjunktiven Normalform zu dem in Abbildung 5-1 gegebenen Symmetriediagramm. Verwenden Sie ausschließlich UND und ODER Gatter.

MatrN	√r.:		Name	: :						ID:
3)		teln Sie dung 5-1.	-	unktive	Minimal	form au	s dem S	Symmetr	iediagra	amm in
C)	Wie viele logische Elemente lassen sich durch die Minimierung einsparen? Negationsglieder gehen nicht in die Berechnung mit ein.									
D)	Welch	hen weite	ren Vort	teil gege	nüber Aı	ufgabent	eil C) bi	etet die l	Minimier	rung?
Aufg	abe 5	5.2 Ne	elson-F	Petrick	Verfah	ren				
	Wend	5.2 Ned den Sie d dominierte ie entspre	lie Spalt en, dom	tendomii inierend	nanzrege en und	el auf Ta die strei	chbaren			
	Wend	den Sie o dominierte ie entspre	lie Spalten, dom	tendomii inierend n Spalte	nanzrege en und e n aus Ta	el auf Ta die strei abelle 5-	chbaren 1.		an. St	
	Wend	den Sie o dominierte ie entspre	lie Spalten, dom	tendomii inierend n Spalte	nanzrege en und e n aus Ta	el auf Ta die strei abelle 5-	chbaren 1.	Spalten	an. St	
	Wend	den Sie d dominierte ie entspre pi	lie Spalten, dom echende	tendomii inierend n Spalte	nanzrege en und n aus Ta	el auf Ta die strei abelle 5-	chbaren 1.	Spalten E6	an. St	
	Wend	den Sie d dominierte ie entspre pi	lie Spalten, dom echende	tendomii inierend n Spalte	en und n aus Ta	el auf Ta die strei abelle 5-	chbaren 1.	Spalten E6	an. Sti	
	Wend	den Sie d dominierte ie entspre pi a	lie Spalten, dom echende	tendomii inierend n Spalte	en und n aus Ta	el auf Ta die strei abelle 5-	chbaren 1.	Spalten E6	an. Sti	
	Wend	den Sie den den Sie entspreise en	lie Spalten, dom echende	tendomii inierend n Spalte	en und n aus Ta	el auf Ta die strei abelle 5-	E5	E6	an. Sti	
Aufg ⁽	Wend	den Sie den den Sie entspreisie entspreisie den Sie de	lie Spalten, dom echende	tendomii inierend n Spalte	en und on aus Ta	el auf Ta die strei abelle 5-	E5	E6 X	E7	

Dominierende Spalte:			
Dominierte Spalte:			
Streichbare Spalte:			

MatrNr.:	Name:	ID:

B) Wenden Sie nun das Nelson-Petrick-Verfahren auf die bereits reduzierte Tabelle 5-2 an. Geben Sie jeweils die dominierende Zeile/Spalte, die dominierte Zeile/Spalte, und die streichbare Zeile/Spalte an. Verwenden Sie in der gegebenen Vorlage genau einen Schritt um genau eine Zeile oder genau eine Spalte zu streichen. Entstehende Kerne werden beim Ablauf nicht berücksichtigt.

Ei pi	E1	E2	E3	E4	E5	E6	E7	Kosten
а	Х	Х	Х	Х				1 GE
b				Х	Х			2 GE
С					Х		X	3 GE
d		X		Х		Х		4 GE
е	X					Х		5 GE
f		Х				Х		6 GE
gg			Х				X	7 GE
h	Х						X	8 GE

Tabelle 5-2: reduzierte Überdeckungstabelle

Schritt	Dominierende Zeile/Spalte	Dominierte Zeile/Spalte	Streichbare Zeile/Spalte
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

C) Geben Sie die Kosten der in Teilaufgabe B) gefundenen Überdeckung an.

MatrNr.:		Name:				ID:	
Aufgabe 6 Aufgabe 6.1		Optimale C	odes				
		Allgemeine E	igenschaf	ten			
A)	Was muss Codierung	für die mittlere ideal ist?	Codewortlän	ge einer Codi	ierung gelten	, damit die	
B)		genschaft einer Decodierung eine	-		-		

C) Berechnen Sie die mittlere Codewortlänge der Codierung aus Tabelle 6-1. Geben Sie die verwendete Formel an.

Zeichen	а	b	С	d	е
Codierung	001	10	11	000	01
Auftrittshäufigkeit	5	7	14	4	6

Tabelle 6-1: Codierungstabelle

Aufgabe 6.2 Shannon-Fanø-Codierung

A) Gegeben ist der in Abbildung 6-1 dargestellte Codierbaum. Tragen sie die entsprechende Codierung im gegebenen Codierbaum ein und vervollständigen Sie die Tabelle.

Zeichen	а	b	С	d	е	f
Codierung						

Tabelle 6-2 Optimale Codes - Shannon-Fanø-Codierung

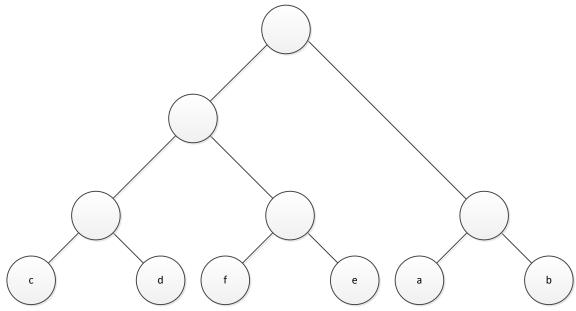


Abbildung 6-1: Shannon-Fanø Codierbaum

B) Ist die Codierung aus Aufgabe A) korrekt, wenn folgende Auftrittswahrscheinlichkeiten zu Grunde gelegt werden? Begründen Sie ihre Antwort mit Hilfe der in Tabelle 6-3 angegebenen Zeichen und Wahrscheinlichkeiten.

Zeichen	а	b	С	d	е	f
Auftrittswahrscheinlichkeit	0,15	0,3	0,05	0,1	0,3	0,1

Tabelle 6-3 Optimale Codes - Shannon-Fanø Auftrittswahrscheinlichkeiten

Matr.	-Nr.:	Name:					ID:
C)	Nennen Sie zwe Fanø-Codierung					•	
Auf	gabe 6.3 Huf	fman-Codie	erung				
A)	Gegeben sind fo	lgende Auftrit	tshäufigke	iten der zu	ı übertrag	enden Zei	chen.
	Zeichen	а	b	С	d	е	f
	Auftrittshäufigk	ceit 10	24	18	30	15	13
_	Erstellen Sie eir Zwischenschritte Zusammengefas an. Zeichnen Sie	an, ker sten Knoten	nzeichner und gebe	n Sie n Sie imr	für jed ner alle A	en Sch uftrittshäu	ritt die Ifigkeiten
_	4 Calada	a b 24	c 18	d 30	e 15	f 13	
	2. Schritt						
_	3. Schritt						
_	4. Schritt						
	5. Schritt						
	6. Schritt						

Abbildung 6-2: Huffman-Codierung

Aufgabe 7 Schaltnetze und Schaltwerke

Aufgabe 7.1 Prioritätsbasiertes Übertragungssystem

Abbildung 7-1 zeigt den schematischen Aufbau eines Prioritätsbasierten Übertragungssystems. Im Sender werden Daten von drei separaten priorisierten *Puffer-Speichern* verarbeitet und für die Übertragung selektiert. Dabei selektiert die Sender FSM immer den *Puffer-Speicher* mit der höchsten Priorität der Daten enthält für die Übertragung. Über den *Multiplexer (MUX)* werden die Daten an den Übertragungskanal weitergegeben.

Mit einer Latenz von einem Taktzyklus erreichen die übertragenen Daten den Empfänger. Über separate Leitungen werden Informationen über die gewählte Priorität an den Empfänger übertragen.

Die *Empfänger FSM* verarbeitet die Steuerdaten mit einer Latenz von einem Taktzyklus und generiert daraus die Ansteuerung des *Demultiplexer (DEMUX)*. Anschließend werden die übertragenen Daten entsprechend ihrer Priorität vom Empfänger auf separaten Leitungen ausgegeben.

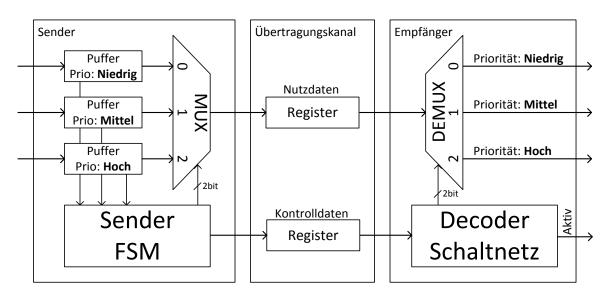


Abbildung 7-1: Blockschaltbild eines Prioritätsbasierten Übertragungssystem

A)	Wie viele Bit werden mindestens für die Codierung und Übertragung der Priorität auf der Steuerleitung (Steuerdaten) benötigt?	

B) \	Welche Baugruppe, die Sie in der DT-Vorlesung kennengelernt haben, lässt	
5	sich zur Realisierung der Puffer im Sender verwenden?	

- C) Welche Art von Register (FlipFlop) eignet sich gut für die Modellierung des Übertragungskanals? Begründen Sie Ihre Antwort.
- D) Entwickeln Sie ein effizientes Gatterschaltnetz für die Multiplexer-Schaltung im Sender. Verwenden Sie nur UND- und ODER-Gatter mit maximal drei Eingängen. Vervollständigen Sie dazu das in Abbildung 1 2 gegeben Schaltnetz zu einer zweistufigen Logik. Gehen Sie dazu von einem 1-bit Datensignal und einem 2-bit Select-Signal (s0, s1) aus.

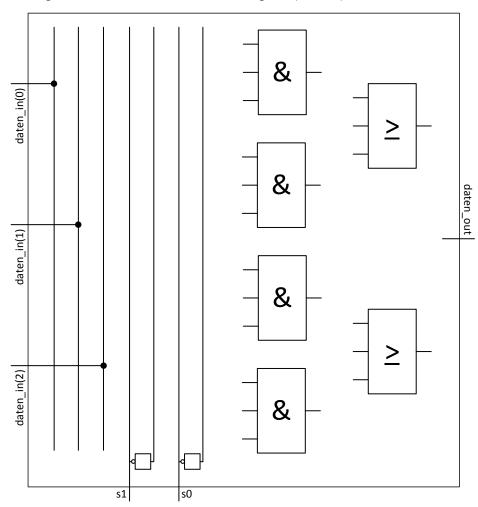


Abbildung 7-2: Realisierung des Multiplexer auf der Senderebene

Nun soll die *Sender FSM* aus Abbildung 7-1 realisiert werden. Diese hat folgende Eingangssignale:

p0: zeigt an, dass der Puffer mit der niedrigsten Priorität (P0) Daten enthält

p1: zeigt an, dass der Puffer mit der mittleren Priorität (P1) Daten enthält

p2: zeigt an, dass der Puffer mit der höchsten Priorität (P2) Daten enthält

Aus diesen Daten soll die *Sender FSM* mit einer Latenz von einem Taktzyklus folgende Ausgangssignale generieren:

s0: LSB für die Ansteuerung des Multiplexer

s1: MSB für die Ansteuerung des Multiplexer

k0: LSB des Kontrolldatensignals

k1: MSB des Kontrolldatensignals

Die Kontrolldaten sollen wie folgt kodiert werden:

(k1, k0): $(0, 0) = \ddot{U}$ bertragung von P0, $(0, 1) = \ddot{U}$ bertragung von P1,

(1, 0) = Übertragung von P2, (1, 1) = keine Übertragung

E) Die FSM soll immer die Daten mit der höchsten Priorität auf den Kanal legen, solang Daten vorhanden sind. Dazu soll der Automat aus 3 Zustände für die aktive Übertragung der Prioritäten (P0-P2) und aus einem Zustand OFF für die inaktive Datenübertragung bestehen. Vervollständigen Sie das Ablaufdiagramm in Abbildung 7-3 zur Realisierung der Sender FSM

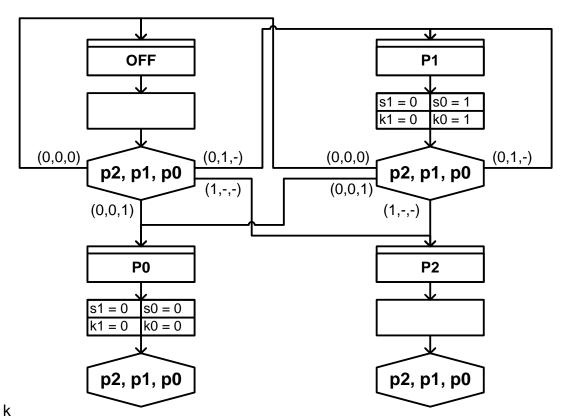


Abbildung 7-3: Ablaufdiagramm der Sender FSM

F) Um was für einen Automatentyp handelt es sich? Bitte begründen Sie Ihre Antwort.

G) Vervollständigen Sie nun in Tabelle 7-1 die Spalten der Ablauftabelle für die Eingabesignale (P) von den Puffern, die Folgezustände (Q^{v+1}) und die Ausgabe (K^{v+1}) für die Kontrolldaten. Verwenden Sie dazu das zugehörige Ablaufdiagramm aus Abbildung 7-3. Die Ausgabe (S) für die Select-Signale des Multiplexer wird nicht berücksichtigt!

	C) ^v	Ein	gabe	e E ^v		v+1	Ausgabe K ^{v+1}		RS FF (Q ₁)		JK FF (Q ₀)	
	$q_1^{\ v}$	$q_0^{\ v}$	p ₂	p_1	p_0	q ₁ ^{v+1}	q_0^{v+1}	k ₁ ^{v+1}	k_0^{v+1}	R ₁	S ₁	J_0	K_0
P0	0	0				1	1						
						0	0						
						0	1						
						1	0						
P1	0	1	0	0	0								
			0	0	1								
			0	1	-								
			1	-	-								
P2	1	0				1	1						
						0	0						
						0	1						
						1	0						
OFF	1	1	0	0	0								
			0	0	1								
			0	1	-								
			1	-	-								

Tabelle 7-1: Ablauftabelle des Automaten

H) Vervollständigen Sie nun die Ansteuerung der FlipFlops für die Zustandsvariablen Q_0 und Q_1 . Berücksichtigen Sie, dass Q_0 in einem JK-FF und Q_1 in einem High-Active RS-FF gespeichert wird. Verwenden Sie möglichst viele Freistellen um später eine minimale Realisierung der Ansteuerfunktion zu ermöglichen.

Aufgabe 8 CMOS-Schaltungen

Aufgabe 8.1 Erzeugen von Gatter-Schaltungen

Gegeben sei die folgende CMOS Schaltung in Abbildung 8-1.

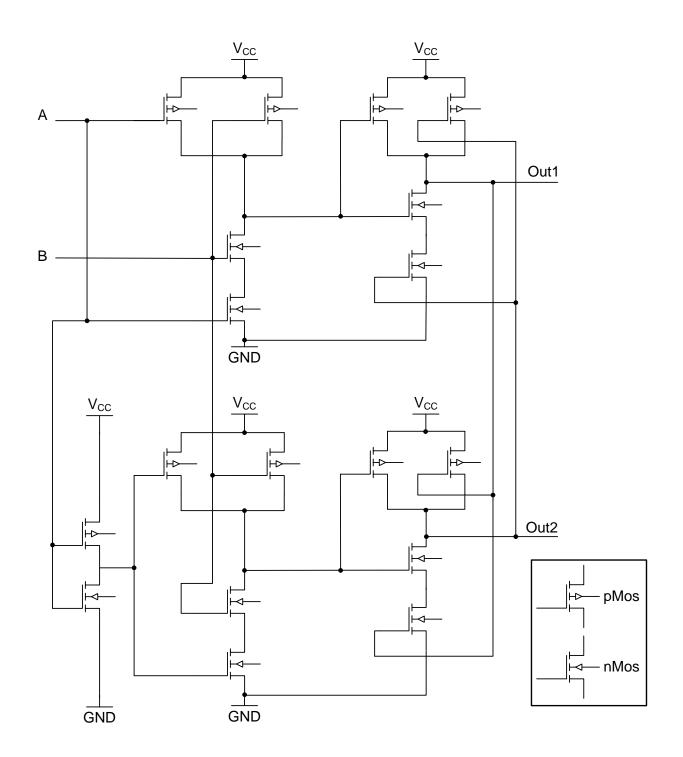


Abbildung 8-1: CMOS-Schaltung

MatrNr.: Name:	ID:
----------------	-----

A)	Bestimmen	Sie	die	Gatterschaltung	für	die	in	Abbildung	8-1	dargestellte	
	CMOS-Schaltung.										

A

В

Out1

Out2

В)	grundlegende g 8-1 realisiert?	J	wird	durch	die	CMOS-Schaltung	in	
	g							

C) Welche booleschen Funktionen werden durch Abbildung 8-1 realisiert? Geben Sie sowohl Out1 = f1(A, B, Out2) als auch Out2 = f2(A, B, Out1) an ohne die Funktion weiter aufzulösen.

$$f_1(A,B,out2) =$$

$$f_2(A, B, out1) =$$

Aufgabe 8.2 Analyse von CMOS-Schaltungen

Gegeben sei die in Abbildung 8-2 dargestellte CMOS-Schaltung.

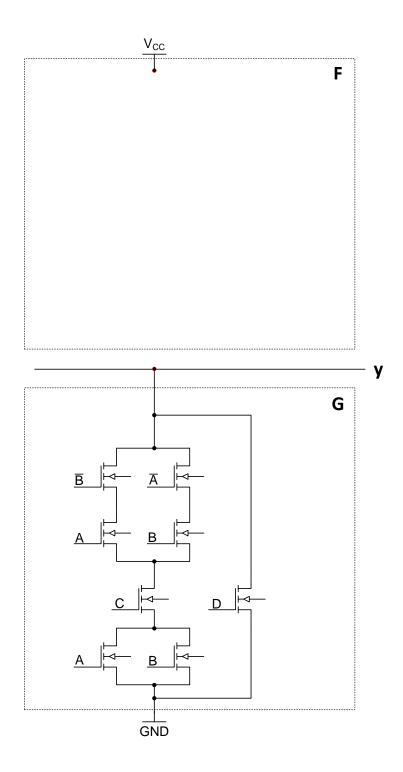


Abbildung 8-2: CMOS-Schaltung

MatrN	۱r.:	Name:			ID:	
A)		Funktion G, welch bildung 8-2 ableite	e sich aus der CMC en lässt.	DS-Schaltung des	unteren	
B)	den pMOS-Teil	der Schaltung nur noch Und-	aus Aufgabenteil definiert. Vereinfa und Oder-Verkn	achen Sie die	Funktion	
C)	Zeichnen Sie di Abbildung 8-2 e	-	B) ermittelte Schal	tung für die Funk	ction F in	

Aufgabe 8.3 Korrektur von CMOS-Schaltungen

In Abbildung 8 4 ist eine fehlerhafte CMOS-Schaltung gegeben. Diese soll in den folgenden Teilaufgaben analysiert und korrigiert werden.

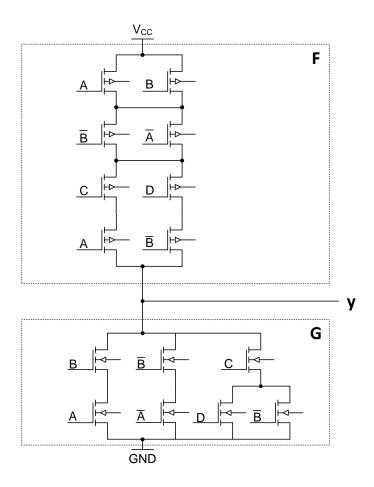


Abbildung 8-3: Fehlerhafte CMOS-Schaltung

A) Überprüfen Sie für die Schaltung in Abbildung 8-3, ob die Bedingungen für Kurzschlussfreiheit und Wohldefiniertheit erfüllt sind (tabellarisch!). Geben Sie dazu die Ergebnisse der Schaltnetze (f und g) und den daraus folgenden Fehler (1) oder korrektes Verhalten (0) in der Fehlerspalte an.

Verwenden Sie dazu Tabelle 8-1 auf Seite 30 um Ihre Lösung einzutragen

а	b	С	d	f	g	Fehler
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Tabelle 8-1: Wahrheitstabelle für die CMOS-Schaltung

B)	Streichen Sie genau einen Transistor in der Pull-Up-Schaltung aus Abbildung	_
	8 4, sodass eine wohldefinierte, kurzschlussfreie CMOS-Schaltung entsteht.	_
	Begründen Sie zusätzlich ihr Vorgehen.	