

Grundbegriffe der Informatik

Kapitel 15: Reguläre Ausdrücke und rechtslineare Grammatiken

Mattias Ulbrich (basierend auf Folien von Thomas Worsch)

KIT · Institut für Theoretische Informatik

Wintersemester 2023/2024

Was können endliche Akzeptoren?

- manche Sprachen mit EA erkennbar: z. B. $\{a\}^+\{b\} \cup \{b\}^+\{a\}$
- manche Sprachen *nicht* mit EA erkennbar: z. B. $\{a^kb^k \mid k \in \mathbb{N}_0\}$

Was können endliche Akzeptoren?

- manche Sprachen mit EA erkennbar: z. B. $\{a\}^+\{b\} \cup \{b\}^+\{a\}$
- manche Sprachen *nicht* mit EA erkennbar: z. B. $\{a^kb^k \mid k \in \mathbb{N}_0\}$
- Charakterisierung der erkennbaren Sprachen
 - d. h. Beschreibung ohne Benutzung endlicher Akzeptoren
 - Drei Formalismen die dieselbe Klasse an formalen Sprachen beschreiben:
 - Endliche Akzeptoren
 - 2. Reguläre Ausdrücke
 - 3. Rechtslineare Grammatiken
 - Jede formale Sprache kann in einem Formalismus ausgedrückt werden, gdw. sie in den anderen ausgedrückt werden kann.

Überblick

Reguläre Ausdrücke

Definition

Semantik regulärer Ausdrücke

Beispiel: grep

Zusammenhang mit Automaten und Grammatiken

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktion

Wo sind wir?

Reguläre Ausdrücke

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktior

Wo sind wir?

Reguläre Ausdrücke

Definition

Semantik regulärer Ausdrücke

Beispiel: grei

Zusammenhang mit Automaten und Grammatike

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktior

Der Begriff regulärer Ausdruck hat heute verschiedene Bedeut

- Wichtige Beschreibungssprache für formaler Sprachen
- Ursprung:

Stephen Kleene Representation of Events in Nerve Nets and Finite Automata in: Shannon, McCarthy, Ashby (eds.): Automata Studies, 1956 (Research Memorandum "Project RAND" from 1951)

- heute: theoretische und praktische Bedeutung
 - in dieser Vorlesung: die «klassische», grundlegende Definition
 - Verallgemeinerung: regular expressions
 - im tägllichen Leben sehr nützlich (emacs, grep, sed, ..., Java, Python, ...)

Definition regulärer Ausdrücke (1)

- Alphabet $Z = \{ |, (,), *, \emptyset \}$ von «Hilfssymbolen»
- Alphabet A enthalte kein Zeichen aus Z
- $regul\"{a}rer\ Ausdruck$ über A ist eine Zeichenfolge über dem Alphabet $A \cup Z$, die gewissen Vorschriften genügt.
- Menge der regulären Ausdrücke (RA) ist wie folgt festgelegt:
 - Ø ist ein RA
 - für jedes $x \in A$ ist x RA
 - wenn R_1 und R_2 RA sind, dann auch $(R_1|R_2)$ und (R_1R_2)
 - wenn R ein RA ist, dann auch (R*)
 - Nichts anderes sind reguläre Ausdrücke.

(vgl. Definition von Formeln in Aussagen- und Prädikatenlogik)

Definition regulärer Ausdrücke (1)

- Alphabet $Z = \{ |, (,), *, \emptyset \}$ von «Hilfssymbolen»
- Alphabet A enthalte kein Zeichen aus Z
- regulärer Ausdruck über A ist eine Zeichenfolge über dem Alphabet $A \cup Z$, die gewissen Vorschriften genügt.

RA kleinste Menge mit:

- $\bigcirc \emptyset \in RA$
- $R_1, R_2 \in RA \Longrightarrow (R_1 | R_2), (R_1 R_2) \in RA$
- $R \in RA \implies (R*) \in RA$

- Menge der regulären Ausdrücke (RA) ist wie folgt festgelegt:
 - Ø ist ein RA
 - für jedes $x \in A$ ist x RA
 - wenn R_1 und R_2 RA sind, dann auch $(R_1|R_2)$ und (R_1R_2)
 - wenn R ein RA ist, dann auch (R*)
 - Nichts anderes sind reguläre Ausdrücke.

(vgl. Definition von Formeln in Aussagen- und Prädikatenlogik)

Beispiele

• sei
$$A = \{a, b\}$$

Beispiele regulärer Ausdrücke:

```
(\emptyset b) ((ab)(aa)) (a|(b|(a|a))) (((((ab)b)*)*)|(\emptyset*))
```

keine Beispiele für reguläre Ausdrücke:

```
(|b) vor | fehlt ein regulärer Ausdruck
```


- «Stern- vor Punktrechnung»
- «Punkt- vor Strichrechnung»
- Beispiel:
 - $R_1 \mid R_2 R_3 *$ Kurzform für
 - $R_1 \mid R_2 R_3 *$
- Bei mehreren gleichen binären Operatoren ohne Klammern gilt das als links geklammert
- Beispiel
 - $R_1 \mid R_2 \mid R_3$ Kurzform für
 - $((R_1|R_2)|R_3)$

- «Stern- vor Punktrechnung»
- «Punkt- vor Strichrechnung»
- Beispiel:
 - $R_1 \mid R_2 R_3 *$ Kurzform für
 - $R_1 | R_2 (R_3 *)$
- Bei mehreren gleichen binären Operatoren ohne Klammern gilt das als links geklammert
- Beispiel
 - $R_1 \mid R_2 \mid R_3$ Kurzform für
 - $((R_1|R_2)|R_3)$

- «Stern- vor Punktrechnung»
- «Punkt- vor Strichrechnung»
- Beispiel:
 - $R_1 \mid R_2 R_3 *$ Kurzform für
 - $R_1 \mid (R_2 (R_3 *))$
- Bei mehreren gleichen binären Operatoren ohne Klammern gilt das als links geklammert
- Beispiel
 - $R_1 \mid R_2 \mid R_3$ Kurzform für
 - $((R_1|R_2)|R_3)$

- «Stern- vor Punktrechnung»
- «Punkt- vor Strichrechnung»
- Beispiel:
 - $R_1 \mid R_2 R_3 *$ Kurzform für
 - $(R_1 | (R_2 (R_3 *)))$
- Bei mehreren gleichen binären Operatoren ohne Klammern gilt das als links geklammert
- Beispiel
 - $R_1 \mid R_2 \mid R_3$ Kurzform für
 - $((R_1|R_2)|R_3)$

Wo sind wir?

Reguläre Ausdrücke

Definition

Semantik regulärer Ausdrücke

Beispiel: grej

Zusammenhang mit Automaten und Grammatike

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktior

Durch reg. Ausdruck R beschriebene formale Sprache L(R)

Sei $R \in RA$ über einem Alphabet A.

Dann ist die durch R beschriebene Sprache L(R) induktiv definiert durch:

- $L(\emptyset) = \{\}$
- $L(x) = \{x\}$ für jedes $x \in A$
- $L(R_1 | R_2) = L(R_1) \cup L(R_2)$
- $L(R_1R_2) = L(R_1) \cdot L(R_2)$
- $L(R*) = L(R)^*$
- Die Sprache RA der regulären Ausdrücke ist eine Sprache zur Beschreibung von Sprachen.
- Definition folgt der für reguläre Ausdrücke

Wiedererkennungseffekt: Mengenausdrücke für Sprachen

•
$$R = a \mid b$$
: dann ist $L(R) = L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$

- $R = a \mid b$: dann ist $L(R) = L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$
- R = (a|b)*: dann ist $L(R) = L((a|b)*) = L(a|b)* = \{a, b\}*$

- **a** $R = a \mid b$: dann ist $L(R) = L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$
- R = (a|b)*: dann ist $L(R) = L((a|b)*) = L(a|b)* = \{a,b\}*$
- R = (a*b*)*: dann istL(R) = L((a*b*)*) = L(a*b*)* $= (L(a*)L(b*))* = (L(a)*L(b)*)* = ({a}*{b}*)*$

- **a** $R = a \mid b$: dann ist $L(R) = L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$
- R = (a|b)*: dann ist $L(R) = L((a|b)*) = L(a|b)* = \{a, b\}*$
- R = (a*b*)*: dann istL(R) = L((a*b*)*) = L(a*b*)* $= (L(a*)L(b*))* = (L(a)*L(b)*)* = ({a}*{b}*)*$
- Nachdenken: $({a}^*{b}^*)^* =$

- **a** $R = a \mid b$: dann ist $L(R) = L(a \mid b) = L(a) \cup L(b) = \{a\} \cup \{b\} = \{a, b\}$
- R = (a|b)*: dann ist $L(R) = L((a|b)*) = L(a|b)* = \{a,b\}*$
- R = (a*b*)*: dann istL(R) = L((a*b*)*) = L(a*b*)* $= (L(a*)L(b*))* = (L(a)*L(b)*)* = ({a}*{b}*)*$
- Nachdenken: $(\{a\}^*\{b\}^*)^* = \{a, b\}^*$

Wie ist das denn eigentlich?

- Kann man «allgemein» von regulären Ausdrücken R_1 , R_2 feststellen, ob $L(R_1) = L(R_2)$ ist?
- Geht das algorithmisch?
- Welche formalen Sprachen sind denn durch reguläre Ausdrücke beschreibbar?

Äquivalenz regulärer Ausdrücke

- Es gibt Algorithmen, um für reguläre Ausdrücke R_1 , R_2 festzustellen, ob $L(R_1) = L(R_2)$ ist.
 - sogar konzeptionell ziemlich einfache
- Aber: Dieses Problem ist PSPACE-vollständig.
 - Definition: in einer anderen Vorlesung
 - alle bisher bekannten (!) Algorithmen sind sehr sehr sehr langsam
- Man weiß nicht, ob es vielleicht doch Algorithmen mit polynomieller Laufzeit für das Problem gibt.

•
$$L(aa*) = \{a\} \cdot \{a\}^* \stackrel{\text{Kap. 7}}{=} \{a\}^+$$

■
$$L(aa*) = \{a\} \cdot \{a\}^* \stackrel{\text{Kap. } 7}{=} \{a\}^+$$

Definiere $R+$ als Abkürzung für $(RR*)$ mit $L(R+) = L(R)^+$

- $L(aa*) = \{a\} \cdot \{a\}^* \stackrel{\text{Kap. } 7}{=} \{a\}^+$ Definiere R+ als Abkürzung für (RR*) mit $L(R+) = L(R)^+$
- $L(\mathbf{a} | \emptyset *) = \{\mathbf{a}\} \cup \{\}^* = \{\mathbf{a}\} \cup \{\varepsilon\}$

- $L(aa*) = \{a\} \cdot \{a\}^* \stackrel{\text{Kap. } 7}{=} \{a\}^+$ Definiere R+ als Abkürzung für (RR*) mit $L(R+) = L(R)^+$
- $L(a|\emptyset*) = \{a\} \cup \{\}^* = \{a\} \cup \{\epsilon\}$ Definiere R? als Abkürzung für $(R|\emptyset*)$ mit $L(R?) = L(R) \cup \{\epsilon\}$

Wo sind wir?

Reguläre Ausdrücke

Definition

Semantik regulärer Ausdrücke

Beispiel: grep

Zusammenhang mit Automaten und Grammatiker

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktior

grep in action

grep = global search for regular expressions and print

grep in action

grep = global search for regular expressions and print

•
$$'[a-z] = '$$

Suche nach Zuweisungen an die Variable i

Suche nach Zw. an die Variable i oder j

Suche nach Zw. an eine Einbuchstaben-Variable

Suche nach Zw. an eine Zweibuchstaben-Variable

Suche nach Zw. an Variable (Kleinbchstaben)

Suche nach Zeichenkette aus Kleinbuchstaben

Falsche Suche nach Zeichenketten

Suche nach Zeichenketten

Kommando: grep -P -r 'reg. Ausdruck' *

Wo sind wir?

Reguläre Ausdrücke

Definition

Semantik regulärer Ausdrücke

Beispiel: gren

Zusammenhang mit Automaten und Grammatiken

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktion

Charakterisierungen regulärer Sprachen

Satz

Für jede formale Sprache *L* sind äquivalent:

- 1. L kann von einem endlichen Akzeptor erkannt werden.
- 2. L kann durch einen regulären Ausdruck beschrieben werden.
- 3. *L* kann von einer rechtslinearen Grammatik erzeugt werden. Sprachen mit diesen Eigenschaften heißen regulär.
- Beweis in «Theoretische Grundlagen der Informatik»
- rechtslineare Grammatiken (kommen gleich)
 - sind Spezialfall kontextfreier Grammatiken
 - also ist jede reguläre Sprache auch kontextfrei
 - aber nicht umgekehrt

Was ist wichtig

- Das sollten Sie mitnehmen:
 - Definition «klassischer» regulärer Ausdrücke
 - atomare: \emptyset , $a \in A$
 - zusammengesetzte: $(R_1|R_2)$, (R_1R_2) , (R)*
 - wissen: reguläre Ausdrücke und die Verallgemeinerung Regular Expressions z. B. bei Textverarbeitungsaufgaben manchmal nützlich
- Das sollten Sie üben:
 - zu L ein R mit L(R) = L finden
 - zu R das L(R) finden

Wo sind wir?

Reguläre Ausdrücke

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktior

Motivation

- kontextfreie Grammatiken erzeugen mehr formale Sprachen, als man mit endlichen Akzeptoren erkennen kann.
- Beispiel:
 - $G = (\{X\}, \{a, b\}, X, \{X \rightarrow aXb \mid \varepsilon\})$ erzeugt $\{a^k b^k \mid k \in \mathbb{N}_0\}$
 - und diese Sprache ist nicht regulär.
- Kann man kontextfreie Grammatiken so einschränken, dass sie zu endlichen Akzeptoren passen?

Rechtslineare Grammatiken: Definition

- rechtslineare Grammatik ist eine kontextfreie Grammatik G = (N, T, S, P) mit folgenden Einschränkungen: Jede Produktion ist
 - entweder von der Form $X \to w$ mit $w \in T^*$
 - oder von der Form $X \to wY$ mit $w \in T^*$ und $X, Y \in N$.
- also auf jeder rechten Seite
 - höchstens ein Nichterminalsymbol
 - und wenn dann nur als letztes Symbol

•
$$G = (\{X\}, \{a, b\}, X, \{X \rightarrow abX \mid bbaX \mid \varepsilon\})$$

•
$$G = (\{X\}, \{a, b\}, X, \{X \rightarrow abX \mid bbaX \mid \varepsilon\}$$

 $L(G) = L((ab \mid bba)*)$

•
$$G = (\{X\}, \{a, b\}, X, \{X \rightarrow abX \mid bbaX \mid \varepsilon\}$$

 $L(G) = L((ab \mid bba)*)$

$$G = (\{X,Y\}, \{\mathtt{a},\mathtt{b}\}, X, \\ \{X \to \mathtt{a}X \mid \mathtt{b}X \mid \mathtt{ababb}Y, Y \to \mathtt{a}Y \mid \mathtt{b}Y \mid \varepsilon\}$$

■
$$G = (\{X\}, \{a, b\}, X, \{X \to abX \mid bbaX \mid \varepsilon\}$$

 $L(G) = L((ab \mid bba)*)$
■ $G = (\{X, Y\}, \{a, b\}, X,$
 $\{X \to aX \mid bX \mid ababbY, Y \to aY \mid bY \mid \varepsilon\}$

$$L(G) = L((a|b)*ababb(a|b)*)$$

Rechtslineare Grammatiken: Nichtbeispiel

- $G = (\{X\}, \{a, b\}, X, \{X \rightarrow aXb \mid \epsilon\})$ ist nicht rechtslinear,
 - denn in $X \to aXb$ steht das Nichtterminalsymbol X nicht am rechten Ende.
- Da die erzeugte formale Sprache $\{a^kb^k \mid k \in \mathbb{N}_0\}$ von keinem endlichen Akzeptor erkannt wird, kann es auch gar keine rechtslineare Grammatik geben.

- $G = (\{X\}, \{a\}, X, \{X \rightarrow aXa \mid \epsilon\})$ ist nicht rechtslinear,
 - denn in $X \to aXa$ steht das Nichtterminalsymbol X nicht am rechten Ende.
- Dennoch ist die erzeugte formale Sprache $\{a^{2k} \mid k \in \mathbb{N}_0\}$ aber ist regulär! ...
- ... denn es gibt eine rechtslineare Grammatik $G' = (\{X\}, \{a\}, X, \{X \rightarrow aaX \mid \varepsilon\})$ mit L(G) = L(G').
- Außerdem L((aa)*) = L(G) und ein endl. Akzeptor für L(G) ist eine leichte Übung.

Sprechweisen

- Rechtslineare Grammatiken heißen auch *Typ-3-Grammatiken* (T3G).
- Kontextfreie Grammatiken heißen auch *Typ-2-Grammatiken* (T2G).
- Es gibt auch noch
 - Typ-1-Grammatiken und
 - Typ-0-Grammatiken,

die wir hier nicht weiter betrachten werden.

• Wenn für ein $i \in \{0, 1, 2, 3\}$ eine formale Sprache L von einer Typ-i-Grammatik erzeugt wird, dann heißt auch L eine *Typ-i-Sprache* oder kurz *vom Typ i*.

Vorteil rechtslinearer Grammatiken

- gegenüber deterministischen endlichen Akzeptoren: manchmal deutlich kürzer und übersichtlicher hinzuschreiben
- genaueres Verständnis dafür: im 3. Semester bei nichtdeterministischen endliche Akzeptoren

Wo sind wir?

Reguläre Ausdrücke

Rechtslineare Grammatiken (Typ 3)

Kantorowitsch-Bäume und strukturelle Induktion

Ziel dieses Abschnittes

Beweisskizze für das folgende

Lemma

Zu jedem regulären Ausdruck R gibt es eine rechtslineare Grammatik G mit L(G) = L(R).

- Wie beweist man, dass eine Aussage für alle regulären Ausdrücke gilt?
- eine Möglichkeit: strukturelle Induktion
 - Variante/Verallgemeinerung vollständiger Induktion,
 - ohne explizit über natürliche Zahlen zu sprechen
- darauf arbeiten wir jetzt in mehreren Schritten hin:
 - Darstellung regulärer Ausdrücke mit Bäumen
 - eine Variante «normaler vollständiger Induktion»
 - strukturelle Induktion

Induktive Strukturen

- Wir untersuchen eine Menge *H*.
- Gegeben seien eine Menge von Basisfällen $B \subseteq H$
- und eine Menge von Konstruktoren (Funktionen) $K = \{k_1 : H^{n_1} \to H, \ldots, k_r : H^{n_r} \to H\}$
- H heißt induktiv generiert aus B und K, wenn jedes Element aus H durch einen Ausdruck über B und K dargestellt werden kann.

Beispiele:

- Natürliche Zahlen: $B_{\mathbb{N}} = \{0\}, \quad K_{\mathbb{N}} = \{(+1) : \mathbb{N}_0 \to \mathbb{N}_0\}$
- Aussagenlogik: $B_{AL} = Var_{AL}$, $K_{AL} = \{ \land, \lor, \rightarrow, \neg \}$

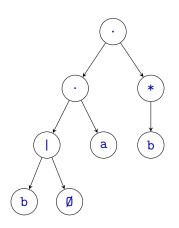
Induktive Strukturen

- Wir untersuchen eine Menge *H*.
- Gegeben seien eine Menge von Basisfällen $B \subseteq H$
- und eine Menge von Konstruktoren (Funktionen) $K = \{k_1 : H^{n_1} \to H, \ldots, k_r : H^{n_r} \to H\}$
- H heißt induktiv generiert aus B und K, wenn jedes Element aus H durch einen Ausdruck über B und K dargestellt werden kann.

Beispiele:

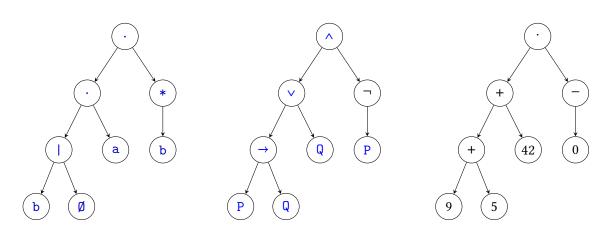
- Natürliche Zahlen: $B_{\mathbb{N}} = \{0\}, \quad K_{\mathbb{N}} = \{(+1) : \mathbb{N}_0 \to \mathbb{N}_0\}$
- Aussagenlogik: $B_{AL} = Var_{AL}$, $K_{AL} = \{\land, \lor, \rightarrow, \neg\}$
- Reguläre Ausdrücke: $B_{RE} = \{\emptyset\} \cup A$, $K_{RE} = \{*, |, \cdot\}$

Mit Kantorowitsch-Bäumen kann man z. B. reguläre Ausdrücke repräsentieren



- regulärer Ausdruck: ((b|Ø)a)(b*)
- Darstellung als sogenannter Kantorowitsch-Baum
 - innere Knoten: Konstruktoren (entspr. Ausgangsgrad)
 - Blätter: Basisfälle
- «Abstrakter Syntaxbaum»
- hier: «Regex-Baum»
- Beachte:
 - das ist kein Ableitungsbaum gemäß einer Grammatik
 - aber «genauso gut» und kompakter

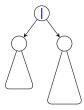
Kantorowitsch-Bäumen für induktive Strukturen



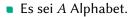
regulärer Ausdruck

aussagenlog. Formel

arithm. Ausdruck

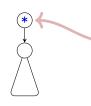


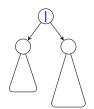
- Es sei *A* Alphabet.
- Ein Baum ist ein Regex-Baum, wenn gilt:
 - entweder Wurzel ist Blatt, mit $x \in A$ oder \emptyset beschriftet,
 - oder Wurzel mit * beschriftet und hat genau einen Nachfolger, der Wurzel eines Regex-Baumes ist
- oder Wurzel mit · oder | beschriftet und hat genau zwei Nachfolger, die Wurzeln zweier Regex-Bäume sind.

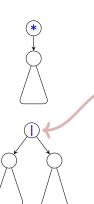


- Ein Baum ist ein Regex-Baum, wenn gilt:
- entweder Wurzel ist Blatt, mit $x \in A$ oder \emptyset beschriftet,
- oder Wurzel mit * beschriftet und hat genau einen Nachfolger, der Wurzel eines Regex-Baumes ist
- oder Wurzel mit · oder | beschriftet und hat genau zwei Nachfolger, die Wurzeln zweier Regex-Bäume sind.

- Es sei *A* Alphabet.
- Ein Baum ist ein Regex-Baum, wenn gilt:
 - entweder Wurzel ist Blatt, mit $x \in A$ oder \emptyset beschriftet,
 - oder Wurzel mit * beschriftet und hat genau einen Nachfolger, der Wurzel eines Regex-Baumes ist
 - oder Wurzel mit · oder | beschriftet und hat genau zwei Nachfolger, die Wurzeln zweier Regex-Bäume sind.







- Es sei *A* Alphabet.
 - Ein Baum ist ein Regex-Baum, wenn gilt:
 - entweder Wurzel ist Blatt, mit $x \in A$ oder \emptyset beschriftet,
 - oder Wurzel mit * beschriftet und hat genau einen Nachfolger, der Wurzel eines Regex-Baumes ist
 - oder Wurzel mit · oder | beschriftet und hat genau zwei Nachfolger, die Wurzeln zweier Regex-Bäume sind.

Das Prinzip der strukturellen (vollständigen) Induktion

Sei *H* eine induktive Struktur generiert aus Basisfällen *B* und Konstruktoren *K*.

Eine Aussage \mathcal{B} für alle $h \in H$ kann mit struktureller (vollständiger) Induktion bewiesen werden durch:

$$b \in B \implies \mathcal{B}(b)$$

1. **Induktionsanfang** *zu zeigen*: Für alle $b \in B$ gilt $\mathcal{B}(b)$

$$\mathcal{B}(h_1) \wedge \ldots \wedge \mathcal{B}(h_n) \Longrightarrow \mathcal{B}(k(h_1, h_2, \ldots, h_n))$$

2. Induktionsschritt zu zeigen: Für alle $k: H^n \to H \in B$ gilt: Für beliebige $h_1, h_2, \ldots, h_n \in H$ gilt $\bigwedge_{i=1}^n \mathcal{B}(h_i) \implies \mathcal{B}(k(h_1, h_2, \ldots, h_n))$

Man sagt meistens «strukturelle Induktion».

- Man sagt meistens «strukturelle Induktion».
- über **natürliche Zahlen** ($B = \{0\}, K = (+1)$)
 - Induktionsanfang: $\mathcal{B}(0)$
 - Induktionsschritt: $\mathcal{B}(n) \implies \mathcal{B}(n+1)$
 - = "herkömmliche" vollständige Induktion

- Man sagt meistens «strukturelle Induktion».
- über **natürliche Zahlen** ($B = \{0\}, K = (+1)$)
- über aussagenlogische Formeln
 - Induktionsanfang: $\mathcal{B}(P_i)$ für alle $P_i \in \Sigma$
 - Induktionsschritt: $\mathcal{B}(F_1)$ und $\mathcal{B}(F_2) \implies$:
 - 1. $\mathcal{B}(F_1 \wedge F_2)$
 - 2. $\mathcal{B}(F_1 \vee F_2)$
 - 3. $\mathcal{B}(F_1 \to F_2)$
 - 4. $\mathcal{B}(\neg F_1)$

- Man sagt meistens «strukturelle Induktion».
- über natürliche Zahlen $(B = \{0\}, K = (+1))$
- über aussagenlogische Formeln
- über reguläre Ausdrücke
 - Induktionsanfang:
 - 1. $\mathcal{B}(\mathbf{x})$ für alle $\mathbf{x} \in A$
 - 2. $\mathcal{B}(\emptyset)$
 - Induktionsschritt: $\mathcal{B}(R_1)$ und $\mathcal{B}(R_2)$ \Longrightarrow :
 - 1. $\mathcal{B}(R_1R_2)$
 - 2. $\mathcal{B}(R_1 | R_2)$
 - 3. $\mathcal{B}(R_1*)$

- Man sagt meistens «strukturelle Induktion».
- über natürliche Zahlen $(B = \{0\}, K = (+1))$
- über aussagenlogische Formeln
- über reguläre Ausdrücke

Aussage \mathcal{B} :

Zu jedem regulären Ausruck R über Alphabet A gibt es eine rechtslineare Grammatik (T3G) G mit L(R) = L(G).

Aussage \mathcal{B} :

Zu jedem regulären Ausruck R über Alphabet A gibt es eine rechtslineare Grammatik (T3G) G mit L(R) = L(G).

Induktionsanfang

- 1. $R = \emptyset$, also $L(R) = \emptyset$
- 2. R = x für $x \in A$, also $L(R) = \{x\}$. T3G hierfür: \rightarrow Übung

Aussage \mathcal{B} :

Zu jedem regulären Ausruck R über Alphabet A gibt es eine rechtslineare Grammatik (T3G) G mit L(R) = L(G).

- Induktionsanfang
 - 1. $R = \emptyset$, also $L(R) = \emptyset$
 - 2. R = x für $x \in A$, also $L(R) = \{x\}$. T3G hierfür: \rightarrow Übung
- Induktionsschritt Seien R_1 , R_2 beliebige reg. Ausdrücke über A Induktionsannahme: es gibt T3G G_1 , G_2 mit $L(G_1) = L(R_1)$ und $L(G_2) = L(R_2)$.

Aussage \mathcal{B} :

Zu jedem regulären Ausruck R über Alphabet A gibt es eine rechtslineare Grammatik (T3G) G mit L(R) = L(G).

Induktionsanfang

- 1. $R = \emptyset$, also $L(R) = \emptyset$
- 2. R = x für $x \in A$, also $L(R) = \{x\}$. T3G hierfür: \rightarrow Übung
- Induktionsschritt Seien R_1 , R_2 beliebige reg. Ausdrücke über A Induktionsannahme: es gibt T3G G_1 , G_2 mit $L(G_1) = L(R_1)$ und $L(G_2) = L(R_2)$.

zu zeigen:

- 1. Es gibt T3G G_3 mit $L(G_3) = L(R_1 | R_2)$
- 2. Es gibt T3G G_4 mit $L(G_4) = L(R_1R_2) \rightarrow Ü$ bung
- 3. Es gibt T3G G_5 mit $L(G_5) = L(R_1 *) \rightarrow Übung$

Aussage \mathcal{B} :

Zu jedem regulären Ausruck R über Alphabet A gibt es eine rechtslineare Grammatik (T3G) G mit L(R) = L(G).

Induktionsanfang

1.
$$R = \emptyset$$
, also $L(R) = \emptyset$

2.
$$R = x$$
 für $x \in A$, also $L(R) = \{x\}$.
T3G hierfür: \rightarrow Übung

IA: $\mathcal{B}(R_1)$, $\mathcal{B}(R_2)$

■ Induktionsschritt Seien R_1 , R_2 beliebige reg. Ausdrücke über A Induktionsannahme: es gibt T3G G_1 , G_2 mit $L(G_1) = L(R_1)$ und $L(G_2) = L(R_2)$.

Z.Z.:

 $\mathcal{B}(\mathbf{0})$

 $\mathcal{B}(\mathbf{x})$

 $\mathcal{B}(R_1|R_2)$

 $\mathcal{B}(R_1R_2)$

 $\mathcal{B}(R_1*)$

zu zeigen:

- 1. Es gibt T3G G_3 mit $L(G_3) = L(R_1 | R_2)$
- 2. Es gibt T3G G_4 mit $L(G_4) = L(R_1R_2) \rightarrow Ü$ bung
- 3. Es gibt T3G G_5 mit $L(G_5) = L(R_1 *) \rightarrow Übung$

Karlsruher Institut für Technologie

• Erster Fall: $R_1 \mid R_2$

- Erster Fall: $R_1 \mid R_2$
- nach Induktionsvoraussetzung gibt es T3G $G_1 = (N_1, A, S_1, P_1)$ und $G_2 = (N_2, A, S_2, P_2)$ mit $L(G_1) = L(R_1)$ bzw. $L(G_2) = L(R_2)$
- es sei $N_1 \cap N_2 = \emptyset$
 - keine Beschränkung der Allgemeinheit
 - wichtig für die Konstruktion

- Erster Fall: $R_1 \mid R_2$
- nach Induktionsvoraussetzung gibt es T3G $G_1 = (N_1, A, S_1, P_1)$ und $G_2 = (N_2, A, S_2, P_2)$ mit $L(G_1) = L(R_1)$ bzw. $L(G_2) = L(R_2)$
- es sei $N_1 \cap N_2 = \emptyset$
 - keine Beschränkung der Allgemeinheit
 - wichtig für die Konstruktion
- wähle «neues» Nichtterminalsymbol $S \notin N_1 \cup N_2$
- Behauptung:

$$G = (\{S\} \cup N_1 \cup N_2, A, S, \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2)$$

ist T3G mit $L(G) = L(R_1 \mid R_2)$

- Erster Fall: $R_1 \mid R_2$
- nach Induktionsvoraussetzung gibt es T3G $G_1 = (N_1, A, S_1, P_1)$ und $G_2 = (N_2, A, S_2, P_2)$ mit $L(G_1) = L(R_1)$ bzw. $L(G_2) = L(R_2)$
- es sei $N_1 \cap N_2 = \emptyset$
 - keine Beschränkung der Allgemeinheit
 - wichtig für die Konstruktion
- wähle «neues» Nichtterminalsymbol $S \notin N_1 \cup N_2$
- Behauptung:

$$G = (\{S\} \cup N_1 \cup N_2, A, S, \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2)$$

ist T3G mit $L(G) = L(R_1 \mid R_2)$

- Rechtslinearität: klar
- $L(G) = L(G_1) \cup L(G_2) \rightarrow Übung$

Vollständige Induktion über die Baumhöhe

- Größere Bäume sind «aus kleineren zusammengesetzt», und zwar auf eindeutige Weise.
- Bijektion Regex-Bäume ↔ reguläre Ausdrücke
 Kantorowitsch-Bäume ↔ Elemente in induktiven Strukturen

Vollständige Induktion über die Baumhöhe

- Größere Bäume sind «aus kleineren zusammengesetzt», und zwar auf eindeutige Weise.
- Bijektion Regex-Bäume ↔ reguläre Ausdrücke
 Kantorowitsch-Bäume ↔ Elemente in induktiven Strukturen
- Höhe h(T) eines Baumes

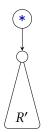
$$h(T) = \begin{cases} 0 & \text{falls die Wurzel Blatt ist} \\ 1 + \max_{i} h(U_i) & \text{falls die } U_i \text{ alle} \\ & \text{Unterbäume von } T \text{ sind} \end{cases}$$

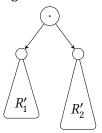
Vollständige Induktion über die Baumhöhe

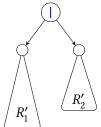
- zu naive Vorgehensweise:
 beim Schritt zu Bäumen der Höhe n + 1
 Induktionsvoraussetzung nur für Bäume der Höhe n
- aber: die Unterbäume eines Baumes der Höhe n+1können beliebige Höhen $i \le n$ haben.
- anschaulich: man darf auch für die kleineren Unterbäume die Induktionsvoraussetzung benutzen.
- starke Induktion: siehe Kapitel 6

Skizze des Induktionsschritts (1)

• sei R beliebiger Regex-Baum der Höhe n + 1:

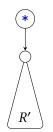


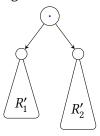


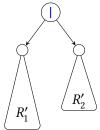


Skizze des Induktionsschritts (1)

• sei R beliebiger Regex-Baum der Höhe n + 1:







• für alle Unterbäume haben eine Höhe $\leq n$

Strukturelle Induktion = vollst. Induktion über Baumhöhe

Strukturelle Induktion

Induktionsanfang:

 \mathcal{B} gilt für alle Basisfälle B.

Induktionsschritt:

Für jeden Konstruktor $k: H^n \to H \in K$ Induktionsannahme: \mathcal{B} gilt für $h_1, ..., h_n \in H$. zu zeigen: \mathcal{B} gilt für $k(h_1, ..., h_n)$

Vollständige Induktion über Höhe des Baums

Induktionsanfang:

 \mathcal{B} gilt für alle Elemente mit Baumhöhe n = 0.

Induktionsschritt:

Für einen Baum der Höhe n>0Induktionsannahme: \mathcal{B} gilt für alle $h_0\in H$ mit Baumhöhe $\leq n$

zu zeigen: Für jedes Element $h \in H$ mit Baumhöhe n gilt \mathcal{B} .

Durch Fallunterscheidung des Konstruktors in h. Für die Unterbäume von h trifft Induktionsannahme zu.

Diese beiden Beweisschemata können sich gegenseitig simulieren!

Was ist wichtig

- Das sollten Sie mitnehmen:
 - Definition rechtslineare Grammatiken
- Das sollten Sie üben:
 - rechtslineare Grammatiken konstruieren (zu gegebenem Akzeptor, regulären Ausdruck, formaler Sprache)
 - strukturelle Induktion

Zusammenfassung

- reguläre Ausdrücke
 - werden von diversen «Werkzeugen» unterstützt
 - in manchen Programmiersprachen zur Textverarbeitung praktisch
- rechtslineare Grammatiken
- strukturelle Induktion