Grundbegriffe der Informatik Einheit 13: Quantitative Aspekte von Algorithmen

Thomas Worsch

Universität Karlsruhe, Fakultät für Informatik

Wintersemester 2008/2009

Überblick

Ressourcenverbrauch bei Berechnungen

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums

Die furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

Überblick 2/61

Überblick

Ressourcenverbrauch bei Berechnungen

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums

Die furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strasser

Abschätzung des Wachstums rekursiv definierter Funktioner

Zählen arithmetischer Operationen

Einheit über Graphalgorithmen:

- ► Zählen elementarer arithmetischer Operationen
 - für Addition von $n \times n$ -Matrizen: n^2
 - für Multiplikation von $n \times n$ -Matrizen $2n^3 n^2$
 - für Berechnung der Wegematrix $n^5 \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$
 - oder weniger . . .
- ▶ Idee: Das hat was mit der Laufzeit der Algorithmen zu tun.

Ressourcen für Rechnungen

- ► Laufzeit/Rechenzeit
- Speicherplatzbedarf
 - insbesondere für "Zwischenergebnisse"
- das sind sogenannte Komplexitätsmaße
 - ▶ im Sinne von *computational complexity*
 - tauchen an vielen Stellen wieder auf
 - es gibt auch noch andere . . .

In dieser Einheit

- wichtiges Handwerkszeug zum
 - ▶ Reden über und
 - Ausrechnen von
 - z. B. Laufzeiten
- ▶ insbesondere: "kontrollierte Ungenauigkeiten"
 - "Groß-O": stammt von Bachmann (oder früher), von Landau bekannt gemacht
 - \triangleright Ω , Θ : von Knuth zumindest verbreitet
- nicht genau,
 - weil man nicht will
 - weil man nicht kann

ein Beispiel kommt gleich ...

Beispiel Insertionsort

```
public class InsertionSort {
  public static void sort(long[] a) {
     for (int i \leftarrow 1; i < a.length; i + +) {
        insert(a, i);
  private static void insert(long[] a, int idx) {
     int i \leftarrow idx:
     /\!\!/ Tausche a[idx] nach links bis es einsortiert ist
     while (i > 0 \land a[i-1] > a[i]) {
        # Feldelemente a[i-1] und a[i] vertauschen
        a[i-1] \leftrightarrow a[i];
        i--;
```

Beispiel Insertionsort (2)

Wie oft wird die while-Schleife in der Methode insert ausgeführt?

- ▶ hängt von der Problemgröße n = a.length ab
- aber nicht nur davon, sondern
- hängt auch von der konkreten Probleminstanz ab
 - ▶ Ist Array a von Anfang an sortiert, wird die **while**-Schleife überhaupt nicht ausgeführt.
 - Ist Array a genau in entgegengesetzter Richtung sortiert, wird Schleifenrumpf $\sum_{i=1}^{n-1} i = n(n-1)/2$ mal ausgeführt.

- ▶ für jede Probleminstanz einzeln:
 - wäre präzise,
 - ist aber oft unpraktikabel
- vergröbernde Sichtweise: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - ▶ oft total uninteressant
 - Durchschnitt? (average case)
 - oft sehr schwer
 - schlechtester Fall? (worst case)
 - ▶ oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

- ▶ für jede Probleminstanz einzeln:
 - wäre präzise,
 - ist aber oft unpraktikabel
- vergröbernde Sichtweise: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - oft sehr schwer
 - schlechtester Fall? (worst case)
 - ▶ oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

- ▶ für jede Probleminstanz einzeln:
 - wäre präzise,
 - ist aber oft unpraktikabel
- vergröbernde Sichtweise: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - oft sehr schwer
 - schlechtester Fall? (worst case)
 - ► oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

- ▶ für jede Probleminstanz einzeln:
 - wäre präzise,
 - ist aber oft unpraktikabel
- vergröbernde Sichtweise: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - oft sehr schwer
 - schlechtester Fall? (worst case)
 - oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

- ▶ für jede Probleminstanz einzeln:
 - wäre präzise,
 - ist aber oft unpraktikabel
- vergröbernde Sichtweise: nur in Abhängigkeit von der "Problemgröße"
- ► Frage: Was angeben, wenn Ressourcenverbrauch für verschiedene Instanzen gleicher Größe unterschiedlich?
 - bester Fall? (best case)
 - oft total uninteressant
 - Durchschnitt? (average case)
 - oft sehr schwer
 - schlechtester Fall? (worst case)
 - oft angegeben
 - mit dem "Hinweis", dass es auch besser sein kann . . .

Was ist wichtig

Das sollten Sie mitnehmen:

- Bedarf an
 - Rechenzeit und
 - Speicherplatzbedarf

wichtige Komplexitätsmaße

- Meist will/kann man nur die Abhängigkeit von der Problemgröße quantifizieren
 - üblicherweise den schlimmsten Fall (worst case)
 - gelegentlich einen mittleren Fall (average case)

Das sollten Sie üben:

- ► Abschätzen/ausrechnen wie oft ein Programmstück,
 - z. B. ein Schleifenrumpf, durchlaufen wird.

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Die furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation Rückblick auf die Schulmethode Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

- ▶ Man will nicht.
 - ► Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architekturg
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen

Man kann nicht.

- Dummheit
- Unwissenheit der genauen Randbedingungen
 - welcher Prozessor?
- Ungenauigkeiten bei der Formulierung des Algorithmus (äh)
 - unabhängig von Programmiersprache
- ► Man "soll" nicht.
 - nur vergröbernde Angaben in Abhängigkeit von Problemgröße

- Man will nicht.
 - Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architektur
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen
- ▶ Man kann nicht.
 - Dummheit
 - Unwissenheit der genauen Randbedingungen welcher Prozessor?
 - Ungenauigkeiten bei der Formulierung des Algorithmus (äh)
 unabhängig von Programmiersprache
- ► Man "soll" nicht.
 - ▶ nur vergröbernde Angaben in Abhängigkeit von Problemgröße

- Man will nicht.
 - Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architektur
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen
- Man kann nicht.
 - Dummheit
 - Unwissenheit der genauen Randbedingungen
 - welcher Prozessor?
 - Ungenauigkeiten bei der Formulierung des Algorithmus (äh)
 - unabhängig von Programmiersprache
- Man "soll" nicht.
 - nur vergröbernde Angaben in Abhängigkeit von Problemgröße

- Man will nicht.
 - Faulheit
 - Vergänglichkeit der genauen Werte
 - Prozessor bald höher getaktet
 - Prozessor bald mit schnellerer Architektur
 - mangelndes Interesse an genauen Werten
 - will nur prozessorunabhängige Aussagen
- Man kann nicht.
 - Dummheit
 - Unwissenheit der genauen Randbedingungen
 - welcher Prozessor?
 - Ungenauigkeiten bei der Formulierung des Algorithmus (äh)
 - unabhängig von Programmiersprache
- Man "soll" nicht.
 - nur vergröbernde Angaben in Abhängigkeit von Problemgröße

Wie ungenau wollen wir über Funktionen reden?

- ▶ Ignorieren konstanter Faktoren
 - Motivation: Geschwindigkeitssteigerungen bei Prozessoren irrelevant
- ▶ nur obere (bzw. untere) Schranken
 - Motivation: können nur schlechtesten Fall analysieren

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums Die furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

Zu Notation und Redeweise

- ► Notation:
 - $ightharpoonup \mathbb{R}^+$: Menge der positiven reellen Zahlen (ohne 0)
 - ▶ \mathbb{R}_0^+ : Menge der nichtnegativen rellen Zahlen, $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$.
 - ▶ betrachten Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- ► Redeweisen:
 - asymptotisches Wachstum oder
 - ► größenordnungsmäßiges Wachstum von Funktionen
 - ▶ das Wort "größenordnungsmäßig" gibt es gar nicht . . .
- ▶ Definition:
 - ► Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ wächst *größenordnungsmäßig genauso* schnell wie Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, wenn gilt:

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$

▶ schreibe $f \times g$ oder $f(n) \times g(n)$

Zu Notation und Redeweise

- ► Notation:
 - ▶ R⁺: Menge der positiven reellen Zahlen (*ohne* 0)
 - ▶ \mathbb{R}_0^+ : Menge der nichtnegativen rellen Zahlen, $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$.
 - ▶ betrachten Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- Redeweisen:
 - asymptotisches Wachstum oder
 - größenordnungsmäßiges Wachstum von Funktionen
 - ▶ das Wort "größenordnungsmäßig" gibt es gar nicht . . .
- ▶ Definition:
 - ► Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ wächst *größenordnungsmäßig genauso* schnell wie Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, wenn gilt:

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$

▶ schreibe $f \times g$ oder $f(n) \times g(n)$

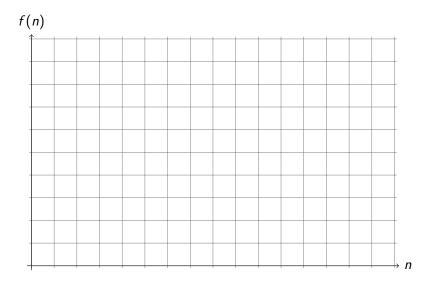
Zu Notation und Redeweise

- ► Notation:
 - ▶ R⁺: Menge der positiven reellen Zahlen (*ohne* 0)
 - ▶ \mathbb{R}_0^+ : Menge der nichtnegativen rellen Zahlen, $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$.
 - ▶ betrachten Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- Redeweisen:
 - asymptotisches Wachstum oder
 - größenordnungsmäßiges Wachstum von Funktionen
 - ▶ das Wort "größenordnungsmäßig" gibt es gar nicht . . .
- ▶ Definition:
 - ► Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ wächst *größenordnungsmäßig genauso schnell* wie Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, wenn gilt:

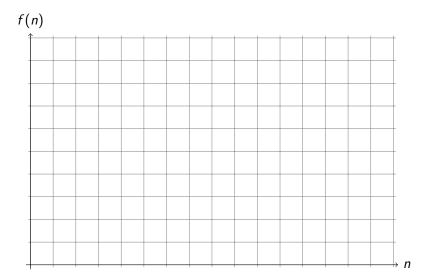
$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$
.

▶ schreibe $f \times g$ oder $f(n) \times g(n)$

Erläuterungen zur Definition von $f \approx g(1)$



Erläuterungen zur Definition von $f \approx g(2)$



Beispiel

- $f(n) = 3n^2$ und $g(n) = 10^{-2}n^2$.
- ▶ Behauptung: $f(n) \approx g(n)$
 - einerseits gilt für $c = 10^{-3}$ und $n_0 = 0$

$$\forall n \ge n_0 : cf(n) = 10^{-3} \cdot 3n^2 \le 10^{-2}n^2 = g(n)$$

Andererseits gilt z. B. für c' = 1 und $n_0 = 0$:

$$\forall n \ge n_0 : g(n) = 10^{-2} n^2 \le 3n^2 = c' f(n)$$

Das lässt sich leicht etwas allgemeiner rechnen. Dann sieht man:

Rechenrege

Für alle $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt

$$\forall a, b \in \mathbb{R}^+ : af(n) \times bf(n)$$

Beispiel

- $f(n) = 3n^2 \text{ und } g(n) = 10^{-2}n^2.$
- ▶ Behauptung: $f(n) \approx g(n)$
 - einerseits gilt für $c = 10^{-3}$ und $n_0 = 0$:

$$\forall n \geq n_0 : cf(n) = 10^{-3} \cdot 3n^2 \leq 10^{-2}n^2 = g(n)$$

▶ Andererseits gilt z. B. für c' = 1 und $n_0 = 0$:

$$\forall n \geq n_0 : g(n) = 10^{-2} n^2 \leq 3n^2 = c' f(n)$$

Das lässt sich leicht etwas allgemeiner rechnen. Dann sieht man:

Rechenrege

Für alle $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt

$$\forall a, b \in \mathbb{R}^+ : af(n) \times bf(n)$$

Beispiel

- $f(n) = 3n^2$ und $g(n) = 10^{-2}n^2$.
- ▶ Behauptung: $f(n) \approx g(n)$
 - einerseits gilt für $c = 10^{-3}$ und $n_0 = 0$:

$$\forall n \geq n_0 : cf(n) = 10^{-3} \cdot 3n^2 \leq 10^{-2}n^2 = g(n)$$

▶ Andererseits gilt z. B. für c' = 1 und $n_0 = 0$:

$$\forall n \geq n_0 : g(n) = 10^{-2} n^2 \leq 3n^2 = c' f(n)$$

Das lässt sich leicht etwas allgemeiner rechnen. Dann sieht man:

Rechenregel

Für alle $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt:

$$\forall a,b \in \mathbb{R}^+ : af(n) \asymp bf(n)$$

Beispiel (2)

- $f(n) = n^3 + 5n^2$ und $g(n) = 3n^3 n$
- ▶ Behauptung $f(n) \approx g(n)$
 - einerseits ist für $n \ge 0$ offensichtlich

$$f(n) = n^3 + 5n^2$$

$$\leq n^3 + 5n^3$$

$$= 6n^3$$

$$= 9n^3 - 3n^3$$

$$\leq 9n^3 - 3n$$

$$= 3(3n^3 - n) = 3g(n)$$
also
$$\frac{1}{3}f(n) \leq g(n)$$

Andererseits ist

$$g(n) = 3n^3 - n \le 3n^3 \le 3(n^3 + 5n^2) = 3f(n)$$

Beispiel (2)

- $f(n) = n^3 + 5n^2$ und $g(n) = 3n^3 n$
- ▶ Behauptung $f(n) \approx g(n)$
 - einerseits ist für $n \ge 0$ offensichtlich

$$f(n) = n^{3} + 5n^{2}$$

$$\leq n^{3} + 5n^{3}$$

$$= 6n^{3}$$

$$= 9n^{3} - 3n^{3}$$

$$\leq 9n^{3} - 3n$$

$$= 3(3n^{3} - n) = 3g(n)$$
also
$$\frac{1}{3}f(n) \leq g(n)$$

Andererseits ist

$$g(n) = 3n^3 - n \le 3n^3 \le 3(n^3 + 5n^2) = 3f(n)$$

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - Für $f \approx g$ muss insbesondere $g(n) \leq c' f(n)$ gelten.
 - ▶ Das ist für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$.
 - ▶ Das muss also für ein $c' \in \mathbb{R}^+$ ab einem n_0 für alle n gelten.
 - Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - ▶ Für $f \approx g$ muss insbesondere $g(n) \leq c'f(n)$ gelten.
 - ▶ Das ist für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$.
 - ▶ Das muss also für ein $c' \in \mathbb{R}^+$ ab einem n_0 für alle n gelten.
 - ▶ Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - ▶ Für $f \approx g$ muss insbesondere $g(n) \leq c'f(n)$ gelten.
 - ▶ Das ist für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$.
 - ▶ Das muss also für ein $c' \in \mathbb{R}^+$ ab einem n_0 für alle n gelten.
 - Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

- ▶ betrachte $f(n) = n^2$ und $g(n) = n^3$
- ▶ Behauptung: $f \not \prec g$
- ► Begründung:
 - Für $f \approx g$ muss insbesondere $g(n) \leq c'f(n)$ gelten.
 - ▶ Das ist für $f(n) \neq 0$ äquivalent zu $g(n)/f(n) \leq c'$.
 - ▶ Das muss also für ein $c' \in \mathbb{R}^+$ ab einem n_0 für alle n gelten.
 - ▶ Aber g(n)/f(n) = n kann durch keine Konstante beschränkt werden.

$\ddot{\mathsf{A}}\mathsf{quivalenzrelation} symp$

- ► Zeichen ≍ erinnert an das Gleichheitszeichen.
- ▶ Das ist Absicht: Relation × hat wichtige Eigenschaften:

Lemma

Die Relation \asymp ist eine Äquivalenzrelation.

Zur Erinnerung: Eine Äquivalenzrelation ist per definitionem

- reflexiv,
- symmetrisch,
- transitiv.

$\tilde{\mathsf{A}}$ quivalenzrelation symp : Beweis (1)

- ► Reflexitvität: $f \times f$ denn man für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \asymp g$, dann auch $g \asymp f$ Wenn für Konstanten $c, c' \in \mathbb{R}^+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c'

$$d'g(n) \le f(n) \le dg(n)$$
.

$\tilde{\mathsf{A}}$ quivalenzrelation symp : Beweis (1)

- ► Reflexitvität: $f \asymp f$ denn man für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \asymp g$, dann auch $g \asymp f$ Wenn für Konstanten $c, c' \in \mathbb{R}^+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c':

$$d'g(n) \le f(n) \le dg(n)$$
.

Äquivalenzrelation symp : Beweis (1)

- ► Reflexitvität: $f \asymp f$ denn man für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \asymp g$, dann auch $g \asymp f$ Wenn für Konstanten $c, c' \in \mathbb{R}^+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c':

$$d'g(n) \leq f(n) \leq dg(n)$$
.

Äquivalenzrelation symp : Beweis (1)

- ► Reflexitvität: $f \asymp f$ denn man für c = c' = 1 und $n_0 = 0$ gilt: für $n \ge n_0$ ist $cf(n) \le f(n) \le c'f(n)$
- ▶ Symmetrie: Wenn $f \asymp g$, dann auch $g \asymp f$ Wenn für Konstanten $c, c' \in \mathbb{R}^+$, $n_0 \in \mathbb{N}_0$ und alle $n \ge n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$
,

dann gilt für die gleichen $n \ge n_0$ und die Konstanten d = 1/c und d' = 1/c':

$$d'g(n) \le f(n) \le dg(n)$$
.

Äquivalenzrelation \approx : Beweis (2)

▶ Transitivität: wenn $f \approx g$ und $g \approx h$, dann $f \approx h$. gelte für Konstanten $c, c' \in \mathbb{R}_+$ und alle $n \geq n_0$

$$cf(n) \leq g(n) \leq c'f(n)$$

und für Konstanten $d,d'\in\mathbb{R}_+$ und alle $n\geq n_1$

$$dg(n) \leq h(n) \leq d'g(n)$$
.

Dann gilt für alle $n \ge \max(n_0, n_1)$

$$dcf(n) \le dg(n) \le h(n) \le d'g(n) \le d'c'f(n)$$
,

wobei auch die Konstanten dc und d'c' wieder positiv sind.

Groß-Θ

- ▶ $\Theta(f)$: Menge aller Funktionen, die zu einer gegebenen Funktion f(n) im Sinne von \asymp äquivalent sind
- Also:

$$\Theta(f(n)) = \{g(n) \mid f(n) \approx g(n)\}
= \{g(n) \mid \exists c, c' \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 :
cf(n) \le g(n) \le c'f(n)\}$$

einfache Rechenregel für Θ

Rechenregel

Für alle $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ und alle Konstanten $a, b \in \mathbb{R}_0^+$ gilt:

$$\Theta(af(n)) = \Theta(bf(n)) .$$

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums

Die furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

Obere und untere Schranken

- Manchmal kennt man eine Funktion nicht mal bis auf einen konstanten Faktor, sondern nur obere (oder/und untere) Schranken.
 - ► Erinnerung: Anzahl Schleifendurchläufe bei Insertionsort
- Definition:
- gelegentlich auch

$$g \leq f$$
 falls $g \in O(f)$
 $g \succeq f$ falls $g \in \Omega(f)$

- Redeweise
 - g wächst asymptotisch höchstens so schnell wie f (falls $g \leq f$)
 - g wächst asymptotisch mindestens so schnell wie f (falls $g \succeq f$)

Beispiel (1)

- ► Es sei $g(n) = 10^{90} n^7$ und $f(n) = 10^{-90} n^8$
- ▶ Behauptung: $g(n) \in O(f(n))$
- Begründung:
 - wähle $c = 10^{180}$ und $n_0 = 0$
 - ▶ dann für alle $n \ge 0$: $10^{90} n^7 \le c \cdot 10^{-90} n^8$.
- Man sieht: In $O(\cdot)$ usw. können *große* Konstanten stecken.
- Deswegen: Ob z. B. Algorithmus mit Laufzeit in O(n⁸) in der Praxis wirklich tauglich ist, hängt durchaus von der Konstante c bei der oberen Schranke cn⁸ ab.
 - $c = 10^{-90}$ dürfte okay sein,
 - $c = 10^{90}$ vermutlich nicht.

Beispiel (1)

- ► Es sei $g(n) = 10^{90} n^7$ und $f(n) = 10^{-90} n^8$
- ▶ Behauptung: $g(n) \in O(f(n))$
- Begründung:
 - wähle $c = 10^{180}$ und $n_0 = 0$
 - ▶ dann für alle $n \ge 0$: $10^{90} n^7 \le c \cdot 10^{-90} n^8$.
- ▶ Man sieht: In $O(\cdot)$ usw. können *große* Konstanten stecken.
- ▶ Deswegen: Ob z. B. Algorithmus mit Laufzeit in O(n⁸) in der Praxis wirklich tauglich ist, hängt durchaus von der Konstante c bei der oberen Schranke cn⁸ ab.
 - $ightharpoonup c = 10^{-90}$ dürfte okay sein,
 - $c = 10^{90}$ vermutlich nicht.

Beispiel (2)

- ▶ Was ist O(1)?
- ▶ Definition: alle Funktionen g(n), für die es $c \in \mathbb{R}^+$ und $n_0 \in \mathbb{N}_0$ gibt, so dass für alle $n \ge n_0$ gilt:

$$g(n) \leq c \cdot 1 = c$$

- ▶ alle Funktionen, die durch eine Konstante beschränkbar sind
 - Dazu gehören etwa alle konstanten Funktionen,
 - ▶ aber auch Funktionen wie $3 + \sin(n)$ (So etwas habe ich aber noch nie eine Rolle spielen sehen.)

Beispiel (3)

- vorne: er Quotient n^2/n nicht für alle hinreichend großen n durch eine Konstante beschränkbar
- ▶ Also gilt *nicht* $n^2 \leq n$.
- ▶ Andererseits gilt $n \leq n^2$ (klar?)
- ▶ Die Relation \leq ist also *nicht* symmetrisch.
- ▶ Allgemein für reelle Konstanten 0 < a < b:

$$n^a \leq n^b$$
 aber $n^b \not\leq n^a$

also

$$n^a \in \mathcal{O}(n^b)$$
 aber $n^b \notin \mathcal{O}(n^a)$

Einfache Beobachtungen

▶ in der Ungleichung $g(n) \le cf(n)$ die Konstante auf die andere Seite bringen (hatten wir schon) liefert

Rechenregel

Für alle Funktionen $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ und $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt:

$$g(n) \in O(f(n)) \Longleftrightarrow f(n) \in \Omega(g(n)), \text{ also } g \leq f \Longleftrightarrow f \succeq g$$

▶ Man kann auch zeigen:

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$
also $g \asymp f \Longleftrightarrow g \prec f \land g \succ f$

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums

Die furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktioner

Für die Lektüre leider unverzichtbar

- eine sehr unschöne (um nicht zu sagen irreführende) Variante der eben eingeführten Notation
- aber leider weit verbreitet
- ▶ Man schreibt

$$g(n) = O(f(n))$$
 statt $g(n) \in O(f(n))$,
 $g(n) = \Theta(f(n))$ statt $g(n) \in \Theta(f(n))$,
 $g(n) = \Omega(f(n))$ statt $g(n) \in \Omega(f(n))$.

- Ausdrücke auf der linken Seite sind keine Gleichungen!
- ► Lassen Sie daher bitte immer große Vorsicht walten:
 - ► Es ist falsch, aus $g(n) = O(f_1(n))$ und $g(n) = O(f_2(n))$ zu folgern, dass $O(f_1(n)) = O(f_2(n))$ ist.
 - ► Es ist falsch, aus $g_1(n) = O(f(n))$ und $g_2(n) = O(f(n))$ zu folgern, dass $g_1(n) = g_2(n)$ ist.

Für die Lektüre leider unverzichtbar

- eine sehr unschöne (um nicht zu sagen irreführende) Variante der eben eingeführten Notation
- aber leider weit verbreitet
- ▶ Man schreibt

$$g(n) = O(f(n))$$
 statt $g(n) \in O(f(n))$,
 $g(n) = \Theta(f(n))$ statt $g(n) \in \Theta(f(n))$,
 $g(n) = \Omega(f(n))$ statt $g(n) \in \Omega(f(n))$.

- Ausdrücke auf der linken Seite sind keine Gleichungen!
- Lassen Sie daher bitte immer große Vorsicht walten:
 - ► Es ist falsch, aus $g(n) = O(f_1(n))$ und $g(n) = O(f_2(n))$ zu folgern, dass $O(f_1(n)) = O(f_2(n))$ ist.
 - ► Es ist falsch, aus $g_1(n) = O(f(n))$ und $g_2(n) = O(f(n))$ zu folgern, dass $g_1(n) = g_2(n)$ ist.

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Die furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

Eine nützliche Rechenregel

- ▶ Ist $g_1 \leq f_1$ und $g_2 \leq f_2$, dann ist auch $g_1 + g_2 \leq f_1 + f_2$.
- ▶ Ist umgekehrt $g \leq f_1 + f_2$, dann kann man g in der Form $g = g_1 + g_2$ schreiben mit $g_1 \leq f_1$ und $g_2 \leq f_2$.

Das schreiben wir auch so:

Lemma

Für alle Funktionen $f_1, f_2 : \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt:

$$O(f_1) + O(f_2) = O(f_1 + f_2)$$

Das Pluszeichen auf der linken Seite bedarf der Erläuterung ...

Komplexoperationen

Sind M_1 und M_2 Mengen von Elementen, die man addieren bzw. multiplizieren kann, dann sei

$$M_1 + M_2 = \{g_1 + g_2 \mid g_1 \in M_1 \land g_2 \in M_2\}$$

 $M_1 \cdot M_2 = \{g_1 \cdot g_2 \mid g_1 \in M_1 \land g_2 \in M_2\}$

Das ist nichts Neues: Definition des Produkts formaler Sprachen passt genau in dieses Schema.

Komplexoperationen (2)

- ▶ Wenn eine der Mengen *M_i* einelementig ist, lässt man manchmal die Mengenklammern darum weg.
- Beispiele
 - ▶ mit Zahlenmengen

statt
$$\{3\} \cdot \mathbb{N}_0 + \{1\}$$
 kürzer $3\mathbb{N}_0 + 1$

mit Funktionenmengen

statt
$${n^3} + O(n^2)$$
 kürzer $n^3 + O(n^2)$

Beweis des Lemmas

beide Inklusionen getrennt beweisen:

"⊆": das ist einfach
Wenn für alle
$$n \ge n_{01}$$
 gilt: $g_1(n) \le c_1 f_1(n)$ und
wenn für alle $n \ge n_{02}$ gilt: $g_2(n) \le c_2 f_2(n)$, dann
gilt für $n \ge n_0 = \max(n_{01}, n_{02})$ und $c = \max(c_1, c_2)$:

$$g_1(n) + g_2(n) \le c_1 f_1(n) + c_2 f_2(n)$$

$$\le c f_1(n) + c f_2(n)$$

$$= c(f_1(n) + f_2(n))$$

" \supseteq ": "schwieriger", weil man g_1 und g_2 finden muss. Definiere

$$g_1(n) = \begin{cases} g(n) & \text{falls } g(n) \leq cf_1(n) \\ cf_1(n) & \text{falls } g(n) > cf_1(n) \end{cases}$$
 und
$$g_2(n) = g(n) - g_1(n)$$

Der Rest ist einfache Rechnung.

Weitere Regeln

Rechenregel

Wenn $g_1 \leq f_1$ ist, und wenn $g_1 \approx g_2$ und $f_1 \approx f_2$, dann gilt auch $g_2 \leq f_2$.

Rechenregel

Wenn $g \leq f$ ist, also $g \in O(f)$, dann ist auch $O(g) \subseteq O(f)$ und O(g + f) = O(f).

Was ist wichtig

Das sollten Sie mitnehmen:

- ▶ Definitionen von O(f), $\Theta(f)$, $\Omega(f)$
- ▶ Definitionen von \leq , \leq , \succeq

Das sollten Sie üben:

- ▶ Anschauung für O(f), $\Theta(f)$, $\Omega(f)$
- rechnen mit O(f), $\Theta(f)$, $\Omega(f)$

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Die furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Die furchtbare Schreibweise Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

Multiplikation von 2×2 -Matrizen

- ► Anzahl Multiplikationen: $N_{mult}(2) = 2^2 \cdot 2 = 8$
- ► Anzahl Additionen: $N_{add}(2) = 2^2 \cdot (2-1) = 4$.

Multiplikation von $n \times n$ -Matrizen

- n sei gerade
- Verwendung von Blockmatrizen:

- ▶ alle Blöcke haben Größe $n/2 \times n/2$
- ▶ 8 Multiplikationen von Blockmatrizen und
 - 4 Additionen von Blockmatrizen.
- Anzahl elementarer Operationen
 - $ightharpoonup N_{mult}(n) = 8 \cdot N_{mult}(n/2)$ und
 - $N_{add}(n) = 8 \cdot N_{add}(n/2) + 4 \cdot (n/2)^2 = 8 \cdot N_{add}(n/2) + n^2.$

Multiplikation von $2^k \times 2^k$ -Matrizen

- ▶ Fälle $n \neq 2^k$ kann man mit mehr Aufwand analog behandeln.
- ▶ aus $N_{mult}(n) = 8 \cdot N_{mult}(n/2)$ folgt

$$N_{mult}(2^k) = 8 \cdot N_{mult}(2^{k-1}) = 8 \cdot 8 \cdot N_{mult}(2^{k-2}) = \cdots$$

$$= 8^k \cdot N_{mult}(1)$$

$$= 8^k = 8^{\log_2(n)} = 2^{3\log_2(n)} = 2^{\log_2(n) \cdot 3} = n^3$$

- ► Induktion wäre klar, oder?
- Aus $N_{add}(n) = 8 \cdot N_{add}(n/2) + n^2$ folgt

$$N_{add}(2^{k}) = 8 \cdot N_{add}(2^{k-1}) + 4^{k}$$

$$= 8 \cdot 8 \cdot N_{add}(2^{k-2}) + 8 \cdot 4^{k-1} + 4^{k} = \cdots$$

$$= 8 \cdot 8 \cdot N_{add}(2^{k-2}) + 2 \cdot 4^{k} + 4^{k} = \cdots$$

$$= 8^{k} N_{add}(2^{0}) + (2^{k-1} + \cdots + 1) \cdot 4^{k} =$$

$$= 2^{k} \cdot 4^{k} \cdot 1 + (2^{k} - 1) \cdot 4^{k} =$$

$$= 2 \cdot 2^{k} \cdot 4^{k} - 4^{k} = 2n^{3} - n^{2}$$

Nichts neues

- ▶ Das wussten wir doch schon:
 - $ightharpoonup N_{mult}(n) = n^3$
 - $N_{add}(n) = 2n^3 n^2$
- ▶ und?

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren Notation für obere und untere Schranken des Wachstums Die furchtbare Schreibweise

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

Die Idee von Strassen

Man kann die Einträge C_{ij} des Matrixproduktes auch wie folgt berechnen:

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$
 $M_2 = (A_{21} + A_{22})B_{11}$
 $M_3 = A_{11}(B_{12} - B_{22})$
 $M_4 = A_{22}(B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12})B_{22}$
 $M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$
und dann
 $C_{11} = M_1 + M_4 - M_5 + M_7$
 $C_{12} = M_3 + M_5$
 $C_{21} = M_2 + M_4$
 $C_{22} = M_1 - M_2 + M_3 + M_6$

Die Idee von Strassen (2)

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$
 $M_2 = (A_{21} + A_{22})B_{11}$
 $M_3 = A_{11}(B_{12} - B_{22})$
 $M_4 = A_{22}(B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12})B_{22}$
 $M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$
und dann
 $C_{11} = M_1 + M_4 - M_5 + M_7$
 $C_{12} = M_3 + M_5$
 $C_{21} = M_2 + M_4$
 $C_{22} = M_1 - M_2 + M_3 + M_6$

- ▶ 18 Additionen statt 4
- 7 Multiplikationen statt 8

Die Idee von Strassen (3)

- ▶ 18 Additionen statt 4
- ▶ 7 Multiplikationen statt 8
- ▶ ja und?

Die Idee von Strassen (3)

- ▶ 18 Additionen statt 4
- ▶ 7 Multiplikationen statt 8
- ▶ ja und?
- ganze Block*matrizen*:
 Additionen sind *viel* "billiger" als Multiplikationen
- übrigens:
 - bei einzelnen Zahlen sind Additionen auch viel "billiger" als Multiplikationen
 - bei den kleinen Werten in Rechnern merkt man das nur nicht

Die Idee von Strassen (3)

- ▶ 18 Additionen statt 4
- ▶ 7 Multiplikationen statt 8
- ▶ ja und?
- ganze Block*matrizen*:
 Additionen sind *viel* "billiger" als Multiplikationen
- übrigens:
 - bei einzelnen Zahlen sind Additionen auch viel "billiger" als Multiplikationen
 - bei den kleinen Werten in Rechnern merkt man das nur nicht

Aufwandsabschätzung für den Algorithmus von Strassen

- ► Anzahl elementarer Operationen:
 - $ightharpoonup N_{mult}(n) = 7 \cdot N_{mult}(n/2)$
 - $N_{add}(n) = 7 \cdot N_{add}(n/2) + 18 \cdot (n/2)^2 = 7 \cdot N_{add}(n/2) + 4.5 \cdot n^2$
- Für den Fall $n = 2^k$ ergibt sich:

$$\begin{aligned} N_{mult}(2^k) &= 7 \cdot N_{mult}(2^{k-1}) = 7 \cdot 7 \cdot N_{mult}(2^{k-2}) = \cdots \\ &= 7^k \cdot N_{mult}(1) \\ &= 7^k = 7^{\log_2(n)} = 2^{\log_2 7 \cdot \log_2(n)} = n^{\log_2 7} \approx n^{2.807 \dots} \end{aligned}$$

- ▶ Analog auch $N_{add}(n) \in \Theta(n^{\log_2 7})$.
- ► Gesamtzahl elementarer Operationen ist also in

$$\Theta(n^{\log_2 7}) + \Theta(n^{\log_2 7}) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.807...})$$
.

Noch schneller?

- ▶ Ja: Algorithmus von Coppersmith und Winograd: $O(n^{2.376...})$
 - der konstante Faktor ist groß.
- ▶ Unklar: Reichen $O(n^2)$ Operationen?

Teile und herrsche

- ▶ Man teilt die Probleminstanz in kleinere Teile auf
 - mehr oder weniger viele
- Man bearbeitet die Teile rekursiv nach dem gleichen Verfahren.
- ► Man benutzt die Teilergebnisse, um das Resultat für die ursprüngliche Eingabe zu berechnen.
- engl. divide and conquer

Was ist wichtig

Das sollten Sie mitnehmen:

- bei algorithmischen Problemen kann man überraschende Dinge tun
- Teile und Herrsche
- Rekursionsformel f
 ür Absch
 ätzung von (z. B.) Laufzeiten

Das sollten Sie üben:

- ▶ in dieser Vorlesung: rechnen mit $O(\cdot)$, $\Theta(\cdot)$, $\Omega(\cdot)$
 - ▶ spätestens in kommenden Semestern: rekursive Algorithmen

Überblick

Ressourcenverbrauch bei Berechnunger

Groß-O-Notation

Ignorieren konstanter Faktoren

Notation für obere und untere Schranken des Wachstums

Die furchtbare Schreibweise

Rechnen im O-Kalkül

Matrixmultiplikation

Rückblick auf die Schulmethode

Algorithmus von Strassen

Abschätzung des Wachstums rekursiv definierter Funktionen

- ▶ in einfachen Fällen:
 - ► Problem der Größe *n* wird in konstante Anzahl *a* von Teilprobleme gleicher Größe *n/b* zerhackt
 - ightharpoonup sinnvollerweise a > 1 und b > 1
 - ightharpoonup Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- ▶ Abschätzung (z. B.) der Laufzeit *T*(*n*) liefert Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ightharpoonup [n/b] oder [n/b]
 - oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

- ▶ in einfachen Fällen:
 - ▶ Problem der Größe *n* wird in konstante Anzahl *a* von Teilprobleme gleicher Größe *n/b* zerhackt
 - ▶ sinnvollerweise $a \ge 1$ und b > 1
 - \triangleright Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- ▶ Abschätzung (z. B.) der Laufzeit T(n) liefert Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ightharpoonup [n/b] oder [n/b]
 - ▶ oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

- ▶ in einfachen Fällen:
 - ▶ Problem der Größe *n* wird in konstante Anzahl *a* von Teilprobleme gleicher Größe *n/b* zerhackt
 - ▶ sinnvollerweise $a \ge 1$ und b > 1
 - \triangleright Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- ▶ Abschätzung (z. B.) der Laufzeit T(n) liefert Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ▶ $\lfloor n/b \rfloor$ oder $\lceil n/b \rceil$
 - oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

- ▶ in einfachen Fällen:
 - ▶ Problem der Größe *n* wird in konstante Anzahl *a* von Teilprobleme gleicher Größe *n/b* zerhackt
 - ▶ sinnvollerweise $a \ge 1$ und b > 1
 - \triangleright Zerhacken vorher und Zusammensetzen hinterher kosten f(n).
- ▶ Abschätzung (z. B.) der Laufzeit T(n) liefert Rekursionsformel, die "grob gesagt" die Form hat

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- genau genommen:
 - ▶ $\lfloor n/b \rfloor$ oder $\lceil n/b \rceil$
 - oder gar $\lfloor n/b + c \rfloor$ oder $\lceil n/b + c \rceil$
 - Mitteilung: Das ändert nichts.
- ▶ Gesucht: explizite Formel für T(n).

Mastertheorem

Drei Kochrezepte, in denen f(n) und $\log_b a$ eine Rolle spielen:

- Fall 1: Wenn $f(n) \in O(n^{(\log_b a) \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T(n) \in \Theta(n^{\log_b a})$.
- Fall 2: Wenn $f(n) \in \Theta(n^{\log_b a})$ ist, dann ist $T(n) \in \Theta(n^{\log_b a} \log n)$.
- Fall 3: Wenn $f(n) \in \Omega(n^{(\log_b a) + \varepsilon})$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt $af(n/b) \le df(n)$, dann ist $T(n) \in \Theta(f(n))$.

Beispiel Matrixmultipliaktion (1)

- ▶ "Problemgröße" *n*: die Zeilen- Spaltenzahl.
- Schulmethode:
 - ▶ a = 8 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2
 - ▶ $\log_b a = \log_2 8 = 3$
 - ▶ zusätzlicher Aufwand: 4 kleine Matrixadditionen, also $f(n) = 4 \cdot n^2/4 = n^2$
 - $f(n) \in O(n^{3-\varepsilon})$ (z. B. für $\varepsilon = 1/2$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^3)$
- Strassen
 - ► *a* = 7 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2

 - ▶ zusätzlicher Aufwand: 18 kleinen Matrixadditionen, also $f(n) = 18 \cdot n^2/4 \in \Theta(n^2)$
 - $f(n) \in O(n^{\log_b a \varepsilon}) = O(n^{\log_2 7 \varepsilon})$ (z. B. für $\varepsilon = 0.1$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^{\log_2 7}) = \Theta(n^{2.807...})$

Beispiel Matrixmultipliaktion (1)

- ▶ "Problemgröße" *n*: die Zeilen- Spaltenzahl.
- Schulmethode:
 - ▶ a = 8 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2
 - ▶ $\log_b a = \log_2 8 = 3$
 - ▶ zusätzlicher Aufwand: 4 kleine Matrixadditionen, also $f(n) = 4 \cdot n^2/4 = n^2$
 - $f(n) \in O(n^{3-\varepsilon})$ (z. B. für $\varepsilon = 1/2$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^3)$
- Strassen
 - ► a = 7 Multiplikationen
 - ▶ von Matrizen der Größe n/2: also b=2
 - ▶ $\log_b a = \log_2 7 \approx 2.807...$
 - ▶ zusätzlicher Aufwand: 18 kleinen Matrixadditionen, also $f(n) = 18 \cdot n^2/4 \in \Theta(n^2)$
 - $f(n) \in O(n^{\log_b a \varepsilon}) = O(n^{\log_2 7 \varepsilon})$ (z. B. für $\varepsilon = 0.1$)
 - ▶ Mastertheorem, Fall 1: $T(n) \in \Theta(n^{\log_2 7}) = \Theta(n^{2.807...})$

Was ist wichtig

Das sollten Sie mitnehmen:

 Mastertheorem: Kochrezepte zum Nachschlagen des asymptotischen Wachstums einfach rekursiv definierter Funktionen

Das sollten Sie üben:

Mastertheorem anwenden

Zusammenfassung

- ► Komplexitätsmaße
 - Laufzeitbedarf
 - Speicherplatzbedarf
- Abschätzung asymptotischen Wachstums bis auf konstante Faktoren
 - ▶ nach oben mit O(·)
 - nach oben und unten mit $\Theta(\cdot)$
 - nach unten mit Ω(·)
- algorithmisches Prinzip
 - ► Teile und Herrsche (divide and conquer)
 - am Beispiel Matrixmultiplikation
- Mastertheorem