Grundbegriffe der Informatik Musterlösung zur Klausur am 5.3.2012

Lösungsvorschlag:

a) Eine Menge M ist unendlich, wenn es eine injektive Abbildung von M in eine echte Teilmenge von M gibt.

wahr

- b) Wenn eine Relation nicht symmetrisch ist, ist sie antisymmetrisch. falsch
- c) Sei R eine beliebige Relation auf einer nicht-leeren Menge M. R ist transitiv $\Rightarrow R \circ R \subseteq R$. wahr
- d) Sei R eine beliebige Relation auf einer nicht-leeren Menge M. $R \circ R \subseteq R \Rightarrow R$ ist transitiv. wahr
- e) Das leere Wort ϵ ist eine surjektive Abbildung: $\{\} \to \{\}$. wahr
- f) Seien L_1 und L_2 formale Sprachen. $L_1^* = L_2^* \Rightarrow L_1 = L_2$.
- g) $\sqrt{n} \in O(2^{\sqrt{\log_2(n)}})$ falsch
- h) $\sqrt{n} \in \Theta(2^{\sqrt{\log_2(n)}})$ falsch
- i) $\sqrt{n} \in \Omega(2^{\sqrt{\log_2(n)}})$ wahr

j) Gegeben seien zwei reguläre Ausdrücke $R_1=\varnothing*|0(0|1)*|(0|1)*00(0|1)*$ und $R_2=((0*1)*01*)*$ Es gilt: $\langle R_1\rangle=\langle R_2\rangle$. falsch

- k) Die Funktion $f:\mathbb{N}_+\to\mathbb{N}_+$ gibt als Funktionswert die größte Primzahl p zurück, für die gilt: $\exists k\in\mathbb{N}_+:n=k\cdot p$ Es gilt $f(n)\in O(\sqrt{n}).$ falsch
- l) Die aussagenlogische Formel $(A\Rightarrow \neg B)\vee ((B\wedge \neg C)\wedge (C\vee D))\vee A$ ist äquivalent zu $A\vee \neg A$ wahr

Lösungsvorschlag

1. (a) $\{a, a^3\}$ sind nicht in L.

(b) Für alle $w_1, w_2 \in A^*$ ist $w_1 \equiv_L w_2 \iff \forall w \in A^* : w_1 w \in L \iff w_2 w \in L$

- (c) \bullet $[\epsilon] = \langle \emptyset * \rangle$
 - $[a] = \langle a \rangle$
 - $[aa] = \langle aa \rangle$
 - $[aaa] = \langle aaa \rangle$
 - $[aaaa] = \langle aaaaaa* \rangle$

2. (a) Sei $x \in D$ beliebig. x = (a, b), mit $a \in A, b \in B, f(a) = g(b)$ $(f \circ h)(x) = f(h(x)) = f(h(a, b)) = f(a) = g(b) = g(k(a, b)) = g(k(x)) = (g \circ k)(x).$

- (b) $D = \{(2c^2, 2c) | c \in \mathbb{Z}\}$
- 3. Es gibt 5 verschiedene Äquivalenz
relationen auf einer drei-elementigen Menge.

Sei $M = \{a, b, c\}$. Dann gibt es folgende fünf Möglichkeiten:

- [a], [b], [c]
- $\bullet \ [ab],[c]$
- [a], [bc]
- [ac], [b]
- \bullet [abc]

Lösungsvorschlag:

a) ·	f(x,y)	y=0	y=1	y=2	y=3	y=4
	x=0	0	1	2	3	4
	x=1	1	0	3	2	5
	x=2	2	3	0	1	6
	x=3	3	2	1	0	7
	x=4	4	5	6	7	0

b) **Induktionsanfang:** Für n = 0: f(0,0) = 0, für n = 1: $f(0,1) = f(1,0) = 1 \neq 0\sqrt{.}$

Induktionsvoraussetzung:

Für alle $x + y \le n$ und beliebiges, aber festes $n \in \mathbb{N}_0$ gelte: für $x \ne y$ ist $f(x, y) \ne 0$ und für x = y ist f(x, y) = 0.

Induktionsschritt: Sei $\hat{x} + y = n + 1$: Ist $\hat{x} > y$, so ist nach IV und Definition der Funktion $f(\hat{x}, y) \neq f(y, y) = 0$.

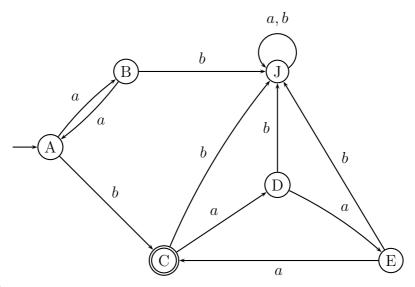
Ist $\hat{x} < y$, so ist nach IV und Definition der Funktion $f(\hat{x}, y) \neq f(y, y) = 0$.

Ist nun $\hat{x} = y$, so ist $f(\hat{x}, y) = \min\{z \mid \forall x' < \hat{x} : z \neq f(x', y) \text{ und } \forall y' < y : z \neq f(\hat{x}, y')\}.$

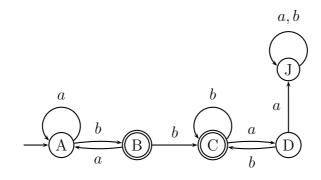
Nach IV sind alle Elemente, die betrachtet werden ungleich Null, woraus folgt, dass für $\hat{x} = y$ gilt: $f(\hat{x}, y) = 0$.

Da nach Aufgabenbeschreibung gilt: $\forall x, y \in \mathbb{N}_0 : f(x, y) = f(y, x)$, gilt die Aussage für alle x, y.

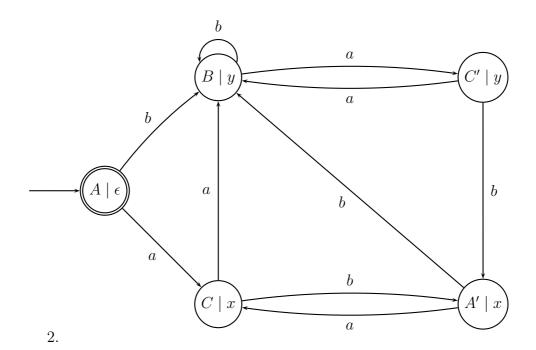
$L\"{o}sungsvorschlag:$



1. a)



b)



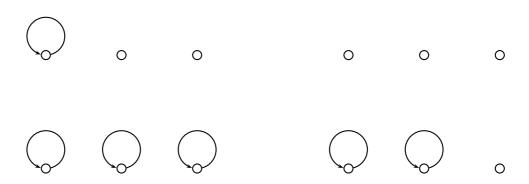
$L\"{o}sungsvorschlag:$

$$\begin{aligned} \mathbf{a}) & \ G = (\{S, X, Y, A, B\}, \{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}, S, P\} \ \mathrm{mit} \\ & \ P = \{S \rightarrow Y \mathbf{d} \mid \mathbf{a} \mathbf{b} B \mathbf{d}, \\ & \ X \rightarrow \mathbf{c} X \mid \epsilon, \\ & \ Y \rightarrow Y \mathbf{d} \mid \mathbf{a} \mathbf{b} A \mathbf{c}, \\ & \ A \rightarrow \mathbf{a} \mathbf{b} A \mathbf{c} \mid \epsilon, \\ & \ B \rightarrow \mathbf{a} \mathbf{b} B \mathbf{d} \mid \mathbf{c} X\}. \end{aligned}$$

- b) ababccd
 - ababcdd
 - abccccd
 - abcdddd

Lösungsvorschlag:

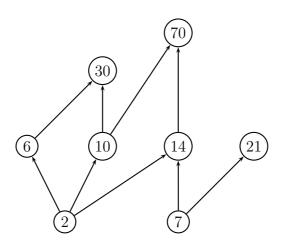
1. Es gibt folgende 4 Möglichkeiten:



2. Angenommen G und G' seien isomorph.

 $G \cup G'$ wäre (nach Definition von G') der vollständige Graph G_{voll} , also ein (schlingenfreier) Graph, in dem jeder Knoten mit jedem anderen Knoten über eine Kante verbunden ist. Die Anzahl der Kanten in G_{voll} beträgt $\frac{n \cdot (n-1)}{2}$, für n = |V|. Da nach Annahme G und G' isomorph sind, gilt $|E| = |E'| = \frac{n \cdot (n-1)}{4}$. Für n = 5 müsste der Baum G also 5 Kanten haben, was nach Definition eines Baumes nicht möglich sein kann.

Die Annahme war folglich falsch \Rightarrow G und G' sind nicht isomorph.



3. (a)

(b) Maximale Elemente: 21, 30 und 70 Minimale Elemente: 2 und 7

Es gibt keine kleinsten und keine größten Elemente.

$L\"{o}sungsvorschlag:$

1. (a) Wir schreiben den Zustand der Turingmaschine immer vor das Zeichen, auf dem sich der Kopf befindet.

Anfangskonfiguration: Sbaab Zwischenkonfigurationen:

 $\#z_1$ aab

 $B\#\#\mathtt{ab}$

 $\#\#\#z_0$ b

##B##

Endkonfiguration: $\#\#\#\#S\square$

Anfangskonfiguration: Saba Zwischenkonfigurationen:

 $\#z_0$ ba

 $B\#\#\mathtt{a}$

Endkonfiguration: $\#\#\#z_0\square$

(b) $L = \{w \in \{a, b\}^* \mid N_a(w) = N_b(w)\}$

