71	
- 11	
-11	

FAKULTÄT FÜR PHYSIK, Universität Karlsruhe (TH) Praktikum Klassische Physik

		W S 20.11./.12
Praktikum: (P1/ X) ()	K /Di/ K / K	Gruppe-Nr:11
Name: Fleig	Vorname:	Georg
Name: Krause	Vorname:	Marcel
Versuch: Galvanomet	er (mit/)	Fehlerrechnung
Betreuer: Stefan Heit	Z Durch	geführt am: 25.10.11
Abgabe am:		
Rückgabe am:	Begrür	ndung:
2. Abgabe am:		
Ergebnis: (+/0/-)	Fehlerrechn	ung: ja / nein
Datum:	Handzeiche	n:
Bemerkungen:		

FAKULTÄT FÜR PHYSIK, Universität Karlsruhe (TH)

Physikalisches Praktikum P1 für Physiker und Lehramtskandidaten

Versuche P1--13,14,15:

Galvanometer

Raum F1-09

Obwohl es heute Geräte gibt, die bei mindestens gleicher Leistung eine viel bequemere Ablesung ermöglichen (z.B. volltransistorisierte Digitalanzeigegeräte), ist das Galvanometer besonders im Praktikum ein sehr nützliches Messinstrument. Es ist besonders geeignet, weil es ein überschaubares und leicht verständliches Gerät ist, an dem viele grundlegende physikalische Effekte elektrischer und mechanischer Natur auftreten. So zum Beispiel Kraftwirkungen auf stromdurchflossene Leiter im Magnetfeld, Induktionserscheinungen und Schwingungsvorgänge. Beachten Sie bitte bei allen Aufgabenteilen, dass das Galvanometer äußerst Empfindlich und daher sorgsam zu behandeln ist.

Schaltungen bitte sorgfältig kontrollieren. Stets mit kleinster angelegter Spannung beginnen (Regler R2 in Schaltung 1). In keinem Fall wird das Galvanometer direkt an den Ausgang von Schaltung 1 angeschlossen!

Wegen der unvermeidlichen Nullpunktsdrift des Galvanometers muss die Null-Lage häufig kontrolliert werden. (Besser notieren oder korrigieren?) Gestellte Fragen sollen schon bei der Vorbereitung beantwortet werden. Bei der Auswertung nicht die Diskussion vernachlässigen, z.B. zu unterschiedlichen Ergebnissen bei verschiedenen Messverfahren.

Aufgaben:

- **1.)** Machen Sie zunächst einige Vorexperimente, die Ihnen die hohe Galvanometerempfindlichkeit und mögliche Ursachen für Fehlmessungen vor Augen führen.
- **1.1** Nehmen Sie einen Zuleitungsbananenstecker in die linke, den anderen in die rechte Hand, und beobachten Sie den Lichtzeiger-Ausschlag des angeschlossenen Galvanometers.
- 1.2 Schließen Sie das Galvanometer (ohne Spannungsquelle!) nur an einen Drahtdrehwiderstand (z.B. 100Ω) an und beobachten Sie den Lichtzeiger, während Sie den Schleifer des Drehwiderstandes hin- und herbewegen.
- 1.3 Vergleichen Sie die Ruhestellung des Lichtzeigers bei offenem Galvanometer mit der bei angeschlossenem Drehwiderstand.

Versuchen Sie, die beobachteten Effekte zu erklären.

- **2.)** Entnehmen Sie die Versorgungsspannung U für die folgenden Aufgaben einem Spannungsteiler, der in Schaltung 1 dargestellt ist. Beginnen Sie bei allen Aufgaben mit kleinsten U-Werten und steigern Sie die Spannung nur bei Beobachtung des Lichtzeigers. Stellen Sie den Nullpunkt normalerweise mittels der verschieblichen Skala ein. Falls ein Drehen am Justierknopf notwendig sein sollte, dann diesen nur um extrem kleine Winkel verdrehen!
- **2.1 Messen Sie in Schaltung 2** den Galvanometerausschlag α in Ablängigkeit vom Vorwiderstand R bei geeigneter Spannung U. Tragen Sie α^{-1} über R auf, berechnen Sie die Ausgleichsgerade durch die Messpunkte und bestimmen Sie aus deren Parametern: -(a) den Galvanometer-Innenwiderstand R_G und -(b) die statische Stromempfindlichkeit C_I (in m/A, nicht in °/A o.ä.)
- **2.2 Messen Sie in Schaltung 3** den Galvanometerausschlag α in Ablängigkeit von R: -(a) bei offener Brückendiagonale und -(b) bei kurzgeschlossener Brückendiagonale.

Tragen Sie für beide Fälle α^{-1} über R auf, bestimmen Sie den Schnittpunkt und damit den Innenwiderstand des Galvanometers R_G .

2.3 Messen Sie in Schaltung 4 bei $R_a = \infty$ den Ausschlag α in Abhängigkeit von der Spannung U, berechnen Sie die zugehörigen Ströme I und tragen Sie α über I auf. Berechnen Sie die Ausgleichsgerade durch die Messpunkte und damit die statische Stromempfindlichkeit C_I .

- 3.) Messen Sie in Schaltung 4 in Abhängigkeit vom Außenwiderstand R_a (schaltbar; $1k\Omega$ bis ∞ wählen) beim Rückschwingen um den Nullpunkt: -(a) das Dämpfungsverhältnis α_{n-1}/α_n und -(b) die Schwingungsdauer T. Nutzen Sie dabei jeweils optimal viele Schwingungen aus.
- Ermitteln Sie folgende Größen:
- (a) Die *Abklingkonstante* β_{Ra} und tragen Sie $(\beta_{Ra} \beta_{\infty})^{-1}$ über R_a auf. Ein zusätzlicher Punkt in diesem Diagramm ist (- R_G , 0). Berechnen Sie die Ausgleichsgerade durch die Punkte.
- (b) Die Frequenz des ungedämpften Galvanometers, $\omega_0 = \sqrt{(2\pi/T_{\infty})^2 + \beta_{\infty}^2}$.
- (c) Den *Außenwiderstand* $R_{a,gr}$ für Grenzdämpfung, der bei $(\omega_0 \beta_\infty)^{-1}$ abzulesen ist. Verifizieren Sie mit Hilfe der Schaltung 4, dass etwa bei diesem Widerstand der Grenzfall vorliegt.
- (d) Die *Galvanometer-Kenngrößen* G, Θ und D mit Hilfe der drei Gleichungen $m = 2\Theta/G^2$; $\omega_0^2 = D/\Theta$; $C_I' = G/D$ (m = Steigung der Geraden; G = Galvanometerkonstante; Θ = Trägheitsmoment des schwingenden Systems; D = Rückstellkonstante der Torsionsaufhängung.) Dabei ist zu beachten, dass C_I' als Drehwinkel im Bogenmaß von Spule bzw. Drehspiegel, geteilt durch den entsprechenden Strom, genommen werden muss, während C_I bei den Aufgaben 2.1 und 2.3 auch anders angegeben wurde.
- **4.)** Bei den Aufgaben 2.1 und 2.3 (C_I -Bestimmung) floss der Messstrom mindestens solange, bis sich die neue Gleichgewichtslage eingestellt hatte. Jetzt wird die Wirkung von kürzeren Stromstößen untersucht. Der Einfachheit wegen werden die Stromstöße $\int Idt = Q = C \cdot U$ durch Entladung eines Kondensators erzeugt (Schaltung 5), obwohl der exponentielle Stromverlauf keine scharfe Angabe der Stromstoßdauer T_Q erlaubt. Es ist aber vernünftig, z.B. die Zeit $T_Q = 3RC$ anzugeben, nach der etwa 95% der Ladung abgeflossen ist. Da die Stromstoßquelle den Innenwiderstand ∞ hat, müssen bei Messungen mit größeren Dämpfungen als β_∞ Widerstände zum Galvanometer parallel geschaltet werden. Dann ist $Q_G < C \cdot U$ zu beachten, denn die Empfindlichkeiten sind auf Q_G , den über das Galvanometer abfließenden Ladungsanteil, zu beziehen.
- 4.1 Bestimmen Sie bei sehr kurzer Stromstoßdauer T_Q (R klein) die Stromstoßempfindlichkeiten des Galvanometers, mit $R_a = \infty$ (ballistische Empfindlichkeit bei minimaler Dämpfung), mit $R_a = 1000\Omega$, mit $R_a = 330\Omega$ (ballistische Empfindlichkeit nahe der Grenzdämpfung) sowie mit $R_a = 33\Omega$ ('fluxmetrische Empfindlichkeit' im Kriechfall).
- **4.2** Vergleichen Sie die Ergebnisse mit den theoretischen Werten, die Sie unter Benutzung der in den Aufgaben 2 und 3 ermittelten Kenngrößen G, R_G, Θ, ω_0 sowie R_a berechnen können.
- **4.3 Überzeugen Sie sich durch etliche Messungen mit größeren R-Werten** davon, dass nur für $T_Q \ll T$ die Stromstoßempfindlichkeiten nahezu unabhängig von T_O sind.

Fragen:

Warum kann man R_G nicht mit einem der üblichen Ohmmeter messen?

Wozu könnte wohl der in Schaltung 4 zum Galvanometer parallelschaltbare 330Ω -Widerstand dienen?

Wie ergibt sich die statische Spannungsempfindlichkeit C_U des Galvanometers?

Wieso ergibt sich bei Aufgabe 2.2 R_G als Schnittpunkt-R?

Welchen Sinn haben ballistische Messungen? Vergleichen Sie z.B. mit dem Mechanik-Versuch 'Schuss in einen Pendel-Sandsack'.

Zubehör:

Spiegelgalvanometer $[T \approx 5s; R_G \approx 30 ; C_I \approx 10^5 \, \text{rad/A}; Abstand Spiegel-Skala } A = (250\pm3) \, \text{mm}]$ In mehreren Schaltkästchen die Schaltungen 1 bis 5 mit Bananenbuchsen [Liste für Messwerte der Bauelemente beachten! In Schaltung 5 ist zusätzlich zu R18 bis R20 noch R21 (500 Ω , regelbar) vorhanden.] Drehspulmessinstrument (1% SKE) mit Vorwiderständen für 0,25V; 1V und 2,5V; zusätzliche Geräte für Sonderaufgaben (z.B. Induktionsspulen und Rechteckimpuls-Generator).

Physikalisches Anfängerpraktikum P1

Versuch: P1-13,14,15

Galvanometer

Schriftliche Vorbereitung von Georg Fleig (georg@leech.it) Gruppe: Di-11

Datum der Versuchsdurchführung: 25.10.2011

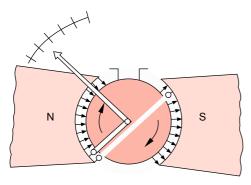
Theoretische Grundlagen

Einführung

In diesen Versuchsreihen wird mit einem Galvanometer experimentiert um diese einfache Möglichkeit der Strom- und Spannungsmessung kennenzulernen. Außerdem sind die Versuche ein guter Anlass die Theorie, unter anderem aus den Bereichen Schwingungen und Elektromagnetismus, zu vertiefen und experimentell zu bestätigen.

Galvanometer

Das Galvanometer ist ein empfindliches elektromechanisches Drehspulmessinstrument, welches zum Messen von elektrischen Strömen verwendet werden kann.



Die Abbildung zeigt den Aufbau eines typischen Galvanometers. Zwischen einem Permanentmagnet befindet sich eine drehbar gelagerte Spule mit Weicheisenkern. An einem Ende der Spule befindet sich ein Zeiger, am anderen eine Spiralfeder. Wie in der Abbildung zu sehen ist, befindet sich im Luftspalt zwischen Spule und Magnet ein homogenes Magnetfeld. Wird nun eine Spannungsquelle an die Spule angeschlossen, dreht sich diese und es wirkt eine Rücktreibende Kraft der Spi-

ralfeder entgegen. Mit der Rückstellkonstante D der Feder und der Auslenkung φ ergibt sich für das Torsionsdrehmoment M_t :

$$M_t = -D\varphi$$

Da sich im Spalt zwischen Spule und Magneten Luft befindet, muss dort der Luftwiderstand berücksichtigt werden. Die Reibungskraft ist proportional zur Winkelgeschwindigkeit $\dot{\varphi}$. Mit der Dämpfungskonstante ρ der Luft ergibt sich für das mechanische Dämpfungsdrehmoment M_d :

$$M_d = -\rho \dot{\varphi}$$

Außerdem muss noch ein elektrodynamisches Drehmoment M_e berücksichtigt werden, welches beim Stromfluss I_{ges} durch die Spule von der Lorentzkraft verursacht wird:

$$M_e = nABI_{qes} = GI_{qes}$$

 M_e hängt von der Windungszahl n, der Windungsfläche A und der magnetischen Flussdichte B ab. So ist auch die Galvanometerkonstante definiert:

$$G = nAB$$

Der Gesamtwiderstand R des Aufbaus setzt sich aus dem Innenwiderstand R_G des Galvanometers und dem Außenwiderstand R_a zusammen. Der Gesamtstrom I_{ges} ergibt sich aus dem Induktionsstrom $I_{ind} = \frac{U_{ind}}{R_a + R_G}$ der Spule und dem angelegten Messstrom I:

$$I_{ges} = I + I_{ind} = I + \frac{U_{ind}}{R_G + R_a} = I - \frac{G}{R_G + R_a} \dot{\varphi}$$

Die Spule besitzt das Trägheitsmoment Θ mit dem Trägheitsdrehmoment $M_{\Theta} = \Theta \ddot{\varphi}$ des gesamten Systems ergibt sich die Differentialgleichung des Galvanometers:

$$\ddot{\varphi} + \frac{1}{\Theta} \left(\rho + \frac{G^2}{R_G + R_a} \right) \dot{\varphi} + \frac{D}{\Theta} \varphi = \frac{G}{\Theta} I \iff \ddot{\varphi} + 2\beta \dot{\varphi} + \omega_0^2 \varphi = \frac{G}{\Theta} I$$

Dies entspricht der Differentialgleichung eines gedämpften harmonischen Oszillators. Mit dem Ansatz für den homogenen Teil der DGl (I=0): $\varphi(t)=Ce^{\lambda t}$ mit C=const. erhält man die Lösung:

$$\lambda_{\pm} = -\beta \pm \sqrt{\beta^2 - \omega_0^2}$$

Es können nun drei verschiedene Fälle auftreten:

1. Kriechfall $(\beta^2 > \omega_0^2)$

Man erhält eine relle Wurzel, das System führt keine Schwingung aus und "kriecht" langsam in Richtung Ruhelage.

2. Schwingfall $(\beta^2 < \omega_0^2)$

Da die Wurzel negativ ist, erhält man eine komplexe Lösung. Das System schwingt um die Ruhelage, bis es durch die Dämpfung zum Stillstand kommt.

3. Grenzfall ($\beta = \omega_0$)

Es findet keine Schwingung statt und das System strebt schnellstmöglich der Gleichgewichtslage entgegen.

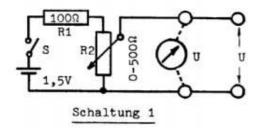
Aufgabe 1: Vorexperimente

In diesen Vorexperimenten sollen wir uns mit der Apparatur vertraut machen und so ihre Empfindlichkeit und Fehleranfälligkeit kennenlernen.

Hebt man jeweils einen Finger an das Galvanometer, wird es selbst bei den geringen Strömen des menschlichen Körpers einen Ausschlag zeigen. Wir vermuten außerdem, dass das Bewegen eines angeschlossenen Drahtdrehwiderstandes ohne äußere Spannungsquelle durch Ladungstrennung zu einem Ausschlag am Messgerät führen wird. Auch das bloße Anschließen eines Drehwiderstandes könnte zu leichten Ladungstrennungen führen und so einen messbaren Strom erzeugen. Dieser geringe Effekt kann vermutlich vernachlässigt werden, evtl. ist er auch gar nicht erst zu sehen.

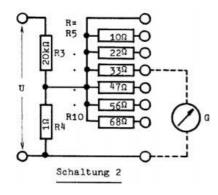
Da es sich bei dem Galvanometer offensichtlich um ein Messgerät mit einer sehr großen Empfindlichkeit gegenüber elektrischen Strömen handelt, lässt sich mit dieser Erkenntnis die erste Frage des Aufgabenblatts beantworten. Würde man mit einem typischen Ohmmeter den Widerstand durch den Spannungsabfall an diesem messen, würde der Messstrom des Ohmmeters das Galvanometer überlasten und vermutlich zerstören.

Aufgabe 2: Statische Versuche



Für alle weiteren Versuchsreihen wird ein Spannungsteiler entsprechend dem Schaltplan links verwendet. Mit diesem lässt sich durch den Widerstand R2 die Spannung stufenlos von 0 bis 1,25V regeln.

Aufgabe 2.1



Schaltung 2 wird entsprechend nebenstehendem Schaltplan aufgebaut. Da $R_3\gg R, R_2, R_4$ gilt, ergibt sich für den Gesamtstrom I_0 ungefähr $I_0\approx \frac{U}{R_3}$

Mithilfe der Knotenregel $I_0=I_{R_4}+I$ und der Maschenregel $(R+R_G)\,I=R_4I_{R_4}$

Diese drei Formeln ineinander eingesetzt ergeben die Stromstärke ${\cal I}$ im Galvanometer:

$$I = \frac{UR_4}{R_3 \left(R_4 + R_G + R \right)}$$

Es gilt ein proportionaler Zusammenhang zwischen dem Ausschlag α und der Stromstärle I. Wir führen den Proportionalitätsfaktor C_I ein, der die Stromempfindlichkeit des Galvanometers darstellt. Um die dritte Frage des Aufgabenblatts zu beantworten, wird zusätzlich noch die Spannungsempfindlichkeit C_U eingeführt, welche sich folgendermaßen berechnen lässt:

$$C_U = \frac{C_I}{R_G}$$

Es gilt folgender Zusammenhang für die Stromempfindlichkeit: $\alpha = C_I I$. I eingesetzt ergibt:

$$\alpha = \frac{C_I U R_4}{R_3 \left(R_4 + R_G + R \right)}$$

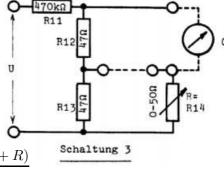
Durch Bilden des Kehrwerts erhält man folgende Geradengleichung:

$$\frac{1}{\alpha} = \frac{R_3 (R_4 + R_G)}{C_I U R_4} + \frac{R_3}{C_I U R_4} R = A + BR$$

Hier kann man den linearen Zusammenhang $\frac{1}{\alpha} \sim R$ erkennen. Die Faktoren A und B lassen sich durch lineare Regression einfach bestimmen und damit dann auch R_G und C_I .

Aufgabe 2.2

Schaltung 3 wird wie im Schaltplan dargestellt aufgebaut und der Ausschlag α in Abhängigkeit des variablen Widerstands $R=R_{14}$ gemessen. Mit entsprechenden Näherungen ähnlich wie in Aufgabe 2.1 erhält man für die **offene** Brücke:



$$\frac{1}{\alpha} = \frac{R_{11} \left(R_{12} + R_{13} + R_G + R \right)}{C_I U \left(R_{12} + R_{13} \right)}$$

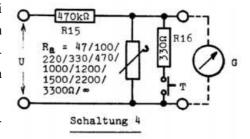
Analoges Vorgehen für die **geschlossene** Brücke:

$$\frac{1}{\alpha} = \frac{R_{11} \left(R_{12} + R_G \right)}{C_I U R_{12}}$$

Durch Gleichsetzen der beiden Geradengleichungen und unter Beachtung von $R_{12}=R_{13}$ erhält man $R=R_G$. Das entspricht dem Schnittpunkt der beiden Geraden. Dies beantwortet gleichzeitig die vierte Frage.

Aufgabe 2.3

Die 4. Schaltung wird wie in der Skizze gezeigt aufgebaut. Bei dieser Aufgabe wird der Ausschlag α des Galvanometers in Abhängigkeit von der Versorgungsspannung U abgelese, wobei $R_a = \infty$ gewählt wird. Wegen $R_{15} \gg R_G$ ergibt sich $I \sim \frac{U}{R_{15}}$.



Trägt man nun α über I auf, liefert die Steigung direkt die gesuchte Stoßempfindlichkeit C_I .

Beantwortung der Frage 4: Durch betätigen des Tasters wird der Widerstand $R_{16} = 330\Omega$ parallel zum Galvanometer geschaltet und Dient als Dämpfer des Systems. Durch ihn wird der Einschwingvorgang z.B. bei Aufgabe 3 beschleunigt (siehe aperiodischer Grenzfall).

Aufgabe 3: Dynamische Versuche

Die folgenden Experimente werden wieder an Schaltung 4 durchgeführt. Es ist die Schwingdauer T sowie das Dämpfungsverhältnis κ in Abhängigkeit des regelbaren Widerstandes R_a zu bestimmen. Es gilt $\kappa = \frac{\alpha_{n-1}}{\alpha_n}$

(i) Abklingkonstante β_{R_a}

wurde in den theoretischen Grundlagen hergeleitet:

$$\beta_{R_a} = \frac{1}{2\Theta} \left(\rho + \frac{G^2}{R_a + R_G} \right) \quad \Rightarrow \quad \beta_{\infty} = \frac{\rho}{2\Theta}$$

$$\Rightarrow (\beta_{R_a} - \beta_{\infty})^{-1} = \frac{2\Theta R_G}{G^2} + \frac{2\Theta}{G^2} R_a = c + mR_a$$

Nun trägt man $(\beta_{R_a} - \beta_{\infty})^{-1}$ über R_a und führt eine lineare Regression durch.

(ii) Frequenz des ungedämpften Galvanometers ω_0

Wird mit folgender Formel berechnet:

$$\omega_0 = \sqrt{\frac{2\pi^2}{T_\infty}^2 + \beta_\infty^2}$$

(iii) Außengrenzwiderstand $R_{a,qr}$

Der Außenwiderstand R_a bei dem Grenzdämpfung vorliegt, lässt sich aus der Geraden aus (a) bei $R_a = (\omega_0 - \beta_\infty)^{-1}$ ablesen. Da hier Grenzdämpfung vorliegen soll, müsste im Experiment ein Übergang vom Schwingfall zum Kriechfall zu beobachten sein.

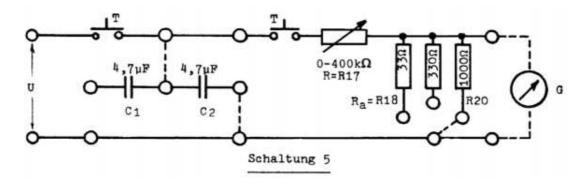
(iv) Galvanometer-Kenngrößen G, Θ und D

Die Gleichung $m=\frac{2\Theta}{G^2}$ entspricht der Steigung der in (a) bestimmten Geraden. Mithilfe der beiden anderen gegebenen Gleichungen $\omega_0^2=\frac{D}{\Theta}$ und $C_I'=\frac{G}{D}$ kann man die drei Galvanometer-Konstanten folgendermaßen bestimmen:

folgendermaßen bestimmen:
$$\Theta=\frac{2}{mC_I'^2\omega_0^4} \qquad \qquad D=\frac{2}{mC_I'^2\omega_0^2} \qquad \qquad G=\frac{2}{mC_I'\omega_0^2}$$

Aufgabe 4: Ballistische Versuche

Baut man eine Schaltung entsprechend diesem Schaltplan auf, kann man die Auswirkungen von kurzen Stromstöße auf das Galvanometer bestimmen.



Zur Erzeugung der Stromimpulse werden Kondensatoren benutzt, deren Stromverlauf zwar keine scharfe Angabe der Stromstoßdauer T_Q erlauben, jedoch kann man den Wert $T_Q = 3RC$ verwenden, nach dem etwa 95% der Ladung des Kondensators abgeflossen sind.

Um größere Dämpfungen als β_{∞} messen zu können, wird ein Widerstand R_a zum Galvanometer parallelgeschaltet, an welchem ein Teil der aus den Kondensator stammenden Ladung verloren geht. Es gilt also $Q_G < CU$, daher müssen nachfolgende Formeln angepasst werden.

Aufgabe 4.1

Um nun die Stromstoßempfindlichkeit des Galvanometers bei sehr kurzer Stromstoßdauer T_Q zu bestimmen, wählen wir einen kleinen Widerstand $R = R_{17}$. Nun gilt folgender linearer Zusammenhang:

$$C_b = \frac{\varphi_{max}}{Q_G}$$

Da aber wie weiter oben beschrieben auch Ladung am Widerstand R_a verloren geht, muss die Formel korrigiert werden:

$$C_b = \frac{\varphi_{max}}{CU} \frac{R_a + R_G}{R_a}$$

Aufgabe 4.2

Die eben ermittelten Werte sollen nun mit den theoretischen Werten verglichen werden. Diese lassen sich aus den Kenngrößen berechnen, die in Aufgabe 2 und 3 bestimmt wurden. Es gilt drei Fälle zu unterscheiden:

(i) Ballistische Empfindlichkeit bei minimaler Dämpfung: $R_a = \infty$ und $R_a = 1000\Omega$

$$C_b = \frac{G}{\Theta\omega_0}$$

(ii) Ballistische Empfindlichkeit nahe Grenzdämpfung: $R_a=330\Omega$

$$C_b = \frac{G}{\Theta\omega_0 e}$$

(iii) "Fluxmetrische Empfindlichkeit" im Kriechfall: $R_a=33\Omega$

$$C_b = \frac{R_G + R_a}{G}$$

Aufgabe 4.3

Erhöht man den Vorwiderstand R, so erhöht sich auch die Stromstoßdauer $T_Q = 3RC$. Im Experiment werden wir wahrscheinlich feststellen, dass nur für $T_Q \ll T$ die Stromstoßempfindlichkeiten unabhängig von T_Q sind.

Beantwortung der 5. Frage: Die ballistische Messung beim Galvanometer erlaubt es die Gesamtladung zu bestimmen, die auf das System verteilt wird. Dies funktioniert entsprechend wie beim Sandsack-Versuch in der Mechanik. Dort wird die Energie eines Geschosses, das auf einen freischwebenden Sandsack auftrifft, anhand des maximalen Ausschlags des Sandsacks bestimmt.

Quellenangabe

Westphal, W.: Physikalisches Praktikum

Grafik Galvanometer: W. Demtröder, Experimentalphysik 2, 5. Auflage

Schaltskizzen: Stammen vom Aufgabenblatt

Physikalisches Anfängerpraktikum P1

Versuch:

P1-13,14,15

Galvanometer

Schriftliche Vorbereitung von Marcel Krause (mrrrc@leech.it) Gruppe: Di-11

Datum der Versuchsdurchführung: 25.10.11

Theoretische Grundlagen

Einführung

In dieser Versuchsreihe soll das Galvanometer als Strommessgerät näher kennengelernt und dessen Eigenheiten bei der Durchführung von Messungen aufgezeigt werden. Aufgrund des besonderen Aufbaus des Galvanometers dient es den Studenten gleichzeitig als eine gute Möglichkeit, bisher nur theoretisch besprochene mechanische sowie elektrische Modelle konkret am Messgerät nachzuprüfen. In dieser schriftlichen Vorbereitung sollen zunächst die physikalischen und mathematischen Grundlagen des Galvanometers erörtert und die Versuche vorbesprochen werden, sodass eine einfachere Auswertung am Praktikumstag erfolgen kann. Dabei werden gleichzeitig offene Fragen des Versuchsblatts geklärt.

Galvanometer

Das Galvanometer ist ein historisches, elektromechanisches Messgerät, welches zu den Drehspulinstrumenten zählt und je nach Bauart selbst gegenüber kleinsten Strömen noch empfindlich sein kann.

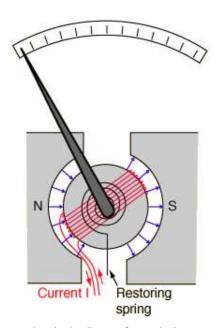


Abbildung 1 zeigt den prinzipiellen Aufbau eines Galvanometers. Eine Spule mit Weicheisenkern, an dessen Ende ein Zeiger angebracht ist, befindet sich zwischen zwei Polschuhen eines Permanentmagneten. Durch die zylinderförmige Anordnung liegt in dem kleinen Luftspalt zwischen dem Kern und den Polschuhen, in dem sich die Spule bewegen kann, ein homogenes Magnetfeld vor, welches dadurch an jeder Stelle gleich auf die Elektronen im Draht der Spule wirkt. Die Feder des Galvanometers verursacht ein Richtmoment D, welches einer vorhandenen Auslenkung φ entgegenwirkt. Dabei gilt für das Torsionsdrehmoment M_t :

$$M_t = -D\varphi$$

Die Bewegung der Spule im Luftspalt unterliegt Reibungskräften, welche proportional zur Winkelgeschwindigkeit $\dot{\varphi}$ wirken. Dabei bedingt die Luft eine Dämpfungskonstante ρ , sodass sich für das

mechanische Dämpfungsdrehmoment M_d ergibt:

$$M_d = -\rho \dot{\varphi}$$

Zusätzlich zu diesen beiden Drehmomenten wirkt aufgrund eines Stroms mit der Stromstärke I_{ges} , welcher durch den Draht fließt, noch ein elektrodynamisches Drehmoment. Dieses wird durch die Lorentzkraft verursacht, welche auf die Elektronen wirkt, die durch die Spulenseiten fließen, die senkrecht zum homogenen Magnetfeld mit der magnetischen Flussdichte B stehen. Es ergibt sich das elektrodynamische Drehmoment M_e zu:

$$M_e = ABI_{ges} = GI_{ges}$$

Hier wurde die Windungsfläche A sowie die Galvanometerkonstante G eingeführt:

$$G = AB$$

Im System des Galvanometers setzt sich der Gesamtwiderstand R aus dem Außenwiderstand R_a und

dem Galvanometerwiderstand R_G zusammen. Der durch die Spule fließende Strom I_{ges} setzt sich aus dem Messstrom I und dem in der Spule induzierten Strom I_{ind} gemäß $I_{ges}=I+I_{ind}$ zusammen. Für die Induktionsspannung U_{ind} gilt $U_{ind}=-n\dot{\Phi}=-G\dot{\varphi}$ womit sich dann der induzierte Strom I_{ind} ergibt:

$$I_{ind} = \frac{U_{ind}}{R_a + R_G} = -\frac{G}{R_a + R_G} \dot{\varphi}$$

Das gesamte System besitzt das Trägheitsmoment Θ und damit das Trägheitsdrehmoment $M_{\Theta} = \Theta \ddot{\varphi}$. Nach dem zweiten newtonschen Gesetz gilt:

$$M_{\Theta} + M_d + M_t - M_e = 0$$

Setzt man die gewonnenen Erkenntnisse ein, so erhält man die Differentialgleichung des Galvanometers:

$$\ddot{\varphi} + \frac{1}{\Theta} \left(\rho + \frac{G^2}{R_a + R_G} \right) \dot{\varphi} + \frac{D}{\Theta} \varphi = \frac{G}{\Theta} I$$

$$\Leftrightarrow \ddot{\varphi} + 2\beta \dot{\varphi} + \omega_0^2 \varphi = \frac{G}{\Theta} I$$

Man erkennt, dass dies der Differentialgleichung des gedämpften harmonischen Oszillators entspricht. Setzt man als Lösungsansatz für die homogene Gleichung $\varphi(t)=ce^{\lambda t}$ mit c=konst, so erhält man:

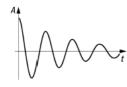
$$\lambda^2 + 2\beta\lambda + \omega_0^2 = 0$$

Und als Lösungen für λ :

$$\lambda_{\pm} = -\beta \pm \sqrt{\beta^2 - \omega_0^2}$$

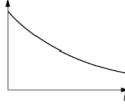
Es sollen kurz die drei verschiedenen Fälle diskutiert werden, die nun auftreten können.

- Schwingfall: $\omega_0^2>\beta^2$



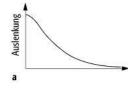
Die Diskriminante der obigen Gleichung wird in diesem Fall negativ, sodass sich eine komplexe Lösung ergibt. Nach einer Auslenkung aus der Ruhelage schwingt das System schwach gedämpft um diese herum, bis es schließlich durch Energieverluste zum Stillstand kommt.

- Kriechfall: $\omega_0^2 < \beta^2$



Die Diskriminante der obigen Gleichung ist positiv, sodass sich eine reelle Lösung ergibt. Nach einer Auslenkung aus der Ruhelage kriecht das System stark gedämpft zurück in die Ruhelage und führt dabei keinerlei Schwingungen aus.

- Aperiodischer Grenzfall: $\omega_0=\beta$



Für diesen Grenzfall ist die Dämpfung gerade klein genug, dass noch kein Richtungswechsel der Bewegung und damit ein Schwingvorgang stattfindet. Das System strebt schnellstmöglich der Gleichgewichtslage entgegen. Es lässt sich der Außengrenzwiderstand $R_{a,qr}$ berechnen:

$$R_{a,gr} = \frac{G^2}{2\sqrt{D\Theta} - \rho} - R_G$$

Aufgabe 1: Vorversuche

Zunächst machen wir uns klar, wie hoch die Messempfindlichkeit des Galvanometers ist und welche Auswirkungen dies für mögliche Fehlerquellen haben wird.

So werden wir mithilfe des hochempfindlichen Messgeräts die im menschlichen Körper vorhandenen, sehr geringen Ströme registrieren können, indem wir uns selbst mit den Anschlüssen des Galvanometers verbinden.

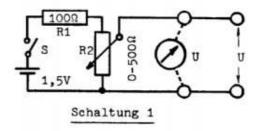
Des Weiteren werden wir ohne sonstige Spannungsquelle einen Drahtdrehwiderstand an das Galvanometer anschließen und überprüfen, was passieren wird, wenn wir den Schleifer dieses Widerstands bewegen. Es ist dabei zu erwarten, dass der Zeiger des Galvanometers ausschlägt, da durch die Reibung des Schleifers im Drahtdrehwiderstand kleine Ladungstrennungen vorhanden sein werden, die zu geringen Strömen führen.

Das bloße Anschließen des Drahtdrehwiderstands ohne weitere äußere Spannungsquelle, welches den letzten Teil der Vorversuche darstellt, könnte ebenfalls geringe Auswirkungen auf das Galvanometer haben. Durch das Anschließen findet ein Reibungsvorgang statt, bei dem eventuell Ladungen getrennt werden. Dieser Effekt dürfte allerdings sehr gering sein, falls wir ihn überhaupt beobachten werden.

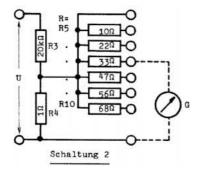
Es soll hier noch kurz auf die erste Frage des Aufgabenblatts eingegangen werden. Die Messung eines Widerstands mit einem üblichen Ohmmeter basiert auf einer Messung des Spannungsabfalls am Widerstand aufgrund eines vom Ohmmeter verursachten Stroms. Dieser Strom wäre viel zu stark für das empfindliche Galvanometer, sodass dieses schweren Schaden bei solch einer Messung davontragen würde.

Aufgabe 2: Statische Versuche

Für die Versuchsreihen verwenden wir einen Spannungsteiler, um die Werte der Versorgungsspannung U zu entnehmen. Ein solcher ist schematisch in Schaltung 1 dargestellt. Damit lässt sich die Versorgungsspannung je nach Feinheit des variablen Widerstands R_2 nahezu stufenlos in den Bereichen $R_2 \in [0V; 1, 25V]$ verstellen. Die statischen Versuche sollen uns die Möglichkeit bieten, die Konstanten des Galvanometers zu messen.



Aufgabe 2.1



Es wird Schaltung 2 entsprechend nebenstehendem Schaltplan aufgebaut. Wie man erkennt, gilt für die Werte der Widerstände $R_3\gg R_2, R_4$ sowie $R_3\gg R$, wobei R der von uns wählbare Widerstand ist. Dadurch ergibt sich der Gesamtstrom I_0 im System ungefähr zu $I_0\approx \frac{U}{R_3}$. Durch Anwenden der Kirchhoffschen Regeln erhält man die zwei Gleichungen

$$(R + R_g) I = R_4 I_{R_4}$$
 und $I_0 = I_{R_4} + I$

Setzt man diese ineinander ein, so kann man sie nach der Galvanometerstromstärke I auflösen. Es ergibt sich:

$$I = \frac{UR_4}{R_3 \left(R_4 + R_G + R \right)}$$

Beim Galvanometer ist der Ausschlag α ungefähr proportional zur Stromstärke I. Es sei hier der Proportionalitätsfaktor C_I eingeführt, welcher als Stromempfindlichkeit bezeichnet wird. Gleichzeitig führen wir noch die Spannungsempfindlichkeit C_U ein. Damit lässt sich die dritte Frage des Aufgabenblatts beantworten: Die Spannungsempfindlichkeit C_U ergibt sich, falls C_I und R_G bekannt sind, durch

$$C_U = \frac{C_I}{R_G}$$

Durch die Proportionalität gilt der Zusammenhang $\alpha = C_I I$. Setzt man I von oben ein, so erhält man:

$$\alpha = \frac{C_I U R_4}{R_3 \left(R_4 + R_G + R \right)}$$

Wir werden zur Auswertung den Kehrwert des Ausschlags bilden. Dadurch erhalten wir die Gleichung:

$$\frac{1}{\alpha} = \frac{R_3 (R_4 + R_G)}{C_I U R_4} + \frac{R_3}{C_I U R_4} R = A + BR$$

Es ist also $\frac{1}{\alpha} \propto R$, sodass wir einen linearen Zusammenhang vorfinden. Durch eine lineare Regression unserer Messwerte können wir so die Faktoren A und B bestimmen. Da wir dann zwei Gleichungen für die beiden Unbekannten R_q und C_I erhalten, können wir diese lösen und so die Konstanten bestimmen.

Aufgabe 2.2

Es wird Schaltung 3 entsprechend nebenstehendem Schaltplan aufgebaut und erneut der Ausschlag α des Galvanometers in Abhängigkeit des variablen Widerstands $R=R_{14}$ gemessen. Es gilt analog zu Aufgabe 2.1, dass $R_{11}\gg R_2$, daher kann man erneut nähern: $I_0\approx \frac{U}{R_{11}}$.

Die Anwendung der Kirchhoffschen Regeln führt im Fall der *geöffneten* Brückendiagonalen zu den Gleichungen

$$(R+R_g)\,I=(R_{12}+R_{13})\,I_{R_{12}}\quad {\rm und}\quad I_0=I_{R_{12}}+I$$
 Daraus erhält man nach kurzer Umformung:

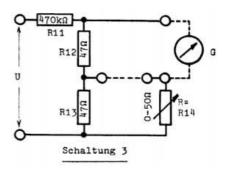
$$I = \frac{U(R_{12} + R_{13})}{R_{11}(R_{12} + R_{13} + R_C + R)}$$

Da wir erneut den Kehrwert der Auslenkung auftragen, erhalten wir:

$$\frac{1}{\alpha} = \frac{R_{11} \left(R_{12} + R_{13} + R_G + R \right)}{C_I U \left(R_{12} + R_{13} \right)}$$

Analoges Vorgehen für die geschlossene Brückendiagonale führt auf:

$$\frac{1}{\alpha} = \frac{R_{11} \left(R_{12} + R_G \right)}{C_I U R_{12}}$$

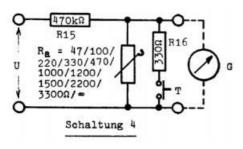


Anschließend soll der Schnittpunkt dieser beiden Geraden bestimmt werden, um R_g zu bestimmen. Dies entspricht einem Gleichsetzen der obigen beiden Gleichungen. Beachtet man $R_{12}=R_{13}$, so erkennt man leicht, dass sich alles bis auf

$$R = R_q$$

kürzt, womit die vierte Frage beantwortet ist, denn es zeigt sich, dass der Schnittpunkt der beiden Geraden der Galvanometerwiderstand ist.

Aufgabe 2.3



Es wird Schaltung 4 entsprechend nebenstehendem Schaltplan aufgebaut und für $R_a=\infty$ der Galvanometerausschlag α in Abhängigkeit von der Versorgungsspannung U gemessen.

Da $R_{15}\gg R_2$ ist, gilt hier $I\approx \frac{U}{R_{15}}$, und mittels des linearen Zusammenhangs $\alpha=C_II$ können wir so die Steigung der Geraden und damit die Stromempfindlichkeit C_I direkt bestimmen.

Es sei noch kurz auf die zweite Frage verwiesen. Der parallel geschaltete Widerstand $R_{14} = 330\Omega$ dient als zusätzlicher Dämpfer des Systems. Durch Betätigen des Tasters kann dieser zugeschaltet werden und so den Einschwingvorgang bei Aufgabe 3 beschleunigen.

Aufgabe 3: Dynamische Versuche

Es wird erneut an der Schaltung 4 experimentiert. Dieses Mal sollen das Dämpfungsverhältnis κ sowie die Schwingungsdauer T des Systems in Abhängigkeit des schaltbaren Außenwiderstands R_a bestimmt werden.

Für das Dämpfungsverhältnis κ gilt: $\kappa = \frac{\alpha_{n-1}}{\alpha_n}$

(a) Abklingkonstante β_{R_a}

Aus den Vorüberlegungen ist bekannt, dass für β gilt:

$$\beta = \frac{1}{2\Theta} \left(\rho + \frac{G^2}{R_a + R_G} \right)$$

Für $R_a \to \infty$ ergibt sich $\beta_\infty = \frac{\rho}{2\Theta}$. Dies wird nach $(\beta_{R_a} - \beta_\infty)^{-1}$ umgeformt:

$$(\beta_{R_a} - \beta_{\infty})^{-1} = \frac{2\Theta R_G}{G^2} + \frac{2\Theta}{G^2} R_a = n + mR_a$$

Durch eine lineare Regression und erneutes Umformen können wir so β_{R_a} bestimmen.

(b) Frequenz ω_0

Diese ergibt sich direkt durch Einsetzen von T_{∞} und β_{∞} :

$$\omega_0 = \sqrt{\left(\frac{2\pi}{T_\infty}\right)^2 + \beta_\infty}$$

(c) Außengrenzwiderstand $R_{a,gr}$

Wir nutzen die Auswertung von (a) sowie (b) und suchen denjenigen Außenwiderstand R_a , für den wir $(\omega_0 - \beta_\infty)^{-1}$ ablesen können. Sollte bei diesem R_a tatsächlich Grenzdämpfung vorliegen, so müssten wir im Experiment dort einen Übergang vom Schwingfall in den Kriechfall beobachten.

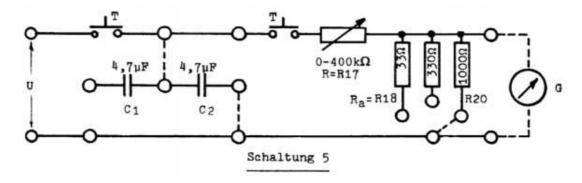
(d) Galvanometer-Kenngrößen G, Θ und D

Die Gleichung $m=\frac{2\Theta}{G^2}$ ist gerade die Steigung der in (a) aufgezeichneten Geraden. Durch Umformen und Einsetzen dieser mit den beiden anderen Gleichungen $\omega_0^2=\frac{D}{\Theta}$ sowie $C_I'=\frac{G}{D}$ erhalten wir drei Gleichungen für die drei Galvanometer-Konstanten.

$$\Theta = \frac{2}{mC_I'^2 \omega_0^4} \qquad D = \frac{2}{mC_I'^2 \omega_0^2} \qquad G = \frac{2}{mC_I' \omega_0^2}$$

Es ist dabei noch zu erwähnen, dass im Gegensatz zu den vorigen Aufgaben C'_I hier die Einheit A^{-1} haben soll, also als Drehwinkel im Bogenmaß geteilt durch den entsprechenden Strom angegeben wird.

Aufgabe 4: Ballistische Versuche



Es wird nun die Schaltung 5 entsprechend obiger Skizze aufgebaut. Im Gegensatz zu den vorigen Versuchen haben wir nun einen ballistischen Versuchsaufbau. Wir betrachten nur noch kurze Stromstöße und deren Wirkung auf das Galvanometer.

Zunächst soll kurz der Sinn ballistischer Messungen erläutert und damit die fünfte Frage beantwortet werden. Beim Sandsack-Versuch in der Mechanik kann man durch eine ballistische Messung bestimmen, wie groß die Energie des Geschosses ist, welches auf den Sandsack auftrifft. Dabei wird der Sack üblicherweise wie ein Pendel aufgehängt und dann der maximale Ausschlag gemessen. Ganz analog kann man beim ballistischen Galvanometer die Gesamtladung bestimmen, welche auf das System verteilt wird. Diese entspricht dem maximalen Ausschlag des Galvanometers.

Obwohl wir zur Erzeugung der Strompulse Kondensatoren nutzen, deren Stromverlauf keine scharfe Angabe der Stromstoßdauer T_Q erlauben, ist es dennoch sinnvoll, mit ihnen zu arbeiten. Wir werden einen Wert T_Q festlegen, nach dem etwa 95% der Ladung des Kondensators abgeflossen sind:

$$T_O = 3RC$$

Unsere Stromstoßquelle besitzt einen unendlich hohen inneren Widerstand, weshalb es weiterhin nötig ist, einen Widerstand R_a parallel zum Galvanometer zu schalten. Dadurch geht ein Teil der Gesamtla-

dung in R_a verloren, sodass $Q_G < CU$ gilt. Dies ist besonders wichtig, da sich die Empfindlichkeiten auf Q_G beziehen sollen, sodass die nachfolgenden Formeln angepasst werden müssen.

Aufgabe 4.1

Wir werden die Stromstoßempfindlichkeit des Galvanometers bei sehr kurzer Stromstoßdauer T_Q , erreichbar über einen kleinen Widerstand R, bestimmen. Für kleine R gilt der lineare Zusammenhang

$$C_b = \frac{\varphi_m}{Q_G}$$

wobei φ_m der maximale, erste Winkelausschlag ist. Beachten wir noch, dass die Ladung auf Galvanometer und Widerstand R_a aufgeteilt wird, so haben wir

$$C_b = \frac{\varphi_m}{CU} \frac{R_a + R_G}{R_a}$$

Mittels dieser Formel werden wir für verschiedene Werte von R_a die Stromstoßempfindlichkeiten C_b bestimmen.

Aufgabe 4.2

Es sollen nun in Abhängigkeit von R_a die ermittelten Messwerte mit den theoretischen Werten verglichen werden. Dabei werden zuvor bestimmte Kenngrößen genutzt. Je nach R_a finden wir drei verschiedene Fälle vor.

(a) Ballistische Empfindlichkeit bei minimaler Dämpfung: $R_a=\infty$ und $R_a=1000\Omega$ Mit $\varphi_{max}=\frac{GQ}{\Theta\omega_0}$ ergibt sich:

$$C_b = \frac{G}{\Theta\omega_0}$$

(b) Ballistische Empfindlichkeit nahe Grenzdämpfung: $R_a = 330\Omega$

Mit
$$\varphi_{max} = \frac{GQ}{\Theta\omega_0 e}$$
 ergibt sich:

$$C_b = \frac{G}{\Theta\omega_0 e}$$

(c) Fluxmetrische Empfindlichkeit im Kriechfall: $R_a = 33\Omega$

Mit
$$\varphi_{max} = \frac{R_G + R_a}{G}Q$$
 ergibt sich:

$$C_b = \frac{R_G + R_a}{G}$$

Aufgabe 4.3

Wir wollen uns in der letzten Teilaufgabe schließlich davon überzeugen, dass die Stromstoßempfindlichkeiten durchaus auch von der Stromstoßdauer T_Q abhängen können. Dabei steigern wir den Widerstand R in einigen Messungen, denn nach $T_Q=3RC$ steigt damit auch die Stromstoßdauer. Wir erwarten, dass sich eine Unabhängigkeit der Stromstoßempfindlichkeit von T_Q nur für den Bereich $T_Q\ll T$ ergeben wird.

Quellenverzeichnis

Westphal, W.: Physikalisches Praktikum

Meschede, D.: Gerthsen Physik

Schema des Galvanometers:

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/imgmag/galvan.gif

Skizzen der Schwingungszustände:

www.techniklexikon.net/images/s1363_schwingfall.gif www.techniklexikon.net/images/j1932_kriechfall.gif www.techniklexikon.net/images/a1556_aperiodischer_grenzfall.gif

Schaltskizzen:

Siehe Aufgabenblatt

Physikalisches Anfängerpraktikum P1

Versuch:

P1-13,14,15

Galvanometer

Auswertung inklusive ausführlicher Fehlerrechnung

von

Georg Fleig (georg@leech.it)

Marcel Krause (mrrrc@leech.it)

Gruppe: Di-11

Datum der Versuchsdurchführung: 25.10.11

Aufgabe 1: Vorversuche

Aufgabe 1.1

Beim Anfassen der Zuleitungsstecker konnten wir einen nicht unerheblichen Ausschlag des Galvanometers feststellen. Es wurde uns klar, wie hochempfindlich das Gerät auf selbst minimale Ströme wie die des menschlichen Körpers reagiert.

Aufgabe 1.2

Als wir am Widerstand gedreht haben konnten wir kleine Ausschläge des Galvanometers beobachten. Dies liegt, wie wir es in der Vorbereitung vermutet haben, am Schleifen der Widerstandskontakte, wodurch kleine Ladungsanteile getrennt werden.

Aufgabe 1.3

Auch hier ist der vorhergesagte Effekt eingetreten. Durch das bloße Anschließen des Drahtdrehwiderstands findet eine geringfügige Ladungstrennung durch mechanische Reibung statt, die dazu führt, dass wir kleine Ausschläge registrieren können. Die Ruhelagen vor und nach dem Anschließen des Widerstands lagen ebenfalls geringfügig auseinander. Dies hat uns klargemacht, dass die Nulllage des empfindlichen Galvanometers regelmäßig nachjustiert werden muss, um möglichst genaue Ergebnisse zu erhalten.

Aufgabe 2: Statische Versuche

In drei verschiedenen Versuchen bestimmen wir hier die Stromempfindlichkeit C_I sowie den Galvanometerwiderstand R_G . Für die nachfolgenden drei Aufgaben wurde der Widerstand in Schaltung 1 so gewählt, dass sie uns eine Spannung U = 1,0V liefert.

In den Aufgaben 2.1 bis 2.3 wurden ausführliche Fehlerrechnungen durchgeführt.

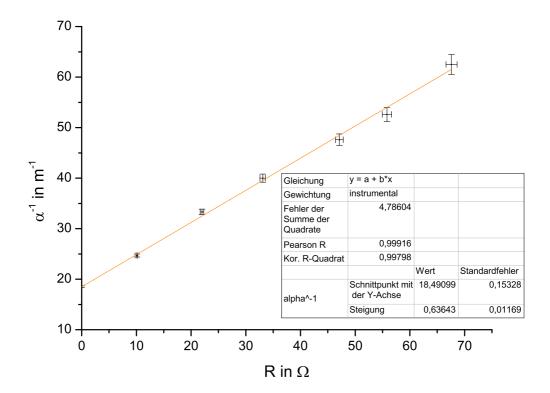
Aufgabe 2.1

Die Widerstände in der Schaltung 2 hatten die Werte $R_3 = 14900\Omega$ und $R_4 = 0,70\Omega$ und unsere angelegte Spannung U betrug 1,0V.

Es wurde für verschiedene Widerstände $R=R_5$ bis R_{10} der Ausschlag α des Galvanometers gemessen. Die Messwerte finden sich in unten stehender Tabelle.

R in Ω	ΔR in Ω	α in mm	α in m	α^{-1} in m ⁻¹	$\Delta \alpha^{-1}$ in m ⁻¹
0,0	0,000	54,0	0,0540	18,5	0,17
10,1	0,152	40,5	0,0405	24,7	0,30
22,0	0,330	30,0	0,0300	33,3	0,56
33,1	0,497	25,0	0,0250	40,0	0,80
47,1	0,707	21,0	0,0210	47,6	1,13
55,8	0,837	19,0	0,0190	52,6	1,39
67,6	1,010	16,0	0,0160	62,5	1,95

Aus den Messwerten erstellen wir das gesuchte Diagramm.



(a) Stromempfindlichkeit C_I

In der Vorbereitung wurde hergeleitet, wie sich nun aus dem Ordinatenabschnitt c und der Steigung m der Regressionsgeraden der Galvanometerwiderstand R_G und die Stromempfindlichkeit C_I berechnen lassen:

$$C_I = \frac{R_3}{mUR_4}\varphi$$

Bevor mit dem Einsetzen der Werte begonnen wird, wollen wir ausführlich erklären, wie wir auf den Fehler des Messwerts kommen werden.

Wir führen den Faktor $\varphi=\frac{\alpha}{2r}$ in unserer Gleichung ein und erhalten so C_I direkt in der Einheit $\frac{rad}{A}$, um diesen mit dem Literaturwert vergleichen zu können. Hätten wir hingegen den Literaturwert in $\frac{m}{A}$ umgerechnet, so müssten wir diesen zusätzlich mit einem Fehler versehen, was auf diese Weise vermieden wurde.

Der Abstand r zwischen Spiegel und Messskala des Galvanometers betrug nach Literaturangaben $r=(250\pm3)mm$. Für α wird wegen der Umrechnung ins Bogenmaß $\alpha=1m$ gesetzt.

Um den Fehler Δ_{α}^{-1} zu berechnen, welcher von Origin zur Bestimmung des Steigungsfehlers der Regressionsgeraden verwendet wird, nutzen wir den Ablesefehler $\Delta_{\alpha}=0,0005m$ und die Formel zur arithmetischen Fehlerfortpflanzung. Dies sei hier anhand eines Beispiels mit dem letzten

Messwert aufgezeigt:

$$\Delta_{\alpha}^{-1} = \left| \frac{\partial \alpha^{-1}}{\alpha} \cdot \Delta_{\alpha} \right| = \left| -\frac{1}{\alpha^2} \cdot \Delta_{\alpha} \right| = \left| -\frac{1}{0,0160m^2} \cdot 0,0005m \right| = 1,95 \frac{1}{m}$$

Nun wird der statistische und der systematische Fehler von C_I berechnet.

Statistischer Fehler

Die Steigung der Regressionsgeraden ist mit dem statistischen Fehler $\sigma_m = \frac{0.0117}{m \cdot \Omega}$ behaftet. Mittels der Gaußschen Fehlerfortpflanzung ergibt sich damit für den statistischen Fehler von C_I :

$$\sigma_{C_I} = \sqrt{\left(\frac{\partial C_I}{\partial m}\sigma_m\right)^2} = \left| -\frac{R_3\alpha}{m^2 U R_4 2r}\sigma_m \right| = \frac{14900\Omega \cdot 1m \cdot (m \cdot \Omega)^2 \cdot rad}{0,636^2 \cdot 1,0V \cdot 0,70\Omega \cdot 2 \cdot 0,250m} \frac{0,0117}{m \cdot \Omega}$$

$$= 0,1231 \cdot 10^4 \frac{rad}{A}$$

Systematischer Fehler

Für die Widerstände R_3 und R_4 wird nach Angabe der Versuchsbeschreibung ein Fehler von $\pm 1,5\%$ angenommen, also erhalten wir $\Delta_{R_3}=224\Omega$ und $\Delta_{R_4}=0,0105\Omega$.

Für die Spannung U nehmen wir einen Fehler von $\pm 10\%$ an, woraus sich $\Delta_U = 0, 1V$ ergibt, da sich im Vergleich mit einem digitalen Voltmeter eine große Ungenauigkeit unseres analogen Voltmeters herausstellte.

Der Abstand vom Spiegel zur Messskala r ist außerdem mit dem Fehler $\Delta_r=0,003m$ angegeben.

Mit diesen vier fehlerbehafteten Größen erhalten wir mithilfe des arithmetischen Fehlerfortpflanzungsgesetzes folgenden systematischen Fehler für die Stromempfindlichkeit C_I :

$$\Delta_{C_{I}} = \left| \frac{\partial C_{I}}{\partial R_{3}} \Delta_{R_{3}} \right| + \left| \frac{\partial C_{I}}{\partial R_{4}} \Delta_{R_{4}} \right| + \left| \frac{\partial C_{I}}{\partial U} \Delta_{U} \right| + \left| \frac{\partial C_{I}}{\partial r} \Delta_{r} \right| \\
= \left| \frac{C_{I}}{R_{3}} \right| \Delta_{R_{3}} + \left| \frac{C_{I}}{R_{4}} \right| \Delta_{R_{4}} + \left| \frac{C_{I}}{U} \right| \Delta_{U} + \left| \frac{C_{I}}{r} \right| \Delta_{r} \\
= \left| C_{I} \right| \left[\frac{\Delta_{R_{3}}}{|R_{3}|} + \frac{\Delta_{R_{4}}}{|R_{4}|} + \frac{\Delta_{U}}{|U|} + \frac{\Delta_{r}}{|r|} \right] \\
= \frac{14900\Omega \cdot 1m \cdot \Omega \cdot rad}{0,636 \cdot 1,0V \cdot 0,70\Omega \cdot 2 \cdot 0,250m} \left[\frac{224\Omega}{14900\Omega} + \frac{0,0105\Omega}{0,70\Omega} + \frac{0,1V}{1,0V} + \frac{0,003m}{0,250m} \right] \\
= 0,9507 \cdot 10^{4} \frac{rad}{A}$$

Berechnung von C_I

Wir setzen unsere Werte nun in obige Formel ein und geben gleichzeitig den statistischen und den systematischen Fehler (in dieser Reihenfolge) mit an:

$$C_I = \frac{R_3}{mUR_4} \frac{\alpha}{2r} = \frac{0,70\Omega}{0,636 \cdot 1,0V \cdot 14900\Omega} \frac{1m \cdot rad}{2 \cdot 0,250m}$$
$$= (6,69 \pm 0,12 \pm 0,95) \cdot 10^4 \frac{rad}{A}$$

Der Literaturwert der Stromempfindlichkeit wird mit $C_I \approx 10^5 \frac{rad}{A}$ angegeben, somit haben wir eine relative Abweichung von -33,1%.

(b) Galvanometerwiderstand R_G

Mit dem y-Achsenabschnitt c lässt sich der Galvanometerwiderstand R_G bestimmen:

$$R_G = \frac{c}{m} - R_4$$

Statistischer Fehler

Der statistische Fehler hängt hier von c und von m ab. Wir finden die Fehler $\sigma_m = \frac{0.0117}{m \cdot \Omega}$ und $\sigma_c = \frac{0.153}{m}$ vor. Mittels Gaußscher Fehlerfortpflanzung erhält man:

$$\sigma_{R_G} = \sqrt{\left(\frac{\partial R_G}{\partial c}\sigma_c\right)^2 + \left(\frac{\partial R_G}{\partial m}\sigma_m\right)^2} = \sqrt{\left(\frac{1}{m}\sigma_c\right)^2 + \left(-\frac{c}{m^2}\sigma_m\right)^2}$$
$$= \sqrt{\left(\frac{m\Omega}{0,636}\frac{0,153}{m}\right)^2 + \left(-\frac{18,5\cdot(m\cdot\Omega)^2}{0,636^2m}\frac{0,0117}{m\cdot\Omega}\right)^2} = 0,587\Omega$$

Systematischer Fehler

Der systematische Fehler hängt hier nur von R_4 ab, wobei $\Delta_{R_4}=0,0105\Omega$ gilt.

$$\Delta_{R_G} = \left| \frac{\partial R_G}{\partial R_4} \Delta_{R_4} \right| = \Delta_{R_4} = 0,0105\Omega$$

Da dieser Fehler so gering ist, wurde er bei der Angabe des Ergebnisses vernachlässigt.

Berechnung von R_G

Wir setzen unsere Werte nun in obige Formel ein und geben gleichzeitig den statistischen Fehler mit an:

$$R_G = \frac{c}{m} - R_4 = \frac{18,5m \cdot \Omega}{0,636m} - 0,70\Omega = (28,4 \pm 0,6) \cdot \Omega$$

Im Vergleich zum Literaturwert von $R_G \approx 30\Omega$ haben wir eine relative Abweichung von -5,3%.

Aufgabe 2.2

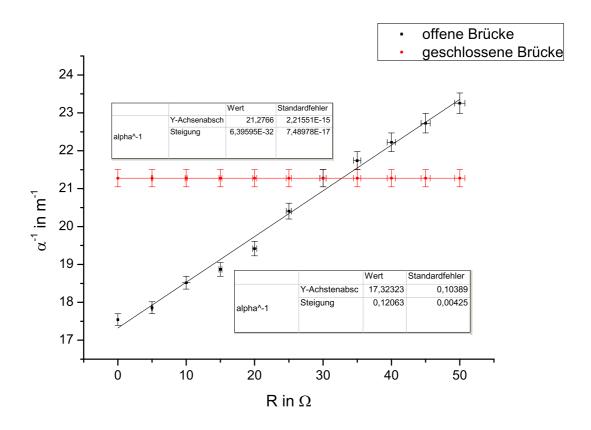
Mittels Schaltung 3 finden wir eine weitere Methode, den Galvanometerwiderstand R_G zu bestimmen. Die Versorgungsspannung U betrug wieder U=1,0V und die verwendeten Widerstände hatten folgende Werte: $R_{11}=477k\Omega$ und $R_{12}=R_{13}=47,0\Omega$. R_{14} ließ sich mit $R_{14}\in[0,0\Omega;50,0\Omega]$ frei wählen. Es wurde von uns der Ausschlag α bei geschlossener sowie bei geöffneter Brücke in Abhängigkeit verschiedener Werte von R_{14} gemessen.

Unsere Messwerte sind in nachfolgenden Tabellen übersichtlich zusammengestellt.

Brücke offen					
R in Ω	ΔR in Ω	α in mm	α in m	α^{-1} in m ⁻¹	Δα ⁻¹ in m ⁻¹
0	0,000	57,0	0,0570	17,5	0,154
5	0,075	56,0	0,0560	17,9	0,159
10	0,150	54,0	0,0540	18,5	0,171
15	0,225	53,0	0,0530	18,9	0,178
20	0,300	51,5	0,0515	19,4	0,189
25	0,375	49,0	0,0490	20,4	0,208
30	0,450	47,0	0,0470	21,3	0,226
35	0,525	46,0	0,0460	21,7	0,236
40	0,600	45,0	0,0450	22,2	0,247
45	0,675	44,0	0,0440	22,7	0,258
50	0,750	43,0	0,0430	23,3	0,270

Brücke geschlossen					
R in Ω	ΔR in Ω	α in mm	α in m	α^{-1} in m ⁻¹	Δα ⁻¹ in m ⁻¹
0	0,000	47,0	0,0470	21,3	0,226
5	0,075	47,0	0,0470	21,3	0,226
10	0,150	47,0	0,0470	21,3	0,226
15	0,225	47,0	0,0470	21,3	0,226
20	0,300	47,0	0,0470	21,3	0,226
25	0,375	47,0	0,0470	21,3	0,226
30	0,450	47,0	0,0470	21,3	0,226
35	0,525	47,0	0,0470	21,3	0,226
40	0,600	47,0	0,0470	21,3	0,226
45	0,675	47,0	0,0470	21,3	0,226
50	0,750	47,0	0,0470	21,3	0,226

Daraus erstellen wir mit Origin das gewünschte Diagramm.



Wie von uns in der Vorbereitung hergeleitet befindet sich R_G genau beim Schnittpunkt der beiden Regressionsgeraden, sodass gilt:

$$R_G = \frac{c_1 - c_2}{m_2}$$

Statistischer Fehler

Als statistischen Fehler für c_1 nehmen wir $\sigma_{c_1}=0,226$ an. Dies entspricht zwar nicht dem angegeben Fehler unserer Auswertungssoftware, allerdings ist das die Größe unseres y-Fehlers α^{-1} für jeden Punkt der Geraden und somit auch für die gesamte Gerade.

Wir nehmen außerdem $\sigma_{c_2} = 0,104$ und $\sigma_{m_2} = 0,00425$ an. Mithilfe der Gaußschen Fehlerfortpflanzung ergibt sich also:

$$\begin{split} \sigma_{R_G} &= \sqrt{\left(\frac{\partial R_G}{\partial c_1}\sigma_{c_1}\right)^2 + \left(\frac{\partial R_G}{\partial c_2}\sigma_{c_2}\right)^2 + \left(\frac{\partial R_G}{\partial m_2}\sigma_{m_2}\right)^2} \\ &= \sqrt{\left(\frac{1}{m_2}\sigma_{c_1}\right)^2 + \left(-\frac{1}{m_2}\sigma_{c_2}\right)^2 + \left(-\frac{c_1 - c_2}{m_2^2}\sigma_{m_2}\right)^2} \\ &= \sqrt{\left(\frac{1}{0,121} \cdot 0, 226\Omega\right)^2 + \left(-\frac{1}{0,121} \cdot 0, 104\Omega\right)^2 + \left(-\frac{21,28 - 17,32}{0,121^2} \cdot 0,00425\Omega\right)^2} \\ &= 2,36\Omega \end{split}$$

Systematischer Fehler

Bei der Berechnung des systematischen Fehlers muss man berücksichtigen, dass bei der Formel für R_G

$$R_G = R \frac{R_{12}}{R_{13}} = \frac{c_2 - c_1}{m_1 - m_2} \frac{R_{12}}{R_{13}}$$

der hintere Bruch nicht gekürzt werden darf, da er fehlerbehaftet ist. Außerdem gilt $m_1 \approx 0$. R_{12} und R_{13} sind mit einem Fehler von $\pm 1,5\%$ angegeben $\Rightarrow \Delta_{R_{12}} = \Delta_{R_{13}} = 0,705\Omega$. Mit der arithmetischen Fehlerfortpflanzung ergibt sich für den systematischen Fehler Δ_{R_G} :

$$\Delta_{R_G} = \left| \frac{\partial R_G}{\partial R_{12}} \Delta_{R_{12}} \right| + \left| \frac{\partial R_G}{\partial R_{13}} \Delta_{R_{13}} \right| = \frac{c_1 - c_2}{m_2} \left(\left| \frac{\Delta_{R_{12}}}{R_{13}} \right| + \left| -\frac{R_{12}}{R_{13}^2} \Delta_{R_{13}} \right| \right)$$
$$= \frac{21, 28 - 17, 32}{0, 121} \Omega \left(\frac{0, 705\Omega}{47, 0\Omega} + \frac{47, 0\Omega \cdot 0, 705\Omega}{(47, 0\Omega)^2} \right) = 0, 98\Omega$$

Berechnung von R_G

Wir setzen nun unsere Werte in die obige Formel ein und geben gleichzeitig den statistischen Fehler mit an:

$$R_G = \frac{c_1 - c_2}{m_2} = \frac{21,28 - 17,32}{0,121} \Omega = (32,7 \pm 2,4 \pm 1,0)\Omega$$

Bei dieser Messmethode erhalten wir eine relative Abweichung von 9,0% vom Literaturwert.

Aufgabe 2.3

Mittels Schaltung 4 haben wir eine alternative Möglichkeit, die Stromstoßempfindlichkeit C_I zu bestimmen.

Dazu stellen wir R_a auf ∞ und variieren die Versorgungsspannung U zwischen 0,0V und 1,0V. Der Wert von R_{15} betrug $474k\Omega$.

Nachfolgend findet sich unsere Messwertetabelle.

U in V	α in mm	α in m	I in A	ΔI in A
0,1	7,5	0,0075	2,11E-07	2,43E-08
0,2	15,0	0,0150	4,22E-07	4,85E-08
0,3	23,0	0,0230	6,33E-07	7,28E-08
0,4	31,0	0,0310	8,44E-07	9,70E-08
0,5	38,5	0,0385	1,05E-06	1,21E-07
0,6	47,0	0,0470	1,27E-06	1,46E-07
0,7	54,0	0,0540	1,48E-06	1,70E-07
0,8	62,5	0,0625	1,69E-06	1,94E-07
0,9	70,0	0,0700	1,90E-06	2,18E-07
1,0	77 <i>,</i> 5	0,0775	2,11E-06	2,43E-07

Auch aus diesen Werten wurde das gewünschte Diagramm erstellt.



 C_I ergibt sich dieses Mal direkt aus der Steigung der Regressionsgeraden:

$$C_I = m \frac{\alpha}{2r}$$

Für die Spannung U nehmen wir wieder einen Fehler von $\Delta_U=\pm 10\%$ an, für den Ablesefehler $\Delta_\alpha=0,5mm$. Die Stromstärke I ist durch Δ_U und $\Delta_R=7110\Omega$ fehlerbehaftet. Wir verwenden die arithmetischen Fehlerfortpflanzung für diesen systematischen Fehler (Zahlenbeispiel mit letztem Messwert):

$$\Delta_I = \left| \frac{\partial I}{\partial U} \Delta_U \right| + \left| \frac{\partial I}{\partial R} \Delta_R \right| = \left| \frac{1}{R} \Delta_U \right| + \left| -\frac{U}{R^2} \Delta_R \right|$$
$$= \left| \frac{1}{474000\Omega} 0, 1V \right| + \left| -\frac{1, 0V}{(474000\Omega)^2} 7110\Omega \right| = 2,426 \cdot 10^{-7} A$$

Der Fehler von C_I hängt vom Steigungsfehler $\sigma_m=151\frac{rad}{A}$ und von der Umrechnung von $\Delta_r=0,003m$ in $\frac{rad}{A}$ ab.

Statistischer Fehler

$$\sigma_{C_I} = \sqrt{\left(\frac{\partial C_I}{\partial m}\sigma_m\right)} = \sqrt{\left(\frac{\alpha}{2r}\sigma_m\right)} = \sqrt{\left(\frac{1m}{2\cdot 0, 250m}\cdot 151\frac{rad}{A}\right)} = 302\frac{rad}{A}$$

Systematischer Fehler

$$\Delta_{C_I} = \left| \frac{\partial C_I}{\partial r} \Delta_r \right| = \left| -\frac{m\alpha}{2r^2} \Delta_r \right| = \left| -\frac{37100 \frac{m}{A} \cdot 1m \cdot rad}{2 \cdot (0, 250m)^2} \cdot 0,003m \right| = 890 \frac{rad}{A}$$

Berechnung von C_I

$$C_I = m \frac{\alpha}{2r} = 37100 \frac{m}{A} \frac{1m}{2 \cdot 0.250m} = (74200 \pm 300 \pm 900) \frac{rad}{A}$$

Die relative Abweichung zum Literaturwert ($C_I \approx 10^5 \frac{rad}{A}$) beträgt dieses mal -25,8%.

Fehlerdiskussion

Gerade bei der Bestimmung von C_I haben wir ziemlich große Abweichungen von über 25% vom Literaturwert. Zwar haben wir sämtliche Messgrößen mit Fehlern behaftet, allerdings ist nicht garantiert, dass dabei alle möglichen Fehlerquellen abgedeckt wurden. Außerdem sind die Literaturwerte auf dem Aufgabenblatt nur als ungefähre Angaben zu sehen, die nicht unbedingt auf das von uns untersuchte Galvanometer zutreffen müssen. Hinzu kommt noch, dass das Galvanometer ein sehr empfindliches Messgerät ist (siehe Aufgabe 1) und sich seine Eigenschaften im Laufe der Jahre durch äußere Einflüsse verändern können.

Aufgabe 3: Dynamische Versuche

In Schaltung 4 haben wir die äußere Spannung U=1V beibehalten. Es wurden verschiedene Widerstände von $R=1k\Omega$ aufwärts eingestellt und für jeden Widerstand zunächst der Maximalausschlag

gemessen.

Anschließend wurde die äußere Spannung abgeklemmt, wodurch das Galvanometer in Schwingungen um die Ruhelage versetzt wurde. Bei diesen Schwingungen haben wir für jede halbe Periode die Auslenkung bestimmt. Dabei wurde von uns darauf geachtet, dass nur Werte aufgenommen wurden, solange das Galvanometer noch sauber durchschwingt.

Eine Übersicht über die Messwerte findet sich in unten stehender Tabelle.

R_a in Ω	∞	3300	2260	1500	1194	1001
Periodenzahl			α in	mm		
0,0	62,0	62,0	61,5	61,0	61,0	60,0
0,5	54,0	46,0	43,0	38,0	35,0	33,0
1,0	47,0	35,0	31,0	25,0	21,0	18,0
1,5	42,0	26,0	21,0	16,0	17,0	10,0
2,0	36,0	20,0	15,0	10,0	7,0	5,0
2,5	31,0	18,0	11,0	7,0	4,0	3,0
3,0	27,0	17,0	7,0	3,0	3,0	2,0
3,5	24,0	8,0	5,0			
4,0	21,0	7,0	3,0			
4,5	18,0	5,0				
5,0	15,0	3,0				
5,5	14,0					
6,0	12,0					
T in s	4,10	4,11	4,14	4,26	4,23	4,11

Für die Bestimmung der Periodendauer haben wir nach n Perioden die Zeit gestoppt und diese Zeit dann durch n geteilt. Die Ergebnisse sind in der Tabelle weiter unten aufgeführt.

Um das Dämpfungsverhältnis κ zu bestimmen, berechnen wir

$$\kappa = \frac{\alpha_{n-1}}{\alpha_n}$$

für je zwei Wertepaare, die eine Periodendauer auseinanderliegen. Die daraus resultierenden Ergebnisse sind in der unten stehenden Tabelle aufgeführt.

R_a in Ω	∞	3300	2260	1500	1194	1001
			$\kappa = \alpha_n$	₋₁ / a _n		
	1,3191	1,7714	1,9839	2,4400	2,9048	3,3333
	1,2857	1,7692	2,0476	2,3750	2,0588	3,3000
	1,3056	1,7500	2,0667	2,5000	3,0000	3,6000
	1,3548	1,4444	1,9091	2,2857	4,2500	3,3333
	1,3333	1,1765	2,1429	3,3333	2,3333	2,5000
	1,2917	2,2500	2,2000			
	1,2857	2,4286	2,3333			
	1,3333	1,6000				
	1,4000	2,3333				
	1,2857	·		·		·
	1,2500					

Zur weiteren Verarbeitung unserer Messdaten wird nun ein Mittelwert des Dämpfungsverhältnisses gebildet. Daraus ermitteln wir zusätzlich das logarithmische Dekrement $\ln \kappa$, welches zur Berechnung der Abklingkonstanten genutzt wird.

Wir teilen dieses für jeden Widerstand R_a durch die Periodendauer und erhalten so die Abklingkonstante β_{R_a} :

$$\beta_{R_a} = \frac{\ln \kappa}{T}$$

Gleichzeitig berechnen wir noch die Werte für $(\beta_{R_a} - \beta_{\infty})^{-1}$, da wir sie gleich benötigen. Die Ergebnisse sind in der nachfolgenden Tabelle aufgelistet.

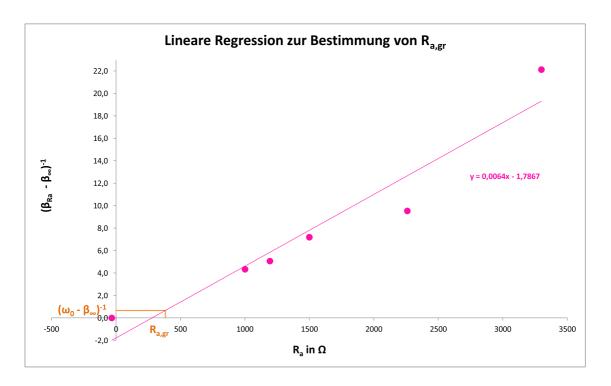
R_a in Ω	T in s	Mittelwert von κ	ln(κ)	$\beta_{Ra} = \ln(\kappa)/T \text{ in s}^{-1}$	$(\beta_{Ra} - \beta_{\infty})^{-1}$ in s
∞	4,10	1,3132	0,2725	0,066	∞
3300	4,11	1,5823	0,4589	0,112	22,12
2260	4,14	2,0327	0,7094	0,171	9,53
1500	4,26	2,4002	0,8755	0,206	7,19
1194	4,23	3,0534	1,1163	0,264	5,06
1001	4,11	3,3917	1,2213	0,297	4,33
-32,7					0

(a) Abklingkonstante β_{R_a}

Die Werte für β_{R_a} wurden gemäß dem obigen Zusammenhang in der Tabelle zusammengestellt. Es wird nun noch $(\beta_{R_a} - \beta_{\infty})^{-1}$ über R_a aufgetragen. Diese lineare Regression gehorcht der in der Vorbereitung hergeleiteten Beziehung

$$(\beta_{R_a} - \beta_{\infty})^{-1} = \frac{2\Theta R_G}{G^2} + \frac{2\Theta}{G^2} R_a = mR_a + c$$

Damit erhalten wir das unten stehende Diagramm mit den benötigten Konstanten c und m. Als weiteren Punkt im Diagramm haben wir wie angegeben $(-R_G,0)$ aufgetragen. Den Wert des Galvanometerwiderstands haben wir dabei der Auswertung aus Aufgabe 2.2 entnommen: $R_G=32,7\Omega$.



(b) Frequenz ω_0

Wir setzen die Werte T_{∞} und β_{∞} in die Formel der Vorbereitung ein:

$$\omega_0 = \sqrt{\left(\frac{2\pi}{T_\infty}\right)^2 + \beta_\infty} = \sqrt{\left(\frac{2\pi}{4, 1s}\right)^2 + 0,066\frac{1}{s^2}} = 1,554Hz$$

(c) Außengrenzwiderstand $R_{a,gr}$

Es wird nun der in (b) berechnete Wert der Frequenz ω_0 in $(\beta_{R_a} - \beta_{\infty})^{-1}$ eingesetzt und im obigen Schaubild der Schnittpunkt dieser Geraden mit der Regressionsgeraden bestimmt. Die Ordinate dieses Schnittpunkts ist gerade der Außengrenzwiderstand $R_{a,qr}$.

Dieser berechnet sich bei uns zu

$$R_{a,gr} = \frac{(\omega_0 - \beta_\infty)^{-1} - c}{m} = \frac{0,6722s + 1,7867s}{0,0064\frac{s}{\Omega}} = 384,21\Omega$$

Wir haben anhand von Schaltung 4 überprüft, dass etwa bei diesem Widerstand tatsächlich der Grenzfall vorliegt.

(d) Galvanometer-Kenngrößen G, Θ und D

Die Galvanometer-Kenngrößen werden mittels den in unseren Vorbereitungen hergeleiteten Formeln berechnet. Die Stromempfindlichkeit $C_I'=74200\frac{rad}{A}$ wurde dabei aus Aufgabe 2.3 übernommen.

Damit werden nun die Kenngrößen ausgerechnet:

$$G = \frac{2}{mC_I'\omega_0^2} = \frac{2}{0,0064\frac{s}{\Omega} \cdot 74200\frac{1}{A} \cdot (1,554Hz)^2} = 1,7440 \cdot 10^{-3}Tm^2$$

$$\Theta = \frac{2}{mC_I'^2\omega_0^4} = \frac{2}{0,0064\frac{s}{\Theta} \cdot \left(74200\frac{1}{A}\right)^2 \cdot \left(1,554Hz\right)^4} = 9,7325 \cdot 10^{-9}kg \cdot m^2$$

$$D = \frac{2}{mC_I'^2\omega_0^2} = \frac{2}{0,0064 \cdot \frac{s}{\Omega} \left(74200\frac{1}{A}\right)^2 \cdot (1,554Hz)^2} = 2,3503 \cdot 10^{-8} \frac{N}{m}$$

Da wir zur Berechnung den fehlerbehafteten Wert von C_I' aus Aufgabe 2.3 übernommen haben, unterliegen auch diese Kenngrößen gewissen Abweichungen von den wirklichen Werten des Galvanometers.

Aufgabe 4: Ballistische Versuche

In Aufgabe 4 haben wir ballistische Versuche am Galvanometer durchgeführt. Die Stromstöße in Schaltung 5 kamen dabei vom Kondensator C_2 mit der Kapazität $C_2 = 4, 7 \cdot 10^{-6}$, den wir mit der Spannung U = 0, 3V aus unserem Spannungsteiler in Schaltung 1 über einen Taster aufladen konnten.

Der Abstand r des Spiegels von der Millimeterskala ist dabei als Literaturwert gegeben mit r=250mm. Als Wert des Galvanometerwiderstands haben wir unser Ergebnis aus Aufgabe 2.2 übernommen mit $R_G=32,7\Omega$.

Aufgabe 4.1

Ziel dieser Aufgabe ist es, für verschiedene Außenwiderstände R_a die Stromstoßempfindlichkeiten C_b zu berechnen. Dazu haben wir für jeden Widerstand R_a den Maximalausschlag α_{max} des Galvanometers registriert. Da C_b in der gängigen Literatur häufig die Einheit $\frac{rad}{C}$ hat, haben wir den Maximalausschlag umgerechnet in den Maximalwinkel φ_{max} des Galvanometers. Da der Lichtstrahl gespiegelt wird, muss dieser Winkel doppelt genommen werden.

Es gilt dann für φ_{max} :

$$\varphi_{max} = \frac{\alpha_{max}}{2r}$$

So können wir dann C_b bzw. C'_b (je nach Einheit) berechnen, indem wir die gemessenen Werte in die in der Vorbereitung hergeleiteten Formel einsetzen:

$$C_b = \frac{\alpha_{max}}{CU} \frac{R_a + R_G}{R_a} \qquad C_b' = \frac{\varphi_{max}}{CU} \frac{R_a + R_G}{R_a}$$

Die berechneten Ergebnisse sind in der unten stehenden Tabelle aufgeführt.

R_a in Ω	α _{max} in mm	ϕ_{max} in rad	C _b in m/C	C _b ' in rad/C
∞	86,0	0,172	60993	121986
999	69,0	0,138	50538	101076
332	48,0	0,096	37396	74791
33	8,5	0,017	12002	24004

Aufgabe 4.2

Wir vergleichen nun unsere experimentell bestimmten Werte der Stromstoßempfindlichkeit mit den theoretischen Werten, die wir unter Benutzung der zuvor bestimmten Konstanten gemäß der Herleitung in der Vorbereitung ausrechnen können. Dabei muss zwischen den drei Fällen der minimalen Dämpfung, der Grenzdämpfung und der fluxmetrischen Empfindlichkeit unterschieden werden. Zur Berechnung nutzen wir die folgenden Werte aus den Aufgaben 2 und 3:

G in Tm ²	R_G in Ω	Θ in kg*m²	ω _o in Hz
1,7440E-03	32,7	9,7325E-09	1,554

Nun errechnen wir die theoretischen Werte gemäß den Formeln der Vorbereitung und tragen diese in unten stehender Tabelle zusammen mit den Werten aus Aufgabe 4.1 auf. Dabei vergleichen wir noch die Abweichung der experimentell und theoretisch bestimmten Stromstoßempfindlichkeiten.

R _a in Ω	8	999	332	33
C _b ' in rad/C (exper.)	121986	101076	74791	24004
C _b ' in rad/C (theor.)	115308	115308	42419	37673
Abweichung	5,79%	-12,34%	76,31%	-36,28%

Die experimentell bestimmten Werte decken sich mit Ausnahme des aperiodischen Grenzfalls im Rahmen der Messgenauigkeit ungefähr mit den theoretisch berechneten Werten. Die Abweichung bei Grenzdämpfung könnte daran liegen, dass der verwendete Widerstand mit $R_a=332\Omega$ nicht exakt den aperiodischen Grenzfall trifft, für den die theoretische Berechnung gilt.

Aufgabe 4.3

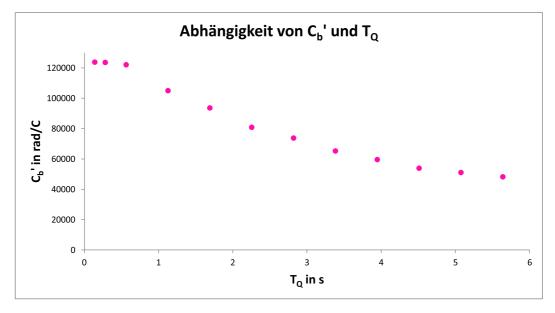
Gemäß der Beziehung $T_Q=3R_aC$ wächst mit steigendem Widerstand R_a auch die Stromstoßdauer T_Q . Wir überzeugen uns durch einige Messungen des maximalen Ausschlags α_{max} davon, dass die Stromstoßempfindlichkeit C_b' durchaus auch von der Stromstoßdauer abhängen kann. Dazu berechnen wir gemäß der obigen Beziehung

$$C_b' = \frac{\alpha_{max}}{2rCU} \frac{R_a + R_G}{R_a}$$

die Stromstoßempfindlichkeiten und die zugehörigen T_Q . Es ergeben sich folgende Werte:

R_a in Ω	α_{max} in mm	T _Q in s	C _b ' in rad/C
0	87	0	-
10000	87	0,141	123808
20000	87	0,282	123606
40000	86	0,564	122086
80000	74	1,128	105007
120000	66	1,692	93643
160000	57	2,256	80868
200000	52	2,82	73771
240000	46	3,384	65257
280000	42	3,948	59581
320000	38	4,512	53906
360000	36	5,076	51068
400000	34	5,64	48231

Man erkennt schon an den einzelnen Werten, dass eine Abhängigkeit von C_b' zu T_Q besteht. Dies kann man in einem Schaubild noch besser veranschaulichen:



Es ist zu erkennen, dass die ersten paar Messwerte ungefähr auf gleicher Höhe liegen. Überschreitet man einen Wert der Stromstoßdauer von $T_Q\approx 0,6s$, so fällt auch die Stromstoßempfindlichkeit ab. Damit ist nachgewiesen, dass eine Abhängigkeit zwischen C_b' und T_Q besteht.

Fragen

Die Beantwortung der Fragen erfolgte im Zuge der Vorbereitung.