Versuche P1-53,53,55

Vorbereitung

Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik

Versuchstag: 17.11.2010

1 Aufgabe 1 - Hochpass und Tiefpass

Abbildung 1: R-C Spannungsteiler

Ein R-C Spannungsteiler ist eine Reihenschaltung aus einem Kondensator C und einem ohmschen Widerstand R. Die Eingangsspannung U_0 ist hierbei eine Wechselstromquelle. Die Ausgangsspannung kann entweder über dem Kondensator U_C oder über dem ohmschen Widerstand U_R abgenommen werden. Da über dem Kondensator vor allem niedrige Frequenzen abfallen spricht man von Tiefpass, für hohe Frequenzen spielt der Kondensator keine Rolle, sie fallen über dem ohmschen Widerstand ab, wird die Ausgangsspannung über ihm abgegriffen so spricht man von einem Hochpass. Wegen der 4 Anschlussstellen eines solchen Bauteiles spricht man auch von einem Vierpol.

Die zeitliche Verschiebung Δt zwischen Eingangs u_e und Ausgangsspannung u_a soll in diesem Versuch bestimmt werden, sowie das Abschwächungsverhältnis $\frac{u_a}{u_e}$ und die Phasenverschiebung $\Delta \varphi$ berechnet werden.

$$\Delta \varphi = \omega \cdot \Delta t \tag{1}$$

(2)

Aus den Kirchoffschen Regeln ergibt sich die Spannung an den Ausgangsklemmen, für den Hoch (links) und den Tiefpass (rechts) und darüber das Abschwächungsverhältnis mit $f_0 =$

 $\frac{1}{2\pi \cdot RC}$ und $\omega = 2\pi \cdot f$:

$$u_a = \frac{R}{R + \frac{1}{i\omega C}} \cdot u_e \qquad \qquad u_a = \frac{1}{1 + i\omega \cdot RC} \cdot u_e \tag{3}$$

$$\frac{|u_a|}{|u_e|} = \frac{1}{\sqrt{\frac{f_0^2}{f}^2 + 1}} \qquad \qquad \frac{|u_a|}{|u_e|} = \frac{1}{\sqrt{\frac{f}{f_0}^2 + 1}} \tag{4}$$

$$\varphi = \arctan \frac{f_0}{f}$$
 $\varphi = -\arctan \frac{f}{f_0}$ (5)

2 Aufgabe 2 - Differenzierglied und Integrierglied

Die Ausgangsspannung an Hoch (links) und Tiefpass (rechts) sind jeweils proportional zur Ableitung und zum Integral der Eingangsspannung. Mit geeignet dimensionierten RC-Spannungsteilern kann man also analoge Signale differenzieren und integrieren:

$$u_a = R \cdot I = R \cdot \frac{dQ}{dt} = RC \cdot \frac{du_e}{dt} \quad u_a = \frac{Q}{C} = \frac{1}{C} \cdot \int I \cdot dt = \frac{1}{RC} \cdot \int (u_e - u_a) dt \quad (6)$$

Legt man also an einen Hochpass eine Dreiecksspannung an, so erwartet man als Ausgangssignal eine Rechtecksspannung (links). Eine Reckteckspannung am Tiefpass hingegen wird als Integral die Form einer Dreiecksfunktion haben (rechts).

3 Aufgabe 3 - Drosselkette

Eien Drosselkette besteht aus der Hintereinanderschaltung von vielen Vierpolen, die jeweils aus 2 Kondensatoren und einer Spule zwischen diesen besteht.

Charakteristischer Widerstand Nach der Vorbereitungshilfe erhält man einen theoretischen Wert für den charakteristischen Widerstand durch:

$$Z_0 = \sqrt{\frac{L}{C} \cdot \frac{1}{1 - \frac{\omega}{\omega_0}^2}} \qquad \qquad \omega_0 = \frac{2}{\sqrt{LC}} \tag{7}$$

Mit den Werten aus der Aufgabenstellung ergibt sich ein erwarteter Wert von $Z_0 = 219.19\Omega$. Experimentell benutzt man den regelbaren Lastwiderstand Z_A und stellt diesen so ein dass die beobachtete Spannung möglichst wenig von Reflexionen vom Kettenende beeinträchtigt werden. Dann gilt gerade $Z_A = Z_0$.

Grenzfrequenz Die Grenzfrequenz befindet sich bei angelegter Sinuswechselspannung in dem Bereich indem u_a sehr stark von f abhängig wird, etwa bei $\frac{|u_a|}{|u_e|} = \frac{1}{10}$. Um Reflexionen zu vermeiden muss der Lastwiderstand Z_A entsprechend dem oberen Versuchsteil ständig nachgeregelt werden.

Kapazität und Induktivität C und L ergeben sich im Grenzfall $f \ll f_0$ aus der Formel für Z_0 :

$$C = \frac{1}{\pi \cdot f_0 \cdot Z_0} \tag{8}$$

$$L = \frac{Z_0}{\pi \cdot f_0} \tag{9}$$

Phasenverschiebung Für verschiedene Frequenzen und für eine 1 und 6 gliedrige Kette soll die Phasenverschiebung $\Delta \varphi = \omega \cdot \Delta t$ bestimmt werden. Wieder ist auf Reflexionsfreiheit am Ende der Kette zu achten. Zwischen der Anzahl der Kettenglieder und der Phasenverschiebung soll ein linearer Zusammenhang gefunden werden, sowie für die 1 gliedrige Kette $\Delta \varphi = \pi$ bestimmt werden, weshalb dieser Vierpol auch π -Glied genannt wird. Wegen:

$$\Delta \varphi = 2 \cdot n \cdot \arcsin \frac{f}{f_0} \tag{10}$$

kann die Grenzfrequenz f_0 aus den Messdaten ein weiteres mal bestimmt werden:

$$f_0 = \frac{f}{\sin\frac{k\cdot\pi}{2\cdot n}}\tag{11}$$

Erzwungene Reflexion In diesem Teilversuch sollen durch $Z_A = 0$ gezielt Reflexionen am Kettenende erzwungen werden. Am Kettenanfang werden diese durch einen 200 Ω -Widerstand unterdrückt. Am Kettenanfang wird eine Überlagerung aus Eingangsrechteckspannung und den Reflexionen erwartet. Also wiederum eine Rechteckspannung die jedoch phasenverschoben ist.

4 Aufgabe 4 - Koaxialkabel

Im Grenzfall unendlicher vieler Glieder wird die Kette zu einem Kabel, dem Koaxialkabel. Auch für dieses kann der charakteristische Widerstand Z_0 bestimmt werden:

Charakteristischer Widerstand Mit einer angelegten Rechteckspannung von f = 1.1MHz wird analog zur Drosselkette der Lastwiderstand Z_A so angepasst, dass keine Reflexionen mehr stattfinden $Z_A = Z_0$.

Verzögerungszeit τ Die Verzögerungszeit pro Längeneinheit des Kabels lässt sich durch die zeitliche Verschiebung des Ein- zum Ausgangssignals bestimmen. Außerdem ist bekannt das sich das Signal im Kabel mit der Medienlichtgeschwindigkeit ausbreitet.

$$c_m = \frac{c_0}{\sqrt{\epsilon \cdot \mu}} = \frac{1}{\tau} \tag{12}$$

Verzögerungszeit analog zur Drosselkette Analog zum Versuch mit der Drosselkette wird die Verzögerung durch Überlagerung des Generatorsignals mit dem reflektierten Signal (dank $Z_A = 0$) bestimmt. Die Zeitdifferenz Δt der beiden Signale wird hierbei bestimmt und durch die doppelte Länge $2 \cdot l$ des Kabels geteilt (da dass reflektierte Signal diese Strecke zurücklegt).

$$\tau = \frac{\Delta t}{2 \cdot l} \tag{13}$$

Dieelektrizitätskonstante Die Dielekektrizitätskonstante kann nun mehrmals bestimmt werden aus den verschiedenen Messungen, die beötigten Formeln stammen aus der Vorbereitungshilfe und der Formel für die Medienlichteschwindigkeit:

$$\epsilon(\tau) = \frac{c^2 \cdot \tau^2}{\mu} \tag{14}$$

$$\epsilon(C_l, r_1, r_2) = \frac{C \cdot ln\left(\frac{r_a}{r_i}\right)}{2\pi\epsilon_0 \cdot l} \tag{15}$$

$$\epsilon(Z_0, r_1, r_2) = \frac{c^2 \mu_0^2 \mu}{4\pi \cdot Z_0^2} \cdot \ln\left(\frac{r_a}{r_i}\right) \tag{16}$$

(17)

Literatur

[Aufgabenstellung]	Aufgabenstellung der Versuche P1-53,53,55
[Vorbereitungshilfe]	Vorbereitungshilfe der Versuche P1-53,53,55

Versuche P1-53,53,55

Vierpole und Leitungen Versuchsauswertung

Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik

Versuchstag: 10.01.2011

Inhaltsverzeichnis

1	Versuch 2: Differenzier- und Integrierglied					
	1.1	Beobachteter Effekt	3			
	1.2	Messdaten und theoretische Vorhersage	3			
	1.3	Weitere Messungen	4			
2	Versuch 3: Drosselkette					
	2.1	Überlagerung des Generatorsignals mit reflektiertem Signal	6			
3	Versuch 4: Koaxialkabel					
	3.1	.1 Bestimmung des charakteristischen Widerstandes				
	3.2	Bestimmung der Verzögerungszeit τ' durch Beobachtung	7			
		3.2.1 des Ein und Ausgangssignals	7			
		3.2.2 der Überlagerung von Generatorsignal und reflektiertem Signal	7			
	3.3	Bestimmung der relativen Dielektrizitätszahl	8			
Li	terati	Jr	10			

1 Versuch 2: Differenzier- und Integrierglied

Der Versuch wurde entsprechend der Versuchsvorbereitung und Aufgabenstellung durchgeführt.

1.1 Beobachteter Effekt

(a) Integrie
rglied mit Rechteckspannung $R=1 {\rm M} \Omega$ (b) Differenzierglied mit Drei
ecksspannung $R=1 {\rm k} \Omega$

Abbildung 1: R-C Spannungsteiler - C = 1 n F und $U_e = 8 V$

Der Effekt der Differenzierung und Integrierung war im Praktikum sehr deutlich erkennbar. Das Rechtecksignal wurde zu einem Dreieckssignal integriert, das Dreieckssignal wiederum zu einem Rechtecksignal differenziert. Die jeweiligen Signale sind natürlich phasenverschoben dargestellt.

1.2 Messdaten und theoretische Vorhersage

R	U_a		R	U_a
lkΩ	8.0V		$1 \mathrm{k} \Omega$	0.048V
$10 k\Omega$	7.7V		$10 \mathrm{k}\Omega$	0.48V
$100 \mathrm{k}\Omega$	6.5V		$100 \mathrm{k}\Omega$	4.0V
$1000 \mathrm{k}\Omega$	1.13V		$1000 \mathrm{k}\Omega$	7.0V
(a) Integrierglied		(b) Differe	nzierglied	

Tabelle 1: R-C Spannungsteiler - Ausgangsspannung von Spitze zu Spitze U_a in Abhängigkeit zum Widerstand R

Abbildung 2: R-C Spannungsteiler - Experimentelle Messwerte Tabelle 1 im Vergleich zur theoretischen Vorhersage. Beide Kurven sind zur Eingangsspannung $U_e = 8$ V normiert

Die Messdaten sind im Vergleich zum theoretisch vorhergesagten Verlauf kompatibel. Die Messung wurde mit einem Kondensator C = 1nF und einer Frequenz von f = 1.7kHz durchgeführt. $f_0 = \frac{1}{2\pi \cdot RC}$

1.3 Weitere Messungen

(a) Integrie
reglied mit Dreiecksspannung $R=1 {\rm M} \Omega$ (b) Differenzie
rglied mit Rechteckspannung $R=10 {\rm k} \Omega$

Abbildung 3: R-C Spannungsteiler - C = 1nF und $U_e = 8$ V - Weitere Messungen

Sehr schön zu sehen ist in Abbildung 3a der parabelförmige Verlauf des in integrierten Signals, sowie die diracförmigen Impulse beim differenzierten Signal in Abbildung 3b. Neben diesen zusätzlichen Versuchen, wurde auch die Frequenz am Integrierglied über weite Bereiche variiert und der Übergang zwischen nicht integriertem Signal $f \ll f_0$ zum integrierten Signal $f \gg f_0$ beobachtet.

2 Versuch 3: Drosselkette

10

2.1 Überlagerung des Generatorsignals mit reflektiertem Signal

Abbildung 4: Drosselkette - Überlagerung bei rechteckförmiger Wechselspannung f = 20 kHz

Sehr schön zu erkennen ist, dass das ursprünglich rechteckige Signal des Generators zu einem treppenförmigen Signal durch die ankommenden Reflektionen verzerrt wurde. Ein solcher Verlauf war vorherzusehen, da die einzelnen Signale ihre rechteckige Form behalten jedoch gedämpft am Kettenanfang wieder ankommen und dort destruktiv mit dem Generatorsignal interferieren.

3 Versuch 4: Koaxialkabel

Der Versuch wurde entsprechend der Versuchsvorbereitung und Aufgabenstellung durchgeführt.

3.1 Bestimmung des charakteristischen Widerstandes

Der charakteristische Widerstand des verwendeten Koaxialkabels wurde wie in Vorbereitung und Aufgabenstellung bestimmt. Unsere Messung ergab:

$$Z_0 = 50\Omega\tag{1}$$

Dabei wurde angenommen das Z_0 aufgrund der geringen Verluste als frequenzunabhängig angenommen werden darf. Das Ergebnis ist mit einem sehr hohen Messfehler versehen, da die Ablesegenauigkeit auf der verwendeten grob eingeteilten Skala des Drehwiderstandes sehr gering war.

3.2 Bestimmung der Verzögerungszeit τ' durch Beobachtung

3.2.1 ... des Ein und Ausgangssignals

Die Verzögerungszeit des verwendeten Koaxialkabels wurde wie in Vorbereitung und Aufgabenstellung bestimmt. Unsere Messung ergab:

$$\Delta t = 55.9 \mathrm{ns}$$
$$\tau' = 5.59 \mathrm{ns}$$

Bei einer Kabellänge von l = 10m ergibt sich somit eine Ausbreiungsgeschwindigkeit innerhalb des Kabels von:

$$v = \frac{s}{t} = \frac{l}{\Delta t} = 1.79 \cdot 10^8 \frac{\mathrm{m}}{\mathrm{s}} = 0.59 \cdot c_0$$

Das Messergebnis erscheint mit $v \approx \frac{3}{5}$ der Vakuumslichtgeschwindigkeit sehr plausibel.

3.2.2 ... der Überlagerung von Generatorsignal und reflektiertem Signal

Die Verzögerungszeit des verwendeten Koaxialkabels wurde wie in Vorbereitung und Aufgabenstellung bestimmt.

Abbildung 5: Koaxialkabel - Darstellung des Ein- und Ausgangssignals am Kabel

Unsere Messung ergab:

$$\Delta t = 110.0 \text{ns}$$
$$\tau' = 5.50 \text{ns}$$

Dabei durchläuft das reflektierte Signal zweimal das Kabel bevor es mit dem Generatorsignal interferiert. Die Wegstrecke beträgt also $s = 2 \cdot l = 20$ m.

$$v = \frac{s}{\Delta t} = 1.81 \cdot 10^8 \frac{\mathrm{m}}{\mathrm{s}} = 0.60 \cdot c_0$$

Es ergibt sich im Rahmen der Messungenauigkeit das gleiche Ergebnis wie bei der voherigen Bestimmung 3.2.1. Die Ausbreitungsgeschwindigkeit im Kabel ist dadurch ebenfalls identisch $v \approx \frac{3}{5} \cdot c_0$.

3.3 Bestimmung der relativen Dielektrizitätszahl

Mit den gemessenen und angegebenen Daten:

Verzögerungszeit aus 3.2.1	$\tau_1' = 5.59 \mathrm{ns}$
Verzögerungszeit aus 3.2.2	$\tau_2' = 5.5 \mathrm{ns}$
Chrakteristischer Widerstand	$Z_0 = 50\Omega$
Vakuumslichtgeschwindigkeit	$c = 3 \cdot 10^8 \frac{\mathrm{m}}{\mathrm{s}}$
Elektrische Feldkonstante	$\epsilon_0 = 8.85 \cdot 10^{-\tilde{1}2} \frac{\mathrm{As}}{\mathrm{Vm}}$
Magnetische Feldkonstante	$\mu_0 = 12.56 \cdot 10^{-7} \frac{\text{H}}{\text{m}}$
Innenradius des Kabels	$r_i = 0.5 \cdot 10^{-3} \text{m}$
Außenradius des Kabels	$r_a = 1.75 \cdot 10^{-3} { m m}$
Induktivität des Kabels	$C_l = 925 \cdot 10^{-12} \mathrm{F}$
Länge des Kabels	$l = 10 \mathrm{m}$
Permeabilität	mu = 1

Dabei wurde angenommen, dass die magnetische Permeabilität des Koaxialkabels $\mu \approx 1$ keine Rolle spielt. Mit den in der Vorbereitung erarbeiteten Formeln kann die Dielektrizitätszahl nun mehrfach bestimmt werden:

$$\epsilon(\tau_1') = \frac{c^2 \cdot \tau_1'^2}{\mu} = 2.81$$

$$\epsilon(\tau_2') = \frac{c^2 \cdot \tau_2'^2}{\mu} = 2.72$$

$$\epsilon(C_l, r_1, r_2) = \frac{C_l \cdot ln\left(\frac{r_a}{r_i}\right)}{2\pi\epsilon_0 \cdot l} = 2.08$$

$$\epsilon(Z_0, r_1, r_2) = \left(\frac{c\mu_0}{2\pi \cdot Z_0} \cdot ln\left(\frac{r_a}{r_i}\right)\right)^2 = 2.26$$

Die Werte liegen alle in der gleichen Größenordnung, variieren jedoch sehr stark. Da sowohl Z_0 als auch die Bestimmung von τ' welches zudem quadratisch in die Gleichungen eingeht, mit recht hohen Messungenauigkeiten belastet sind ist dies jedoch nicht weiter verwunderlich.

Literatur

[Aufgabenstellung] Aufgabenstellung der Versuche P1-53,53,55

[Vorbereitungshilfe] Vorbereitungshilfe zu den Versuchen P1-53,53,55