
FAKULTÄT FÜR PHYSIK 
PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE 
PRAKTIKUM MODERNE PHYSIK 

Gruppe Nr. __ ____ Kurs:  Mo1    Mo2    Mi3

Versuch:________________________________________ 

Namen:__ ____________ 

_______ _________ 

Assistent: ____________________________ 

durchgeführt am:___ __________________________ 

Protokollabgabe am:_ __________________________ 

____________________________________
vom Betreuer auszufüllen

Note gesamt 

Anerkannt:____________________________________
(Datum Unterschrift)

Datum Rückgabe:____________________________ 

Bemerkung: 

+ 0  -

aktuelles Semester angebenzutreffendes bitte ankreuzen
× WS24/25

Compton scattering

1

Tutor
Unterstreichen



Contents

1 Theoretical principles 3
1.1 Compton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 In Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 In Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Experimental Setup 5
2.1 Radiation sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Execution and evaluation 7
3.1 Task 1 - Energy calibration and efficiency calculation . . . . . . . . . . . . . . . . 7

3.1.1 Energy calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Efficiency calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Task 2 - Measurement of the differential effective cross section . . . . . . . . . . . 9
3.3 Task 3 - Measurement of the energy shift and estimation of the rest energy of the

electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Task 4 - Measurement of the dependence of the effective cross section on the

atomic number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Sources 14

2



1 Theoretical principles

1.1 Compton scattering

The Compton effect is a phenomenon in quantum mechanics where γ-quanta, usually photons,
scatter off free charged particles, usually electrons, resulting in a change in the photon’s energy
and direction. It allows γ-quanta to be detected and their energy measured. If the charged
particles are at rest or have low kinetic energy compared to that of the photon, the photon will
lose energy. This means that after the collision, the photon will have a longer wavelength and
a lower frequency. This energy is then transferred to the charged particle in the form of kinetic
energy. As an example, consider a photon with energy E and an electron at rest with energy E0.
Upon interaction, the photon will have an energy E′ < E, and the electron will have an energy
Ee > E0. Using the conservation of energy

E + E0 = Ee + E′ (1.1)

and the momentum theorem

c2p2 = E2
e − E2

0 = E2 + (E′)2 − 2E · E′ · cos θ, (1.2)

it is possible to calculate the energy of the photon and the kinetic energy of the electron after
the interaction:

E′(θ,E) =
E

1 + E
E0

(1− cos θ)
(1.3)

Ekin(θ,E) = E − E′(θ, E) =
E2

E0
(1− cos θ)

1 + E
E0

(1− cos θ)
(1.4)

As can be seen, the change in energy during scattering, also called the Compton shift, depends
on the initial energy of the photon. The larger E in relation to E0, the larger the shift. The
Compton effect is only noticeable when E is comparable with E0. Additionally, it depends on
the scattering angle θ as well. The larger the angle, the more energy will be transferred. For
very small angles such that θ → 0, the charged particle will not receive any energy

Ekin(θ → 0, E) =
E2

E0
(1− 1)

1 + E
E0

(1− 1)
= 0, (1.5)

whereas for an angle θ = π (backscattering), the energy transfer is maximized:

Ekin(π,E) =
E2

E0
(1− (−1))

1 + E
E0

(1− (−1))
=

E
E0
2E + 1

< E. (1.6)

Naturally, even the maximum kinetic energy of the electron is less than the initial energy of the
photon, since the photon keeps part its initial energy.
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1.2 Cross section

1.2.1 In Classical Mechanics

In the classical context, the cross section σ describes the apparent area that a particle presents
for another to collide with it. For example, if particles, considered as spheres, are launched
toward a target, the cross section would be the effective area that determines whether the in-
coming particles interact with the target. In more complex collisions, such as those involving
charged particles, the cross section may depend on factors like the forces between them and their
trajectories.

1.2.2 In Quantum Mechanics

In quantum mechanics, the concept is similar, but the cross section incorporates quantum phe-
nomena such as wave interference and the effects of the wave function. Here, the cross section
is not just a physical area but a measure of the probability of interaction. For n target particles
within an area F , the probability of occurrence is given by

Pn = n · σ
F
. (1.7)

The total cross section, which covers all the reactions of the output channel regardless of the
direction taken by the reaction products, is typically defined by

σ =
Particle flux, by which the incident flux decreases

incident particle flux
⊗

number of target particles per area
. (1.8)

Similarly, the differential cross section dσ
dΩ describes how the probability of an interaction or

scattering varies as a function of the solid angle dΩ. In other words, it indicates how many
particles are scattered in a particular direction (i.e., within a small angle) rather than in all
possible directions. Mathematically, its general definition is analogous to that of the total cross
section:

dσ
dΩ

=
Particle flux per solid angle, by which the incident flux decreases falling in dΩ

incident particle flux
⊗

number of target particles per area
. (1.9)
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2 Experimental Setup

The experimental setup comprises a primary radiation source, three calibration sources, a rotat-
ing detector, and an array of targets. The entire assembly is shielded by multiple layers of lead
blocks to minimize background radiation and to protect the people around the experiment.

Figure 2.1: The main source is embedded in a blue lead block, the detector is positioned to
the left of the source, and the targets are lying on the blue block. Lead shielding
consisting of multiple loose blocks protects the setup and the people around it.

2.1 Radiation sources

The three sources, 137Cs, 22Na and 60Co, were used to calibrate the detector. These isotopes are
chosen because their emission spectra, in particular their photopeaks, are well-known, enabling
precise calibration.

The main source used in Task 2 to 4 is a stronger 137Cs-source. As can be seen in Figure 2.1,
the source is positioned within a shielded housing which allows radiation to emerge through a
narrow window, ensuring a γ-beam along a fixed axis.

2.2 Detector

The detector system consists of a CeBr3 scintillator, a photomultiplier and a digitizer. De-
flected γ-rays are first captured by the scintillator, in which their energy is converted into optical
photons corresponding to their initial energy. These photons are then further amplified by the
photomultiplier and converted into a electric pulse. The pulse is then digitized and transferred
to a computer for storage and analysis of the captured data.

The detector is mounted to a platform that can be rotated, allowing angular positioning relative
to the source. The platform can be fixed at increments of 5°.

2.3 Targets

For task 2 and 3, the target was a small aluminum cylinder with a diameter and height of 1 cm.
The cylinder was mounted on a plastic stand at the same height as the source.
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In task 4, the targets consisted of small rectangular block of aluminum, iron, copper and lead. To
prevent direct handling of lead, and additional layer of plastic was put over the block. These tar-
gets were placed in a cylindrical holder with a cut-out to ensure stable and consistent positioning
during measurements.
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3 Execution and evaluation

3.1 Task 1 - Energy calibration and efficiency calculation

3.1.1 Energy calibration

The digitizer records the number of events detected for each channel in a range from 0 to 2000.
Since the correlation between the channel number and energy, a calibration is required. This
is achieved using the three radioactive isotopes already mentioned. Each source is positioned
directly in front of the scintillator to maximize spectral clarity, and measurements are taken over
tmeas = 300 s, a duration consistent across all subsequent measurements.

The recorded spectra are then read out using a Python program and their respective photopeaks
analyzed. The final relationship between nchannel and E is obtained by linearly fitting the channels
of the photopeaks to their respective channel positions, as shown in Figure 3.2.

Figure 3.1: Raw Spectra for the differ-
ent materials used in the
calibration.

Figure 3.2: The energies plotted
against the channels with
a linear fit.

The fitting process is performed using the kafe2 Python package, with errors derived from the
photopeak fits.

The result is:

E(nchannel) = 7.4 · 10−4 · nchannel + 3.8 · 10−2 . (3.1)

This relationship allows subsequent data analysis.

3.1.2 Efficiency calculation

The efficiency ϵ will be calculated with the same data as the calibration. It is given:

ϵ =
Nph

tmeas ·Rγ

where Nph is the number of photons in the photopeak and Rγ is the γ-ray flux rate.
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Determining Nph

Nph is calculated by fitting the photopeak to a Gaussian curve and integrating the resulting
curve. This is done for each photopeak resulting in an energy dependency of ϵ.

Determining Rγ

The detector rate Rγ is calculated as:

Rγ = Φdet · FArea = Φdet · πr2

where

• Φdet = Aγ · 1
4πl2

is the γ-ray flux at the detector,

• Aγ = A0e
−λtpassed is the activity of the source, adjusted for decay,

• l = 3.3 cm is the distance from the source to the detector,

• r = 2.54 cm is the radius of the scintillator.

The decay constant λ is calculated from the half-time, λ = ln(2)/t1/2, and the elapsed time. The
source activity was measured on 16 April 2021 and the experiment was done on 25 November
2024, corresponding to tpassed = 1319 days = 3.61 a.

Results

The results are shown below:

Probe A0[Bq] t1/2 [a] Rγ [1/s] Nph ϵ
137Cs 2.8 · 105 30.2 3.82 · 104 5.26 · 104 4.59 · 10−3

60Co 6.39 · 104 5.27 5.88 · 103 4.79 · 103peak 1 3.68 · 103peak 2 2.72 · 10−3
peak 1 2.09 · 10

−3
peak 2

22Na 1.1 · 104 2.6 6.21 · 102 3.24 · 103peak 1 1.79 · 102peak 2 1.73 · 10−2
peak 1 9.61 · 10

−4
peak 2

The efficiency of the detector varies greatly. This is most likely the fault of l not remaining the
same for each probe, the probes not pointing directly at the detector or an inaccurate fit that
results in inaccurate values for Nph. Finally, to get a continuous efficiency curve, a quadratic
and cubic interpolation is done. The results are seen in Figure 3.3.

Figure 3.3: The calculated efficiency points at different energies with a quadratic and cubic in-
terpolation.
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3.2 Task 2 - Measurement of the differential effective cross
section

Once the energy measurements were calibrated and calculated, the next task is to determine the
differential cross section dσ

dΩ . For this purpose, 137Cs was used as the γ-quanta source, and an
aluminum cylinder served as the target. The detector is then observed at a solid angle ∆Ω with
a mean scattering angle θ. It was then rotated and fixed around the target between θ = 30° and
θ = 80° in 10° steps. For each angle, two rates were measured: the rate with the aluminum target
in place RT(∆Ω, θ) and the background rate RB(∆Ω, θ) without it. The true rate scattered rate
on the aluminum target is given by the difference between the measurements

RAl(∆Ω, θ) = RT(∆Ω, θ)−RB(∆Ω, θ) . (3.2)

θ [°] 30 40 50 60 70 80
RAl [s−1] 105,41 83,04 64,87 49,46 43,09 39,29

Table 3.1: Scaterring rates for different angles

With the true measured rate RAl(∆Ω, θ), the gamma quantum flux Φγ , and the number of
electrons in the target n, the differential cross-section is given by (see Equation 1.9):

dσ
dΩ

=
RAl(∆Ω, θ)

∆Ω
· 1

Φγ · n
· 1
ϵ
, (3.3)

whereas ϵ refers to the efficiency calculated in the previous task. However, ϵ was only valid for
energy values between 0, 511MeV and 1, 332MeV, while the measured photopeaks fall within
0, 285MeV and 0, 523MeV (see 3.3 Task 3). Therefore, it was decided to proceed using the
efficiency value of the lowest energy available within the measured range ϵ = 1, 73 · 10−2. To
calculate the other constants, different methods are available. In the case of determining the
number of electrons in the aluminum target n, the calculation involves

n =
NA

AAl
· ZAl · ρAl · πr2Al · lAl (3.4)

with Avogadro’s number NA, atomic weight AAl, atomic number ZAl, density ρAl, radius rAl and
length lAl. In order to calculate the gamma quantum flux Φγ , the initial flux Φ0, measured at
the location of the target in June 1971, is used. Therefore, a correction with the time passed
since the measurement tpassed and the half life t1/2 of 137Cs must be applied

Φγ = Φ0 · exp
(
− ln(2) ·

tpassed

t1/2

)
. (3.5)

Lastly, the solid angle ∆Ω can be calculated using the geometry of the experimental setup

∆Ω = 2π

(
1− L√

L2 + r2

)
, (3.6)

with the radius of the crystal r and the distance between the target and the detector L. By
combining Equations 3.2 to 3.6, the differential cross section for each angle can be calculated.
Both the Table 3.2 and the Figure 3.4 reveal that as the angle increases, the differential cross
section decreases. This was expected, as larger angles correspond to smaller measured rates.
However, when comparing the experimental results with the theoretical values according to
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θ [°] Measured dσ
dΩ [1026cm−2] Theoretical dσ

dΩ [1026cm−2] Measured
Theoretical [ ]

30 19,94 5,13 3,89
40 15,71 3,89 4,04
50 12,27 2,90 4,23
60 9,36 2,21 4,24
70 8,15 1,75 4,65
80 7,43 1,47 5,04

Table 3.2: Comparison between measured and theoretical differential cross section

Figure 3.4: Plot of the differential cross section against the angle

Klein-Nishina [Wol24], the experimental results are consistently larger by a factor ranging from
3.89 to 5.04. This factor increases with the scattering angle.This discrepancy is likely due to the
efficiency ϵ. In the first task, the efficiency measurements did not yield a constant result, and the
interpolation only provided values for a limited range, which did not cover most of the measured
energies.

3.3 Task 3 - Measurement of the energy shift and estimation of
the rest energy of the electron

The next objective is to determine the Compton shift as a function of the scattering angle θ the
electron rest energy E0 = m0c

2. This analysis utilized the same measurements performed for the
differential cross section, following an identical procedure with the same source and target. The
photopeaks were identified in the spectra, and their corresponding energies were recorded. The
conversion from channel numbers to energy was performed using the equation 3.1.

θ [°] 30 40 50 60 70 80
E′ [MeV] 0.523 0.466 0.413 0.363 0.324 0.285

Table 3.3: Photon energy after collision for different angles

A clear inverse relationship between energy and angle can be identified in Table 3.3 and Figure
3.5. This indicates that as the angle increases, more energy is transferred to the electron, and the
photon’s energy after the collision decreases. This behavior aligns with the expected theoretical
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prediction (see Theoretical Principles 1.1). The next step involves performing a fit to calculate
the electron’s rest energy. The model function used for this purpose is derived by rearranging
Equation 1.3

1

E′ =
1

E
+

1 + cos θ

E0
.

Figure 3.5: Plot of the photon energy after collision against the angle

Figure 3.6: Fit of the energy against the angle with the model function

As a result, the rest energy of the electrons is determined to be E0 = m0c
2 = (0, 438±0, 046)MeV

(see Figure 3.6), which is quite close to the theoretical value E0, theoretical = 0, 511MeV, though
it does not fall within the given uncertainty. Similarly, the estimated value for the original
photon energy is E = (0, 623 ± 0, 047)MeV, which should correspond to the energy of the
Cesium photopeak E137Cs = 0, 662MeV. In this case, the result is relatively close and includes
the theoretical value within its uncertainty. The fit was done with the kafe2 package in Python
and the aforementioned errors in the fit results stem from deviations in the channel-to-energy
transformation calculated in the first task.
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3.4 Task 4 - Measurement of the dependence of the effective
cross section on the atomic number

The previous analysis of the differential cross section referred to a single electron that is assumed
to be free and at rest. However, when comparing different materials to each other, the entire
atom is of interest. To achieve this, each material will be placed in front of the γ-source and
their respective spectra will be measured. This measurement was taken at an arbitrary angle,
ϑ = 50°, relative to the source. In addition to these spectra, one background spectrum was taken
to account for background radiation.

Assuming all electrons in the atom are independent and the γ-energy is large enough compared
to the binding energies, the following equation should hold true.(

dσ
dΩ

)
a

= Z

(
dσ
dΩ

)
e

where Z is the atomic number and a and e are referring to the differential cross section of the
atom and electron respectively. Using the equations 3.3 and 3.4 for the respective material, one
gets: (

dσ
dΩ

)
e

=
R

∆Ω

1

Φ0ϵ

1
NA
A Zρπ

(
d
2

)2
l
= C ·R A

ρZ

where C is a quantity independent of the target material. If the assumption made earlier holds
true, the quantity RA

ρ plotted against the corresponding atomic number should be a straight
line. Another possibility is to plot the quantity R A

ρZ over the atomic number, which is more
sensitive to deviations. This plot should be a constant line parallel to the axis of the atomic
number.

Figure 3.7: Spectrum of 137Cs with Al
and Pb in front of the
source.

Figure 3.8: Spectrum of 137Cs with Cu
and Fe in front of the
source.

After calculating the respective rates, it is possible to evaluate f1 = RA
ρ and f2 = R A

ρZ using
the known values for A, Z and ρ.
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Results

As shown in Figure 3.9, the expected linear relation is approximately given. As seen in Figure
3.8, both the Fe and Cu spectrum are almost identical leading to almost identical values in Figure
3.9. In figure 3.10 the more sensitive function f2 is plotted against Z. A downwards trend is
depicted. This deviation is relatively small and only changes 9 units over a range of Z = [13, 82].
This can be attributed to a non optimal placement and the impurity of the materials. For
example, lead had a thin plastic layer in order to prevent contact with the skin.

Figure 3.9: The function f1 = RA
ρ over

the respective atomic num-
bers.

Figure 3.10: The function f2 = R A
ρZ

over the respective atomic
numbers.
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