

FAKULTÄT FÜR PHYSIK Physikalisches Praktikum für Fortgeschrittene Praktikum Moderne Physik

Gruppe Nr. 102 Kurs: Mol No Miles Miles Semester angebe
Versuch: Gitterschwingungen (Modellversuch)
Namen: Carl Jarschke ()
Jona Umlauf ()
Assistent: Pascal Rietz
durchgeführt am: 08.01.2024
Protokollabgabe am:
vom Betreuer auszufüllen
Note gesamt + 0 -
Anerkannt:(Datum Unterschrift)
Datum Rückgabe:
Bemerkung:

Inhaltsverzeichnis

Αι	ıfgab	enstellung	3
Ve	ersucl	nsvorbereitung	7
	0.1	stehende Welle	7
	0.2	Phasen und Gruppengeschwindingkeiten	7
	0.3	Gitterschwingungen	8
		0.3.1 zweiatomige Kette	8
		0.3.2 Amplitudenverhältnis	9
		0.3.3 Dreidimensioneale Schwingungen	10
	0.4	Brillouin-Zone	10
		0.4.1 Konstruktion \ldots	10
1	Exp	erimenteller Aufbau	11
2	Dur	chführung	12
	2.1	Aufgabe 1: Messung der ein undzweiatomigen Kette	12
	2.2	Aufgabe 2 Amplitudenverhältnis der leichten und schweren Massen für die ver-	
		schiedenen optischen und akustischen Moden der zweiatomigen Kette	12
	2.3	Aufgabe 3	13
3	Aus	wertung, Fehlerrechnung und Diskussion der Messergebnisse	14
	3.1	Fehlerrechnung	14
	3.2	Graphische Darstellung der Dispersionsrelation $\omega(k)$ für ein- und zweiatomige	
		Ketten	14
	3.3	Bestimmung der Schallgeschwindigkeiten	15
	3.4	Massenverhältnis	15
	3.5	Bestimmung der Federkonstante	15
		3.5.1 Bestimmung über die Schallgeschwindigkeit	16
		3.5.2 Bestimmung der Federkonstante aus der einatomigen Kette	16
		3.5.3 Bestimmung der Federkonstante aus der zweiatomigen Kette	16
	3.6	Amplitudenverhältnis	16
	3.7	Messdaten	18

Quellen

28

<u>Gitterschwingungen (Modellversuch)</u>

Theorie-Vorbereitung:

Stehende Wellen; Phasen- und Gruppengeschwindigkeit; Gitterschwingungen: Einatomige Kette, zweiatomige Kette, Dispersionsrelation, Brillouin-Zone, akustischer und optischer Ast.

Messung:

Vorbereitungen zur Messung:

- Starten Sie die Turbine der Luftkissenbahn.
- Bringen Sie die Auslenkung des Schrittmotors in Nulllage. Schalten Sie den Motor an, damit der Motoranker Haltekraft entwickelt und das Ende der Kette fixiert.
- Schalten Sie dem Computer an (Passwort vom Betreuer).
- Schalten Sie die "VideoCom"-Kamera ein durch Stecken des Netzteils.
- Starten Sie das LabVIEW-Messprogramm mit dem Shortcut "Gitter-schwingungen". Überprüfen sie, ob die Bewegung der Gleiter mit dem Messprogramm aufgenommen wird. Wenn nicht, muss die "VideoCom" mit Hilfe des LCD-Displays an ihrer Oberseite neu justiert werden. Das Display zeigt die Gleiter in Form kleiner Striche an.

Hinweis:

Die Schwingung der Kette wird zur Ruhe gebracht durch mehrmaliges Zuhalten der Turbinen-Ansaugöffnung.

Aufgabe 1:

Messung der Eigenfrequenzen der einatomigen und der zweiatomigen Kette

a) Beginnen Sie mit der *einatomigen* Kette.

Bestimmen Sie die Eigenfrequenzen mit Hilfe des LabVIEW-Programms "Gitterschwingungen" und der "VideoCom"-Kamera. "Gitterschwingungen" ermittelt aus x(t) über eine schnelle Fouriertransformation online direkt die Eigenfrequenzen. Regen Sie die Kette durch kurze Stoßanregung mit der Hand an (nicht zu große Amplitude!).

Nehmen Sie etwa 4 Datensätze auf, Messdauer etwa 100 Sekunden.

Regen Sie dabei *unterschiedliche* Gleiter an. Sie können eine Mode bevorzugt anregen, indem Sie denjenigen Gleiter anstoßen, der bei der gewünschten Mode eine große Amplitude hat (siehe Modenbild am Platz).

 b) Bauen Sie eine zweiatomige Kette auf mit Hilfe der orangen, eindrehbaren Massen. Bestimmen Sie, analog zur einatomigen Kette, die Eigenfrequenzen der zweiatomigen Kette mit Hilfe des Programms "Gitterschwingungen". Am besten, Sie schreiben die Frequenzen vom Bildschirm ab, da Sie deren Mittelwert für Aufgabe 2 benötigen.

Aufgabe 2:

Messung des Amplitudenverhältnisses der leichten und schweren Massen für die 6 akustischen und die 6 optischen Moden der zweiatomigen Kette

- a) Regen Sie die akustischen bzw. optischen Moden mit dem Schrittmotor an mit den in Aufgabe 1b) bestimmten Frequenzen (möglichst Mittelwert nehmen). Es empfiehlt sich, mit der Mode n = 1 zu beginnen. Machen Sie sich klar, welche der in Aufgabe 1b) gemessenen Frequenzen zu n = 1 gehört. Achten Sie auf die richtige Anregungsamplitude am Motor.
- b) Beobachten Sie den Einschwingvorgang am Bildschirm. Er dauert etwa 7 Minuten bei den akustischen Moden und 5 Minuten bei den optischen Moden. Es ist zu beachten, dass die akustischen und die optischen Moden unterschiedliche Programmodule zur Messung besitzen.
- c) Vergleichen Sie nach dem Einschwingen das Schwingungsbild der Kette mit dem am Platz liegenden Amplitudenmuster. Lokalisieren Sie die Knoten.
- d) Starten Sie mit Hilfe des LabVIEW-Programms die Amplitudenmessung des Gleiterpaars (j, j-1). Hierbei ist j der leichte Gleiter und (j-1) der links benachbarte schwere Gleiter.

Aufgabe 3

Messen Sie die Gesamtlänge L der Kette.

Die Daten können über den USB-Dockingball auf einen USB-Stick transferiert werden. Datentabellen sind auszudrucken und beizufügen, sie gehören zum Protokoll!

Auswertung:

- 1. Stellen Sie die experimentell ermittelten Eigenkreisfrequenzen ω für die einatomige Kette und für die zweiatomige Kette als Funktion des Wellenvektors *k* graphisch dar (Dispersionsrelation $\omega(k)$). Die hierfür benötigten Wellenvektoren ergeben sich aus den Formeln (13) und (22) der Theorie der Vorbereitungsmappe und aus der Gesamtlänge *L* der Kette. Geben Sie die Werte für die Gitterkonstante *a* und den Zonenrand π/a in m bzw. m⁻¹ an. Werden die Datenpunkte interpoliert, ist es sinnvoll den Punkt (0,0) einzufügen. Markieren Sie den Zonenrand in der Graphik.
- 2. Bestimmen Sie die Schallgeschwindigkeit für die einatomige Kette, $v_{s,1}$, und für die zweiatomige Kette, $v_{s,2}$, aus den Wertepaaren (0,0) und (ω_1 , k_1) der gemessenen Dispersionskurven.
- 3. Bestimmen Sie das Massenverhältnis M/m aus dem Verhältnis der Schallgeschwindigkeiten $v_{s,1} / v_{s,2}$, siehe Kapitel 5.4 und 6.4.
- 4. Die mittlere Masse der leichten Gleiter beträgt m = 0,504 kg. Berechnen Sie die Federkonstante der einatomigen Kette
 (a) aus der Dispersionsrelation für irgendeines der Wertepaare (ω, k)
 (b) aus dem Ausdruck für die Schallgeschwindigkeit.
 Die Masse M der schweren Gleiter ergibt sich sofort mit Auswertung (3).
 Berechnen Sie die Federkonstante auch der zweiatomigen Kette aus der Dispersionsrelation.

5. Bestimmen Sie für die 6 akustischen und optischen Moden jeweils das Amplituden-

verhältnis $\frac{s_{o,m}}{s_{o,M}}$ aus dem gemessenen Amplitudenverhältnis der Gleiter,

 $\frac{s_{o,m}^{Punkt}(j)}{s_{o,M}^{Punkt}(j-1)}$, mit Hilfe des Korrekturfaktors in Kapitel 6.5 (Formel (24), Tabelle). Beachten Sie hierbei, dass das LabVIEW-Programm lediglich den Betrag der Gleiteramplituden ausgibt. Die Vorzeichen der gemessenen Amplituden $s_{o,m}^{Punkt}(j)$

bzw. $s_{o,M}^{Punkt}(j-1)$ müssen daher entsprechend der jeweiligen Mode manuell gesetzt werden. Sie können dem Modenbild (siehe Fig. 6.3) entnommen werden.

6. Tragen Sie die ermittelten Amplitudenverhältnisse gegen k_n auf.

Versuchsbeschreibung

Das im Versuch verwendete Modell einer linearen Kette von Atomen besteht aus einer linearen Anordnung von 12 Gleitern, die mit Federn gleicher Federkonstante verbunden sind und sich, zur Minimierung der Reibung, auf einer Luftkissenbahn bewegen.

Eine kleine Turbine drückt Luft in die Luftkissenbahn, ein auf einer Trägerschiene gelagertes Vierkantrohr mit 2000 kleinen Luftlöchern. Die Gleiter werden dadurch um ca. 1 Millimeter hochgehoben.

Die Auslenkung der Gleiter kann entweder mit der Kamera "VideoCom" oder mit einem Maßstab gemessen werden.

Die periodische Anregung der Kette erfolgt mit einem Schrittmotor, der eine harmonische Anregung mit variabler Anregungsamplitude erlaubt. Die Periodendauer kann zwischen 6553,5 Millisekunden (0,1526 Hz) und 351,4 Millisekunden (2,846 Hz) in Schritten von 0,1 Millisekunden eingestellt werden.

Die "VideoCom" misst die Auslenkung als Funktion der Zeit und übergibt die Daten an einen Computer. Das LabVIEW-Programm "Gitterschwingungen" ermittelt aus x(t) die

Eigenfrequenzen mit Hilfe einer schnellen Fouriertransformation. Die Eigenfrequenzen können als Text-Datei abgespeichert werden.

Die Kamera "VideoCom"

Die Videokamera "VideoCom" misst die Bewegung von Gegenständen als Funktion der Zeit und stellt über eine Software die Funktion x(t) online zur Verfügung.

Die LED's geben periodisch rote Lichtblitze ab. Diese werden an den Reflektoren der Gleiter reflektiert und durch das Objektiv auf die CCD (Charged-Coupled Device) -Zeile abgebildet. Die Ortsauflösung beträgt 0,25 mm bei 2 m Abstand.

Die von der CCD detektierten Reflexe werden auf dem Display an der Oberseite der Kamera als kleine schwarze Striche dargestellt. Die Kamera muss genau justiert sein, damit die Reflexe die CCD-Zeile treffen. Ist sie dejustiert, verschwinden die Striche.

Die Wiederholzeit der Lichtblitze kann zwischen 6,25 und 200 Millisekunden variiert werden, um sowohl langsame als auch schnelle Bewegungen mit vernünftigen Datenmengen registrieren zu können. Standardwiederholzeit für den Versuch ist 25 ms (das ist der Default-Wert des Programms "Gitterschwingungen"). Die CCD-Zeile wird mit dergleichen Wiederholzeit ausgelesen und die Pixelpositionen an "Gitterschwingungen" übergeben. "Gitterschwingungen" stellt dann die Pixelposition als Funktion der Zeit, d.h. x(t) des Gleiters, online dar.

Der Sichtwinkel des Objektivs beträgt etwa 30°, so dass die Kamera 2 oder 3 Gleiter "sieht", je nach Abstand von der Luftkissenbahn.

Versuchsvorbereitung

0.1 stehende Welle

Bei den im Versuch betrachteten Wellen handelt es sich um (zunächst eindimensionale) stehende Wellen mit festen Enden (also jeweils Schwingungsknoten an den beiden Rändern, dies führt zu einer möglichen Wellenlänge λ_n dieser stehenden Wellen von.

$$\lambda_n = \frac{2L}{n} \tag{0.1}$$

wobei L die Länge der Vorrichtung und $n \in \mathbb{N}$ ist. Mit der Relation dass, für den Wellenvektor k_n gilt:

$$k_n = \frac{2\pi}{\lambda_n} = \frac{n\pi}{L} \tag{0.2}$$

Für eine Welle in einem Kontinuierlichen Medium ergibt sich so, dass es unendlich viele k_n gibt, da jeder Teil ausgelenkt werden kann und so unendlich viele Wellenbäuche zwischen den beiden Enden entstehen können.

Im Experiment handelt es sich allerdings in Analogie zu einem Festkörper, dessen Atome nicht kontinuierlich sondern stattdessen Punktmassen sind (vergleiche den Radius des Atomkerns mit dem der Valenzelektronen) um eine diskontinuierliche diskrete Massenverteilung.

Dies hat zur Folge, dass nur noch bestimmte Punkte ausgelenkt werden können, die im unangeregten Zustand einen Abstand von a zueinander besitzen.

Im eindimensionalen wird nun von einer linearen Kette gesprochen.

Dadurch, dass nur noch die Auslenkung der Punktmassen beobachtet werden kann, kann jede Welle mit $\lambda < 2a$ durch eine andere Welle mit $\lambda > 2a$ dargestellt werden. Dies hat zur Folge, dass allen beobachtbaren Wellen Wellenängen im Bereich $2L \ge \lambda \ge 2a \Rightarrow \frac{\pi}{L} \le k \le \frac{\pi}{a}$ liegen. Daraus folgt:

$$n_{max} = \frac{L}{a} \tag{0.3}$$

$$k_{max} = \frac{\pi}{a} \tag{0.4}$$

0.2 Phasen und Gruppengeschwindingkeiten

Im Gegensatz zum Vakuum, bei dem Phasen und Gruppengeschwindigkeit gleich sind, unterscheiden sich die beiden in den meisten Fällen, da gilt:

$$v_{\rm ph} = \frac{\omega}{k} = \lambda \nu \tag{0.5}$$

$$v_{\rm gr} = \frac{\mathrm{d}\omega}{\mathrm{d}k} \tag{0.6}$$

die beiden Geschwindigkeiten sind abhängig von der Dispersionsrelation $\omega(k)$ des Materials. Im Allgemeinen ist dabei $v_{\rm gr} < v_{\rm ph}$.

0.3 Gitterschwingungen

Um die Gitterschwingungen zu betrachten, muss bachtet werden, dass es auch bei diesen wie zuvor einen gewissen Abstand zwischen den verschiedenen Schwingern gibt. Dieser wird festgelegt durch den Überlapp der Wellenfunktionen der Elektronen in den Valenzschalen der Atome. Es handelt sich um eben den Abstand der Atomkerne x_0 bei dem die Energie der Valenzelekronen am geringsten ist.

In erster Näherung kann dies als parabolisches Paarpotenzial um x_0 herum betrachtet werden. Außerdem werden noch andere Näherungen gemacht:

- die harmonische Näherung des Schwingungspotenzials und daraus folgen die lineare Rückstellkraft, die auf die Atome wirkt
- und die Näherung nächster Nachbarn, sodass nur die Wechselwirkung mit den dem jeweils nächsten aber nicht übernächsten Nachbarn beachtet werden

Dies erlaubt im eindimensionalen die Analogie einer Kette von Punktmassen, welche mit Federn verbunden sind. Eine Analogie die aus Ex 5 bereits bekannt ist, weshalb auf eine Herleitung der genauen Formeln verzichtet wird (nachzulesen sind sie in der Versuchsvorbereitungshilfe zu Gitterschwingungen)

Wichtig ist die Einführung von $x_j(t) = x_{0,j} + s_j(t)$ wobei es sich bei den $x_{0,j}$ um die Punkte handelt an denen die Punktmassen sich im unangeregten Zustand befinden. $s_j(t)$ beschreibt dann die Abweichung der Punktmasse von diesem Ruhepunkt zum Zeitpunkt t.

Für eine lineare Kette mit gleichen Wechselwirkungen zwischen den Atomen ergibt sich so:

$$m\ddot{s}_j = D(s_{j+1} + s_{j-1} - 2s_j) \tag{0.7}$$

woraus die Disperionsrelation

$$\omega(k) = \sqrt{\frac{4D}{m} |\sin(\frac{ka}{2})|} \tag{0.8}$$

folgt. Wobe
iDdie Federhärte ist und mdie Masse der Punktmassen Daraus lässt
sich für $k \to 0$ folgern, dass

$$v_{gr} = v_{ph} = \sqrt{\frac{Da^2}{m}} \tag{0.9}$$

Da sich bei einem Blick auf die Darstellung von $\omega(k)$ zeigt, dass die Steigung für $k \to 0$ am größten ist, bedeutet dies, dass es sich bei der oben berechneten Geschwindigkeit um die schnellste in dem Medium durch die Welle erreichbare Geschwindigkeit handelt.

Wird dies mit der Herleitung der selben Schallgeschwindigkeit in einem kontinuierlichen Material verglichen, so stellt sich heraus, dass beide den selben Wert ergeben.

Auch schön zu wissen ist, das Wellen mit Schallgeschwindigkeit aufgrund von $\omega \propto k$ auch die Wellen sind, die die geringste Energie besitzen, weshalb sie sehr wahrscheinlich erzeugt werden.

0.3.1 zweiatomige Kette

Eine zweiatomige Kette kann genaus
o dargestellt werden, wiezuvor die einatomige, nur das sie nicht auf dem Spezialfall gleicher Massen beruht, sondern auf dem Spezialfall, dass sich zwei unterschiedliche Massen m, M mit m < M abwechseln, wobe
iD gleich bleibt.

Dies hat zur Folge, dass sich für die Disperisonsrelation zwei Gleichungen ergeben:

$$\omega_{+}^{2} = D(\frac{1}{m} + \frac{1}{M}) + D\sqrt{(\frac{1}{m} + \frac{1}{M})^{2} - \frac{4}{mM}\sin^{2}(\frac{ka}{2})}$$
(0.10)

$$\omega_{-}^{2} = D(\frac{1}{m} + \frac{1}{M}) - D\sqrt{(\frac{1}{m} + \frac{1}{M})^{2} - \frac{4}{mM}\sin^{2}(\frac{ka}{2})}$$
(0.11)

wobei der ω_+ Ast öptischer Ast" genannt wird, da dessen Schwingungen optisch aktiv sind, da bei unterschiedlicher Elektrischer Ladung die beiden Atome einen schwingenden Dipol bilden, der elektromagnetische Wellen absorbieren und emittieren kann.

Der ω_{-} Ast heißt äkustischer Ast", da er für $k \to 0$ die höchste Gruppengeschwindigkeit (alias Schallgeschwindigkeit) besitzt.

Grenzfälle

 $k \to 0$

Führt zu

$$\omega_{-,k\to 0} = \sqrt{\frac{Da_2^2}{2(m+M)}}k$$
(0.12)

$$\omega_{+,k\to 0}^2 = 2D(\frac{1}{M} + \frac{1}{m}) \tag{0.13}$$

 $k \to \pi/a$

Führt zu

$$\omega_{-,k\to\pi/a}^2 = \frac{2D}{M} \tag{0.14}$$

$$\omega_{+,k\to\pi/a}^2 = \frac{2D}{m} \tag{0.15}$$

Dies bedeutet eine Frequenzlücke zwischen den beiden Grenzfrequenzen, die abhängig ist von dem Verhältnis der beiden Massen.

0.3.2 Amplitudenverhältnis

Für das Verhältiniss der Auslenkungen für den ω_{\pm} -Ast gilt:

$$\frac{s_{0,m}}{s_{0,M}} = \frac{\cos(\frac{ka_2}{2})}{1 - \frac{1+\gamma}{2\gamma} [1 \pm \sqrt{1 - \frac{4\gamma}{(1-\gamma)^2} \sin^2(ka_2/2)}]}$$
(0.16)

$$\gamma = \frac{M}{m} \tag{0.17}$$

Daraus lässt sich folgern, dass

- bei akustischen Ast die leichten und schweren Massen gleichphasig schwingen
- währen die beim optischen Ast gegenphasig schwingen.

Um das Amplitudenverhälltnis von zwei benachbarten Massen zu berechnen, wenn j der Index der leichten Masse und j - 1 der von ihr linken schweren Masse ist, ist folgende Formel zu verwenden:

$$\frac{s_{0,m}(j)}{s_{0,M}(j-1)} = \frac{s_{0,m}}{s_{0,M}} \frac{\sin(\frac{n\pi}{13}j)}{\sin(\frac{n\pi}{13}(j-1))}$$
(0.18)

wobei es sich bei $s_{0,m}, s_{0,M}$ um die Amplituden der beiden Schwingungen der leichten und schweren Massen handelt.

Wichtig ist diese Korrektur, da das Amplitudenverhältnis unabhängig von der Position x der

Messung sein soll, weshalb die Amplitude der Schwingung der schweren und leichten Masse immer am gleichen x Punkt durchgeführt wird.

Dies ist aber praktisch nicht möglich, da sich die schweren und leichten Schwinger an unterschiedlichen Orten befinden, weshalb stattdessen zwei benachbarte Massen betrachtet werden. Für die Amplitude dieser Massenpunkte gilt jeweils was im Nenner, bzw Zähler steht. Zusammengesetzt ergibt sich der obrige Zusammenhang, der das Amplitudenverhältnis in Zusammenhang mit der Amplitude der schweren und leichten Massenschwingung setzt.

0.3.3 Dreidimensioneale Schwingungen

In drei Dimensionen hat k drei Kopmonenten, und die Wellengelichung wird mithilfe eines Polarisationsvektors ϵ gelöst.

Dies führt zu drei senkrecht aufeinander stehenden ϵ , $|\epsilon| = 1$, anhand derer der k-vektor eingeteiltwerden kann in:

- $\epsilon || k$ longitudinal ausgelenkte Welle
- $\epsilon \perp k$ transversal ausgelenkte Welle

Für die Anzahl der longitudinalen und transversalen Zweige gilt: Da die Rückstellkraft der Trans-

Anzahl Atome in der Basis	Astanzahl	transversal	longitudinal
1	3	2	1
2 oder mehr (p)	3 p (3 akustische)	$2~({\rm jeweils}$ bei opt und ak)	1 (jeweils bei opt und ak)

Tabelle 1: Anzahl der verschiedenen Äste, für verschiedene Anzahl der Basisatom

versalen Zweige aufgrund von Scherkräften geschieht, die meist kleiner sind als Dehnungskräfte, ist die Frequenz der transversalen Äste kleiner als die der longitudinalen.

0.4 Brillouin-Zone

Bei Brillouin Zonen handelt es sich um Zonen, die im reziproken Gitter um einen einzelnen Gitterpunkt herum konstruiert werden. Sie besitzen dabei allen den selben Inhalt.

0.4.1 Konstruktion

• erste Brillouinzone

die erste Zone wird gebildet indem im reziproken Gitter die Verbindungstrecke zu den nächsten Gitterpunkten von einem Gitterpunkt aus gezogen werden und auf der halben Strecke eine senkrechte gezogen wird, der Inhalt der innerhalb der senkrechten (Linien oder Ebenen) liegt gehört zur erste Brillouin-Zone

• höhere Brillouinzone

Um die höheren (nten-)Brillouinzonen zu bekommen, wird die Strecke zu dem n nächsten Gitterpunkten gezogen und die Strecke, die diese halbiert mit allen vorherigen halbierenden strecken geschnitten, der Inhalt dieser, der der vorherigen Brillouinzone am nächsten ist aber sich nicht mehr innerhalb dieser befindet, bildet die nte Brillouin-Zone.

Wichtig ist in diesem Versuch nur die erste Brillouinzone, da diese alle Wellenvektoren $-\frac{\pi}{a} \ge k \le \frac{\pi}{a}$ enthält, weshalb alle beobachtbaren Wellen des Versuches mit Wellen innerhalb der ersten Brillouin-Zone identifiziert werden können.

Alle Angaben wurden aus der Versuchsvorbeitung entnommen [Ver]

1 Experimenteller Aufbau

Der Aufbau besteht aus mit Federn verbundenen Metallgewichten, deren Reibung durch eine Luftkissen reduziert wird.

Diese können zusätzlich noch beschwert werden, um einen Kristall mit zwei versichendenen Atomen zu simulieren.

2 Durchführung

2.1 Aufgabe 1: Messung der ein undzweiatomigen Kette

Die einatomige Kette mit 12 gleichen Massen wird aufgebaut und die Eigenfrequenz mithilfe von Lab View- ermittelt. Als Anregung wird ein kurzer Stoß mit der Hand verwendet Mithilfe der im Programm eingebauten schnellen Fouriertransformation wird aus den gemesse-

Mithilfe der im Programm eingebauten schnellen Fouriertransformation wird aus den gemessenen x(t) der Massenpunkte die Eigenrequenz ermittelt.

Dies geschieht 4 Mal bei einer Messauer von jeweils 100 s, wobei die Anregung immer an unterschiedlichen Gliedern der Kette erfolgt.

Die zweiatomige Kette wird durch ersetzen jeder zweiten Masse aufgebaut.

Wie zuvor wird die Eigenfrequenz der Kette durch 4 Messungen mit jeweils 100s Messzeit ermittelt. Da die Frequenz für die nächste Aufgabe wichtig ist, wird sie aus dem Programm direkt abgeschrieben und ihr Mittelwert für Aufgabe 2 verwendet.

Um eine bestimmte Mode anzuregen ist zu beachten, dass für diese gilt:

$$k_n = \frac{n\pi}{L} \tag{2.1}$$

$$k_n = \frac{v_{ph}}{f} \tag{2.2}$$

Da aber v_{ph} unbekannt ist, muss darauf zurück gegriffen werden, dass je nach Mode ein anderer Schwinger maximal ausgelenkt ist (siehe Abbildung 2.1) (geringere Moden sollten geringere Frequenzen haben)

Abbildung 2.1: Abbildung der Schwingungen für verschiedene Moden

2.2 Aufgabe 2 Amplitudenverhältnis der leichten und schweren Massen für die verschiedenen optischen und akustischen Moden der zweiatomigen Kette

Frage: wie unterscheide ich die verschiedenen Moden in optisch und akustisch? Antwort: Die optischen Moden sind die sechs oberen (zwischen optischen und akustischen gibt es eine Frequenzlücke) +optische Moden schwingen gegenein
ander (bei den untersch Massen) akustische miteinander.

Die verschiedenen Schwingungsmoden werden mithilfe des Schrittmotors angeregt, dabei werden die in Aufgabe 1 bestimmten Frequenzen genutzt um die bestimmten Moden festzulegen.

Wichtig ist die Unterscheidung der akustischen von den optischen Moden voneinander, dazu wird genutzt, dass die optischen Moden ein höheres ω besitzen und zudem die beiden Massensorten gegeneinander Schwingen, im Gegensatz zu den akustischen Moden, deren ω geringer ist und deren Massen gleichphasig schwingen.

Die so eingeteilten Moden werden mit unterschiedlichen Programmodulen gemessen (5 Minuten für optische und 7 Minuten für akustische Moden)

Danach werden mithilfe eines Vergleiches des am Platz liegenden Amplitudenmusters mit dem eingeschwungenen Schwingungsbilds die Knoten der stehenden Welle lokalisiert.

Zuletzt wird mit dem Lab-View-Programm ein Gleiterpaar gemessen, bestehend aus einem leichten rechten (j) Gleiter und dem von ihm linken (j-1)schweren Gleiter.

2.3 Aufgabe 3

Zur Durchführung der Auswertung wird die Länge der Kette L gemessen.

3 Auswertung, Fehlerrechnung und Diskussion der Messergebnisse

3.1 Fehlerrechnung

Um die einzelnen Eigenfrequenzen und Amplituden der jeweiligen Moden zu bestimmen wurde aus den einzelnen Messreihen der Mittelwert berechnet und die Standardabweichung als Fehler angenommen. Die Gesamtlänge der Kette wurde auf

$$L = 5.424 \,\mathrm{m} \pm 0.002 \,\mathrm{m}$$

abgeschätzt. Alle folgenden Fehler auf Schallgeschwindigkeiten, Federkonstanten oder Amplituden/ Amplitudenverhältnissen wurden aus den oben genannten Fehlern über gauß'sche unkorrelierte Fehlerfortpflanzung bestimmt. Dabei wurde die Python-Bibliothek *uncertainties* verwendet.

3.2 Graphische Darstellung der Dispersionsrelation $\omega(k)$ für ein- und zweiatomige Ketten

Abbildung 3.1: Dispersionsrelation für die einatomige Kette

In Abbildung 3.1 und Abbildung 3.2 sind die Dispersionsralationen für die einatomige und zweiatomige Kette dargestellt. Für die einatomige Kette gilt:

$$a_1 = 0.417\,23(15)\,\mathrm{m}$$

 $k_{max} = 7.5296(28) \,\mathrm{m}$

Für die zweiatomige Kette gilt:

$$a_2 = 0.83446(31) \,\mathrm{m}$$

Abbildung 3.2: Dispersionsrelation für die zwei-atomige Kette

 $k_{max} = 3.7648(14) \,\mathrm{m}$

3.3 Bestimmung der Schallgeschwindigkeiten

Aus der linearen Steigung zwischen Ursprung und dem ersten Wertepaar ergeben sich folgende Schallgeschwindigkeiten:

$$v_{1,s} = 3.0136 \frac{\text{m}}{\text{s}} \pm 0.0025 \frac{\text{m}}{\text{s}}$$

 $v_{2,s} = 2.6137 \frac{\text{m}}{\text{s}} \pm 0.0029 \frac{\text{m}}{\text{s}}$

3.4 Massenverhältnis

Aus den bestimmten Schallgeschwindigkeiten lässt sich das Massenverhältnis bestimmen und somit das Gewicht des Gleiters mit zusätzlichem Gewicht, da die mittlere Masse eines Gleiters gegeben ist durch m = 0.504 kg.

Aus Gleichungen 0.9 und 0.12 erhält man für k gegen 0 die jeweiligen Schallgeschwindigkeiten. Das Verhältnis der Geschwindigkeiten ergibt dann:

$$\frac{v_{1,s}}{v_{2,s}} = \frac{1}{\sqrt{2}} \cdot \sqrt{\frac{m+M}{m}}$$
(3.1)

Daraus lässt sich die Relation für das Massenverhältnis γ aufstellen.

$$\gamma = \frac{M}{m} = 2 \cdot \left(\frac{v_{1,s}}{v_{2,s}}\right)^2 - 1 = 1.659 \pm 0.007 \tag{3.2}$$

 $M = 0.8361 \,\mathrm{kg} \pm 0.0034 \,\mathrm{kg}$

3.5 Bestimmung der Federkonstante

Die Federkonstante wird auf drei verschiedenen Arten bestimmt.

3.5.1 Bestimmung über die Schallgeschwindigkeit

Gleichung 0.9 lässt sich nach D umstellen und mit der ermittelten Schallgeschwindigkeit und Gitterkonstanten a_1 erhält man:

$$D = m \cdot \left(\frac{v_{1,s}}{a_1}\right)^2 = 26.29 \,\frac{\text{kg}}{\text{s}^2} \pm 0.04 \,\frac{\text{kg}}{\text{s}^2} \tag{3.3}$$

3.5.2 Bestimmung der Federkonstante aus der einatomigen Kette

Es gilt:

$$D = m \cdot \frac{\omega^2}{4\sin\left(\frac{ka}{2}\right)} \tag{3.4}$$

Anstatt nur ein beliebiges Wertepaar zu nehmen, wurde es für alle berechnet und ein Fehlergewichteter Mittelwert bestimmt.

$$D = 27.086 \,\frac{\text{kg}}{\text{s}^2} \pm 0.007 \,\frac{\text{kg}}{\text{s}^2}$$

3.5.3 Bestimmung der Federkonstante aus der zweiatomigen Kette

Für den akustischen Strang der zweiatomigen Kette gilt:

$$D = \frac{\omega_{+}^{2}}{\frac{1}{m} + \frac{1}{M} - \sqrt{\left(\frac{1}{m} + \frac{1}{M}\right)^{2} - \frac{4}{mM} \cdot \sin\left(\frac{ka_{2}}{2}\right)}}$$
(3.5)

Auch hier wurde, anstatt nur ein beliebiges Wertepaar zu nehmen, die Federkonstante für alle Wertepaare berechnet und ein Fehler-gewichteter Mittelwert bestimmt:

$$D = 26.558 \, \frac{\text{kg}}{\text{s}^2} \pm 0.029 \, \frac{\text{kg}}{\text{s}^2}$$

3.6 Amplitudenverhältnis

In Unserem Fall befinden sich Gleiter j und Gleiter j+1 bei:

$$j = 6$$
$$j + 1 = 7$$

Dementsprechend wurde das Amplitudenverhältnis mit den Korrekturfaktoren aus der Vorbereitungshilfe angepasst und in Abbildung 3.3 graphisch dargestellt.

Tabelle 3.1: gemittelte, unkorrigierte und korrigierte (corr) Amplitudenverhältnisse des optischen und akustischen Astes

$k \text{ in } m^{-1}$	$s_{ak,m}/s_{ak,M}$	$s_{ak,m}/s_{ak,M}$ (corr)	$s_{op,m}/s_{op,M}$	$s_{op,m}/s_{op,M}$ (corr)
0.579202	1.048 + / -0.017	0.987 + / -0.016	1.730 + / -0.020	-1.629 + / -0.019
1.158404	0.3574 + / -0.0013	0.990 + / -0.004	0.559 + / -0.012	-1.550 + / -0.032
1.737607	1.908 + / -0.015	0.948 + / -0.008	3.119 + / -0.014	-1.550 + / -0.007
2.316809	0.40 + / -0.09	0.85 + / -0.20	0.7910 + / -0.0032	-1.690 + / -0.007
2.896011	1.777 + / -0.009	0.5168 + / -0.0027	11.6 + / -0.4	-3.39+/-0.11
3.475213	0.2560 + / -0.0013	0.3177 + / -0.0016	4.09 + / -0.05	-5.07 + / -0.07

Abbildung 3.3: Amplitudenverhältnis des optischen und akustischen Astes der zweiatomigen Kette

Die in Abbildung 3.3 dargestellten kurven sind die an die Daten gefitteten werte für folgende Funktion, wobei das \pm den akustischen und optischen Ast beschreibt:

$$\frac{s_{0,m}}{s_{0,M}} = \frac{\cos\left(\frac{k \cdot a_2}{2}\right)}{1 - \frac{1 + \gamma}{2\gamma} \left[1 \pm \sqrt{1 - \frac{4\gamma}{(1 + \gamma)^2} \sin^2\left(\frac{k \cdot a_2}{2}\right)}\right]}$$
(3.6)

Dabei wurde der Parameter γ abgeschätzt mit $\gamma_{ak} = 1.603$ und $\gamma_{op} = 1.860$. Beide Werte liegen um den ermittelten Wert für γ in Gleichung 3.2.

3.7 Messdaten

	Gleiter 1	Gleiter 2
0	0.278037	0.278042
1	0.552328	0.552326
2	0.819640	0.819600
3	1.075209	1.075205
4	1.316891	1.316898
5	1.540737	1.540739
6	1.742493	1.742491
7	1.921686	1.921684
8	2.071301	2.071338
9	2.189895	2.189880
10	2.278465	2.278331
11	2.328133	2.328127

Tabelle 3.2: Eigenfrequenz der einatomigen Kette, Messreihe 1

Tabelle 3.3: Eigenfrequenz der einatomigen Kette, Messreihe2

	Gleiter 1	Gleiter 2
0	0.277851	0.277849
1	0.552638	0.552640
2	0.819518	0.819509
3	1.075965	1.075964
4	1.317229	1.317233
5	1.540573	1.540572
6	1.742788	1.742811
$\overline{7}$	1.922169	1.922185
8	2.072330	2.072305
9	2.190236	2.190214
10	2.279095	2.279048
11	2.329303	2.329305

	Gleiter 1	Gleiter 2
0	0.277483	0.277485
1	0.552951	0.552946
2	0.818481	0.818502
3	1.074774	1.074776
4	1.315620	1.315610
5	1.539115	1.539122
6	1.742031	1.742009
7	1.920159	1.920157
8	2.071048	2.071043
9	2.188928	2.188934
10	2.277726	2.277720
11	2.326696	2.326709

Tabelle 3.4: Eigenfrequenz der einatomigen Kette, Messreihe 3

Tabelle 3.5: Eigenfrequenz der einatomigen Kette, Messreihe 4

	Gleiter 1	Gleiter 2
0	0.277419	0.277418
1	0.552988	0.552987
2	0.819487	0.819493
3	1.075736	1.075741
4	1.316444	1.316437
5	1.540295	1.540283
6	1.742412	1.742415
$\overline{7}$	1.920887	1.920885
8	2.070591	2.070557
9	2.188768	2.188787
10	2.277851	2.277832
11	2.327340	2.327344

Tabelle 3.6: Eigenfrequenz der zweiatomigen Kette, Messreihe 1

	Gleiter 1	Gleiter 2
0	0.240577	0.240580
1	0.478354	0.478348
2	0.707203	0.707183
3	0.922258	0.922265
4	1.114215	1.114207
5	1.253221	1.253217
6	1.659662	1.659664
$\overline{7}$	1.757972	1.758069
8	1.870081	1.870031
9	1.964362	1.964416
10	2.036159	2.036225
11	2.078176	2.078182

	Gleiter 1	Gleiter 2
0	0.240941	0.240943
1	0.478670	0.478687
2	0.707045	0.707026
3	0.922967	0.922956
4	1.113565	1.113580
5	1.253274	1.253258
6	1.660295	1.660321
$\overline{7}$	1.758251	1.758242
8	1.869608	1.869588
9	1.965039	1.965055
10	2.035885	2.035822
11	2.078123	2.078108

Tabelle 3.7: Eigenfrequenz der zweiatomigen Kette, Messreihe 2

Tabelle 3.8: Eigenfrequenz der zweiatomigen Kette, Messreihe 3

	Gleiter 1	Gleiter 2
0	0.241290	0.241287
1	0.477680	0.477672
2	0.707137	0.707137
3	0.922475	0.922478
4	1.114486	1.114477
5	1.252998	1.253000
6	1.659913	1.659940
$\overline{7}$	1.757541	1.757589
8	1.870396	1.870414
9	1.964210	1.964184
10	2.036454	2.036403
11	2.078076	2.078030

Tabelle 3.9: Eigenfrequenz der zweiatomigen Kette, Messreihe 4

	Gleiter 1	Gleiter 2
0	0.241290	0.241290
1	0.477957	0.477990
2	0.706720	0.706723
3	0.922251	0.922247
4	1.113831	1.113836
5	1.253757	1.253753
6	1.659905	1.659927
$\overline{7}$	1.757692	1.757724
8	1.870363	1.870342
9	1.965108	1.965096
10	2.035837	2.035722
11	2.078279	2.078262

	Gleiter 1	Gleiter 2
0	205.148225	214.949154
1	209.310263	219.513971
2	209.310263	219.513971
3	209.713041	219.648230
4	210.115819	220.051008
5	210.384338	220.588045
6	210.652856	220.856564
7	211.189894	221.125083
8	211.726931	221.662120
9	211.726931	221.930638
10	212.263968	222.467676
11	212.532487	223.004713
12	212.801005	223.004713
13	213.338043	223.541750
14	213.338043	223.541750
15	213.875080	224.078787
16	214.143599	224.615825
17	214.680636	225.018603
18	215.217673	225.555640
19	215.486192	225.958418

Tabelle 3.10: Amplitude der Gleiter, akustischer Ast, Mode 1

Tabelle 3.11: Amplitude der Gleiter, akustischer Ast, Mode 2

	Gleiter 1	Gleiter 2
0	134.393569	48.199092
1	134.930606	48.199092
2	134.930606	48.199092
3	134.930606	48.333351
4	135.199125	48.199092
5	135.199125	48.199092
6	135.467643	48.467611
7	135.467643	48.467611
8	135.467643	48.467611
9	135.467643	48.601870
10	135.467643	48.467611
11	135.736162	48.467611
12	135.736162	48.467611
13	135.736162	48.467611
14	135.736162	48.467611
15	135.736162	48.467611
16	135.736162	48.467611
17	135.736162	48.467611
18	135.736162	48.467611
19	135.736162	48.467611

	Gleiter 1	Gleiter 2
0	68.606507	130.634308
1	68.606507	130.634308
2	68.337988	130.634308
3	68.337988	130.634308
4	68.337988	130.097271
5	68.337988	130.097271
6	68.337988	130.231530
7	67.935211	129.963012
8	67.935211	129.694493
9	67.935211	129.560234
10	67.935211	129.560234
11	67.935211	129.560234
12	67.935211	129.560234
13	67.935211	129.560234
14	67.800951	129.157456
15	67.532433	129.023196
16	67.398173	128.754678
17	67.398173	128.754678
18	67.263914	128.620418
19	67.263914	128.486159

Tabelle 3.12: Amplitude der Gleiter, akustischer Ast, Mode 3

	Gleiter 1	Gleiter 2
0	145.939869	60.148171
1	145.268573	60.013911
2	145.402832	60.013911
3	145.000054	59.879652
4	144.865795	59.879652
5	144.865795	59.879652
6	144.731536	59.879652
7	144.597276	59.611133
8	144.328758	59.745393
9	144.194498	59.611133
10	144.060239	59.611133
11	344.777907	59.611133
12	143.657461	59.342615
13	143.254683	59.342615
14	143.523202	59.342615
15	143.523202	59.342615
16	143.254683	59.208355
17	143.254683	59.208355
18	143.120424	59.208355
19	142.851905	59.208355
20	142.851905	59.208355
21	143.120424	59.208355
22	142.851905	59.074096
23	142.986165	59.208355
24	142.986165	59.074096
25	142.717646	59.208355
26	142.717646	59.208355
27	142.717646	59.208355
28	142.717646	59.208355
29	142.717646	59.074096
30	142.583387	58.939837
31	142.449127	58.805578

Tabelle 3.13: Amplitude der Gleiter, akustischer Ast, Mode4

	Gleiter 1	Gleiter 2
0	38.935200	69.277804
1	38.935200	69.143544
2	38.935200	69.143544
3	38.800940	68.875026
4	38.666681	69.009285
5	38.666681	68.875026
6	38.532422	68.875026
7	38.935200	68.875026
8	38.666681	68.740766
9	38.532422	68.740766
10	38.532422	68.606507
11	38.532422	68.740766
12	38.666681	68.472248
13	38.532422	68.606507
14	38.666681	68.606507
15	38.666681	68.472248
16	38.532422	68.606507
17	38.532422	68.337988
18	38.666681	68.472248
19	38.666681	68.472248

Tabelle 3.14: Amplitude der Gleiter, akustischer Ast, Mode 5

Tabelle 3.15: Amplitude der Gleiter, akustischer Ast, Mode6

	Gleiter 1	Gleiter 2
0	111.300968	28.462974
1	111.569486	28.597233
2	111.569486	28.597233
3	111.838005	28.731492
4	111.569486	28.597233
5	111.838005	28.597233
6	111.838005	28.731492
$\overline{7}$	112.106523	28.597233
8	111.838005	28.597233
9	112.106523	28.597233
10	112.106523	28.597233
11	111.972264	28.597233
12	112.240783	28.597233
13	112.106523	28.731492
14	112.375042	28.865752
15	112.375042	29.000011
16	112.106523	28.597233
17	112.375042	28.865752
18	112.106523	28.731492
19	112.375042	28.597233

	Gleiter 1	Gleiter 2
0	23.150745	40.608684
1	24.036293	40.861697
2	23.277252	40.482177
3	23.530265	40.988204
4	23.530265	40.735191
5	23.656772	41.367725
6	23.656772	40.482177
$\overline{7}$	23.909786	40.861697
8	23.783279	40.735191
9	23.656772	40.861697
10	23.403759	40.608684
11	23.530265	41.114711
12	23.403759	40.608684
13	24.036293	40.608684
14	23.530265	40.861697
15	23.656772	41.114711
16	23.783279	41.114711
17	23.530265	40.861697
18	23.277252	41.114711
19	23.783279	40.608684

Tabelle 3.16: Amplitude der Gleiter, optischer Ast, Mode 1

Tabelle 3.17: Amplitude der Gleiter, optischer Ast, Mode 2

	Gleiter 1	Gleiter 2
0	23.150745	13.030201
1	23.024238	13.156708
2	22.897731	12.903694
3	23.403759	12.777187
4	22.644718	12.650680
5	22.391704	13.030201
6	22.644718	12.524174
$\overline{7}$	23.403759	12.903694
8	22.644718	12.650680
9	23.024238	12.650680
10	23.024238	12.524174
11	22.897731	13.156708
12	22.771225	12.903694
13	22.644718	12.777187
14	23.150745	12.650680
15	22.644718	12.903694
16	22.518211	12.903694
17	22.771225	12.397667
18	23.277252	12.650680
19	22.391704	12.650680

	Gleiter 1	Gleiter 2
0	24.795333	78.054698
1	25.048347	77.801684
2	24.795333	77.548670
3	24.921840	77.548670
4	24.921840	77.801684
5	24.795333	77.548670
6	24.795333	77.548670
7	24.921840	77.548670
8	24.795333	77.675177
9	24.795333	77.548670
10	24.921840	77.675177
11	25.048347	77.548670
12	24.921840	77.548670
13	24.795333	77.548670
14	25.048347	77.675177
15	24.921840	77.422164
16	24.921840	77.548670
17	24.921840	77.548670
18	24.921840	77.548670
19	24.668827	77.548670

Tabelle 3.18: Amplitude der Gleiter, optischer Ast, Mode 3

Tabelle 3.19: Amplitude der Gleiter, optischer Ast, Mode 4

	Gleiter 1	Gleiter 2
0	47.313544	37.193000
1	47.187038	37.319507
2	47.060531	37.193000
3	47.566558	37.319507
4	47.313544	37.572521
5	47.060531	37.446014
6	47.313544	37.446014
$\overline{7}$	47.187038	37.572521
8	47.313544	37.446014
9	47.187038	37.319507
10	47.313544	37.446014
11	47.313544	37.319507
12	47.060531	37.319507
13	47.187038	37.193000
14	47.313544	37.319507
15	47.313544	37.446014
16	47.187038	37.572521
17	47.187038	37.446014
18	47.187038	37.319507
19	47.440051	37.319507

	Gleiter 1	Gleiter 2
0	6.831367	82.988463
1	7.590408	82.608943
2	6.578354	82.608943
3	6.957874	82.482436
4	7.210888	82.608943
5	7.084381	82.482436
6	7.084381	82.608943
$\overline{7}$	7.210888	82.608943
8	7.084381	82.608943
9	7.084381	82.229422
10	7.084381	82.735449
11	6.957874	82.608943
12	6.704861	82.608943
13	7.337395	82.608943
14	7.463901	82.355929
15	7.084381	82.355929
16	6.831367	82.861956
17	7.210888	82.608943
18	7.210888	82.861956
19	7.337395	82.861956

Tabelle 3.20: Amplitude der Gleiter, optischer Ast, Mode 5

 Tabelle 3.21: Amplitude der Gleiter, optischer Ast, Mode 6

	Gleiter 1	Gleiter 2
0	13.789242	57.434089
1	13.915748	56.548541
2	13.662735	56.548541
3	13.662735	56.042514
4	14.042255	56.042514
5	13.789242	56.422034
6	13.662735	56.548541
7	13.789242	56.295527
8	13.789242	56.548541
9	13.662735	56.295527
10	13.536228	56.042514
11	14.042255	56.169021
12	13.662735	56.042514
13	13.536228	56.422034
14	13.915748	56.295527
15	13.662735	56.042514
16	14.042255	55.662993
17	13.536228	56.042514
18	13.789242	56.295527
19	13.915748	56.169021

Quellen

[Ver] Gitterschwingungen (Modellversuch). – 45 S.