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3. Performing the experiments / tasks

3.1. Generate sound and record it 

• Make sure that the speaker and the microphone are working as expected, i.e., connect the

function generator to the QUANTUM ANALOGS device, which is used as an adapter between 

the BNC connector and the speaker jack. Program the function generator to generate a sine 

wave with a frequency of 1 kHz and a peak-to-peak amplitude of 1 V. You should be able to 

hear a tone. Change the frequency manually - what are the highest and lowest frequencies you 

can hear? 

• Connect the microphone to theQUANTUM ANALOGS device, which supplies the microphone 

with a constant bias voltage and pre-amplifies the signal. Connect the output to the oscilloscope. 

When you touch the metal cylinder which contains the microphone, the oscilloscope should 

show the noise recorded by the microphone. Bring the microphone and speaker in close 

proximity. You should observe the sine wave generated by the speaker with the scope. 

 

3.2. Measure the sound velocity 

• Build up a tube of ~ 60 cm length and measure the resonances of the standing waves in the

tube. Use the function generator to drive a sinusoidal sound wave and find the maxima in the 

amplitude by manually changing the frequency. 

• Why is this method superior to measuring the traveling time of a pulse or the phase difference

between speaker and microphone? Estimate the uncertainty of every method or try to measure 

it. 

• Calculate the speed of sound from these resonances (homework). Remember to note the 

temperature, see e.g., http://www.sengpielaudio.com/Rechner-schallgeschw.htm for the 

temperature dependence of the sound velocity. 

 

3.3. Band structure in periodic potential 

• Connect speaker and microphone to the computer. Bring them in close proximity without any 

tube in between and measure the transmission function of the whole setup (speaker →

microphone), see chap. III for setup. 

• Build up a tube from multiple identical segments without apertures between the segments. 

• Decrease the aperture size which corresponds to a decrease of the coupling strength between

the tube segments. Measure the spectrum for each aperture size and compare them (homework). 

How does this setup correspond to the nearly free electron model and to the phonon model? 
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• Homework: Extract the reduced band structure for these setups. Get the individual points 

(states) for, at least, the black apertures. Estimate the band gap for all apertures. How does the 

dispersion relation compare of the periodic tube compare to the dispersion relation of nearly 

free electrons and to phonons? Hint: look at the bending at k = 0 and ω = 0 and explain in which 

cases states with k > π/a make sense. 

• Now start with one segment consisting of one tube and one aperture and elongate it segment 

by segment. Measure for each number of segments. Do this for at least three different aperture 

sizes. How does this setup correspond to the tight-binding model? 

• Homework: Extract the reduced band structure for these setups. Get the individual points 

(states) at least for one aperture. How does the number of states per Brillouin zone evolve? 

• Combine two different tube lengths with identical apertures to simulate the states in a solid

with a two-atomic unit cell. Measure the spectrum of the two atoms. Build a crystal of these 

atoms and measure the spectrum of the crystal. 

• Assign the emerging bands to the corresponding tube length and the corresponding mode 

number (= number of nodes in the wave inside one tube). 

• Combine two different apertures with identical tube lengths to simulate the states in a solid 

with a two-atomic unit cell. Measure the spectrum of the two atoms. Build a crystal of these 

atoms and measure the spectrum of the crystal. 

• In this periodic system of acoustic elements another analogy can be found: Build up a 

microwave filter cavity with passband and stopband. 

(a) Choose one tube length and one aperture diameter and build a periodic chain of 

resonators. Measure the transmission of these coupled resonators as usual (linear frequency 

sweep). 

(b) Now let the speaker generate white noise and record that noise after it has passed 

your filter. What do you expect? Compare the spectrum of both measurement techniques. 

 

3.4 Build a hydrogen atom 

• Build a hydrogen atom with α = 180°, i.e., the speaker and the microphone are located at 

opposite positions of the hollow sphere. Make connections to the sound card of the computer. 

Find all resonance peaks in the amplitude vs frequency spectrum (1-12000 Hz) at α = 180°. 

• Connect the sphere to theQUANTUM ANALOGS device, function generator and oscilloscope. 

(a) Find the first 6 resonance peaks (between 1-9000 Hz). Please ignore the peak around 

400 Hz which is an artefact of the setup. Use the spectrum measured with the computer to 

estimate the positions of the resonances and note the frequencies for further use. On the
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oscilloscope you can observe a phase shift between speaker and microphone signal while 

crossing each resonance. 

(b) Tune to the second resonance. Rotate the upper hemisphere with respect to the lower 

one to change the angle α from 180° to 0° and record the amplitude in steps of 10°. Make 

smaller steps close to nodes, where the amplitude drops to zero. Convert values of α to 

corresponding values of θ using equation (7). Create polar plots and use them to identify the 

angular momentum l and the spherical harmonics function of each resonance. Hint: Quantify 

the amplitude dependence by comparing it to Legendre-polynomials from table (1). 

(c) Repeat at the 3rd and 4th resonance positions. 

• For the following use the sound card of the computer for part (a) and (b); oscilloscope, function

generator and quantum analog device for part (c): 

(a) Measure the spectrum of the spherical resonator up to the first 3 resonance peaks. 

Insert spacer rings of thickness 3 mm, 6 mm, and 9 mm, one after the other and remeasure the 

spectrum. What does the splitting of the resonance peaks indicate? Plot the splitting vs the 

spacer ring thickness. 

(b) Measure a highly resolved spectrum with 9 mm spacer rings of the l = 2 resonance. 

It will split into 3 peaks (at about 3435 Hz, 3455 Hz, and 3600 Hz). In order to distinguish the 

first two it is necessary to minimize the amplitude of the first resonance by rotating  into a 

node. (Hint: Observe the phase shift.) 

(c) For each peak, measure the amplitude as a function of  and identify the magnetic 

quantum number. Rotate the upper hemisphere in steps of 10° to change the azimuthal angle φ 

= α and measure the amplitude. Use smaller steps close to nodes. 

 

3.5. Build a hydrogen molecule 

• Build a hydrogen molecule by using the other two hemispheres. Use the sound card. Measure

the amplitude vs frequency spectrum in a frequency range 1-4000 Hz. Use various irises with 

diameters 5 mm, 10 mm, 15 mm, and 20 mm and remeasure the spectra. Compare with the 

result obtained for the atom. How do the resonance frequencies depend on the iris diameter? 
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1 Experimental goal , theoretical principles

1.1 Expermiental goal

The experimental goal of the experiment is, to get an better understanding of the nature of
quantum physics especially the quantum physics in crystals. This goal is reached by comparing
sound waves to waves in crystals and analysing the behaviour of sound waves in a pile tube.

1.1.1 Resonation in a pile tube

Initially, when the sound wave enters the tube, it travels down the length and reflects off the
closed end of the tube. The reflected wave combines with the incident wave, creating regions of
constructive and destructive interference.

In a closed tube, the closed end acts as a node, where the displacement of particles is minimal.
This creates a standing wave pattern with alternating nodes and antinodes along the length of
the tube.
If the length of the tube L is such that the distance traveled by the wave is an exact multiple of
half its wavelength λ:

L =
n

2
λ, nϵN

the incident and reflected waves align with each other at the respective boundaries. This align-
ment causes a reinforcement of the wave, resulting in a standing wave pattern.

However the wave function of the pressure p in a pile tube is:

d2

dt2
p(x, t) =

1

ρκ

d2

dx2
p(x, t)

where ρ is the density and κ is the comprehensibility of the material (in our experiment of air).
If the neumann-boudary conditions are used, this leads to:

p(x, t) = 2p0cos(kx)cos(ωt)

The dispersion relation is
ω(k) = kc = 2πf

Where k = 2π
λ is the wave-vector.

1.1.2 resonation in a quantum mechanic square well potential

In general the wave equation of an free particle in one dimension is given by the Schrödinger-
equation with potential V (x, t) = 0:

iℏ d
dtψ(x, t) = − ℏ2

2m
d2

dx2ψ(x, t)

where ψ is the wave function of the particle, x is the position coordinate, m is the mass of the
particle, E is the total energy of the particle, V is the potential energy within the well, and ℏ is

6



the reduced Planck’s constant.
For a particle in a square well potential, the Schrödinger equation can be written as:

d2ψ

dx2
= −2m(E − V )ψ

ℏ2
(1.1)

To solve this equation, it is needed to consider the two regions within the square well potential:
the region where the potential is zero and the region where the potential is infinite.

Region where V = 0 : In this region, the potential is zero, and the Schrödinger equation simpli-
fies to:

d2ψ

dx2
= −2m(E)ψ

ℏ2
(1.2)

Region where V = inf:
In this region, the potential is infinite, meaning the particle cannot exist in this region. There-
fore, the wave function must be zero, i.e., ψ(x) = 0.

All possible solution can be written as:

ψ(x) =
∑
i

Aisin(ikix+ αi +B2cos(−ikix+ αi), (1.3)

where is k =
√

2mE
ℏ and Ai, Biαi are constants that depend on the boundary conditions.

To fullfil these, Bi and αi have to be set to zero.
So it follows, that

k =
n

L
π, nϵN. (1.4)

1.1.3 Analogies and differences between the classical wave of pressure and the
quantum mecanic wave

Like it can be seen if the two equations 1.1.1 and 1.1.2 are compared to each other, the
Schrödinger equation has only one time derivative AN complex part, while the Differential
equation of the pressure has a second time derivative and is real.
What can also be seen in there solutions.

1.1.4 Basics of solid-state physics

To understand the experiment we have to understand at fist some basics of the solid-state physic
it is made to be an analogy to.

Building of crystals

In solid state physics, a crystal is a periodic arrangement of atoms or molecules in three-
dimensional space.

7



A crystal exhibits translational symmetry, meaning that the arrangement of atoms or molecules
repeats periodically throughout space. This periodicity is characterized by a lattice vector G,
which is an vector representing the positions of the repeating unit cells.

A crystal can be splitted up into primitive cells the simplest repeating unit within the crystal
lattice that allows for the reconstruction of the entire crystal by translation.
The primitive cell is chosen such that all essential symmetries of the crystal are accounted for.

A really importaint primitive cell is the Wigner-Seitz Cell. The Wigner-Seitz cell is a construc-
tion that allows to identify the neighbors of a given lattice point in the crystal lattice. It is
defined as the region of space that is closer to a particular lattice point than to any other lattice
point. The Wigner-Seitz cell has the property that it contains only one lattice point at its center.

Symmetry of the Crystal Lattice: The symmetry of a crystal lattice refers to the set of sym-
metry operations that leave the lattice unchanged. These operations may include translations,
rotations, and reflections.

Symmetry operations can be used to generate the complete lattice from a smaller set of basis
vectors, known as the lattice basis. By applying symmetry operations to the basis vectors, the
entire crystal lattice can be reconstructed.

Reciprocal lattice

In solid state physics, the reciprocal lattice is a mathematical construct that provides a sys-
tematic way to describe the periodicity of a crystal in reciprocal space. It is closely related to
the direct lattice, which represents the periodic arrangement of atoms or molecules in real space.

The reciprocal lattice is defined by the set of lattice vectors that satisfy the condition:

bi · aj = 2πδij

where bi represents the reciprocal lattice vectors, aj represents the direct lattice vectors, and
δij is the Kronecker delta.

The reciprocal lattice is useful in several ways:

Calculating wave vectors: In quantum mechanics, the wave vector (k) is the momentum of a
particle in reciprocal space. The reciprocal lattice vectors provide a basis for expressing the
wave vector and allow for the calculation of electronic or vibrational properties of the crystal.

Band structure: The reciprocal lattice is also employed in calculating the electronic band struc-
ture of crystalline materials. The electronic energy as a function of the wave vector (k) in the
reciprocal lattice determines the allowed or forbidden energy levels (bands) for electrons in the
crystal.

1.1.5 1.st Brillouin-Zone

The first Billouin Zone ist the Wigner-Seitz-zell of an reciprocal lattice of an crystal.

8



Figure 1.1: zone-spectrum, reduced zone-spectrum [Ger17]

Bloch waves

The solutions of formula 1.1 in an periodic potential can be suspected to follow an periodic
shema. So in one dimension we use:

ψk(x) = uk(x)e
−ikx (1.5)

where u(x) is the so called Bloch-function, and the periodicity of the lattice is saved by the
relation.

uk(x) = uk(x+ a) (1.6)

Cause of this periodicity the wave-function and the Eigenvalues can be reduced into an reduced
zone spectrum which only includes the first Brillouin-zone (picture 1.1).

1.2 Models

There are two different approaches to get an model to describe the behavior of solid state
crystals, that are able to explain the way the measurements of band gaps in the zone spectrum.

1.2.1 Nearly free Electron model

In the nearly free Electron model you start with an couple of nuclei which are bound together.
However in the beginning approximation, that is used for the model the valence electrons are
free, which means that they do not interact with the nucleus’s. Now step for step you increase
the binding of these electrons to the nuclei, which changes the eigenvalues of the energy. The
difference of the resulting energys gives you the band gaps.
Interesting to see is that the number of states in the first Brillouin zone are equal to the number
of atoms in the crystal.

1.2.2 Tight-Binding model

The Tight-Binding-model starts with an single nucleus and one electron. An formula that is
already solved. To get from there to an crystal an second atom is taken from infinite distance
and is brought near to the first, so the two charge distributions overlap. These overlaps create

9



a new term in the energy level, which describe the band gap between the first and the second
level.
Like in the free electron model to get the further band gaps (or further energy states) it is needed
to bring more atoms close together.
Mathematical the energy distribution is given by:

E(k) = E0 + 2Wcos(ka) (1.7)

Where W is the strength of the interaction between the two atoms.

Figure 1.2: band gaps [Ger17]

1.3 Phononic and acoustic band structure

The experimental setup is made out of single metal pipes, that are coupled by apertures.
Or if you look at it in a mathematical way, coupled harmonic oscillators.
For these harmonic oszilators there are two different solutions:

ω1 =
√
k2/ρκ, (1.8)

ω2 =
√
k2/ρκ+ 2b (1.9)

Where b is a constant that depends on the coupling of the pipes.
This can be seen as a splitting of the Eigenfrequencies just like in the quantum harmonic case.
Also just like in the quantum harmonic case the number of splits is equal to the number of
oscillators (pipes)

1.4 Spherical resonator

In three dimensions the solution of the Schrödinger equation for an hydrogen atom and the
solution of the Helmholtz equation for an sphere have different eigenfunctions in respect to the
radial component but same in respect to the angular components.
This leads to the same eigenvalues for the quantum numbers l and m in both cases, while the
radial equations and therefor its quantum number n’ differ.
However it is possible to describe the resonances of the spherical resonator with the same radial

10



quantum numbers as the solution of the hydrogen atom.

n′ ≥ 0, l ≥ 0,−l ≤ m ≤ l (1.10)

n′, l,m ∈ N (1.11)

The sources for the theory are:
[Ger17] [unk21]
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2 Experimental setup

The experimental set up has to parts.

• the pipe pieces and apertures with different radius

• the spherical oscillator.

In the first part, there are different pipes (differ in length) and different apertures (differ in
radius) which are composed to analogies for coupled atoms in one dimension.
In the second part the spherical oscillator is used to create an analogy to an hydrogen atom in
three dimensions and even two coupled hydrogen atoms.
In both cases on the one side there is an microphone and on the other side an speaker, which
makes it possible to measure the constructive and deconstructive interference inside the experi-
mental set up and therefor to evaluate the eigenfunctions of the build crystals.

12



3 Execution

3.1 Modeling Bloch waves with an acoustic resonator

At first it was needed to test the measurement equipment was working fine, for this the micro-
phone and the speaker where brought together without anything between them to change the
soundwaves.

3.2 Sound velocity

To get the sound velocity a pipe of 60 cm made our of 8 pipe parts with 7.5 cm length was build.
Then the speaker created sounds from 1-12000 Hz and the microphone recorded them. To find
the sound velocity it is needed to get the resonance peaks.
With them and the formula:

c =
2Lf

n
(3.1)

as well as the measured temperature 19.8-20°C, it is possible to get an velocity of the sound.

3.3 band structure in periodic potential

The band structure in a periodic potential can be studied in two different approaches one with
the free electron model in mind and one with the thight binding model in mind.

3.3.1 Free electron model

For the free electron model it is used that the coupling strength of the electrons corresponds to
the radius of the apertures.
To measure this, it is needed to connect 5 7.5 cm pipes with apertures between them and an
aperture between the last pipe and the speaker, where all the apertures have the same radius.
Like before the resonance in an spectrum form 1-12 kHz is measured. The used aperture radius
in cm are 2, 1.6, 1, 1.3, 0.7, 0.3.

3.3.2 Tight binding model

In analogy to the tight binding model we start with an single atom (an pipe of 7.5 cm and an
aperture
In the next steps new atoms get connected to the first, all with the same aperture.
This is repeated with other apertures, while in each step the resonance in an spectrum form
1-12 kHz is measured.

3.4 Defects

There are different kinds of defects, that can occur in an crystal// To get an impression how
defects substitutional and intersectional defects influence the band structure an atom with an

13



pip length of 5 cm and an aperture of 1.6 cm is used.
This atom is build into the cystal at different places and the effect on the resonance spectrum
is looked at.
For the substitution 4 ”normal” atoms where used, while for the intersectional defect 5 ”normal”
atoms had to be there.
An other defect is measured by the use of 4 atoms with pipe length 7.5 cm and an aperture x
of 1.3 cm. An pipe of 5 cm is inserted in the middle of the crystal, this time with an aperture y
that differs from the aperture of the others. The effect on the resonance is recorded.

3.5 Unit cells with more than one atom

Instead of using one atom (pipe) to construct an unit cell, two pipes 7.5 cm and 5 cm, that are
separated thew an aperture with 1.6 cm are used.
5 of these unit cells are used like before to build an crystal.

3.6 Hydrogen atom

The hydrogen atom is made out of two hollow hemispheres, that can be rotated to each other.
First the resonance peaks get measured, than the second and third resonance frequency are taken,
to evaluate the dependency of the resonance from the angle between the two hemispheres, to
get l.
In the next step spacers of 3,6,9 mm are build into the set up.Then the third peak gets evaluated
a second time.
Because of the lifting of the degeneracy of m there are three peaks. For all of them there
dependency on α gets measured. To identify m.

3.7 Hydrogen molecule

Two hydrogen atoms get connected to an hydrogen molecule. (Two Spheres separated by an
aperture.)
Again the resonance peaks get measured an the resonance peaks are taken. In difference to the
hydrogen atom now the influence of the apertures is interesting, so there are different apertures
used to separate the two spheres.

14



4 Evaluation, error analysis, and discussion of
the measurement results

4.1 Modeling Bloch waves with an acoustic resonator

For further evaluation the microphone and spectrum of speaker and microphone have to be
calibrated/ checked for additional resonance peaks that should be ignored in analysis of the
resonance spectrum. For perfect measurement the spectrum of the system should be constant
but varies because of the properties of microphone and speaker. The spectrum can be seen in
figure 4.4.
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Figure 4.1: Spectrum of calibration

4.1.1 Sound velocity

To calculate the sound velocity there are three ways. First it is calculated with the resonance
peaks measured with the oscilloscope and the Quantum Analogs device. Second with the reso-
nance peaks measured with the sound card and Audacity. The last calculation is by measuring
the temperature and using the given website to determine the theoretical sound velocity. For
the first two options equation 3.1 is used to perform a linear fit with 2Lf on the y-axis and the
order n on the x-axis.

Table 4.1: Calculated sound velocities

measurement sound velocity

oscilloscope 343.25 m
s ± 0.83 m

s
sound card 341.27 m

s ± 2.48 m
s

temperature [343.304 m
s ,343.412

m
s ]

Overall all calculated sound velocities fulfill the expected sound velocity of 343 m
s . Depending

on the method of measurement the error on the calculated value varies.
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Oscilloscope data
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Figure 4.2: Fitted oscilloscope data

Table 4.2: Measured resonace peak from oscilloscope

peak frequency (kHz)

1 5.710000
2 5.420000
3 5.140000
4 4.850000
5 4.570000
6 4.280000
7 4.000000
8 3.710000
9 3.430000
10 3.140000
11 2.850000
12 2.570000
13 2.280000
14 2.000000
15 1.710000
16 1.430000
17 1.140000
18 0.860000
19 0.570000
20 0.280000
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Sound card data
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Figure 4.3: sound card spectrum
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Figure 4.4: Fitted sound card data

4.2 band structure in periodic potential

4.2.1 free electron model

For the free electron model the resonance peaks of the adjusted spectrum are identified and
based on the peaks the band structure model created.
Looking and the band structure, as the potential increases and therefore the diameter gets
smaller, the energy gaps within the free electron model widen. This observation aligns with the
principles of quantum mechanics, where the interplay between the external potential and the
behavior of electrons in a crystal lattice creates distinct energy bands. The widening of energy
gaps signifies a more pronounced separation between the electron energy levels, influencing the
overall electronic properties of the material.
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Figure 4.5: free electron model spectrum
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Figure 4.6: free electron model band structure
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4.2.2 Tight binding model

In the tight binding model, for each new segment that is added the spectrum gets additional
peaks because of the overlapping electron wave functions of the different segments. Again the
spectrum gets visualised and the resonance peaks get identified to look at the change of peaks
and band structures in the tight binding model.
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Figure 4.7: Tight binding model spectrum
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Figure 4.8: Tight binding model spectrum
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4.2.3 Defects

This section visualizes two distinct crystallographic defects that can occur within a crystalline
structure. The first defect under scrutiny is the substitutional defect, a phenomenon wherein
one segment of the crystal lattice undergoes substitution by a segment with a smaller length.
In the substitutional defect scenario, the regular lattice structure experiences a modification,
introducing a different segment that deviates in size from the original lattice. This substitution
can result from various factors such as impurities, thermal fluctuations, or external influences.
The second defect explored in this section is the interstitial defect, where an additional smaller
segment integrates into the crystal lattice. This introduction of an extra segment into the lattice
structure creates what is known as an interstitial site, disrupting the regular arrangement of
atoms or ions. Defects in crystals induce new states in the band structures, manifesting as
additional peaks in resonance spectra compared to a crystal with no defects, as seen in figure
4.9.
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Figure 4.9: Defects
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4.2.4 Two-atom cells

The current elementary cell has undergone a doubling in size compared to its monatomic counter-
part, resulting in a significant shift in its properties. This enlargement causes a notable reduction
in the size of the first Brillouin Zone, which is now only half of its previous dimensions, as the
width is determined to be π

a .
Observing the resonance spectrum in Figure 4.10, each band within the spectrum undergoes
a split into two smaller sub-bands. Remarkably, each of these sub-bands exhibits a resonance
corresponding to each utilized cell.
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4.3 Hydrogen atom

4.3.1 Maxima of the resonance in an spherical resonator

With the sound card the maxima in the amplitude spectrum of frequencies in an range of 1-12000
Hz at an angle α = 180° get evaluated and with the quantum analogs device this frequencies get
specified to the values in table 4.3. In the process, the second peak got confused with the first
one, so the rest of the experiment has been done for the peaks 3,4,5 instead of 2,3,4.
The peak at around 400 Hz (495 Hz) was ignored like the experimental map said.

peak (qa) frequency kHz (sc) frequency kHz

1 - 1.898
2 2.27 2.269
3 3.660 3.649
4 4.93 4.922
5 6.16 6.154
6 7.36 7.354
7 8.44 8.532

Table 4.3: peaks of hdrogen measured with the quantum analog device(qa) an the sounscard of
the computer (sc)

4.3.2 Angular momentum l

With this knowledge over the peaks the dependency of the amplitude of the resonance peaks
from the angle α can be measured.
To get θ out of α the formula

θ = arccos(
1

2
cos(α)− 1

2
) (4.1)

is used, and the values get mirrored along the axis to get the angles of θ from 0°to 360 °.
The magnetic quantum number m = 0, because only such resonances as m = 0 are measured

without an aperture.
To find out the angular momentum l the nodes in the figures 4.12 -4.14 are counted.
For the peak at 3660 Hz there are two nodes so l = 2.
For the peak at 4930 Hz it is not totally clear if the peak in at 90°is relevant,because it is so
small in comparison to the others, but because we measured definitively that there was such a
peak, there are for nodes so l = 4.
For the peak at 6160 Hz there are five nodes so l = 5.

4.3.3 Magnetic quantum number

To verify that the degeneracy of m the resonance up to the first three resonance peaks get
measured for different spacers of 3,6,9 mm like it can be seen in figure 4.16 to 4.18.
As can bee seen in figure 4.19 the split of the peaks depends positive on the thickness of the
spacers.

To get the magnetic quantum number m it is needed to measure the height of the resonance
peak for the different spitted resonance peaks of the former third peak at 3432 Hz ,3451 Hz and
3596 Hz with the spacer of 9 mm, between the tow spheres
This means to measure the degeneracy of the l = 2 spherical harmonics. The plots can be seen
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Figure 4.12: 3660 Hz peak Figure 4.13: 4930 Hz peak

Figure 4.14: 6160 Hz peak

in figure 4.20 - 4.22

However the comparison of 4.20 - 4.22
with the spherical harmonics Y m

l (θ, φ) as they can be seen in figure 4.23.
Brings us to the conclusion that for the different resonance peaks:

• 3432 Hz: m = ±1

• 3451 Hz: m = ±2

• 3596 Hz: m = ±0

4.4 Hydrogen molecule

At last different apertures of 5,10,20,25mm get used to build an hydrogen molecule. And the
resonance from 1-4000 Hz is measured like it can bee seen in figure 4.24. And in the figures 4.25
to 4.29.
It can bee recognised, that the height of the peaks depends on positive on the aperture radius,
and in a way that for apertures ≥ 15 mm there can be seen a peak around 1kHz, while there is
none for lesser radii.
Also in comparison to the hydrogen atom 4.30 there are two peaks around 2.2Hz instead of
one. Which brings us to the conclusion that the apertures correspond to the degeneracy of the
resonance peaks.
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Figure 4.15: Cut threw the spherical harmonics with magnetic numbers m = 0

Figure 4.16: hydrogen atom for 3mm
spacer

Figure 4.17: hydrogen atom for 6mm
spacer

Figure 4.18: hydrogen atom for 9mm
spacer
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Figure 4.19: splitting of the different peaks for variable spacer thickness

Figure 4.20: 3432 Hz peak Figure 4.21: 3451 Hz peak

Figure 4.22: 3596 Hz peak
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Figure 4.23: spherical harmonics with different m, l from [PHJ]

Figure 4.24: hydrogen atom for different apertures
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Figure 4.25: hydrogen atom for 5mm
apertures

Figure 4.26: hydrogen atom for 10mm
apertures

Figure 4.27: hydrogen atom for 15mm
apertures

Figure 4.28: hydrogen atom for 20mm
apertures

Figure 4.29: hydrogen atom for 25mm
apertures

Figure 4.30: hydrogen atom
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