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Abstract

Phase transitions, for example transitions between energetically different magnetic configura-
tions of a solid, cause discontinuities in the course of its specific heat due to the warmth energy
pushing forward the transition instead of increasing the temperature of the specimen, as it is
the case in first order transitions for example. Another behaviour occurs at transitions of second
order, where the course of the specific heat diverges at the critical temperature.

This experiment consists of cooling down a specimen of Dysprosium and heating it up again
while determining the electrically deposited amount of energy. In this element two phase tran-
sitions of different orders occur at both the Curie and the Neel temperature.
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1.1 Thermodynamic fundamentals

1.1.1 Specific heat
Definition

The term “specific heat” denotes the linear response of the internal energy under changes in
temperature. In order to properly define such an answer coefficient, either pressure p or volume
V has to be held constant. Thus we define

cp =
∂U

∂T

∣∣∣∣
p

, cv =
∂U

∂T

∣∣∣∣
V

.

The difference in cp and cv is
cp − cv = T · α2 · k,

where α is the coefficient of thermal expansion and k is the inverse of the isothermal compress-
ibility. Generally one does not need to consider the difference in specific heats when dealing with
a solid, therefore we will use cv = cp = c from now on.

Phonons

Above temperatures of ∼ 10 K the internal energy of a solid is mostly given by the energies of
the phonons:

U =

3N∑
i=1

~ωi · n(ωi) =

∫
dω ν(ω)~ω · n(ω), (1.1)

where n(ω) is the Bose Einstein statistic and ν(ω) is the density of states. Using the Debye
approximation ω = v · k (v = velocity of sound, k = wave vector) ∀k ∈ 1st Brioullin Zone and
the normalization condition

∫ ωD
0

ν(ω)
!
= 3N for the density of states, we find

ν(ω) =
9N

ω3
D

ω2, (1.2)

where ωD = v3
√

6π2N
V is the Debye frequency. Plugging (1.2) in (1.1) we find

U = 9N

ωD∫
0

dω
~ω3

ω3
D(exp( ~ω

kBT
)− 1)

,

which is equivalent to

c = 9NkB

ωD∫
0

dω

(
~ω
kBT

)2 exp( ~ω
kB

)(
exp( ~ω

kBT
− 1
)2 ·

ω2

ω3
D

.

If we define the Debye Temperature θD = ~ωD
kB

and the dimesionless parameter x = ~ω
kBT

we can
write the above in the following way:

c = 9NkB

(
T

θD

)3 ∫ θD/T

0

dx
x4ex

(ex − 1)
2 .︸ ︷︷ ︸

can be evaluated numerically

(1.3)
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Now let us consider two limits:

a. T � θD

For high temperatures (1.3) becomes the Dulong-Petit law of a constant specific heat
regardless of the kind of solid:

cDP = 3NkB ≈ 25
J

mol ·K

∣∣∣∣
N=NA

.

The physical interpretation of a constanc specific heat is that at such high temperatures
all phononic modes are excited. Therefore no new degrees of freedom are available with
rising temperature, which, when combined with the equipartition principle, explains the
constancy of specific heat.

b. T � θD

At low temperatures the integral in (1.3) becomes approximately constant and has the
numerical value of 4π2

15 . This leads to a temperature dependency of

c = 9NkB

(
T

θD

)3

.

The specific heat rises strongly with temperature, as more and more phononic modes are
excited and the equipartition principle dictates that the energy is distributed among more
and more degrees of freedom.

Below T = 10 K the conductive electrons add another term to the specific heat which is linear
in temperature.

1.1.2 Phase transitions
Thermodynamically, phase transitions occur, whereever a derivative of the free energy is dis-
continuous. Orders of phase transitions are defined to match the derivative that in which the
discontinuity appears, so a phase transition of 1st order occurs when the first derivative of the
free energy is discontinuous.

In nature, only first and second orders of phase transitions occur. Both can be examined
and categorized by the behaviour of specific heat at the critical temperature. As specific heat is
connected with derivatives of free energy by

c = − 1

T

∂2G

∂T 2
,

phase transitions show typical behaviours in temperature dependency of specific heat.
First order transitions carry a latent heat, an amount of energy that does not contribute

to heating the specimen. Instead, it pushes onward the phase transition. Usually the specific
heat differs on both sides of the transition point. Therefore a phase transition of first order
can be identified by a discontinuity within a plot of specific heat over temperature. Another
way to discern one is by finding a plateau in a heating curve, i.e. an amount of time in which
the temperature of the specimen did not increase despite constant heating. Using the second
method, the latent heat linked with the phase transition can be quantified.

In contrast to those of first order, second order transitions do not carry a latent heat. Specific
heat diverges at the critical temperature. The divergence can be quantified approximately by

c = (A±/α)|t|−α + Et+B, (1.4)
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where α is the critical exponent and the coefficient A± is different for temperatures above and
below the critical temperature TC . In addition we introduced the “reduced temperature” t =
T−TC
TC

. Both, the critical exponent α and the critical temperature TC can be determined by a
double logarithmical plot of specific heat over temperature, after the noncritical behaviour Et+B
has been subtracted out.

1.1.3 Dysprosium
In this experiment we will examine Dysprosium, a lanthanoid. In pure form Dysprosium presents
a hexagonal crystal structure. It exhibits two magnetic phase transitions: One from the para-
magnetic high temperature phase to a helical antiferromagnetic phase, in which all magnetic
moments of a crystallographic plane are aligned, but, in contrast to ferromagnetic structures, at
a fixed angle to neighbouring planes. This phase transition occurs at the “Neel temperature” of
TN ≈ 180 K. It is a phase transition of second order, i.e. a phase transition with a divergence
in specific heat. The other magnetic phase transition is from the antiferromagnetic phase to a
regular ferromagnetic phase at the Curie temperature of TC = 90 K, being a first order transition.
Therefore we expect a latent heat at the Curie temperature.

1.2 Experiment
In this experiment, we will record a heating curve of Dysprosium in order to examine its magnetic
phase transitions at the Curie tempreature TC = 90 K and the Neel temperature TN = 180 K.
Experimental difficulties arise in measuring the temperature of the specimen whilst keeping it
isolated from further heating by the environment.

1.2.1 Measurement
Cooling

To isolate the Dysprosium specimen from undesired environmental effects, it is suspended from
three nylon cords within an evacuated screening jar. In order to cool the jar down to 77 K, boiling
temperature of nitrogen, the cryostat is equipped with a cupper floor, from wich the jar can be
lifted for controlled heating. Putting the jar down on the floor establishes the neccessary thermal
contact for cooling. Another possibility to establish thermal contact is to fill the surrounding
dewar with a small amount of gas and reevacuating it afterwards.

Heating

In order to controlledly heat the specimen, the screening jar is provided with an electrical heater.
Before heating, the jar is of course lifted from the copper floor. The energy used to heat can
then be determined by a simple measurement of current and voltage of the heating circuit. We
easily find the amount of energy used to heat by

∆Q =

n∑
i=1

Ui · Ii · (ti − ti−1) (1.5)

using discrete points of time ti where the measurements take place.
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Measurment of specimen temperature

Specimen temperature is recorded by measuring the resistance of a thin platinum wire fixed
on the specimen. Within the temperature range of this experiment, its resistance can well be
assumed to be proportional to temperature.

1.2.2 Tasks
For most of our tasks a prepared Labview program exists. We still have to define the parameters
though.

Cooling down the cryostat

The first task is cooling down the cryostat. In order to do so, we evacuate it and refill it with an
exchange gas, allowing easier dissipation of heat from inside the dewar. Temperature is controlled
via a Labview program. As soon as temperature inside has reached less than 80 K we are ready
for the first measurements after we lifted the screening jar and pumped out exchange gases.

Measurement of latent heat

Since the phase transition from ferromagnetic to helically antiferromagnetic phases is exhibited
at 90 K we reheat the specimen up to 87 K. This allows us to find proper heating rates for both
the specimen and the jar, in order to keep them on the same temperature as they are heated.
From 87 K on we heat with a constant low heating rate, where values of 2 mW have shown good
results, in order to quantize latent heat at Dysprosium’s Curie temperature.

Measurement of specific heat close to TC

Again, we are to calibrate heating power and an idle time in order to find values that allow
proper examination of specific heat around TC . We measure specific heat precisely until a few
Kelvin above the leap we expect at TC = 90 K.

Measurement of specific heat up to room temperature

We recool our specimen below the phase transition and re-recalibrate the measurement. After-
wards we leave it to the Labview program to perfom measurements up to 250 K.

1.2.3 Evaluation of the data
In the evaluation we will determine latent heat at Dysoprosium’s first order phase transition by

1. temperature progression during constant heating power. During phase transition a graph
of temperature over time is expected to show a plateau of constant temperature. Latent
heat can then be calculated as the amount of heat that did not increase temperature, i.e.
time the temperature stayed constant times heating rate.

2. measured specific heat. At a phase transition of first order specific heat diverges. Latent
heat can be calculated as the area below the peak at TC .

As a reference value we will compare our results to the work of Jayasuriya et al.
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Secondly we will determine the Entropy related to this phase transition by

∆S =
∆Q

T
,

where ∆Q is the determined latent heat. As a comparison value we take spin entropy which,
since this phase transition occurs in 4f -orbitals, is

∆Sspin = R ln(2J + 1) = R ln(17) = 23.6
J

K ·mol
.

Concerning the second order phase transition in Dysprosium at a Neel temperature of TN ≈
180 K, we will determine the precise Neel temperature and critical exponent. Again the work of
Jayasuriya et al. will provide a reference value.
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2 Evaluation
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2.1 Methods and programs used
• All numerical values are rounded to the first significant (= non-zero) digit of the statistical

error on the value. Errors are given with respect to that digit, except for cases in which
that digit would be a “1”. In those cases the two first significant digits are given and the
error is considered to be with respect to the two last digits of the given value. Example:
3.948872± 0.04213 would be rounded to 3.95± 0.04 and represented as 3.95± 4, whereas
3.948872± 0.01542 would be rounded to 3.949± 0.015 and represented as 3.949± 15.

• All plots and fits are done with Gnuplot

• All numerical integrations are perfomed via Mathematica’s online interface, available at
http://www.wolframalpha.com.

2.2 The first order phase transition at TC

The amount of latent heat bound in a first order phase transition can be determined in two ways,
both of which we will employ, comparing the results afterwards.

2.2.1 Calculation from the heating curve
We recorded the heating curve of Dysprosium, starting from 78 K up to 91 K. However temper-
atures ranging from 78 K up to 85 K were used to adjust the heating parameters of our sample.
This was done by aligning the heating curve of the specimen to the surrounding jar’s, which was
equipped with its own heating curcuit, to minimize additional, unaccounted for heating through
heat radiation. The experimental challenge consisted in adjusting the digital rotary buttons of
LabView with a precision of a single pixel on screen – which was not even precise enough for
aligning the two heating curves properly – without the possibility to simply enter numerical
values for the heating currents. Our experiences in playing ego shooters where absolutely useful
for this task.

From 85 K to 91 K the actual experiment was conducted, using a heating power of P =
6.97 mW. One second of heating therefore corresponds to δQ = P · δt = 6.97 mW · 1 s = 6.97 mJ.
The heating curve, as well as the low and high temperature asymptotic behaviour, are shown in
figure 2.1, where deposited warmth has been arbitrarily chosen to be zero at 2000 seconds after
the experiment started. The fit parameters of the asymptotes are detailed in table 2.11. It can
clearly be seen, that the slope of both lines are close to each other, so that they can be assumed
to be parallel for the purposes of this experiment. Additionally, we would like to point out how
well linearity fits temperature behaviour in the respective reigns, as can be seen in the extremely
small standard errors.

We read from figure 2.1 that the phase transition started at 86.5 K and was completed at 90 K.
Taking the median value of starting and endpoint, we obtain a Curie temperature of 88.25 K,

Table 2.1: Fitting parameters of high- and low-temperature asymptotes

Reign Slope (in K
J ) Offset in K Range of data used to fit

Low-temperature 0.5039± 3 85.3006± 4K 85 K - 87 K
High-temperature 0.4854± 3 84.788± 3K 89.87 K - 90.77 K
Median 0.4946± 3 85.0443± 4K

1Errors are in respect to the last digit given
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Figure 2.1: Temperature curve (drawn in red) with asymptotic behaviour (blue)

however such a method is coarse and contains large errors due to unaccurate interpretation
of starting and ending points of the phase transition. Thus, we applied a second method of
finding the Curie temperature assuming that the phase transition aligns symmetrically to the
asymptotes: We drew the experimental data corrected by the median of the asymptotes and
checked where the resulting curve passes zero. Thus we determined the amount of heat, at which
the process was half finished. Now we assume the Curie temperature to be the temperature
the median gives at this amount of heat. This second method yields a Curie temperature of
88.290 ± 0.002 K. The median of the asymptotes and a horizontal line at this temperature are
drawn in figure 2.1.

The horizontal line drawn at the Curie temperature can be used to determine the latent
heat of this phase transition. It’s portion between the asymptodes can be interpreted as an
idealized temperature course, the portion’s length thereby amounting to the latent heat we want
to determine. We easily find it’s intersections with the asymptodes and calculate their difference
to be: ∆Q = 1.28 ± 0.01 J. This has to set into relation with the amount of Dysprosium,
0.0560 mol. We obtain a final result for the latent heat of Dysprosium Q = 22.86± 0.18 J

mol

Sources of Error

Theoretically, one would expect the heating curve to form a horizontal plateau in a plot like
figure 2.1. The graudual shift from one asymptote to the other originates from fast heating. By
heating more rapidly than the sample can install thermal equilibrium within itself, the phase
transition was performed at different times in different parts of the specimen.

2.2.2 Calculation from measuring specific heat
A second method to determine latent heat is to determine the area of the divergence in specific
heat at the phase transition. For this calculation, data ranging from 85 K to 91 K have been
evaluated, just as above. In order to determine the best estimate for the peak’s area, we used
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Figure 2.2: Specific heat in the vicinity of TC

both, Gauss and Cauchy distribution functions to fit into our data. Before fitting those functions,
we did a linear fit on the data surrounding the peak in order to exclude the noncritical behaviour.
The Cauchy distribution is to be preferred, as becomes obvious in figure 2.2. It’s peak lies at
TC = 88.53± 0.02 K.

The latent heat to be determined is the area between the Cauchy distribution curve and the
linear underground. Using Mathematica, we obtain a value of 37.32 J

mol , a value that fits the
experiment of Jayasuriya et al. very well. Since the integration was performed numerically the
influence of errors in the fitting parameters on the final value cannot be determined easily.

2.2.3 Entropy
The entropy related to this phase transition can be calculated using ∆S = ∆Q/T , where in our
case we will use the Curie temperature as T . This gives the following results:

∆S =
22.86± 0.18

88.290± 0.002

J

K ·mol
= 0.259± 0.002

J

K ·mol
through temperature course

∆S =
37.32

88.53± 0.02

J

K ·mol
= 0.422

J

K ·mol
through specific heat course

Both values are small in comparison to the theoretical value for 4f -orbital spin entropy. The main
reason for this is that spin entropy as calculated above considers the transition into a completely
disordered state, whereas the actual phase transition encountered conveys Dysprosium from one
ordered state into another.

2.2.4 Comparison of results
Our results gained through different methods differ significantly. Only the Curie temperature TC
is similar in both measurements. However latent heat calculated from the temperature course is
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Figure 2.3: Specific heat at the Neel temperature

way smaller than the literature value found in the paper by Jayasuriya et al. on the same topic.
Main source of error in this part of the experiment is the fast heating, as explained above. To
achieve better results the experiment should be rerun with a slower heating rate, allowing more
precise determination of starting and ending points and transition temperature.

Comparing the latent heat obtained from specific heat course, we are in good agreement with
Jayasuriya et al. Our result lies within one standard deviation of their’s, unfortunately we were
unable to calculate a variation on our result. Curie Temperature, as determined by Jayasuriya
et al. is about 2 K higher than the value we found, one probable reason for the discrepancy being
uncorrect gauging of our thermometer, since we neither controlled the gauge nor did we perform
an experiment allowing us to independently determine a gauge from the results. Spin entropy, as
calculated from specific heat course, matches the literature value of 0.428± 0.001 J

K·mol roughly,
better results could be obtained by either slowing the heating process down, taking more data
points, or rerunning the experiment for the same reason.

2.3 The second order phase transition at TN

For the second order phase transition at the Neel temperature, we assume a power-law depen-
dency as shown in equation (1.4). We determined the Neel temperature graphically, or rather
directly from the data, by taking the arithmetic average of the peak value (which we attributed
to the rising branch, as fit results and graphs suggested) and its successor, achieving a value of
TN = 179.68 ± 0.05 K, where the uncertainty is considered to be one half of the data point’s
distance.

In order to find the proper parameters for the power law, we did both, a log-log fit as well
as a direct fit with an exponential function, each for both branches of the peak seperately after
subtracting the noncritical linear behaviour. The results can be seen in figure 2.3. Any values
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Table 2.2: Coefficients of the plots concerning the second order phase transition

Temperature range Function Kind of fit Coefficients

T < TN
f = a · t+ b/a log-log a = −0.093± 2 b = −0.334± 7
h = r/s · |t|s direct s = −0.090± 2 r = −3.25± 5

T > TN
g = c · t+ d/c log-log c = −0.190± 8 d = −0.488± 14
i = q/p · |t|p direct p = −0.215± 7 q = −2.55± 2

obtained through fitting are depicted in table 2.2, where the first row of coefficients2 are the
critical exponentials.

The values we obtained do not confirm α− = α+, but instead they vary by a factor of two.
This is not surprising, however, since Jayasuriya et al. needed another diverging term in the
power law in order to achieve α+ = α−. Still, the specific heat course follows a power law, as
can be seen by the small errors and the good alignment of the curves to the data points, as seen
in figure 2.3

2.4 Discussion of specific heat course
The results of the previous sections allow us to describe the specific heat course of Dysprosium
through a set of phenomenologically found fits:

• In the vicinity of the first order phase transition at TC = 88.29 K a Cauchy distribution
matches the experimental data very well, as can clearly be seen in figure 2.2.

• For the second order phase transition at TN = 179.68 K we apply a modified power law,
that uses different critical exponentials on each side of the phase transition. Again, the
functions align well to the results, becoming clear when looking at figure 2.3.

• In general, we considered a linear “basic progression” of specific heat while fitting the
respective functions. This is, naturally, allowed in approximation. However, the nicety,
with which the line fitted for the noncritical behaviour in section 2.2.2 matches large
parts of the data from the antiferromagnetic reign, suggests that a linear dependency on
temperature exists indeed. Therefore, we seem to have measured in an intermediate region,
in terms of the limits in equation (1.3).

2errors are with respect to the last digit(s) given
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