(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 84288, 2256] NotebookOptionsPosition[ 74780, 2129] NotebookOutlinePosition[ 75243, 2146] CellTagsIndexPosition[ 75200, 2143] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Differentialgleichungen", "Title", CellChangeTimes->{{3.926996921545116*^9, 3.926996924447691*^9}},ExpressionUUID->"81c9fe74-a375-466c-ab0c-\ 51d0930f3f12"], Cell[CellGroupData[{ Cell["DSolve und NDSolve", "Chapter", CellChangeTimes->{{3.9269969330271482`*^9, 3.926996939585598*^9}},ExpressionUUID->"e9729985-0ced-4bde-ab0f-\ 441442cae874"], Cell[CellGroupData[{ Cell["Bewegte Ladung im Magnetfeld", "Section", CellChangeTimes->{{3.9269969612437773`*^9, 3.9269969654376907`*^9}},ExpressionUUID->"bbb65c12-6e3f-4ae5-a658-\ 772d255f59bd"], Cell[BoxData[{ RowBox[{ RowBox[{"q", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"m", "=", "1"}], ";"}]}], "Input", CellChangeTimes->{{3.925267829551873*^9, 3.9252678371046457`*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"7029fbb6-2bfb-474b-b980-d55b3a26bc55"], Cell[BoxData[ RowBox[{ RowBox[{"FLorentz", "[", RowBox[{"v_", ",", "B_"}], "]"}], ":=", RowBox[{"q", " ", RowBox[{"Cross", "[", RowBox[{"v", ",", "B"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.9252678674781227`*^9, 3.9252678818635817`*^9}}, CellLabel->"In[3]:=",ExpressionUUID->"6532434f-45ed-4e8f-a45e-65cd18ff2315"], Cell[CellGroupData[{ Cell["Konstantes Magnetfeld", "Subsection", CellChangeTimes->{{3.9252708903979177`*^9, 3.925270892695285*^9}},ExpressionUUID->"61b367ad-4aa0-4731-9c1b-\ 7d0dda06b6cc"], Cell[BoxData[ RowBox[{ RowBox[{"KonstantesBfeld", "=", RowBox[{"{", RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.925270646510744*^9, 3.925270654373002*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"e1a8033c-5eab-4a1c-8219-8483309aa0c8"], Cell[BoxData[ RowBox[{"DSolve", "[", RowBox[{ RowBox[{"LogicalExpand", "[", RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "''"}], "[", "t", "]"}]}], "}"}], "==", RowBox[{ RowBox[{"FLorentz", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}]}], "}"}], ",", "KonstantesBfeld"}], "]"}], "/", "m"}]}], ")"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", "t"}], "]"}]], "Input", CellChangeTimes->{3.925270783821501*^9}, CellLabel->"In[5]:=",ExpressionUUID->"526f8134-acde-4e14-aa28-5b01b25ff3b0"], Cell[BoxData[ RowBox[{"DSolve", "[", RowBox[{ RowBox[{"LogicalExpand", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "''"}], "[", "t", "]"}]}], "}"}], "==", RowBox[{ RowBox[{"FLorentz", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}]}], "}"}], ",", "KonstantesBfeld"}], "]"}], "/", "m"}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "0", "]"}], ",", RowBox[{ RowBox[{"y", "'"}], "[", "0", "]"}], ",", RowBox[{ RowBox[{"z", "'"}], "[", "0", "]"}]}], "}"}], "==", RowBox[{"{", RowBox[{"vx0", ",", "vy0", ",", "vz0"}], "}"}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "0", "]"}], ",", RowBox[{"y", "[", "0", "]"}], ",", RowBox[{"z", "[", "0", "]"}]}], "}"}], "==", RowBox[{"{", RowBox[{"x0", ",", "y0", ",", "z0"}], "}"}]}], ")"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", "t"}], "]"}]], "Input", CellChangeTimes->{{3.925270632175022*^9, 3.925270733343309*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"b4727942-2b9d-48ad-ae42-2284789acc48"], Cell[BoxData[ RowBox[{"sol", "=", RowBox[{"DSolve", "[", RowBox[{ RowBox[{"LogicalExpand", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "''"}], "[", "t", "]"}]}], "}"}], "==", RowBox[{ RowBox[{"FLorentz", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}]}], "}"}], ",", "KonstantesBfeld"}], "]"}], "/", "m"}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "0", "]"}], ",", RowBox[{ RowBox[{"y", "'"}], "[", "0", "]"}], ",", RowBox[{ RowBox[{"z", "'"}], "[", "0", "]"}]}], "}"}], "==", RowBox[{"{", RowBox[{"vx0", ",", "0", ",", "0"}], "}"}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "0", "]"}], ",", RowBox[{"y", "[", "0", "]"}], ",", RowBox[{"z", "[", "0", "]"}]}], "}"}], "==", RowBox[{"{", RowBox[{"0", ",", "y0", ",", "0"}], "}"}]}], ")"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", "t"}], "]"}]}]], "Input", CellChangeTimes->{{3.9252708093761253`*^9, 3.925270815672226*^9}, { 3.925270915219983*^9, 3.9252709157158127`*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"d1f1c679-48d4-4e36-893d-9570fe89c950"] }, Open ]], Cell[CellGroupData[{ Cell["Magnetfeld eines stromdurchflossenen Drahtes", "Subsection", CellChangeTimes->{{3.925270865762802*^9, 3.9252708843311768`*^9}},ExpressionUUID->"3d7129af-1170-4747-82d8-\ 2243c61786e1"], Cell[BoxData[ RowBox[{ RowBox[{"Bfeld", "[", RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=", RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["y", RowBox[{"2", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}], ")"}]}]]}], ",", FractionBox["x", RowBox[{ RowBox[{"2", " ", "\[Pi]", " ", SuperscriptBox["x", "2"]}], "+", RowBox[{"2", " ", "\[Pi]", " ", SuperscriptBox["y", "2"]}]}]], ",", "0"}], "}"}]}]], "Input", CellChangeTimes->{{3.925267858292926*^9, 3.925267861847896*^9}, 3.925267997322282*^9}, CellLabel->"In[8]:=",ExpressionUUID->"c989b071-69f5-4737-bba7-a1d6bf7f0522"], Cell[BoxData[{ RowBox[{ RowBox[{"v0", "=", RowBox[{"{", RowBox[{"0", ",", "0.1", ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"r0", "=", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], ";"}]}], "Input", CellLabel->"In[9]:=",ExpressionUUID->"9ecf3f7b-e326-42cc-9f14-aad422a84997"], Cell[BoxData[ RowBox[{"sol", "=", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"LogicalExpand", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "''"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "''"}], "[", "t", "]"}]}], "}"}], "==", RowBox[{ RowBox[{"FLorentz", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"y", "'"}], "[", "t", "]"}], ",", RowBox[{ RowBox[{"z", "'"}], "[", "t", "]"}]}], "}"}], ",", RowBox[{"Bfeld", "[", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "]"}]}], "]"}], "/", "m"}]}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "'"}], "[", "0", "]"}], ",", RowBox[{ RowBox[{"y", "'"}], "[", "0", "]"}], ",", RowBox[{ RowBox[{"z", "'"}], "[", "0", "]"}]}], "}"}], "==", "v0"}], ")"}], "&&", RowBox[{"(", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "0", "]"}], ",", RowBox[{"y", "[", "0", "]"}], ",", RowBox[{"z", "[", "0", "]"}]}], "}"}], "==", "r0"}], ")"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "500"}], "}"}], ",", RowBox[{"AccuracyGoal", "->", "10"}], ",", RowBox[{"PrecisionGoal", "->", "10"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.925267884670065*^9, 3.925267982751485*^9}, { 3.925268132689433*^9, 3.925268165002564*^9}, {3.925268201154954*^9, 3.9252683127193108`*^9}, {3.925268363119128*^9, 3.9252683737889767`*^9}, { 3.925268576993487*^9, 3.925268636163786*^9}, {3.925268912109557*^9, 3.925268916698337*^9}, 3.925269565934434*^9, {3.9252712559857473`*^9, 3.925271256351492*^9}, {3.9252715803058577`*^9, 3.925271611079195*^9}, { 3.92527166664964*^9, 3.9252716668517447`*^9}, {3.925271781905998*^9, 3.925271782275118*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"1c5ff634-4fd9-4f08-8af4-8e3c9acafa7f"], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "500"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.925271546342849*^9, 3.925271613871626*^9}, { 3.925271678315514*^9, 3.925271739452265*^9}, {3.925271784202808*^9, 3.9252717845835543`*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"1e4179ea-d3fd-4e15-b1c9-ad18a9b2baa1"], Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"VectorPlot3D", "[", RowBox[{ RowBox[{"Bfeld", "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"z", ",", "0", ",", "20"}], "}"}]}], "]"}], ",", RowBox[{"ParametricPlot3D", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], "/.", "sol"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "500"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"Thickness", "[", "0.01", "]"}]}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.925268507735812*^9, 3.925268535192453*^9}, { 3.92526860740987*^9, 3.925268643092826*^9}, {3.925268700391303*^9, 3.925268835182053*^9}, {3.925268920982217*^9, 3.925268929177067*^9}, { 3.925269353678653*^9, 3.9252693541319513`*^9}, 3.925269482459558*^9, 3.9252695684732227`*^9, {3.925271702058105*^9, 3.925271702623097*^9}, { 3.9252717640860367`*^9, 3.925271764308114*^9}, {3.925272040052664*^9, 3.925272040389526*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"d7c23cc4-23cb-4bde-acc3-930fa304ad86"], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"VectorPlot3D", "[", RowBox[{ RowBox[{"Bfeld", "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"z", ",", "0", ",", "20"}], "}"}]}], "]"}], ",", RowBox[{"ParametricPlot3D", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], "/.", "sol"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "1000"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"Thickness", "[", "0.01", "]"}]}]}], "]"}], ",", RowBox[{"Graphics3D", "[", RowBox[{"Ellipsoid", "[", RowBox[{ RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "/.", RowBox[{"{", RowBox[{"t", "->", "tp"}], "}"}]}], ",", RowBox[{"{", RowBox[{"0.3", ",", "0.3", ",", "1"}], "}"}]}], "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"tp", ",", "0", ",", "500"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.925272431971756*^9, 3.92527243377032*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"bcbc89b3-60c3-487d-b91d-067cfa19973e"], Cell[BoxData[ RowBox[{"Animate", "[", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"VectorPlot3D", "[", RowBox[{ RowBox[{"Bfeld", "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"z", ",", "0", ",", "20"}], "}"}]}], "]"}], ",", RowBox[{"ParametricPlot3D", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], "/.", "sol"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "1000"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"Thickness", "[", "0.01", "]"}]}]}], "]"}], ",", RowBox[{"Graphics3D", "[", RowBox[{"Ellipsoid", "[", RowBox[{ RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", RowBox[{"y", "[", "t", "]"}], ",", RowBox[{"z", "[", "t", "]"}]}], "}"}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "/.", RowBox[{"{", RowBox[{"t", "->", "tp"}], "}"}]}], ",", RowBox[{"{", RowBox[{"0.3", ",", "0.3", ",", "1"}], "}"}]}], "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"tp", ",", "0", ",", "500"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.925271927586143*^9, 3.92527194175445*^9}, { 3.925271985609089*^9, 3.925272043620393*^9}, {3.9252721077421713`*^9, 3.9252721081571827`*^9}, {3.9252721535049667`*^9, 3.925272302404643*^9}, { 3.92527233456358*^9, 3.925272336972829*^9}, {3.92527239841434*^9, 3.925272419471808*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"7c025329-b5e2-479f-adf7-7b97d1f6734a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Mathematisches Pendel", "Section", CellChangeTimes->{{3.926996979610018*^9, 3.9269969948800287`*^9}},ExpressionUUID->"a59a9874-1922-46f5-bb41-\ 5d0aca04a5fc"], Cell["\<\ Massenpunkt (Masse m) h\[ADoubleDot]ngt an einer Schnur der L\[ADoubleDot]nge \ l und wird um den Winkel \[Phi] ausgelenkt. Bewegungsgleichung: d^2 phi / d t^2 + w^2 Sin[phi] = 0 mit: w = Sqrt[ g/l ] Approximation fuer kleine Winkel d^2 phi / d t^2 + w^2 phi = 0 Loesung: phi(t) = A sin(w*t) + B cos(w*t) w = 2*Pi/T Vergleich von Approximation Sin[phi] ~ phi und exakter Loesung\ \>", "Text", CellChangeTimes->{{3.926997007772416*^9, 3.926997043182767*^9}},ExpressionUUID->"f18b1e64-0b81-4bec-a936-\ e2a47fa7ab71"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Anfangsbedingungen", ":"}], " ", "*)"}], "\n", RowBox[{ RowBox[{ RowBox[{"phi0", " ", ":=", "0.1"}], ";"}], "\n", RowBox[{ RowBox[{"phip0", " ", ":=", " ", "0"}], ";"}]}]}]], "Input", CellChangeTimes->{{3.926997061158778*^9, 3.926997132801797*^9}, 3.926997207879382*^9, {3.926997380237216*^9, 3.926997381512825*^9}}, CellLabel->"In[99]:=",ExpressionUUID->"630f6b4e-4a9a-44a6-b6a5-fd377fe0decf"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ "Loese", " ", "vereinfachte", " ", "Bewegungsgleichung", " ", "analytisch", " ", "und", " ", "\n", " ", "exakte", " ", "Bewegungsgleichung", " ", RowBox[{"numerisch", ":"}]}], " ", "*)"}], "\n", RowBox[{ RowBox[{ RowBox[{"w", "=", "1"}], ";"}], "\n", RowBox[{ RowBox[{"Clear", "[", "t", "]"}], ";"}], "\n", "\n", RowBox[{ RowBox[{"ergapprox", " ", "=", " ", RowBox[{"DSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"phi", "''"}], "[", "t", "]"}], " ", "+", " ", RowBox[{ RowBox[{"w", "^", "2"}], "*", RowBox[{"phi", "[", "t", "]"}]}]}], " ", "==", " ", "0"}], ",", " ", RowBox[{ RowBox[{"phi", "[", "0", "]"}], " ", "==", " ", "phi0"}], ",", " ", RowBox[{ RowBox[{ RowBox[{"phi", "'"}], "[", "0", "]"}], " ", "==", " ", "phip0"}]}], "}"}], ",", " ", RowBox[{"phi", "[", "t", "]"}], ",", " ", "t"}], "]"}]}], ";"}], "\n", "\n", RowBox[{ RowBox[{"ergexakt", " ", "=", " ", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"phi", "[", "t", "]"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "2"}], "}"}]}], "]"}], " ", "+", " ", RowBox[{ RowBox[{"w", "^", "2"}], "*", RowBox[{"Sin", "[", RowBox[{"phi", "[", "t", "]"}], "]"}]}]}], " ", "==", " ", "0"}], ",", " ", RowBox[{ RowBox[{"phi", "[", "0", "]"}], " ", "==", " ", "phi0"}], ",", " ", RowBox[{ RowBox[{ RowBox[{"phi", "'"}], "[", "0", "]"}], " ", "==", " ", "phip0"}]}], "}"}], ",", " ", RowBox[{"phi", "[", "t", "]"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "0", ",", " ", "30"}], "}"}]}], "]"}]}], ";"}]}]}]], "Input", CellChangeTimes->{3.926997384210137*^9}, CellLabel-> "In[101]:=",ExpressionUUID->"88e170eb-2bc6-4998-87b3-4b4787fd94da"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{ "Vergleich", " ", "zwischen", " ", "exakter", " ", "Loesung", " ", "fuer", " ", "phi", RowBox[{"(", "t", ")"}], " ", RowBox[{"(", "schwarz", ")"}], "\n", " ", "und", " ", "approximativer", " ", "Loesung", " ", RowBox[{"(", "rot", ")"}]}], ":"}], " ", "*)"}], "\n", "\n", RowBox[{"plphit", " ", "=", " ", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergapprox", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", " ", "\n", " ", RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergexakt", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "0", ",", " ", "30"}], "}"}], ",", " ", "\n", " ", RowBox[{"PlotStyle", " ", "->", " ", RowBox[{"{", RowBox[{"Red", ",", " ", "Black"}], "}"}]}]}], "]"}]}]}]], "Input", CellLabel-> "In[105]:=",ExpressionUUID->"4e413659-3aaa-4de7-a74a-49032c6f8a89"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{ "Vorbereitung", " ", "der", " ", "graphischen", " ", "Darstellung", " ", "der", " ", RowBox[{"Schwingung", ":", "\n", RowBox[{"Disk", "[", "]"}], " ", ":", " ", RowBox[{"Massepunkt", " ", "\n", RowBox[{"Line", "[", "]"}]}], " ", ":", " ", RowBox[{"Faden", " ", "des", " ", "Pendels"}]}]}], ";", " ", "\n", " ", RowBox[{ "rot", " ", "und", " ", "schwarz", " ", "zur", " ", "Unterscheidung", "\n", RowBox[{"pl", ":", " ", RowBox[{"Norm", "-", "Koordinatensystem"}]}]}]}], " ", "*)"}], "\n", "\n", RowBox[{ RowBox[{ RowBox[{ RowBox[{"masspkt", "[", "phi_", "]"}], " ", ":=", " ", RowBox[{"Graphics", "[", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", "phi", "]"}], ",", " ", RowBox[{"-", RowBox[{"Cos", "[", "phi", "]"}]}]}], "}"}], ",", " ", ".03"}], "]"}], "]"}]}], ";"}], "\n", RowBox[{ RowBox[{ RowBox[{"faden1", "[", "phi_", "]"}], " ", ":=", " ", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"1", ",", " ", "0", ",", " ", "0"}], "]"}], ",", " ", "\n", "\t \t\t ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", "phi", "]"}], ",", " ", RowBox[{"-", RowBox[{"Cos", "[", "phi", "]"}]}]}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}]}], ";"}], "\n", RowBox[{ RowBox[{ RowBox[{"faden2", "[", "phi_", "]"}], " ", ":=", " ", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"0", ",", " ", "0", ",", " ", "0"}], "]"}], ",", " ", "\n", "\t\t\t ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", "phi", "]"}], ",", " ", RowBox[{"-", RowBox[{"Cos", "[", "phi", "]"}]}]}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}]}], ";"}], "\n", "\n", RowBox[{ RowBox[{"pl", " ", ":=", " ", RowBox[{"Plot", "[", RowBox[{"0", ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "1.5"}], ",", " ", "1.5"}], "}"}], ",", " ", RowBox[{"Ticks", " ", "->", " ", "None"}]}], "]"}]}], ";"}], "\n", "\n", RowBox[{"(*", " ", RowBox[{ RowBox[{"Zeichne", " ", "Pendel", " ", "im", " ", RowBox[{"Koordinatensystem", " ", "'"}], RowBox[{"pl", "'"}], " ", "zum", " ", "Zeitpunkt", " ", "t"}], ";", "\n", " ", RowBox[{"Verwende", " ", "exakte", " ", "und", " ", "approximative", " ", RowBox[{"Loesungen", "."}]}]}], " ", "*)"}], "\n", "\n", RowBox[{ RowBox[{ RowBox[{"pendel", "[", "tt_", "]"}], " ", ":=", " ", RowBox[{"Show", "[", RowBox[{"pl", ",", "\n", "\t\t ", RowBox[{"faden1", "[", RowBox[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergapprox", "[", RowBox[{"[", "1", "]"}], "]"}]}], " ", "/.", " ", RowBox[{"t", "->", "tt"}]}], "]"}], ",", " ", "\n", "\t\t ", RowBox[{"masspkt", "[", RowBox[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergapprox", "[", RowBox[{"[", "1", "]"}], "]"}]}], " ", "/.", " ", RowBox[{"t", "->", "tt"}]}], "]"}], ",", " ", "\n", "\t\t ", RowBox[{"faden2", "[", RowBox[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergexakt", "[", RowBox[{"[", "1", "]"}], "]"}]}], " ", "/.", " ", RowBox[{"t", "->", "tt"}]}], "]"}], ",", " ", "\n", "\t\t ", RowBox[{"masspkt", "[", RowBox[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergexakt", "[", RowBox[{"[", "1", "]"}], "]"}]}], " ", "/.", " ", RowBox[{"t", "->", "tt"}]}], "]"}], ",", " ", "\n", "\t\t ", RowBox[{"PlotRange", " ", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"-", "1."}], ",", " ", "1."}], "}"}]}], ",", "\n", "\t\t ", RowBox[{"PlotLabel", " ", "->", " ", RowBox[{"\"\\"", " ", "<>", " ", RowBox[{"ToString", "[", RowBox[{"N", "[", RowBox[{"tt", "/", RowBox[{"(", RowBox[{"2", "*", "Pi"}], ")"}]}], "]"}], "]"}]}]}]}], "\n", "\t\t ", "]"}]}], ";"}]}]}]], "Input", CellChangeTimes->{{3.92699718048181*^9, 3.9269971809833508`*^9}}, CellLabel-> "In[106]:=",ExpressionUUID->"76f45841-2afd-46ed-855e-c8a1f4b9aa17"], Cell[BoxData[ RowBox[{"Animate", "[", RowBox[{ RowBox[{"pendel", "[", "tt", "]"}], ",", " ", RowBox[{"{", RowBox[{"tt", ",", "0", ",", RowBox[{"2", "*", "Pi"}]}], "}"}]}], "]"}]], "Input", CellLabel-> "In[111]:=",ExpressionUUID->"0ce1400f-7fee-408b-94e5-4c2a041a5384"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Variationsprinzip", "Chapter", CellChangeTimes->{{3.9263909260080967`*^9, 3.9263909285139103`*^9}},ExpressionUUID->"e179e666-b844-40f4-93e0-\ 51d482c6f022"], Cell[CellGroupData[{ Cell["K\[UDoubleDot]rzeste Verbindung zwischen zwei Punkten", "Section", CellChangeTimes->{{3.926390937780677*^9, 3.926390942724094*^9}},ExpressionUUID->"7186d4ed-ec96-493d-9c1a-\ 4f99e8273de8"], Cell[TextData[{ "F\[UDoubleDot]r eine Kurve y(x) ist das infinitesimale Linienelement ", Cell[BoxData[ FormBox[ RowBox[{"ds", " ", "=", " ", RowBox[{ SqrtBox[ RowBox[{ SuperscriptBox["dx", "2"], " ", "+", " ", SuperscriptBox["dy", "2"]}]], " ", "=", " ", RowBox[{ SqrtBox[ RowBox[{"1", " ", "+", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"y", "'"}], ")"}], "2"]}]], "dx"}]}]}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "241033c5-a052-4e1a-ad57-c142e5c626a5"], " . Die L\[ADoubleDot]nge der Kurve ist somit ", StyleBox["\[Integral]", "OperatorCharacter"], Cell[BoxData[ FormBox[ RowBox[{ SqrtBox[ RowBox[{"1", " ", "+", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"y", "'"}], ")"}], "2"]}]], "dx"}], TraditionalForm]], ExpressionUUID->"03df3f9f-3ddf-4ec6-8fed-7471545541df"], " . Die k\[UDoubleDot]rzeste Verbindung zwischen zwei Punkten \ l\[ADoubleDot]sst sich mit dem Variationsprinzip bestimmen" }], "Text", CellChangeTimes->{{3.926390973856474*^9, 3.926391130112355*^9}},ExpressionUUID->"ffc6e2d5-3d45-4f8f-9313-\ c0668315bfb6"], Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", "\"\\"", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Needs", "[", "\"\\"", "]"}]}], "Input", CellChangeTimes->{ 3.510490875962857*^9, {3.5417582428554444`*^9, 3.5417582434638453`*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"ed1414da-bf63-4494-99ea-8984f847acf3"], Cell[BoxData[ RowBox[{ RowBox[{"F", "=", SqrtBox[ RowBox[{"1", "+", SuperscriptBox[ RowBox[{ SuperscriptBox["y", "\[Prime]", MultilineFunction->None], "[", "x", "]"}], "2"]}]]}], ";"}]], "Input",\ CellChangeTimes->{{3.472803472953125*^9, 3.472803473953125*^9}, 3.5104909031537046`*^9}, CellLabel->"In[18]:=",ExpressionUUID->"75566354-7d86-4ae1-be35-31efc8a134b7"], Cell["Euler-Lagrange-Gleichung", "Text", CellChangeTimes->{{3.9263911525140963`*^9, 3.9263911802927513`*^9}},ExpressionUUID->"404d40a7-95ca-43fc-80c3-\ 6b950a82f999"], Cell[BoxData[ RowBox[{"?", "EulerEquations"}]], "Input", CellLabel->"In[19]:=",ExpressionUUID->"da865be4-5c58-4672-b0d5-a110310aff5e"], Cell[BoxData[ RowBox[{"Eulereq", "=", RowBox[{"EulerEquations", "[", RowBox[{"F", ",", RowBox[{"y", "[", "x", "]"}], ",", "x"}], "]"}]}]], "Input", CellChangeTimes->{{3.926390696379046*^9, 3.926390698180113*^9}}, CellLabel->"In[20]:=",ExpressionUUID->"8aba4085-e3ad-4654-8ef3-9134c6b7df5e"], Cell["Erste Integrale der EL-Gleichung", "Text", CellChangeTimes->{{3.926391195542715*^9, 3.92639120666088*^9}},ExpressionUUID->"2c0dea0b-fd00-4096-aadc-\ 6d789be95518"], Cell[BoxData[ RowBox[{"?", "FirstIntegrals"}]], "Input", CellLabel->"In[21]:=",ExpressionUUID->"49d50cb0-2910-4498-87e4-be6d3a7ad5b9"], Cell[BoxData[ RowBox[{"Firstint", "=", RowBox[{"FirstIntegrals", "[", RowBox[{"F", ",", RowBox[{"y", "[", "x", "]"}], ",", "x"}], "]"}]}]], "Input", CellChangeTimes->{{3.926390704877296*^9, 3.926390709458172*^9}}, CellLabel->"In[22]:=",ExpressionUUID->"aa9ac018-8270-4784-ae1c-48ab378e88e9"], Cell[BoxData[ RowBox[{"Diffeq", "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"FirstIntegral", "[", "y", "]"}], "/.", "Firstint"}], ")"}], "\[Equal]", SuperscriptBox["c", "2"]}]}]], "Input", CellChangeTimes->{{3.926390673788147*^9, 3.926390718866357*^9}, { 3.9263907663460093`*^9, 3.9263907804516993`*^9}, 3.926390858545437*^9, { 3.926391706539897*^9, 3.926391707387332*^9}}, CellLabel->"In[23]:=",ExpressionUUID->"1133b0f6-0518-4738-8285-cd2cd7ad485c"], Cell[BoxData[ RowBox[{"solutiony", "=", RowBox[{"DSolve", "[", RowBox[{"Diffeq", ",", RowBox[{"y", "[", "x", "]"}], ",", "x"}], "]"}]}]], "Input", CellChangeTimes->{{3.926390725051258*^9, 3.926390732667036*^9}, { 3.926390797582727*^9, 3.926390802635119*^9}}, CellLabel->"In[24]:=",ExpressionUUID->"43fa7a15-1f55-49ee-8de7-269bb63caf89"] }, Open ]], Cell[CellGroupData[{ Cell["Kepler-Gesetz", "Section", CellChangeTimes->{{3.926391859558303*^9, 3.926391864704191*^9}},ExpressionUUID->"bc9db4ab-b4c6-44cc-9d01-\ 5805b6050983"], Cell[TextData[{ "Betrachte die Bewegung eines Planeten in einem Zentralpotential der Form \ V(r) = - k/r . Die Bahn des Planeten ist parametrisiert durch Radius r(t) und \ Winkel \[Phi](t), so dass die kinetische Energie gegeben ist duch T = ", Cell[BoxData[ FormBox[ RowBox[{ FractionBox["m", "2"], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"r", "'"}], RowBox[{"(", "t", ")"}]}], ")"}], "2"], "+", SuperscriptBox[ RowBox[{ SuperscriptBox["r", "2"], "(", RowBox[{ RowBox[{"\[Phi]", "'"}], RowBox[{"(", "t", ")"}]}], ")"}], "2"]}], ")"}]}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "a87f2883-140a-44cc-b2dc-5d41986be816"], ". Damit ist die Lagrangfunktion gegeben durch " }], "Text", CellChangeTimes->{{3.926391874662354*^9, 3.92639199228579*^9}},ExpressionUUID->"63797bfd-abf5-4faa-97b0-\ e28ceb6a22aa"], Cell[BoxData[ RowBox[{ RowBox[{"Lag", "=", RowBox[{ RowBox[{ FractionBox["1", "2"], " ", "m", " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ RowBox[{"r", "'"}], "[", "t", "]"}], "2"], "+", RowBox[{ SuperscriptBox[ RowBox[{"r", "[", "t", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ RowBox[{"\[Phi]", "'"}], "[", "t", "]"}], "2"]}]}], ")"}]}], "+", RowBox[{"k", "/", RowBox[{"r", "[", "t", "]"}]}]}]}], ";"}]], "Input", CellLabel->"In[25]:=",ExpressionUUID->"1287965d-9d55-48cf-a0b0-d4c764ca1c77"], Cell[BoxData[ RowBox[{"Eulereq", "=", RowBox[{"EulerEquations", "[", RowBox[{"Lag", ",", RowBox[{"{", RowBox[{ RowBox[{"r", "[", "t", "]"}], ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "}"}], ",", "t"}], "]"}]}]], "Input", CellChangeTimes->{{3.926392479467062*^9, 3.926392485667718*^9}}, CellLabel->"In[26]:=",ExpressionUUID->"a341166f-bbe0-4de5-a771-708570f9c776"], Cell[BoxData[ RowBox[{"Firstint", "=", RowBox[{ RowBox[{"FirstIntegrals", "[", RowBox[{"Lag", ",", RowBox[{"{", RowBox[{ RowBox[{"r", "[", "t", "]"}], ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "}"}], ",", "t"}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.926392019242675*^9, 3.9263920202484417`*^9}}, CellLabel->"In[27]:=",ExpressionUUID->"dcbd61b1-0019-4432-92f2-d1180ab026b5"], Cell["\<\ Die ersten Integrale entsprechen den Erhaltungsgr\[ODoubleDot]\[SZ]en des \ Problems\ \>", "Text", CellChangeTimes->{{3.926392026115899*^9, 3.926392044664235*^9}},ExpressionUUID->"b8265362-cfcf-4386-a16d-\ 29f1f6616b9b"], Cell["Drehimpulserhaltung:", "Text", CellChangeTimes->{{3.92639204969032*^9, 3.926392053402322*^9}},ExpressionUUID->"bc6708cb-e0d2-48a6-b89d-\ cbad963bdad1"], Cell[BoxData[ RowBox[{"Lerhaltung", "=", RowBox[{ RowBox[{"L0", "\[Equal]", RowBox[{"-", RowBox[{"FirstIntegral", "[", "\[Phi]", "]"}]}]}], "/.", "Firstint"}]}]], "Input", CellChangeTimes->{{3.9263920613130817`*^9, 3.9263920832471447`*^9}}, CellLabel->"In[28]:=",ExpressionUUID->"22924ae1-f268-4b03-8486-0a4baea1820d"], Cell["Energieerhaltung:", "Text", CellChangeTimes->{{3.926392069344522*^9, 3.9263920712226048`*^9}},ExpressionUUID->"9944147e-fb16-4bb4-9cfb-\ 0e2b1565b56c"], Cell[BoxData[ RowBox[{"Eerhaltung", "=", RowBox[{ RowBox[{"E0", "==", RowBox[{"FirstIntegral", "[", "t", "]"}]}], "/.", "Firstint"}]}]], "Input",\ CellChangeTimes->{{3.926392078154708*^9, 3.926392088540841*^9}}, CellLabel->"In[29]:=",ExpressionUUID->"ece47f48-26a6-4d86-9374-7beab98e6d8f"], Cell["Der naive L\[ODoubleDot]sungsversuch misslingt:", "Text", CellChangeTimes->{{3.926392214007845*^9, 3.9263922312217493`*^9}},ExpressionUUID->"0fa2a3b6-3fbb-4f92-95b2-\ 7f8422465672"], Cell[BoxData[ RowBox[{"DSolve", "[", RowBox[{ RowBox[{"{", RowBox[{"Lerhaltung", ",", "Eerhaltung"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"r", "[", "t", "]"}], ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "}"}], ",", "t"}], "]"}]], "Input", CellChangeTimes->{{3.9263921732948*^9, 3.9263921941006107`*^9}}, CellLabel->"In[30]:=",ExpressionUUID->"99612c3f-c7f2-4f96-8932-eda30912a687"], Cell["\<\ Zur Trennung der Variablen substituieren wir in die 1. EL-Gleichung:\ \>", "Text", CellChangeTimes->{{3.9263925157390633`*^9, 3.9263925305892687`*^9}},ExpressionUUID->"fb042da0-c6ec-406b-b06b-\ 3a21a2c470c4"], Cell[BoxData[ RowBox[{"Hilfsgleichung1", "=", RowBox[{ RowBox[{"Solve", "[", RowBox[{"Lerhaltung", ",", RowBox[{ RowBox[{"\[Phi]", "'"}], "[", "t", "]"}]}], "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.9263927517221117`*^9, 3.926392775888809*^9}}, CellLabel->"In[31]:=",ExpressionUUID->"35c54ed7-26ef-4f05-8384-cdab0ce43db2"], Cell[BoxData[ RowBox[{"Hilfsgleichung2", "=", RowBox[{"D", "[", RowBox[{"Hilfsgleichung1", ",", "t"}], "]"}]}]], "Input", CellChangeTimes->{{3.9263927811446657`*^9, 3.92639278991064*^9}}, CellLabel->"In[32]:=",ExpressionUUID->"dc7e4134-928e-45be-afb4-06f0a6612363"], Cell[BoxData[ RowBox[{"SeparierteGl", "=", RowBox[{ RowBox[{"Eulereq", "[", RowBox[{"[", "1", "]"}], "]"}], "/.", "Hilfsgleichung1"}]}]], "Input", CellChangeTimes->{{3.926392470252722*^9, 3.926392503699819*^9}, { 3.926392540153802*^9, 3.926392549432424*^9}, 3.9263927952581778`*^9}, CellLabel->"In[33]:=",ExpressionUUID->"e2e59207-0c32-46ec-8d0b-d80335b814ca"], Cell["Immer noch zu schwierig:", "Text", CellChangeTimes->{{3.926392643462262*^9, 3.926392649820763*^9}},ExpressionUUID->"889d58e9-2336-46d0-8f8f-\ 70782436cf37"], Cell[BoxData[ RowBox[{"DSolve", "[", RowBox[{"SeparierteGl", ",", RowBox[{"r", "[", "t", "]"}], ",", "t"}], "]"}]], "Input", CellChangeTimes->{{3.926392553373679*^9, 3.926392559926395*^9}}, CellLabel->"In[34]:=",ExpressionUUID->"89802267-08f6-4298-9b3b-51da92eb4eb2"], Cell["Wir machen die Ersetzung r(t) -> 1/u(\[Phi](t))", "Text", CellChangeTimes->{{3.926392696059218*^9, 3.9263927058293533`*^9}},ExpressionUUID->"a7c83910-1838-42fe-9fc7-\ 0423a7c226e2"], Cell[BoxData[ RowBox[{"Hilfsgleichung3", "=", RowBox[{"Hilfsgleichung1", "/.", RowBox[{"r", "\[Rule]", RowBox[{"(", RowBox[{ RowBox[{"1", "/", RowBox[{"u", "[", RowBox[{"\[Phi]", "[", "#", "]"}], "]"}]}], "&"}], ")"}]}]}]}]], "Input", CellChangeTimes->{{3.9263928894612827`*^9, 3.9263928944379673`*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"f5abd415-d4fb-462b-b50a-d0026c97322f"], Cell[BoxData[ RowBox[{"Hilfsgleichung4", "=", RowBox[{ RowBox[{"Hilfsgleichung2", "/.", RowBox[{"r", "\[Rule]", RowBox[{"(", RowBox[{ RowBox[{"1", "/", RowBox[{"u", "[", RowBox[{"\[Phi]", "[", "#", "]"}], "]"}]}], "&"}], ")"}]}]}], "/.", "Hilfsgleichung3"}]}]], "Input", CellChangeTimes->{{3.9263928990314217`*^9, 3.926392912869804*^9}}, CellLabel->"In[36]:=",ExpressionUUID->"a2956ba6-fda5-47de-9ea6-edbbace75ae1"], Cell[BoxData[ RowBox[{"NeueGl", "=", RowBox[{ RowBox[{"Simplify", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"SeparierteGl", "/.", RowBox[{"r", "\[Rule]", RowBox[{"(", RowBox[{ RowBox[{"1", "/", RowBox[{"u", "[", RowBox[{"\[Phi]", "[", "#", "]"}], "]"}]}], "&"}], ")"}]}]}], "/.", "Hilfsgleichung3"}], "/.", "Hilfsgleichung4"}], ",", RowBox[{"Assumptions", "->", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"u", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], "!=", "0"}], ",", RowBox[{"m", ">", "0"}]}], "}"}]}]}], "]"}], "//", "ExpandAll"}]}]], "Input", CellChangeTimes->{{3.926392656130848*^9, 3.926392666831258*^9}, { 3.9263927274997053`*^9, 3.9263927290481377`*^9}, {3.9263928051441174`*^9, 3.926392847370989*^9}, {3.926392920233778*^9, 3.9263929642288103`*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"82cca539-9821-4f1b-83f4-dbf23c7fadaa"], Cell[BoxData[ RowBox[{"L\[ODoubleDot]sung", "=", RowBox[{"DSolve", "[", RowBox[{"NeueGl", ",", RowBox[{"u", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}], ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9263929703980637`*^9, 3.9263930326791677`*^9}, { 3.92639307014465*^9, 3.9263930712018757`*^9}}, CellLabel->"In[38]:=",ExpressionUUID->"e4d2f4fc-d885-40f2-8906-0e3714fac044"], Cell[TextData[{ "Wir vereinfachen die L\[ODoubleDot]sung, indem wir c2 auf Null setzen und \ die dimensionslosen Gr\[ODoubleDot]\[SZ]en e = ", Cell[BoxData[ RowBox[{"c1", " ", RowBox[{ SuperscriptBox["L0", "2"], " ", "/", "k"}], " ", "m"}]], "Input", CellChangeTimes->{{3.9263930818073483`*^9, 3.926393111561891*^9}}, ExpressionUUID->"617c08f8-ce8a-44a2-bace-0c72949ed5c8"], " und a = ", Cell[BoxData[ RowBox[{ SuperscriptBox["L0", "2"], "/", SuperscriptBox[ RowBox[{"(", " ", RowBox[{ RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["e", "2"]}], ")"}], " ", "k", " ", "m"}], ")"}], "2"]}]], "Output", GeneratedCell->False, CellAutoOverwrite->False, CellChangeTimes->{ 3.6060495048979554`*^9, 3.6060496272711916`*^9, {3.606050399814438*^9, 3.6060504235698137`*^9}, 3.606052306541147*^9, 3.6060536048643475`*^9, 3.612640416197647*^9},ExpressionUUID-> "895683a4-0a4b-4c72-84e7-5865b1f942e3"], "einf\[UDoubleDot]hren." }], "Text", CellChangeTimes->{{3.926393188182047*^9, 3.926393282459567*^9}},ExpressionUUID->"1a3f3f92-8931-443f-b91e-\ 83688580f238"], Cell[BoxData[ RowBox[{"EinfacheL\[ODoubleDot]sung", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"L\[ODoubleDot]sung", "/.", RowBox[{"{", RowBox[{ RowBox[{ TemplateBox[{"2"}, "C"], "->", "0"}], ",", RowBox[{ TemplateBox[{"1"}, "C"], "->", RowBox[{"e", " ", "k", " ", RowBox[{"m", "/", SuperscriptBox["L0", "2"]}]}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{"L0", "\[Rule]", SqrtBox[ RowBox[{"a", RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["e", "2"]}], ")"}], "k", " ", "m"}]]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], "->", "\[Phi]"}], "}"}]}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.9263930818073483`*^9, 3.926393111561891*^9}, { 3.926393286256621*^9, 3.926393294931168*^9}, {3.9263933550934963`*^9, 3.926393383736165*^9}}, CellLabel->"In[39]:=",ExpressionUUID->"afc59a64-d48d-4ba5-8a4c-4b783f4218d4"], Cell[BoxData[ RowBox[{ RowBox[{"x", "[", "\[Phi]_", "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "\[Phi]", "]"}], "/", RowBox[{"u", "[", "\[Phi]", "]"}]}], "/.", "EinfacheL\[ODoubleDot]sung"}]}]], "Input", CellChangeTimes->{{3.926393346678512*^9, 3.926393396388954*^9}}, CellLabel->"In[40]:=",ExpressionUUID->"a939ab97-8290-451a-a35c-4e3311f99219"], Cell[BoxData[ RowBox[{ RowBox[{"y", "[", "\[Phi]_", "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"Sin", "[", "\[Phi]", "]"}], "/", RowBox[{"u", "[", "\[Phi]", "]"}]}], "/.", "EinfacheL\[ODoubleDot]sung"}]}]], "Input", CellChangeTimes->{ 3.926393350316457*^9, {3.926393391735186*^9, 3.9263933997506638`*^9}}, CellLabel->"In[41]:=",ExpressionUUID->"8c0bf1ce-d0a4-4e16-8f8d-d753c9ecb454"], Cell[BoxData[ RowBox[{"y", "[", "\[Phi]", "]"}]], "Input", CellChangeTimes->{{3.9263934480431128`*^9, 3.926393450524926*^9}, { 3.9263935201273317`*^9, 3.926393520190097*^9}}, CellLabel->"In[42]:=",ExpressionUUID->"5cc6cb9e-4a08-4735-b3de-ccbc44382ea4"], Cell["Elliptische Bahn", "Text", CellChangeTimes->{{3.9263937302450647`*^9, 3.9263937328332157`*^9}},ExpressionUUID->"45fc1d4b-16bd-40e1-8451-\ ae48428499b2"], Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "\[Phi]", "]"}], ",", RowBox[{"y", "[", "\[Phi]", "]"}]}], "}"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"a", "->", "1"}], ",", RowBox[{"e", "->", "0.5"}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"\[Phi]", ",", "0", ",", RowBox[{"2", "\[Pi]"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Red", ",", "Thick"}], "}"}]}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{"Blue", ",", "Thick", ",", RowBox[{"Locator", "[", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.926393411505581*^9, 3.926393437054154*^9}, { 3.926393468383932*^9, 3.9263934849884243`*^9}, {3.926393530740254*^9, 3.926393549197487*^9}}, CellLabel->"In[43]:=",ExpressionUUID->"b77f0402-4228-4fd1-b30a-c4a412b464bf"], Cell["Hyperbolische Bahn", "Text", CellChangeTimes->{{3.926393737253789*^9, 3.926393739856041*^9}},ExpressionUUID->"a5c39355-5de5-4dfd-a9db-\ 5c90482a5435"], Cell[BoxData[ RowBox[{"\[Phi]d", "=", RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"1", "+", RowBox[{"e", " ", RowBox[{"Cos", "[", "\[Phi]", "]"}]}]}], "\[Equal]", "0"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"a", "->", "1"}], ",", RowBox[{"e", "->", "1.5"}]}], "}"}]}], ",", "\[Phi]"}], "]"}]}]], "Input", CellChangeTimes->{{3.926393610912527*^9, 3.926393613613633*^9}}, CellLabel->"In[44]:=",ExpressionUUID->"6948720d-6379-47a9-a951-1ad5faa51c00"], Cell[BoxData[ RowBox[{"\[Phi]1", "=", RowBox[{"\[Phi]", "/.", RowBox[{"\[Phi]d", "[", RowBox[{"[", "1", "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.606050168740333*^9, 3.606050188745333*^9}}, CellLabel->"In[45]:=",ExpressionUUID->"5909c70b-a795-4933-9d2d-b2b862aad6d6"], Cell[BoxData[ RowBox[{"\[Phi]2", "=", RowBox[{"\[Phi]", "/.", RowBox[{"\[Phi]d", "[", RowBox[{"[", "2", "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.6060501976902275`*^9, 3.6060501991463733`*^9}}, CellLabel->"In[46]:=",ExpressionUUID->"ee3973be-4fb9-4af5-9ed3-6ed1cf52053d"], Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "\[Phi]", "]"}], ",", RowBox[{"y", "[", "\[Phi]", "]"}]}], "}"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"a", "->", "1"}], ",", RowBox[{"e", "->", "1.5"}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"\[Phi]", ",", RowBox[{"\[Phi]1", "+", "0.1"}], ",", RowBox[{"\[Phi]2", "-", "0.1"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Blue", ",", "Thick"}], "}"}]}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{"Blue", ",", "Thick", ",", RowBox[{"Locator", "[", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.92639366023407*^9, 3.9263937194245768`*^9}, { 3.926393758284911*^9, 3.9263937585571136`*^9}}, CellLabel->"In[47]:=",ExpressionUUID->"9879d0b1-6eeb-4604-a9d9-9fea3b83442c"], Cell["\<\ Eine numerische L\[ODoubleDot]sung der EL-Gleichungen ist ohne zus\ \[ADoubleDot]tzliche Arbeit m\[ODoubleDot]glich. Die Anfangsbedingungen sind \ so gew\[ADoubleDot]hlt, dass sie c2 = 0, a = 1 und e = 0.5 entsprechen.\ \>", "Text", CellChangeTimes->{{3.926393997406678*^9, 3.9263940212090387`*^9}, { 3.9264159707310123`*^9, 3.9264159890062513`*^9}},ExpressionUUID->"5f6bbe16-8132-4269-9d54-\ 112f84a1c6bd"], Cell[BoxData[ RowBox[{"sol", "=", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{ RowBox[{"Join", "[", RowBox[{"Eulereq", ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Phi]", "[", "0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"r", "[", "0", "]"}], "\[Equal]", "0.5"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Phi]", "'"}], "[", "0", "]"}], "\[Equal]", "4"}], ",", RowBox[{ RowBox[{ RowBox[{"r", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}]}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"k", "\[Rule]", "1.333333333"}], ",", RowBox[{"m", "\[Rule]", "1"}]}], "}"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"r", "[", "t", "]"}], ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.926394076142933*^9, 3.926394078163457*^9}, { 3.926415933082809*^9, 3.9264159419594927`*^9}, 3.926416008040938*^9}, CellLabel->"In[51]:=",ExpressionUUID->"3e94f5fc-4933-4a1e-8d36-de557392deb7"], Cell[BoxData[ RowBox[{ RowBox[{"\[Phi]sol", "[", "t1_", "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"\[Phi]", "[", "t", "]"}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{"t", "\[Rule]", "t1"}]}]}]], "Input", CellChangeTimes->{{3.926416030017034*^9, 3.926416033791655*^9}}, CellLabel->"In[53]:=",ExpressionUUID->"7cc17c1a-cf2d-4082-ab55-24cf873560f7"], Cell[BoxData[ RowBox[{"tmax", "=", RowBox[{"t", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"\[Phi]sol", "[", "t", "]"}], "==", RowBox[{"2", "\[Pi]"}]}], ",", RowBox[{"{", RowBox[{"t", ",", "2"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.9264160486077337`*^9, 3.926416049957529*^9}, { 3.926416188721842*^9, 3.92641619383924*^9}}, CellLabel->"In[57]:=",ExpressionUUID->"65df4035-10bb-46fb-bada-2b0022821162"], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"r", "[", "t", "]"}], ",", RowBox[{"\[Phi]", "[", "t", "]"}]}], "}"}], "/.", "sol"}], "//", "Evaluate"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "tmax"}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Red", ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Blue", ",", "Thick"}], "}"}]}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.9264162149990683`*^9, 3.9264162209915657`*^9}}, CellLabel->"In[58]:=",ExpressionUUID->"9cfebe7c-5e77-43d8-b982-76a80d65f0ec"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"X", "[", "t_", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"r", "[", "t", "]"}], RowBox[{"Cos", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Y", "[", "t_", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"r", "[", "t", "]"}], RowBox[{"Sin", "[", RowBox[{"\[Phi]", "[", "t", "]"}], "]"}]}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.926416266506669*^9, 3.9264162690999937`*^9}, { 3.926416299182869*^9, 3.926416302167472*^9}}, CellLabel->"In[65]:=",ExpressionUUID->"cf765a43-76dc-4830-9508-59aaaa5703a9"], Cell[BoxData[ RowBox[{"Plot1", "=", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"X", "[", "t", "]"}], ",", RowBox[{"Y", "[", "t", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "tmax"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9264162293289967`*^9, 3.926416253640854*^9}, 3.926416285949792*^9, {3.926416322107759*^9, 3.926416322998356*^9}}, CellLabel->"In[69]:=",ExpressionUUID->"8104f67e-9b06-4eba-b151-8424e4dda30e"], Cell[BoxData[{ RowBox[{ RowBox[{"\[CapitalDelta]t", "=", "0.1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"steps", "=", "20"}], ";"}]}], "Input", CellChangeTimes->{{3.9264163572807093`*^9, 3.9264163759824038`*^9}}, CellLabel->"In[71]:=",ExpressionUUID->"47bd18a0-7082-4405-b753-663abfc6c669"], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Show", "[", RowBox[{"Plot1", ",", RowBox[{"Graphics", "[", RowBox[{"Join", "[", RowBox[{ RowBox[{"{", "Blue", "}"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"X", "[", RowBox[{"t", "-", RowBox[{ RowBox[{"\[CapitalDelta]t", "/", "steps"}], "*", "i"}]}], "]"}], ",", RowBox[{"Y", "[", RowBox[{"t", "-", RowBox[{ RowBox[{"\[CapitalDelta]t", "/", "steps"}], "*", "i"}]}], "]"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "0", ",", "steps"}], "}"}]}], "]"}]}], "]"}], "]"}], ",", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{"Gray", ",", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", "0.07"}], "]"}], ",", "Red", ",", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"X", "[", "t", "]"}], ",", RowBox[{"Y", "[", "t", "]"}]}], "}"}], ",", "0.05"}], "]"}]}], "}"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "tmax", ",", "0.01"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{ 3.926416326788464*^9, {3.926416365410359*^9, 3.926416395638143*^9}}, CellLabel->"In[73]:=",ExpressionUUID->"3ed48eb2-9ce6-4d43-9364-a3e8854b6cc7"] }, Open ]], Cell[CellGroupData[{ Cell["\[OpenCurlyDoubleQuote]Upside-down\[CloseCurlyDoubleQuote] Pendel", \ "Section", CellChangeTimes->{ 3.9269977548940163`*^9},ExpressionUUID->"23ab7933-819c-4643-aec7-\ 422e47475556"], Cell["\<\ Mathematisches Pendel, wobei sich der Aufh\[ADoubleDot]ngepunkt in y-Richtung \ mit h(t) = a * sin(\[Omega] t) bewegt. Ruhelage f\[UDoubleDot]r t=0, theta=0: (x,y) = (0,l) siehe auch: https://www.youtube.com/watch?v=5oGYCxkgnHQ\ \>", "Text", CellChangeTimes->{{3.926997767976858*^9, 3.9269978027248783`*^9}},ExpressionUUID->"c7fcd5fd-45f8-4cb4-bf00-\ 43f0f12f25a3"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{"Lagrange", "-", "Funktion"}], " ", "->", " ", "Bewegungsgleichungen"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"x", "[", "t_", "]"}], " ", ":=", " ", RowBox[{"l", "*", RowBox[{"Sin", "[", RowBox[{"theta", "[", "t", "]"}], "]"}]}]}], "\n", RowBox[{ RowBox[{"y", "[", "t_", "]"}], " ", ":=", " ", RowBox[{ RowBox[{"h", "[", "t", "]"}], " ", "+", " ", RowBox[{"l", "*", RowBox[{"Cos", "[", RowBox[{"theta", "[", "t", "]"}], "]"}]}]}]}], "\n", RowBox[{ RowBox[{"h", "[", "t_", "]"}], " ", ":=", " ", RowBox[{"a", "*", RowBox[{"Sin", "[", RowBox[{"omega", "*", "t"}], "]"}]}]}], "\n", RowBox[{ RowBox[{"v", " ", "=", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"x", "[", "t", "]"}], ",", " ", RowBox[{"y", "[", "t", "]"}]}], "}"}], ",", " ", "t"}], "]"}]}], ";"}], "\n", RowBox[{ RowBox[{"T", " ", "=", " ", RowBox[{ RowBox[{"1", "/", "2"}], "*", "m", "*", RowBox[{"v", ".", "v"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"U", " ", "=", " ", RowBox[{"m", "*", "g", "*", RowBox[{"y", "[", "t", "]"}]}]}], ";"}], "\n", RowBox[{"L", " ", "=", " ", RowBox[{"Simplify", "[", RowBox[{"T", " ", "-", " ", "U"}], "]"}]}]}]}]], "Input", CellChangeTimes->{{3.9269978049778748`*^9, 3.9269978441697817`*^9}}, CellLabel->"In[19]:=",ExpressionUUID->"d7c4b0d8-a728-4d4c-8018-ff960b0cebd7"], Cell[BoxData[{ RowBox[{ RowBox[{"dLdTheta", " ", "=", " ", RowBox[{ RowBox[{"D", "[", RowBox[{"L", ",", " ", RowBox[{"theta", "[", "t", "]"}]}], "]"}], " ", "//", " ", "Simplify"}]}], ";"}], "\n", RowBox[{ RowBox[{"dLdThetaDot", " ", "=", " ", RowBox[{ RowBox[{"D", "[", RowBox[{"L", ",", " ", RowBox[{ RowBox[{"theta", "'"}], "[", "t", "]"}]}], "]"}], " ", "//", " ", "Simplify"}]}], ";"}], "\n", RowBox[{ RowBox[{"ELEQ", " ", "=", " ", RowBox[{"dLdTheta", " ", "==", " ", RowBox[{"D", "[", RowBox[{"dLdThetaDot", ",", " ", "t"}], "]"}]}]}], ";"}], "\n", RowBox[{"ELEQ", " ", "=", " ", RowBox[{"Simplify", "[", RowBox[{"ELEQ", ",", " ", RowBox[{"{", RowBox[{ RowBox[{"l", " ", "!=", " ", "0"}], ",", " ", RowBox[{"m", " ", "!=", " ", "0"}]}], "}"}]}], "]"}]}]}], "Input", CellLabel->"In[26]:=",ExpressionUUID->"76dbee23-4a77-4d23-a4df-f26e322ac946"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"plotPendulum", ":", " ", RowBox[{ "zeichne", " ", "Pendel", " ", "zum", " ", "Zeitpunkt", " ", "t", "\n", " ", "mit", " ", "Auslenkung", " ", "theta"}]}], " ", "=", " ", RowBox[{"theta", RowBox[{"(", "t", ")"}], "\n", " ", RowBox[{"subs", ":", " ", RowBox[{ "Ersetzungsregel", " ", "fuer", " ", "Pendellaenge", " ", "l"}]}]}]}], ",", " ", RowBox[{ "Auslenkung", " ", "a", " ", "und", " ", "Kreisfrequenz", " ", "omega"}]}], " ", "*)"}], "\n", RowBox[{ RowBox[{"plotPendulum", "[", RowBox[{"theta_", ",", " ", "t_", ",", " ", "subs_List"}], " ", "]"}], " ", ":=", " ", RowBox[{"Module", "[", "\n", " ", RowBox[{ RowBox[{"{", RowBox[{ "p1", ",", " ", "p2", ",", " ", "le", ",", " ", "ps", ",", " ", "ra", ",", " ", "lines", ",", " ", "dots", ",", " ", "ceil", ",", " ", "text", ",", " ", "text2", ",", " ", "all", ",", " ", "pendulum"}], "}"}], ",", "\n", " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"Punkte", ":", " ", "p1", ":", " ", "Aufhaengepunkt"}], ";", " ", RowBox[{"p2", ":", " ", RowBox[{"Ende", " ", "Pendel"}]}]}], " ", "*)"}], "\n", " ", RowBox[{ RowBox[{"p1", " ", "=", " ", RowBox[{ RowBox[{"{", RowBox[{"0", ",", " ", RowBox[{"h", "[", "t", "]"}]}], "}"}], " ", "/.", " ", "subs"}]}], ";", "\n", " ", RowBox[{"p2", " ", "=", " ", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"l", "*", RowBox[{"Sin", "[", "theta", "]"}]}], ",", " ", RowBox[{ RowBox[{"h", "[", "t", "]"}], " ", "+", " ", RowBox[{"l", "*", RowBox[{"Cos", "[", "theta", "]"}]}]}]}], "}"}], " ", "/.", " ", "subs"}]}], ";", "\n", " ", RowBox[{"(*", " ", "Groessenskala", " ", "*)"}], "\n", " ", RowBox[{"le", " ", "=", " ", RowBox[{ RowBox[{"(", RowBox[{"l", " ", "+", " ", "a"}], ")"}], " ", "/.", " ", "subs"}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"dargestellter", " ", "Bereich"}], " ", "*)"}], "\n", " ", RowBox[{"ra", " ", "=", " ", RowBox[{"le", "*", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1.05"}], ",", " ", "1.05"}], "}"}], ",", " ", RowBox[{"{", RowBox[{ RowBox[{"-", "2.15"}], ",", " ", "2.15"}], "}"}]}], "}"}]}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"Aufhaengung", ",", " ", RowBox[{"Linien", " ", "und", " ", "Punkte"}]}], " ", "*)"}], "\n", " ", RowBox[{"ceil", " ", "=", " ", RowBox[{"{", RowBox[{"Brown", ",", " ", RowBox[{"Thickness", "[", "0.05", "]"}], ",", " ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "l"}], ",", "0"}], "}"}], "/.", "subs"}], ",", " ", RowBox[{ RowBox[{"{", RowBox[{"l", ",", "0"}], "}"}], "/.", "subs"}]}], "}"}], "]"}]}], "}"}]}], ";", "\n", " ", RowBox[{"lines", " ", "=", " ", RowBox[{"{", RowBox[{"Black", ",", " ", RowBox[{"Thickness", "[", "0.01", "]"}], ",", " ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", "p1"}], "}"}], "]"}], ",", " ", RowBox[{"Thickness", "[", "0.005", "]"}], ",", " ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{"p1", ",", " ", "p2"}], "}"}], "]"}]}], "}"}]}], ";", "\n", " ", RowBox[{"dots", " ", "=", " ", RowBox[{"{", RowBox[{"Black", ",", " ", RowBox[{"PointSize", "[", "0.04", "]"}], ",", " ", RowBox[{"Point", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", "p1"}], "}"}], "]"}], ",", " ", "Red", ",", " ", RowBox[{"PointSize", "[", "0.1", "]"}], ",", " ", RowBox[{"Point", "[", RowBox[{"{", "p2", "}"}], "]"}]}], "}"}]}], ";", "\n", " ", RowBox[{"(*", " ", "Beschriftung", " ", "*)"}], "\n", " ", RowBox[{"text", " ", "=", " ", RowBox[{"{", RowBox[{"Black", ",", " ", RowBox[{"Background", " ", "->", " ", "White"}], ",", "\n", " ", RowBox[{"Text", "[", RowBox[{"m", ",", " ", RowBox[{"p2", " ", "+", " ", RowBox[{"{", RowBox[{"1", ",", " ", "0"}], "}"}]}], ",", " ", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", " ", "0"}], "}"}]}], "]"}], ",", "\n", " ", RowBox[{"Text", "[", RowBox[{"l", ",", " ", RowBox[{"p1", " ", "+", " ", RowBox[{ RowBox[{"(", RowBox[{"p2", " ", "-", " ", "p1"}], ")"}], "/", "2"}], " ", "-", " ", RowBox[{"{", RowBox[{ RowBox[{"0.05", "*", "le"}], ",", " ", "0"}], "}"}]}], ",", " ", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",", "\n", " ", RowBox[{"Text", "[", RowBox[{ RowBox[{"\"\< t = \>\"", " ", "<>", " ", RowBox[{"ToString", "[", "t", "]"}], " ", "<>", " ", "\"\< s \>\""}], ",", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "l"}], "*", "0.5"}], ",", "a"}], "}"}], "/.", "subs"}]}], "]"}]}], "}"}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"Fasse", " ", "alles", " ", RowBox[{"zusammen", ":"}]}], " ", "*)"}], "\n", " ", RowBox[{"all", " ", "=", " ", RowBox[{"Join", "[", RowBox[{ "ceil", ",", " ", "lines", ",", " ", "dots", ",", " ", "text"}], "]"}]}], ";", "\n", " ", RowBox[{"pendulum", " ", "=", " ", RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics", "[", "all", "]"}], ",", " ", RowBox[{"PlotRange", " ", "->", " ", "ra"}]}], "]"}]}], ";", "\n", " ", RowBox[{"Return", "[", "pendulum", "]"}]}]}], "\n", " ", "]"}]}]}]], "Input", CellLabel->"In[30]:=",ExpressionUUID->"66db4d58-2a5a-4153-958f-9943303244b5"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Beispiel", " ", "zur", " ", "Verwendung", " ", "von", " ", RowBox[{"plotPendulum", "[", "]"}]}], " ", "*)"}], "\n", RowBox[{"plotPendulum", "[", RowBox[{"2.001", ",", RowBox[{ RowBox[{"Pi", "/", "4"}], "//", "N"}], ",", RowBox[{"{", RowBox[{ RowBox[{"l", "->", "10"}], ",", RowBox[{"a", "->", "1.5"}], ",", RowBox[{"omega", "->", RowBox[{"2", "*", "Pi"}]}]}], "}"}]}], "]"}]}]], "Input", CellLabel->"In[31]:=",ExpressionUUID->"1d2bc522-bfae-4391-9702-3073a9c79d6a"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{"ld", ":", " ", RowBox[{"Pendell\[ADoubleDot]nge", "\n", " ", "ad"}], ":", " ", RowBox[{"Auslenkung", " ", "Aufh\[ADoubleDot]ngung", "\n", " ", RowBox[{"omegad", ":", " ", RowBox[{ "Frequenz", " ", "Aufh\[ADoubleDot]ngung", "\n", " ", "theta0"}]}]}]}], ",", " ", RowBox[{"thetaDot0", ":", " ", "Anfangswerte"}]}], " ", "*)"}], "\n", RowBox[{ RowBox[{"upsideDownPendulum", "[", RowBox[{ RowBox[{"{", RowBox[{"ld_", ",", " ", "ad_", ",", " ", "omegad_"}], "}"}], ",", RowBox[{"{", RowBox[{"theta0_", ",", " ", "thetaDot0_"}], "}"}]}], "]"}], " ", ":=", " ", RowBox[{"Module", "[", "\n", " ", RowBox[{ RowBox[{"{", RowBox[{ "gVal", ",", " ", "tM", ",", " ", "temp", ",", " ", "sol", ",", " ", "thetaSol", ",", " ", "params", ",", " ", "res"}], "}"}], ",", "\n", " ", RowBox[{ RowBox[{ RowBox[{"gVal", " ", "=", " ", "9.81"}], ";", "\n", " ", RowBox[{"tM", " ", "=", " ", "60"}], ";"}], " ", RowBox[{"(*", " ", "timeMax", " ", "*)"}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"Parameter", " ", "einsetzen", " ", "in", " ", RowBox[{"Bewegungsgleichungen", ":"}]}], " ", "*)"}], "\n", " ", RowBox[{"params", " ", "=", " ", RowBox[{"{", RowBox[{ RowBox[{"g", " ", "->", " ", "gVal"}], ",", RowBox[{"l", " ", "->", " ", "ld"}], ",", " ", RowBox[{"a", " ", "->", " ", "ad"}], ",", " ", RowBox[{"omega", " ", "->", " ", "omegad"}]}], "}"}]}], ";", " ", "\n", " ", RowBox[{"temp", " ", "=", " ", RowBox[{ RowBox[{"{", "ELEQ", "}"}], " ", "/.", " ", "params"}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"Anfangsbedingungen", " ", RowBox[{"hinzufuegen", ":"}]}], " ", "*)"}], "\n", " ", RowBox[{"temp", " ", "=", " ", RowBox[{"Join", "[", RowBox[{"temp", ",", " ", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"theta", "[", "0", "]"}], " ", "==", " ", "theta0"}], ",", " ", RowBox[{ RowBox[{ RowBox[{"theta", "'"}], "[", "0", "]"}], " ", "==", " ", "thetaDot0"}]}], "}"}]}], "]"}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"DGL", " ", "loesen", " ", "und", " ", RowBox[{"Fkt", ".", " ", RowBox[{"definieren", ":"}]}]}], " ", "*)"}], "\n", " ", RowBox[{"sol", " ", "=", " ", RowBox[{"NDSolve", "[", RowBox[{"temp", ",", " ", RowBox[{"theta", "[", "t", "]"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "0", ",", " ", "tM"}], "}"}]}], "]"}]}], ";", "\n", " ", RowBox[{"thetaSol", " ", "=", " ", RowBox[{ RowBox[{"theta", "[", "t", "]"}], " ", "/.", " ", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"Pendel", " ", RowBox[{"animieren", ":"}]}], " ", "*)"}], "\n", " ", RowBox[{"res", " ", "=", " ", RowBox[{"Animate", "[", RowBox[{ RowBox[{"plotPendulum", "[", RowBox[{ RowBox[{"thetaSol", " ", "/.", " ", RowBox[{"{", RowBox[{"t", " ", "->", " ", "tt"}], "}"}]}], ",", " ", "tt", ",", " ", "params"}], "]"}], ",", "\n", " ", RowBox[{"{", RowBox[{"tt", ",", " ", "0", ",", " ", "tM", ",", " ", "0.01"}], " ", RowBox[{"(*", " ", "timeInt", " ", "*)"}], "}"}]}], "]"}]}], ";", "\n", " ", RowBox[{"Return", "[", "res", "]"}]}]}], "\n", " ", "]"}]}]}]], "Input",\ CellChangeTimes->{{3.9269979322336817`*^9, 3.926997958748144*^9}}, CellLabel-> "In[147]:=",ExpressionUUID->"4da1819b-cbd3-410e-bbd7-e5803f65e1d0"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"\"\\"", " ", "Schwingung"}], " ", "*)"}], "\n", RowBox[{"upsideDownPendulum", "[", RowBox[{ RowBox[{"{", RowBox[{"10", ",", " ", "1.5", ",", " ", "1.0"}], "}"}], ",", " ", RowBox[{"{", RowBox[{"2.7", ",", " ", "0.01"}], "}"}]}], "]"}]}]], "Input", CellLabel->"In[33]:=",ExpressionUUID->"f17121be-a576-4a86-9d4d-1268aa0abf65"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"upside", "-", RowBox[{"down", " ", RowBox[{"Pendel", ":", " ", RowBox[{ "variiere", " ", "Frequenz", " ", "der", " ", "Aufhaengung"}]}]}]}], " ", "*)"}], "\n", "\n", RowBox[{ RowBox[{ RowBox[{"n", " ", "=", " ", "1"}], ";"}], "\n", RowBox[{"upsideDownPendulum", "[", RowBox[{ RowBox[{"{", RowBox[{"10", ",", " ", "1.5", ",", " ", RowBox[{"2", "*", "Pi", "*", "n"}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"0.3", ",", " ", "0.01"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.926998024878223*^9, 3.926998032719871*^9}, { 3.926998849537344*^9, 3.926998849647187*^9}}, CellLabel-> "In[148]:=",ExpressionUUID->"bb488bc8-26be-4978-899a-ee22e9082985"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{"ld", ":", " ", RowBox[{"Pendell\[ADoubleDot]nge", "\n", " ", "ad"}], ":", " ", RowBox[{"Auslenkung", " ", "Aufh\[ADoubleDot]ngung", "\n", " ", RowBox[{"omegad", ":", " ", RowBox[{ "Frequenz", " ", "Aufh\[ADoubleDot]ngung", "\n", " ", "theta0"}]}]}]}], ",", " ", RowBox[{"thetaDot0", ":", " ", "Anfangswerte"}]}], " ", "*)"}], "\n", RowBox[{ RowBox[{"upsideDownPendulum", "[", RowBox[{ RowBox[{"{", RowBox[{"ld_", ",", " ", "ad_", ",", " ", "omegad_"}], "}"}], ",", RowBox[{"{", RowBox[{"theta0_", ",", " ", "thetaDot0_"}], "}"}]}], "]"}], " ", ":=", " ", RowBox[{"Module", "[", "\n", " ", RowBox[{ RowBox[{"{", RowBox[{ "gVal", ",", " ", "tM", ",", " ", "temp", ",", " ", "sol", ",", " ", "thetaSol", ",", "thetapSol", ",", " ", "params", ",", " ", "res"}], "}"}], ",", "\n", " ", RowBox[{ RowBox[{ RowBox[{"gVal", " ", "=", " ", "9.81"}], ";", "\n", " ", RowBox[{"tM", " ", "=", " ", "60"}], ";"}], " ", RowBox[{"(*", " ", "timeMax", " ", "*)"}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"Parameter", " ", "einsetzen", " ", "in", " ", RowBox[{"Bewegungsgleichungen", ":"}]}], " ", "*)"}], "\n", " ", RowBox[{"params", " ", "=", " ", RowBox[{"{", RowBox[{ RowBox[{"g", " ", "->", " ", "gVal"}], ",", RowBox[{"l", " ", "->", " ", "ld"}], ",", " ", RowBox[{"a", " ", "->", " ", "ad"}], ",", " ", RowBox[{"omega", " ", "->", " ", "omegad"}]}], "}"}]}], ";", " ", "\n", " ", RowBox[{"temp", " ", "=", " ", RowBox[{ RowBox[{"{", "ELEQ", "}"}], " ", "/.", " ", "params"}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"Anfangsbedingungen", " ", RowBox[{"hinzufuegen", ":"}]}], " ", "*)"}], "\n", " ", RowBox[{"temp", " ", "=", " ", RowBox[{"Join", "[", RowBox[{"temp", ",", " ", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"theta", "[", "0", "]"}], " ", "==", " ", "theta0"}], ",", " ", RowBox[{ RowBox[{ RowBox[{"theta", "'"}], "[", "0", "]"}], " ", "==", " ", "thetaDot0"}]}], "}"}]}], "]"}]}], ";", "\n", " ", RowBox[{"(*", " ", RowBox[{"DGL", " ", "loesen", " ", "und", " ", RowBox[{"Fkt", ".", " ", RowBox[{"definieren", ":"}]}]}], " ", "*)"}], "\n", " ", RowBox[{"sol", " ", "=", " ", RowBox[{"NDSolve", "[", RowBox[{"temp", ",", " ", RowBox[{"theta", "[", "t", "]"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "0", ",", " ", "tM"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"thetaSol", "[", "tt_", "]"}], ":=", " ", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"theta", "[", "t", "]"}], "]"}], " ", "/.", " ", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{"{", RowBox[{"t", "->", "tt"}], "}"}]}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"thetapSol", "[", "tt_", "]"}], ":=", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{ RowBox[{"theta", "[", "t", "]"}], " ", "/.", " ", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", "t"}], "]"}], "/.", RowBox[{"{", RowBox[{"t", "->", "tt"}], "}"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"res", " ", "=", " ", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"thetaSol", "[", "tt", "]"}], ",", RowBox[{"thetapSol", "[", "tt", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"tt", ",", "0", ",", "60"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Return", "[", "res", "]"}]}]}], "\n", " ", "]"}]}]}]], "Input",\ CellChangeTimes->{{3.926998111638068*^9, 3.9269983037569227`*^9}, { 3.926998335417844*^9, 3.9269983448666573`*^9}, {3.926998676064082*^9, 3.926998700575549*^9}, {3.926998764238821*^9, 3.926998768317889*^9}, { 3.92699881587346*^9, 3.9269988208155127`*^9}}, CellLabel-> "In[140]:=",ExpressionUUID->"0d264b55-4edb-4197-bd35-7b13796b95ac"], Cell[BoxData[{ RowBox[{ RowBox[{"n", " ", "=", " ", "0.1"}], ";"}], "\n", RowBox[{"sol", "=", RowBox[{"upsideDownPendulum", "[", RowBox[{ RowBox[{"{", RowBox[{"10", ",", " ", "1.5", ",", " ", RowBox[{"2", "*", "Pi", "*", "n"}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"0.3", ",", " ", "0.01"}], "}"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.926998387956098*^9, 3.92699838842389*^9}, { 3.926998730682073*^9, 3.926998740126288*^9}, {3.926998776793804*^9, 3.92699879970975*^9}, {3.926998834193362*^9, 3.926998834302588*^9}, 3.927714503994417*^9},ExpressionUUID->"2a6afd5e-c7aa-4dda-9b3a-\ b7514292b05e"] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{1256.6037735849056`, 688.0754716981131}, WindowMargins->{{0, Automatic}, {0, Automatic}}, TaggingRules-><|"TryRealOnly" -> False|>, FrontEndVersion->"13.0 for Linux x86 (64-bit) (December 2, 2021)", StyleDefinitions->"Default.nb", ExpressionUUID->"a5d4e9cf-52ab-44d7-aa31-b7d5da3facc5" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 166, 3, 98, "Title",ExpressionUUID->"81c9fe74-a375-466c-ab0c-51d0930f3f12"], Cell[CellGroupData[{ Cell[771, 29, 165, 3, 69, "Chapter",ExpressionUUID->"e9729985-0ced-4bde-ab0f-441442cae874"], Cell[CellGroupData[{ Cell[961, 36, 177, 3, 68, "Section",ExpressionUUID->"bbb65c12-6e3f-4ae5-a658-772d255f59bd"], Cell[1141, 41, 283, 6, 52, "Input",ExpressionUUID->"7029fbb6-2bfb-474b-b980-d55b3a26bc55"], Cell[1427, 49, 340, 8, 29, "Input",ExpressionUUID->"6532434f-45ed-4e8f-a45e-65cd18ff2315"], Cell[CellGroupData[{ Cell[1792, 61, 171, 3, 54, "Subsection",ExpressionUUID->"61b367ad-4aa0-4731-9c1b-7d0dda06b6cc"], Cell[1966, 66, 284, 6, 29, "Input",ExpressionUUID->"e1a8033c-5eab-4a1c-8219-8483309aa0c8"], Cell[2253, 74, 1088, 32, 32, "Input",ExpressionUUID->"526f8134-acde-4e14-aa28-5b01b25ff3b0"], Cell[3344, 108, 1844, 54, 55, "Input",ExpressionUUID->"b4727942-2b9d-48ad-ae42-2284789acc48"], Cell[5191, 164, 1967, 56, 76, "Input",ExpressionUUID->"d1f1c679-48d4-4e36-893d-9570fe89c950"] }, Open ]], Cell[CellGroupData[{ Cell[7195, 225, 194, 3, 54, "Subsection",ExpressionUUID->"3d7129af-1170-4747-82d8-2243c61786e1"], Cell[7392, 230, 739, 21, 49, "Input",ExpressionUUID->"c989b071-69f5-4737-bba7-a1d6bf7f0522"], Cell[8134, 253, 340, 10, 52, "Input",ExpressionUUID->"9ecf3f7b-e326-42cc-9f14-aad422a84997"], Cell[8477, 265, 2605, 69, 76, "Input",ExpressionUUID->"1c5ff634-4fd9-4f08-8af4-8e3c9acafa7f"], Cell[11085, 336, 612, 15, 29, "Input",ExpressionUUID->"1e4179ea-d3fd-4e15-b1c9-ad18a9b2baa1"], Cell[11700, 353, 1431, 34, 52, "Input",ExpressionUUID->"d7c23cc4-23cb-4bde-acc3-930fa304ad86"], Cell[13134, 389, 1836, 50, 73, "Input",ExpressionUUID->"bcbc89b3-60c3-487d-b91d-067cfa19973e"], Cell[14973, 441, 2079, 54, 73, "Input",ExpressionUUID->"7c025329-b5e2-479f-adf7-7b97d1f6734a"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[17101, 501, 168, 3, 68, "Section",ExpressionUUID->"a59a9874-1922-46f5-bb41-5d0aca04a5fc"], Cell[17272, 506, 535, 19, 334, "Text",ExpressionUUID->"f18b1e64-0b81-4bec-a936-e2a47fa7ab71"], Cell[17810, 527, 476, 11, 73, "Input",ExpressionUUID->"630f6b4e-4a9a-44a6-b6a5-fd377fe0decf"], Cell[18289, 540, 2282, 66, 179, "Input",ExpressionUUID->"88e170eb-2bc6-4998-87b3-4b4787fd94da"], Cell[20574, 608, 1183, 32, 137, "Input",ExpressionUUID->"4e413659-3aaa-4de7-a74a-49032c6f8a89"], Cell[21760, 642, 5164, 137, 545, "Input",ExpressionUUID->"76f45841-2afd-46ed-855e-c8a1f4b9aa17"], Cell[26927, 781, 293, 8, 29, "Input",ExpressionUUID->"0ce1400f-7fee-408b-94e5-4c2a041a5384"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[27269, 795, 166, 3, 69, "Chapter",ExpressionUUID->"e179e666-b844-40f4-93e0-51d482c6f022"], Cell[CellGroupData[{ Cell[27460, 802, 198, 3, 68, "Section",ExpressionUUID->"7186d4ed-ec96-493d-9c1a-4f99e8273de8"], Cell[27661, 807, 1190, 34, 62, "Text",ExpressionUUID->"ffc6e2d5-3d45-4f8f-9313-c0668315bfb6"], Cell[28854, 843, 355, 7, 52, "Input",ExpressionUUID->"ed1414da-bf63-4494-99ea-8984f847acf3"], Cell[29212, 852, 408, 12, 34, "Input",ExpressionUUID->"75566354-7d86-4ae1-be35-31efc8a134b7"], Cell[29623, 866, 170, 3, 35, "Text",ExpressionUUID->"404d40a7-95ca-43fc-80c3-6b950a82f999"], Cell[29796, 871, 136, 2, 29, "Input",ExpressionUUID->"da865be4-5c58-4672-b0d5-a110310aff5e"], Cell[29935, 875, 305, 6, 29, "Input",ExpressionUUID->"8aba4085-e3ad-4654-8ef3-9134c6b7df5e"], Cell[30243, 883, 173, 3, 35, "Text",ExpressionUUID->"2c0dea0b-fd00-4096-aadc-6d789be95518"], Cell[30419, 888, 136, 2, 29, "Input",ExpressionUUID->"49d50cb0-2910-4498-87e4-be6d3a7ad5b9"], Cell[30558, 892, 306, 6, 29, "Input",ExpressionUUID->"aa9ac018-8270-4784-ae1c-48ab378e88e9"], Cell[30867, 900, 484, 11, 29, "Input",ExpressionUUID->"1133b0f6-0518-4738-8285-cd2cd7ad485c"], Cell[31354, 913, 353, 7, 29, "Input",ExpressionUUID->"43fa7a15-1f55-49ee-8de7-269bb63caf89"] }, Open ]], Cell[CellGroupData[{ Cell[31744, 925, 158, 3, 68, "Section",ExpressionUUID->"bc9db4ab-b4c6-44cc-9d01-5805b6050983"], Cell[31905, 930, 977, 28, 61, "Text",ExpressionUUID->"63797bfd-abf5-4faa-97b0-e28ceb6a22aa"], Cell[32885, 960, 617, 19, 45, "Input",ExpressionUUID->"1287965d-9d55-48cf-a0b0-d4c764ca1c77"], Cell[33505, 981, 401, 10, 29, "Input",ExpressionUUID->"a341166f-bbe0-4de5-a771-708570f9c776"], Cell[33909, 993, 441, 11, 29, "Input",ExpressionUUID->"dcbd61b1-0019-4432-92f2-d1180ab026b5"], Cell[34353, 1006, 234, 6, 35, "Text",ExpressionUUID->"b8265362-cfcf-4386-a16d-29f1f6616b9b"], Cell[34590, 1014, 161, 3, 35, "Text",ExpressionUUID->"bc6708cb-e0d2-48a6-b89d-cbad963bdad1"], Cell[34754, 1019, 342, 8, 29, "Input",ExpressionUUID->"22924ae1-f268-4b03-8486-0a4baea1820d"], Cell[35099, 1029, 161, 3, 35, "Text",ExpressionUUID->"9944147e-fb16-4bb4-9cfb-0e2b1565b56c"], Cell[35263, 1034, 304, 7, 29, "Input",ExpressionUUID->"ece47f48-26a6-4d86-9374-7beab98e6d8f"], Cell[35570, 1043, 191, 3, 35, "Text",ExpressionUUID->"0fa2a3b6-3fbb-4f92-95b2-7f8422465672"], Cell[35764, 1048, 420, 10, 29, "Input",ExpressionUUID->"99612c3f-c7f2-4f96-8932-eda30912a687"], Cell[36187, 1060, 222, 5, 35, "Text",ExpressionUUID->"fb042da0-c6ec-406b-b06b-3a21a2c470c4"], Cell[36412, 1067, 412, 10, 29, "Input",ExpressionUUID->"35c54ed7-26ef-4f05-8384-cdab0ce43db2"], Cell[36827, 1079, 275, 5, 29, "Input",ExpressionUUID->"dc7e4134-928e-45be-afb4-06f0a6612363"], Cell[37105, 1086, 377, 7, 29, "Input",ExpressionUUID->"e2e59207-0c32-46ec-8d0b-d80335b814ca"], Cell[37485, 1095, 166, 3, 35, "Text",ExpressionUUID->"889d58e9-2336-46d0-8f8f-70782436cf37"], Cell[37654, 1100, 277, 5, 29, "Input",ExpressionUUID->"89802267-08f6-4298-9b3b-51da92eb4eb2"], Cell[37934, 1107, 191, 3, 35, "Text",ExpressionUUID->"a7c83910-1838-42fe-9fc7-0423a7c226e2"], Cell[38128, 1112, 431, 11, 29, "Input",ExpressionUUID->"f5abd415-d4fb-462b-b50a-d0026c97322f"], Cell[38562, 1125, 472, 12, 29, "Input",ExpressionUUID->"a2956ba6-fda5-47de-9ea6-edbbace75ae1"], Cell[39037, 1139, 1011, 26, 29, "Input",ExpressionUUID->"82cca539-9821-4f1b-83f4-dbf23c7fadaa"], Cell[40051, 1167, 438, 9, 29, "Input",ExpressionUUID->"e4d2f4fc-d885-40f2-8906-0e3714fac044"], Cell[40492, 1178, 1138, 31, 36, "Text",ExpressionUUID->"1a3f3f92-8931-443f-b91e-83688580f238"], Cell[41633, 1211, 1055, 31, 38, "Input",ExpressionUUID->"afc59a64-d48d-4ba5-8a4c-4b783f4218d4"], Cell[42691, 1244, 378, 9, 29, "Input",ExpressionUUID->"a939ab97-8290-451a-a35c-4e3311f99219"], Cell[43072, 1255, 405, 10, 31, "Input",ExpressionUUID->"8c0bf1ce-d0a4-4e16-8f8d-d753c9ecb454"], Cell[43480, 1267, 257, 4, 29, "Input",ExpressionUUID->"5cc6cb9e-4a08-4735-b3de-ccbc44382ea4"], Cell[43740, 1273, 162, 3, 35, "Text",ExpressionUUID->"45fc1d4b-16bd-40e1-8451-ae48428499b2"], Cell[43905, 1278, 996, 27, 29, "Input",ExpressionUUID->"b77f0402-4228-4fd1-b30a-c4a412b464bf"], Cell[44904, 1307, 160, 3, 35, "Text",ExpressionUUID->"a5c39355-5de5-4dfd-a9db-5c90482a5435"], Cell[45067, 1312, 534, 15, 29, "Input",ExpressionUUID->"6948720d-6379-47a9-a951-1ad5faa51c00"], Cell[45604, 1329, 289, 6, 29, "Input",ExpressionUUID->"5909c70b-a795-4933-9d2d-b2b862aad6d6"], Cell[45896, 1337, 293, 6, 29, "Input",ExpressionUUID->"ee3973be-4fb9-4af5-9ed3-6ed1cf52053d"], Cell[46192, 1345, 992, 27, 29, "Input",ExpressionUUID->"9879d0b1-6eeb-4604-a9d9-9fea3b83442c"], Cell[47187, 1374, 423, 8, 35, "Text",ExpressionUUID->"5f6bbe16-8132-4269-9d54-112f84a1c6bd"], Cell[47613, 1384, 1209, 33, 29, "Input",ExpressionUUID->"3e94f5fc-4933-4a1e-8d36-de557392deb7"], Cell[48825, 1419, 406, 10, 29, "Input",ExpressionUUID->"7cc17c1a-cf2d-4082-ab55-24cf873560f7"], Cell[49234, 1431, 478, 12, 29, "Input",ExpressionUUID->"65df4035-10bb-46fb-bada-2b0022821162"], Cell[49715, 1445, 702, 20, 29, "Input",ExpressionUUID->"9cfebe7c-5e77-43d8-b982-76a80d65f0ec"], Cell[50420, 1467, 801, 23, 52, "Input",ExpressionUUID->"cf765a43-76dc-4830-9508-59aaaa5703a9"], Cell[51224, 1492, 516, 12, 29, "Input",ExpressionUUID->"8104f67e-9b06-4eba-b151-8424e4dda30e"], Cell[51743, 1506, 308, 6, 52, "Input",ExpressionUUID->"47bd18a0-7082-4405-b753-663abfc6c669"], Cell[52054, 1514, 1791, 51, 52, "Input",ExpressionUUID->"3ed48eb2-9ce6-4d43-9364-a3e8854b6cc7"] }, Open ]], Cell[CellGroupData[{ Cell[53882, 1570, 190, 4, 68, "Section",ExpressionUUID->"23ab7933-819c-4643-aec7-422e47475556"], Cell[54075, 1576, 381, 10, 127, "Text",ExpressionUUID->"c7fcd5fd-45f8-4cb4-bf00-43f0f12f25a3"], Cell[54459, 1588, 1599, 46, 179, "Input",ExpressionUUID->"d7c4b0d8-a728-4d4c-8018-ff960b0cebd7"], Cell[56061, 1636, 969, 28, 94, "Input",ExpressionUUID->"76dbee23-4a77-4d23-a4df-f26e322ac946"], Cell[57033, 1666, 6715, 174, 561, "Input",ExpressionUUID->"66db4d58-2a5a-4153-958f-9943303244b5"], Cell[63751, 1842, 585, 15, 53, "Input",ExpressionUUID->"1d2bc522-bfae-4391-9702-3073a9c79d6a"], Cell[64339, 1859, 4003, 99, 455, "Input",ExpressionUUID->"4da1819b-cbd3-410e-bbd7-e5803f65e1d0"], Cell[68345, 1960, 422, 10, 52, "Input",ExpressionUUID->"f17121be-a576-4a86-9d4d-1268aa0abf65"], Cell[68770, 1972, 798, 22, 94, "Input",ExpressionUUID->"bb488bc8-26be-4978-899a-ee22e9082985"], Cell[69571, 1996, 4510, 111, 434, "Input",ExpressionUUID->"0d264b55-4edb-4197-bd35-7b13796b95ac"], Cell[74084, 2109, 656, 15, 52, "Input",ExpressionUUID->"2a6afd5e-c7aa-4dda-9b3a-b7514292b05e"] }, Open ]] }, Open ]] }, Open ]] } ] *)