(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 26776, 691] NotebookOptionsPosition[ 23649, 633] NotebookOutlinePosition[ 24046, 649] CellTagsIndexPosition[ 24003, 646] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{"ClearAll", "[", "\"\\"", "]"}]], "Input", CellChangeTimes->{{3.92615667517485*^9, 3.926156686424818*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"1e6115ea-cb4c-429c-be4f-790d4d1d31c1"], Cell[CellGroupData[{ Cell["Einf\[UDoubleDot]hrung in die Computer Algebra - 2024 - \ \[CapitalUDoubleDot]bungsblatt 2", "Chapter", CellChangeTimes->{{3.9270239720010033`*^9, 3.927024011562078*^9}, { 3.927277035400279*^9, 3.927277036245101*^9}}, TextAlignment->Center,ExpressionUUID->"d64facf9-cde0-44d8-9a21-ec4ca1aa32c4"], Cell[CellGroupData[{ Cell["1. Aufgabe :", "Subsection", CellChangeTimes->{{3.927277050612318*^9, 3.92727707649513*^9}},ExpressionUUID->"81f65acf-4ce5-4bdd-a26f-\ c212e099ea35"], Cell[TextData[{ "Zeigen Sie mit Hilfe von Mathematica, dass: \t\t\na- \t\t", Cell[BoxData[ FormBox[ RowBox[{" ", TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], ")"}], "+", OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"]}], ")"}], "+", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"]}], ")"}], "\[LongEqual]", OverscriptBox["0", "\[RightVector]"]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec a \\times (\\vec b \\times \\vec c)+ \\vec b \\times (\\vec c \ \\times \\vec a) +\\vec c \\times (\\vec a \\times \\vec b) = \\vec 0", "state" -> "Boxes"|>, "TeXAssistantTemplate"]}], TraditionalForm]],ExpressionUUID-> "3eadda67-304e-4678-8d71-64196125acdb"], "\nb- \t\t ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], ")"}], "\[LongEqual]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[CenterDot]", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], ")"}], OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "-", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[CenterDot]", OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"]}], ")"}], OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec a \\times (\\vec b \\times \\vec c) = (\\vec a \\cdot \\vec c)\ \\vec b -(\\vec a \\cdot \\vec b)\\vec c", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "311a4ad0-644e-4f39-9c1e-7323bc5974bb"] }], "Text", CellChangeTimes->{{3.9272770901442833`*^9, 3.927277092641013*^9}, { 3.927277185346107*^9, 3.9272771856473303`*^9}, {3.927277252766768*^9, 3.9272772671818*^9}, {3.927277302864485*^9, 3.927277463347023*^9}, { 3.927277706768195*^9, 3.927277719884879*^9}, {3.927277863195435*^9, 3.9272778708688498`*^9}, {3.927370509360157*^9, 3.9273705252168293`*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"dca6c4bb-3fc0-4683-9406-d7b66e69e308"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle ", StyleBox["Dot[ ], Cross[ ], == , Simplify ", FontWeight->"Bold"], "." }], "Text", CellChangeTimes->{{3.927697452926697*^9, 3.927697496340514*^9}, { 3.927799140561171*^9, 3.9277991410026693`*^9}},ExpressionUUID->"1396b715-7b91-43f6-922e-\ 830a151d4cc1"] }, Open ]], Cell[CellGroupData[{ Cell["2. Aufgabe: ", "Subsection", CellChangeTimes->{{3.927277500699644*^9, 3.927277508593761*^9}},ExpressionUUID->"2edcc4ce-8d47-43a9-bbf6-\ 269b44ac30a8"], Cell[TextData[{ "L\[ODoubleDot]sen Sie die Laplace Gleichung ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox["\[Del]", "2"], "\[Psi]", RowBox[{"(", "\[Rho]", ")"}], "\[LongEqual]", "0"}], TraditionalForm], "errors" -> {}, "input" -> "\\nabla ^2 \\psi(\\rho) = 0", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "e6b24e2d-5d1a-404e-ba3f-dad8c033e369"], " in Zylinderkoordinaten, mit den Randbedingungen : ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"\[Psi]", RowBox[{"(", "4", ")"}], "\[LongEqual]", "0"}], TraditionalForm], "errors" -> {}, "input" -> "\\psi(4)=0", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "e6989552-c6e2-4f0c-aaaa-d74b31822a56"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox["\[Psi]", "\[Prime]"], RowBox[{"(", "4", ")"}], "\[LongEqual]", "1"}], TraditionalForm], "errors" -> {}, "input" -> "\\psi'(4)=1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "80c35bac-57cd-479e-a0ae-904e578e5dd2"], " . Die Funktion ", Cell[BoxData[ FormBox[ TemplateBox[<| "boxes" -> FormBox["\[Psi]", TraditionalForm], "errors" -> {}, "input" -> "\\psi", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "cd4ff211-e38e-463b-a31a-5c68fbda14ea"], " ist nur von ", Cell[BoxData[ FormBox[ TemplateBox[<| "boxes" -> FormBox["\[Rho]", TraditionalForm], "errors" -> {}, "input" -> "\\rho", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "9ca7f18c-51e0-493f-a892-a975b45a4f05"], " abh\[ADoubleDot]ngig.\nPlotten Sie ihr Ergebnis. " }], "Text", CellChangeTimes->{{3.927277892921328*^9, 3.927277933182638*^9}, { 3.927278002296256*^9, 3.927278003579713*^9}, {3.92760427167266*^9, 3.9276043613983088`*^9}, {3.927604918476722*^9, 3.927604922223835*^9}, 3.927604984418355*^9, {3.927699817594887*^9, 3.927699905280695*^9}, { 3.927699942610712*^9, 3.9277000444406137`*^9}, {3.927700105389535*^9, 3.927700116099683*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"5ff27437-36cf-42e7-914e-89e95677612e"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle: ", StyleBox["DSolve[ ] , Laplacian[ ]. ", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.927697526090448*^9, 3.927697538036504*^9}, { 3.927697594019755*^9, 3.927697596852735*^9}, {3.927700069032035*^9, 3.927700078914391*^9}, {3.927799136563517*^9, 3.927799137101882*^9}},ExpressionUUID->"1b9b1820-c35d-47fa-ae7b-\ 539fd320cdba"] }, Open ]], Cell[CellGroupData[{ Cell["3. Aufgabe", "Subsection", CellChangeTimes->{{3.927702464160159*^9, 3.92770246812077*^9}},ExpressionUUID->"43cba288-ba28-4e34-a72b-\ 8a11b306f21a"], Cell[TextData[{ "Berechnen Sie den Logarithmus des Fakult\[ADoubleDot]t der ersten 35 nat\ \[UDoubleDot]rlich Zahlen exakt und mit Hilfe der Stirling-Formel:\n\t\t\t\t\ ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"ln", RowBox[{"(", RowBox[{ StyleBox["n", "TI"], "!"}], ")"}], "\[TildeTilde]", StyleBox["n", "TI"], "ln", RowBox[{"(", StyleBox["n", "TI"], ")"}], "-", StyleBox["n", "TI"], "+", FractionBox["1", "2"], "ln", RowBox[{"(", RowBox[{"2", "\[Pi]", StyleBox["n", "TI"]}], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\ln(n!) \\approx n \\ln(n) - n + \\frac{1}{2} \\ln (2 \\pi n)", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "9e31f716-eddc-4e90-a250-3960ab243a3a"], "\nPlotten Sie anschlie\[SZ]end die relativen Abweichungen :\n\t\t\t\t", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ FractionBox[ RowBox[{"ln", RowBox[{"(", RowBox[{ StyleBox["n", "TI"], "!"}], ")"}], "-", StyleBox["n", "TI"], "ln", RowBox[{"(", StyleBox["n", "TI"], ")"}], "+", StyleBox["n", "TI"], "-", FractionBox["1", "2"], "ln", RowBox[{"(", RowBox[{"2", "\[Pi]", StyleBox["n", "TI"]}], ")"}]}], RowBox[{"ln", "(", RowBox[{ StyleBox["n", "TI"], "!"}], ")"}]], TraditionalForm], "errors" -> {}, "input" -> "\\frac{\\ln(n!) - n \\ln(n) + n -\\frac{1}{2} \\ln (2 \\pi \ n)}{\\ln(n!)}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "f833d9bd-640f-4bd1-be04-4ebac2fbbb65"], "\n\t\t\t\t\nStarten Sie mit n=2. " }], "Text", CellChangeTimes->{{3.927702434731071*^9, 3.927702457089232*^9}, { 3.9277051623698893`*^9, 3.927705175989855*^9}, {3.927881004567774*^9, 3.9278810112517967`*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"be039d1d-af75-4238-a10b-1d9e1eb4177e"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle: ", StyleBox["Table[ ], ListPlot[ ].", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.927704909439678*^9, 3.927704951922731*^9}, { 3.92779911414296*^9, 3.927799125205274*^9}},ExpressionUUID->"d576638a-d62a-44a4-9eed-\ 91475c41dd95"] }, Open ]], Cell[CellGroupData[{ Cell["4. Aufgabe: ", "Subsection", CellChangeTimes->{{3.9273707561824512`*^9, 3.927370759986985*^9}, { 3.9277024718055773`*^9, 3.927702471961231*^9}},ExpressionUUID->"8c4f473a-1422-457a-9abc-\ 01d6455c0083"], Cell[TextData[{ "Gegeben eine Liste mit Paaren {i,j}, erzeugen Sie eine Liste mit dem \ Produkt i*j. Vergleichen Sie die Laufzeit der naiven Umsetzung mit einem ", StyleBox["For[ ]", FontWeight->"Bold"], "-Loop mit der Laufzeit f\[UDoubleDot]r die Umsetzung mit ", StyleBox["Table[ ] ", FontWeight->"Bold"], "und schlie\[SZ]lich mit", StyleBox[" Map[ ]", FontWeight->"Bold"], "." }], "Text", CellChangeTimes->{ 3.92737077097237*^9, {3.927604486722774*^9, 3.927604491953952*^9}, { 3.9276045372296753`*^9, 3.927604573768821*^9}, {3.927801068780904*^9, 3.927801078303049*^9}, {3.927801249029561*^9, 3.9278014725584173`*^9}, { 3.928208799663024*^9, 3.928208869817666*^9}, {3.928213827606935*^9, 3.928213829085759*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"eec1f6e5-df75-4341-8880-d804f815ce28"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle: ", StyleBox["AbsoluteTiming[ ]", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.928213838169512*^9, 3.9282138497098846`*^9}},ExpressionUUID->"8c226efe-4988-4965-b950-\ b66da8406496"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{"Liste", " ", "mit", " ", "Paaren", " ", RowBox[{"{", RowBox[{"i", ",", "j"}], "}"}]}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Listij", " ", "=", " ", RowBox[{"Tuples", "[", RowBox[{ RowBox[{"Range", "[", "50", "]"}], ",", "2"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Length", "[", "Listij", "]"}]}]}]], "Input", CellChangeTimes->{{3.927705203692625*^9, 3.9277052177274*^9}, { 3.927705295624855*^9, 3.92770534949144*^9}, {3.9277054012609158`*^9, 3.927705421267086*^9}, {3.9277055227016563`*^9, 3.927705654556589*^9}, { 3.9277059611917343`*^9, 3.927705965380355*^9}, {3.927706144286662*^9, 3.927706151580028*^9}, {3.927706182881267*^9, 3.927706191303512*^9}, 3.927799152915201*^9, {3.9278011680214233`*^9, 3.927801275554077*^9}, { 3.927801309645856*^9, 3.927801326858859*^9}, {3.927801483466179*^9, 3.927801496499401*^9}, {3.9278807789351997`*^9, 3.927880833202626*^9}, { 3.927880976342176*^9, 3.927880984520981*^9}, {3.9278868491015787`*^9, 3.927886850216467*^9}}, CellLabel-> "In[275]:=",ExpressionUUID->"294e9a44-5167-439a-b0f4-44b4f945403f"], Cell[BoxData["2500"], "Output", CellChangeTimes->{3.92788098489781*^9, 3.927886850547729*^9}, CellLabel-> "Out[276]=",ExpressionUUID->"33e593d3-55f1-488d-9880-f836e9c921f4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["5. Aufgabe: ", "Subsection", CellChangeTimes->{{3.927278023076239*^9, 3.927278026394217*^9}, { 3.927370765496957*^9, 3.9273707656029*^9}, {3.927881646956622*^9, 3.927881648708869*^9}},ExpressionUUID->"740c0ed1-9ee0-49e8-9232-\ 43460aa154dd"], Cell[TextData[{ StyleBox["a-", FontWeight->"Bold"], " Definieren Sie das elektrostatische Potential f\[UDoubleDot]r zwei \ Punktladungen mit entgegengesetzter Ladung an den Orten x = a und x = -a. F\ \[UDoubleDot]hren Sie eine Taylorentwicklung erster Ordnung in a um a=0 \ durch. \n", StyleBox["b-", FontWeight->"Bold"], " Berechnen Sie daraus das elektrische Feld ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["E", "TI"], "\[RightVector]"], RowBox[{"(", StyleBox["r", "TI"], ")"}], "\[LongEqual]", "-", "\[Del]", StyleBox["V", "TI"], RowBox[{"(", StyleBox["r", "TI"], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec E(r) = -\\nabla V(r)", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "455c7198-0d0c-46db-8966-b126f8b0bfd6"], ". Zeigen Sie anschlie\[SZ]end, dass dieses gegeben ist durch ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ FractionBox[ RowBox[{"3", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["p", "TI"], "\[RightVector]"], "\[CenterDot]", OverscriptBox[ StyleBox["r", "TI"], "\[RightVector]"]}], ")"}], OverscriptBox[ StyleBox["r", "TI"], "\[RightVector]"]}], SuperscriptBox[ StyleBox["r", "TI"], "5"]], "-", FractionBox[ OverscriptBox[ StyleBox["p", "TI"], "\[RightVector]"], SuperscriptBox[ StyleBox["r", "TI"], "3"]]}], TraditionalForm], "errors" -> {}, "input" -> "\\frac{3 (\\vec p \\cdot \\vec r) \\vec r}{r^5} - \\frac{\\vec p \ }{r^3}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "ccbfebe1-efa3-4db7-91e7-7e615acc2617"], " mit ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["p", "TI"], "\[RightVector]"], "\[LongEqual]", "2", StyleBox["a", "TI"], SubscriptBox[ OverscriptBox[ StyleBox["e", "TI"], "^"], StyleBox["x", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec p = 2 a \\hat{e}_{x}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "f10abaa2-2804-461d-89bf-bac424f4b228"], ". " }], "Text", CellChangeTimes->{{3.927278028098712*^9, 3.9272780288943167`*^9}, { 3.927278422359684*^9, 3.927278426086553*^9}, {3.92727916015779*^9, 3.927279228861969*^9}, {3.92760466808855*^9, 3.927604738107882*^9}, 3.927700503294981*^9, {3.927701749927978*^9, 3.927701752353475*^9}, { 3.927799200509972*^9, 3.9277992079124193`*^9}, {3.927799565704369*^9, 3.92779958691671*^9}, {3.927799735439652*^9, 3.927799785884523*^9}, { 3.9278002007644577`*^9, 3.9278002371094646`*^9}, {3.927800382117272*^9, 3.927800403509564*^9}, {3.927800450669961*^9, 3.927800528982606*^9}, { 3.927800644203082*^9, 3.927800662560444*^9}, {3.9278007553413267`*^9, 3.9278008335019093`*^9}, {3.9278008688424253`*^9, 3.927800925606985*^9}, { 3.9278009868014517`*^9, 3.9278010478265743`*^9}, {3.9278811339889107`*^9, 3.92788122436613*^9}, {3.927881264235811*^9, 3.927881387955288*^9}, { 3.928209483348955*^9, 3.92820948460139*^9}, {3.9282131769736013`*^9, 3.928213194727045*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"a94ca375-dac9-4465-910a-9aee90011488"] }, Open ]], Cell[CellGroupData[{ Cell["6. Aufgabe", "Subsection", CellChangeTimes->{{3.92788163522797*^9, 3.927881644241858*^9}},ExpressionUUID->"a8035bea-e525-4423-8c84-\ 225cdc45482c"], Cell[TextData[{ "Implementieren Sie den Kettenbruch ", Cell[BoxData[ FormBox[ FractionBox["1", RowBox[{"1", "+", FractionBox["1", RowBox[{"1", "+", FractionBox["1", RowBox[{ RowBox[{"1", "+"}], "..."}]]}]]}]], TraditionalForm]],ExpressionUUID-> "5bf9e08d-1638-4425-9871-7c8c3a7197fa"], ", also eine Zahlenfolge mit ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["f", "1"], "=", "1"}], TraditionalForm]],ExpressionUUID-> "d37feec0-53f3-449d-8356-3dac081d9277"], " und ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["f", "n"], " ", "=", " ", RowBox[{"1", "+", RowBox[{ FractionBox["1", RowBox[{" ", SubscriptBox["f", RowBox[{"n", "-", "1"}]]}]], "."}]}]}], TraditionalForm]], ExpressionUUID->"e48ce32e-d0e2-43df-be0e-9d983fc75730"], " Stellen Sie die Zahlenfolge graphisch dar und \[UDoubleDot]berpr\ \[UDoubleDot]fen Sie, dass die Folge f\[UDoubleDot]r gro\[SZ]e n gegen den \ Goldenen Schnitt ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"\[Phi]", "\[LongEqual]", FractionBox[ RowBox[{"1", "+", SqrtBox["5"]}], "2"]}], TraditionalForm], "errors" -> {}, "input" -> "\\phi= \\frac{1+\\sqrt{5}}{2}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "06b0c365-67a3-4b9d-a48d-946c918280c2"], " konvergiert." }], "Text", CellChangeTimes->{{3.927801965724678*^9, 3.927801967820498*^9}, 3.92788163038666*^9, {3.927881790514579*^9, 3.927881830327923*^9}, { 3.927881863751809*^9, 3.927881944899067*^9}, {3.927882325970059*^9, 3.927882364160006*^9}, {3.927882397545876*^9, 3.927882543724637*^9}, 3.927882578446169*^9, 3.927885975252193*^9, {3.928209171355524*^9, 3.928209268471307*^9}, {3.928209386229618*^9, 3.9282094053739443`*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"43498629-e356-4c77-80b8-e9fcab297361"], Cell[TextData[{ StyleBox["Hinweis : ListLogPlot [ ], Table[ ] ", FontWeight->"Bold"], "." }], "Text", CellChangeTimes->{{3.927801965724678*^9, 3.927801967820498*^9}, 3.92788163038666*^9, {3.927881790514579*^9, 3.927881830327923*^9}, { 3.927881863751809*^9, 3.927881944899067*^9}, {3.927882325970059*^9, 3.927882364160006*^9}, {3.927882397545876*^9, 3.927882570905937*^9}},ExpressionUUID->"57213f74-b610-4fd9-992a-\ 1afcbc57a3ce"] }, Open ]], Cell[CellGroupData[{ Cell["7. Aufgabe: ", "Subsection", CellChangeTimes->{{3.927882830883445*^9, 3.927882834506486*^9}},ExpressionUUID->"e8ae6ba6-96a5-4994-9ba2-\ b6fd7fc43846"], Cell[TextData[{ "Definieren Sie eine Funktion ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["f", "TI"], RowBox[{"(", StyleBox["x", "TI"], ")"}], "\[LongEqual]", FractionBox[ SuperscriptBox[ StyleBox["x", "TI"], "3"], RowBox[{ SuperscriptBox[ StyleBox["x", "TI"], "4"], "+", "4"}]]}], TraditionalForm], "errors" -> {}, "input" -> "f(x)=\\frac{x^3}{x^4+4}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "ec93433f-a7b9-4107-87da-7513ffaf6169"], " . Berechnen Sie die Ableitung ", Cell[BoxData[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox[ StyleBox["f", "TI"], "\[Prime]"], "(", StyleBox["x", "TI"], ")"}], TraditionalForm], "errors" -> {}, "input" -> "f'(x)", "state" -> "Boxes"|>, "TeXAssistantTemplate"]], "InlineCode",ExpressionUUID-> "b7124c21-9f12-4193-90cd-9ceabe6f7736"], " und ihre Nullstellen. Erstellen Sie schlie\[SZ]lich einen Plot mit der \ Funktion ", Cell[BoxData[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["f", "TI"], TraditionalForm], "errors" -> {}, "input" -> "f", "state" -> "Boxes"|>, "TeXAssistantTemplate"]], "InlineCode",ExpressionUUID-> "d6c23afc-c4d5-4003-b411-17a7305909b9"], " und ihrer Ableitung. Markieren dabei die Extremstellen von ", Cell[BoxData[ FormBox[ RowBox[{ TemplateBox[<|"boxes" -> FormBox[ StyleBox["f", "TI"], TraditionalForm], "errors" -> {}, "input" -> "f", "state" -> "Boxes"|>, "TeXAssistantTemplate"], RowBox[{ RowBox[{"(", "x", ")"}], ".", " "}]}], TraditionalForm]],ExpressionUUID-> "1e25b762-8f88-48dd-adc9-9406a0c1cfb4"], " " }], "Text", CellChangeTimes->{{3.927371053261033*^9, 3.927371084275147*^9}, { 3.9276048923264713`*^9, 3.927604897725162*^9}, {3.92770208010575*^9, 3.927702083311602*^9}, {3.927885022915522*^9, 3.92788505108515*^9}, { 3.927885084140616*^9, 3.9278852227764072`*^9}, {3.928209440488678*^9, 3.928209464348074*^9}, {3.92821334635754*^9, 3.928213357351821*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"dcf7572b-ff97-4210-87e7-4fb6d8188322"], Cell[TextData[{ "\n", StyleBox["Hinweis: SolveValues, Solve. ", FontWeight->"Bold"], "Um Punkte in einen Plot hinzuf\[UDoubleDot]gen, k\[ODoubleDot]nnen Sie ", StyleBox["Plot[ .... , Epilog -> {.., Point[... ]}] ", FontWeight->"Bold"], " benutzen. " }], "Text", CellChangeTimes->{{3.9278859822309923`*^9, 3.9278861601663437`*^9}, { 3.92821336589966*^9, 3.928213371978347*^9}},ExpressionUUID->"e897ea03-112e-47be-b9d0-\ 4c16da5d6297"], Cell[BoxData["\[IndentingNewLine]"], "Input", CellChangeTimes->{{3.927884214317834*^9, 3.927884242034664*^9}, 3.927884319176897*^9},ExpressionUUID->"4b0e817d-0456-4464-9d3e-\ 9eec51784993"], Cell[BoxData[""], "Input", CellChangeTimes->{{3.927884322401353*^9, 3.927884323330668*^9}},ExpressionUUID->"ac365fe7-38e3-4bc1-a47e-\ 5c2aa98f95ca"], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.9278833015299788`*^9, 3.927883301758944*^9}},ExpressionUUID->"e37273da-c636-4fc7-96fc-\ 2868675114b0"] }, Open ]] }, Open ]] }, WindowSize->{638.25, 749.25}, WindowMargins->{{Automatic, -765}, {Automatic, 0}}, FrontEndVersion->"13.3 for Linux x86 (64-bit) (July 24, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"75d25fc7-d9af-46c7-ac86-3a5dd2191ecb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 219, 3, 29, "Input",ExpressionUUID->"1e6115ea-cb4c-429c-be4f-790d4d1d31c1"], Cell[CellGroupData[{ Cell[802, 27, 305, 4, 117, "Chapter",ExpressionUUID->"d64facf9-cde0-44d8-9a21-ec4ca1aa32c4"], Cell[CellGroupData[{ Cell[1132, 35, 159, 3, 54, "Subsection",ExpressionUUID->"81f65acf-4ce5-4bdd-a26f-c212e099ea35"], Cell[1294, 40, 3407, 80, 109, "Text",ExpressionUUID->"dca6c4bb-3fc0-4683-9406-d7b66e69e308"], Cell[4704, 122, 359, 11, 35, "Text",ExpressionUUID->"1396b715-7b91-43f6-922e-830a151d4cc1"] }, Open ]], Cell[CellGroupData[{ Cell[5100, 138, 160, 3, 54, "Subsection",ExpressionUUID->"2edcc4ce-8d47-43a9-bbf6-269b44ac30a8"], Cell[5263, 143, 2388, 56, 124, "Text",ExpressionUUID->"5ff27437-36cf-42e7-914e-89e95677612e"], Cell[7654, 201, 441, 11, 35, "Text",ExpressionUUID->"1b9b1820-c35d-47fa-ae7b-539fd320cdba"] }, Open ]], Cell[CellGroupData[{ Cell[8132, 217, 157, 3, 54, "Subsection",ExpressionUUID->"43cba288-ba28-4e34-a72b-8a11b306f21a"], Cell[8292, 222, 2152, 55, 231, "Text",ExpressionUUID->"be039d1d-af75-4238-a10b-1d9e1eb4177e"], Cell[10447, 279, 341, 10, 35, "Text",ExpressionUUID->"d576638a-d62a-44a4-9eed-91475c41dd95"] }, Open ]], Cell[CellGroupData[{ Cell[10825, 294, 213, 4, 54, "Subsection",ExpressionUUID->"8c4f473a-1422-457a-9abc-01d6455c0083"], Cell[11041, 300, 844, 20, 97, "Text",ExpressionUUID->"eec1f6e5-df75-4341-8880-d804f815ce28"], Cell[11888, 322, 290, 9, 35, "Text",ExpressionUUID->"8c226efe-4988-4965-b950-b66da8406496"], Cell[CellGroupData[{ Cell[12203, 335, 1210, 25, 70, "Input",ExpressionUUID->"294e9a44-5167-439a-b0f4-44b4f945403f"], Cell[13416, 362, 177, 3, 33, "Output",ExpressionUUID->"33e593d3-55f1-488d-9880-f836e9c921f4"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[13642, 371, 253, 4, 54, "Subsection",ExpressionUUID->"740c0ed1-9ee0-49e8-9232-43460aa154dd"], Cell[13898, 377, 3615, 83, 169, "Text",ExpressionUUID->"a94ca375-dac9-4465-910a-9aee90011488"] }, Open ]], Cell[CellGroupData[{ Cell[17550, 465, 157, 3, 54, "Subsection",ExpressionUUID->"a8035bea-e525-4423-8c84-225cdc45482c"], Cell[17710, 470, 1983, 52, 146, "Text",ExpressionUUID->"43498629-e356-4c77-80b8-e9fcab297361"], Cell[19696, 524, 449, 10, 35, "Text",ExpressionUUID->"57213f74-b610-4fd9-992a-1afcbc57a3ce"] }, Open ]], Cell[CellGroupData[{ Cell[20182, 539, 160, 3, 54, "Subsection",ExpressionUUID->"e8ae6ba6-96a5-4994-9ba2-b6fd7fc43846"], Cell[20345, 544, 2261, 55, 117, "Text",ExpressionUUID->"dcf7572b-ff97-4210-87e7-4fb6d8188322"], Cell[22609, 601, 449, 12, 81, "Text",ExpressionUUID->"e897ea03-112e-47be-b9d0-4c16da5d6297"], Cell[23061, 615, 194, 3, 50, "Input",ExpressionUUID->"4b0e817d-0456-4464-9d3e-9eec51784993"], Cell[23258, 620, 152, 3, 29, "Input",ExpressionUUID->"ac365fe7-38e3-4bc1-a47e-5c2aa98f95ca"], Cell[23413, 625, 208, 4, 70, "Input",ExpressionUUID->"e37273da-c636-4fc7-96fc-2868675114b0"] }, Open ]] }, Open ]] } ] *)