(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 244441, 5025] NotebookOptionsPosition[ 236208, 4885] NotebookOutlinePosition[ 236604, 4901] CellTagsIndexPosition[ 236561, 4898] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{"ClearAll", "[", "\"\\"", "]"}]], "Input", CellChangeTimes->{{3.92615667517485*^9, 3.926156686424818*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"1e6115ea-cb4c-429c-be4f-790d4d1d31c1"], Cell[CellGroupData[{ Cell["Einf\[UDoubleDot]hrung in die Computer Algebra - 2024 - \ \[CapitalUDoubleDot]bungsblatt 2", "Chapter", CellChangeTimes->{{3.9270239720010033`*^9, 3.927024011562078*^9}, { 3.927277035400279*^9, 3.927277036245101*^9}}, TextAlignment->Center,ExpressionUUID->"d64facf9-cde0-44d8-9a21-ec4ca1aa32c4"], Cell[CellGroupData[{ Cell["1. Aufgabe :", "Subsection", CellChangeTimes->{{3.927277050612318*^9, 3.92727707649513*^9}},ExpressionUUID->"81f65acf-4ce5-4bdd-a26f-\ c212e099ea35"], Cell[TextData[{ "Zeigen Sie mit Hilfe von Mathematica, dass: \t\t\na- \t\t", Cell[BoxData[ FormBox[ RowBox[{" ", TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], ")"}], "+", OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"]}], ")"}], "+", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"]}], ")"}], "\[LongEqual]", OverscriptBox["0", "\[RightVector]"]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec a \\times (\\vec b \\times \\vec c)+ \\vec b \\times (\\vec c \ \\times \\vec a) +\\vec c \\times (\\vec a \\times \\vec b) = \\vec 0", "state" -> "Boxes"|>, "TeXAssistantTemplate"]}], TraditionalForm]],ExpressionUUID-> "3eadda67-304e-4678-8d71-64196125acdb"], "\nb- \t\t ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[Cross]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "\[Cross]", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], ")"}], "\[LongEqual]", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[CenterDot]", OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], ")"}], OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"], "-", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["a", "TI"], "\[RightVector]"], "\[CenterDot]", OverscriptBox[ StyleBox["b", "TI"], "\[RightVector]"]}], ")"}], OverscriptBox[ StyleBox["c", "TI"], "\[RightVector]"]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec a \\times (\\vec b \\times \\vec c) = (\\vec a \\cdot \\vec c)\ \\vec b -(\\vec a \\cdot \\vec b)\\vec c", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "311a4ad0-644e-4f39-9c1e-7323bc5974bb"] }], "Text", CellChangeTimes->{{3.9272770901442833`*^9, 3.927277092641013*^9}, { 3.927277185346107*^9, 3.9272771856473303`*^9}, {3.927277252766768*^9, 3.9272772671818*^9}, {3.927277302864485*^9, 3.927277463347023*^9}, { 3.927277706768195*^9, 3.927277719884879*^9}, {3.927277863195435*^9, 3.9272778708688498`*^9}, {3.927370509360157*^9, 3.9273705252168293`*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"dca6c4bb-3fc0-4683-9406-d7b66e69e308"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle ", StyleBox["Dot[ ], Cross[ ], == , Simplify ", FontWeight->"Bold"], "." }], "Text", CellChangeTimes->{{3.927697452926697*^9, 3.927697496340514*^9}, { 3.927799140561171*^9, 3.9277991410026693`*^9}},ExpressionUUID->"1396b715-7b91-43f6-922e-\ 830a151d4cc1"], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"a", "=", RowBox[{"{", RowBox[{"a1", ",", "a2", ",", "a3"}], "}"}]}], ";", RowBox[{"b", "=", RowBox[{"{", RowBox[{"b1", ",", "b2", ",", "b3"}], "}"}]}], ";", RowBox[{"c", "=", RowBox[{"{", RowBox[{"c1", ",", "c2", ",", "c3"}], "}"}]}], ";"}], "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.9276310728240633`*^9, 3.927631164364915*^9}, { 3.927631202014964*^9, 3.927631207816699*^9}, 3.927631599167383*^9}, CellLabel-> "In[122]:=",ExpressionUUID->"4f41e38a-00f1-4efb-b1fe-1ff3103fd6dd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"M\[ODoubleDot]gliche", " ", "L\[ODoubleDot]sung"}], "*)"}], " ", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Teil", " ", "a"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=", RowBox[{"Cross", "[", RowBox[{"x", ",", RowBox[{"Cross", "[", RowBox[{"y", ",", "z"}], "]"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "[", RowBox[{"a", ",", "b", ",", "c"}], "]"}], "+", RowBox[{"f", "[", RowBox[{"b", ",", "c", ",", "a"}], "]"}], "+", RowBox[{"f", "[", RowBox[{"c", ",", "a", ",", "b"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"a", ",", "b", ",", "c"}], "]"}], "+", RowBox[{"f", "[", RowBox[{"b", ",", "c", ",", "a"}], "]"}], "+", RowBox[{"f", "[", RowBox[{"c", ",", "a", ",", "b"}], "]"}]}], "==", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]}]}]}]], "Input", CellChangeTimes->{{3.927631217975699*^9, 3.927631269428576*^9}, { 3.927631325029175*^9, 3.9276313316904078`*^9}, {3.927631447288897*^9, 3.927631487075314*^9}, {3.9276316166896753`*^9, 3.92763172826311*^9}, { 3.9276318638595667`*^9, 3.927631939090148*^9}, {3.92763265215044*^9, 3.9276329818960247`*^9}, {3.927633041717615*^9, 3.927633097870269*^9}, 3.9276970423573313`*^9, {3.927697074772088*^9, 3.9276971591371593`*^9}, { 3.927697210972064*^9, 3.927697340143345*^9}, {3.92769738815864*^9, 3.9276973893214893`*^9}, {3.9278826391137877`*^9, 3.9278826399992437`*^9}, {3.927882688270959*^9, 3.927882731539949*^9}}, CellLabel-> "In[133]:=",ExpressionUUID->"fce30fe7-704b-45c4-87c3-b35e71e3adc3"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellChangeTimes->{ 3.927697391967873*^9, 3.927799044906114*^9, 3.927882640812214*^9, 3.92788267236348*^9, {3.927882708299653*^9, 3.927882732036359*^9}}, CellLabel-> "Out[134]=",ExpressionUUID->"c70907a7-4a2a-4b41-bd5a-73fe961d93e6"], Cell[BoxData["True"], "Output", CellChangeTimes->{ 3.927697391967873*^9, 3.927799044906114*^9, 3.927882640812214*^9, 3.92788267236348*^9, {3.927882708299653*^9, 3.927882732040189*^9}}, CellLabel-> "Out[135]=",ExpressionUUID->"16df33bb-0f8a-4eef-85cd-842c1d09d18f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Teil", " ", "b"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ "Ausdr\[UDoubleDot]cke", " ", "von", " ", "einander", " ", "substrahieren"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"a", ",", "b", ",", "c"}], "]"}], "-", RowBox[{ RowBox[{"Dot", "[", RowBox[{"a", ",", "c"}], "]"}], "*", "b"}], "+", RowBox[{ RowBox[{"Dot", "[", RowBox[{"a", ",", "b"}], "]"}], "*", "c"}]}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"oder", " ", "==", " ", RowBox[{"verwenden", " ", "um", " ", "ein", " ", "Boolean", " ", RowBox[{"(", RowBox[{"true", "/", "false"}], ")"}], " ", "zu", " ", "bekommen"}]}], "*)"}], "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Dot", "[", RowBox[{"a", ",", "c"}], "]"}], "*", "b"}], "-", RowBox[{ RowBox[{"Dot", "[", RowBox[{"a", ",", "b"}], "]"}], "*", "c"}]}], " ", "==", RowBox[{"Cross", "[", RowBox[{"a", ",", RowBox[{"Cross", "[", RowBox[{"b", ",", "c"}], "]"}]}], "]"}]}], "//", "Simplify"}]}]}]], "Input", CellChangeTimes->{{3.927631217975699*^9, 3.927631269428576*^9}, { 3.927631325029175*^9, 3.9276313316904078`*^9}, {3.927631447288897*^9, 3.927631487075314*^9}, {3.9276316166896753`*^9, 3.92763172826311*^9}, { 3.9276318638595667`*^9, 3.927631939090148*^9}, {3.92763265215044*^9, 3.9276329818960247`*^9}, {3.927633041717615*^9, 3.927633097870269*^9}, 3.9276970423573313`*^9, {3.927697074772088*^9, 3.9276971591371593`*^9}, { 3.927697210972064*^9, 3.927697340143345*^9}, {3.92769738815864*^9, 3.9276973893214893`*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"c537b951-680c-40b3-9c9f-380e4281902d"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}]], "Output", CellChangeTimes->{{3.9276327543757877`*^9, 3.92763281056505*^9}, { 3.927632856939103*^9, 3.927632885770636*^9}, {3.927632921638315*^9, 3.92763295835537*^9}, {3.9276330362171497`*^9, 3.927633098539192*^9}, { 3.9276970374518642`*^9, 3.927697042984724*^9}, {3.927697075965891*^9, 3.9276971597445793`*^9}, {3.927697212268531*^9, 3.9276972234824467`*^9}, 3.927697278165758*^9, 3.927697393910161*^9, 3.92779904938661*^9}, CellLabel->"Out[6]=",ExpressionUUID->"b6f66317-8fad-4cab-940e-749629196b70"], Cell[BoxData["True"], "Output", CellChangeTimes->{{3.9276327543757877`*^9, 3.92763281056505*^9}, { 3.927632856939103*^9, 3.927632885770636*^9}, {3.927632921638315*^9, 3.92763295835537*^9}, {3.9276330362171497`*^9, 3.927633098539192*^9}, { 3.9276970374518642`*^9, 3.927697042984724*^9}, {3.927697075965891*^9, 3.9276971597445793`*^9}, {3.927697212268531*^9, 3.9276972234824467`*^9}, 3.927697278165758*^9, 3.927697393910161*^9, 3.927799049399002*^9}, CellLabel->"Out[7]=",ExpressionUUID->"69bedfcd-5f71-43e6-9b4c-09cca4257997"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["2. Aufgabe: ", "Subsection", CellChangeTimes->{{3.927277500699644*^9, 3.927277508593761*^9}},ExpressionUUID->"2edcc4ce-8d47-43a9-bbf6-\ 269b44ac30a8"], Cell[TextData[{ "L\[ODoubleDot]sen Sie die Laplace Gleichung ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox["\[Del]", "2"], "\[Psi]", RowBox[{"(", "\[Rho]", ")"}], "\[LongEqual]", "0"}], TraditionalForm], "errors" -> {}, "input" -> "\\nabla ^2 \\psi(\\rho) = 0", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "e6b24e2d-5d1a-404e-ba3f-dad8c033e369"], " in Zylinderkoordinaten, mit den Randbedingungen : ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"\[Psi]", RowBox[{"(", "4", ")"}], "\[LongEqual]", "0"}], TraditionalForm], "errors" -> {}, "input" -> "\\psi(4)=0", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "e6989552-c6e2-4f0c-aaaa-d74b31822a56"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox["\[Psi]", "\[Prime]"], RowBox[{"(", "4", ")"}], "\[LongEqual]", "1"}], TraditionalForm], "errors" -> {}, "input" -> "\\psi'(4)=1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "80c35bac-57cd-479e-a0ae-904e578e5dd2"], " . Die Funktion ", Cell[BoxData[ FormBox[ TemplateBox[<| "boxes" -> FormBox["\[Psi]", TraditionalForm], "errors" -> {}, "input" -> "\\psi", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "cd4ff211-e38e-463b-a31a-5c68fbda14ea"], " ist nur von ", Cell[BoxData[ FormBox[ TemplateBox[<| "boxes" -> FormBox["\[Rho]", TraditionalForm], "errors" -> {}, "input" -> "\\rho", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "9ca7f18c-51e0-493f-a892-a975b45a4f05"], " abh\[ADoubleDot]ngig.\nPlotten Sie ihr Ergebnis. " }], "Text", CellChangeTimes->{{3.927277892921328*^9, 3.927277933182638*^9}, { 3.927278002296256*^9, 3.927278003579713*^9}, {3.92760427167266*^9, 3.9276043613983088`*^9}, {3.927604918476722*^9, 3.927604922223835*^9}, 3.927604984418355*^9, {3.927699817594887*^9, 3.927699905280695*^9}, { 3.927699942610712*^9, 3.9277000444406137`*^9}, {3.927700105389535*^9, 3.927700116099683*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"5ff27437-36cf-42e7-914e-89e95677612e"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle: ", StyleBox["DSolve[ ] , Laplacian[ ]. ", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.927697526090448*^9, 3.927697538036504*^9}, { 3.927697594019755*^9, 3.927697596852735*^9}, {3.927700069032035*^9, 3.927700078914391*^9}, {3.927799136563517*^9, 3.927799137101882*^9}},ExpressionUUID->"1b9b1820-c35d-47fa-ae7b-\ 539fd320cdba"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"?", "Laplacian"}]], "Input", CellChangeTimes->{{3.927697542631453*^9, 3.927697580155961*^9}}, CellLabel->"In[61]:=",ExpressionUUID->"78c09c75-74e0-44c1-b81c-0602d4d00eb3"], Cell[BoxData[ InterpretationBox[ StyleBox[ FrameBox[ DynamicModuleBox[{System`InformationDump`open$$ = True, System`InformationDump`mouseOver$$ = False}, PaneSelectorBox[{True-> TagBox[GridBox[{ { ItemBox[ PaneBox[ StyleBox["\<\" Symbol\"\>", "InformationTitleText", StripOnInput->False, BaseStyle -> None], FrameMargins->{{4, 0}, {-1, 1}}], BaseStyle->"InformationTitleBackground", StripOnInput->False], ItemBox[ PaneBox[ TooltipBox[ ButtonBox[ PaneSelectorBox[{False-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "InformationHelpIcon"], ImageSizeCache->{13., {4., 9.}}], True-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "InformationHelpIconHot"], ImageSizeCache->{13., {4., 9.}}]}, Dynamic[ CurrentValue["MouseOver"]]], Appearance->None, BaseStyle->"Link", ButtonData->"paclet:ref/Laplacian", ButtonNote->"paclet:ref/Laplacian"], "\"paclet:ref/Laplacian\""], FrameMargins->{{0, 4}, {0, 2}}], BaseStyle->"InformationTitleBackground", StripOnInput->False]}, { ItemBox[ PaneBox[ StyleBox["\<\"\\!\\(\\*RowBox[{\\\"Laplacian\\\", \\\"[\\\", \ RowBox[{StyleBox[\\\"f\\\", \\\"TI\\\"], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"1\\\", \ \\\"TR\\\"]], \\\",\\\", StyleBox[\\\"\[Ellipsis]\\\", \\\"TI\\\"], \ \\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"n\\\", \ \\\"TI\\\"]]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) gives the Laplacian \ \\!\\(\\*RowBox[{RowBox[{RowBox[{SuperscriptBox[\\\"\[PartialD]\\\", \ \\\"2\\\"], \\\"f\\\"}], \\\"/\\\", RowBox[{\\\"\[PartialD]\\\", \ SuperscriptBox[SubscriptBox[\\\"x\\\", \\\"1\\\"], \\\"2\\\"]}]}], \\\"+\\\", \ StyleBox[\\\"\[Ellipsis]\\\", \\\"TR\\\"], \\\"+\\\", \ RowBox[{RowBox[{SuperscriptBox[\\\"\[PartialD]\\\", \\\"2\\\"], \\\"f\\\"}], \ \\\"/\\\", RowBox[{\\\"\[PartialD]\\\", \ SuperscriptBox[SubscriptBox[\\\"x\\\", \\\"n\\\"], \\\"2\\\"]}]}]}]\\).\\n\\!\ \\(\\*RowBox[{\\\"Laplacian\\\", \\\"[\\\", RowBox[{StyleBox[\\\"f\\\", \ \\\"TI\\\"], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"1\\\", \ \\\"TR\\\"]], \\\",\\\", StyleBox[\\\"\[Ellipsis]\\\", \\\"TI\\\"], \ \\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"n\\\", \ \\\"TI\\\"]]}], \\\"}\\\"}], \\\",\\\", StyleBox[\\\"chart\\\", \ \\\"TI\\\"]}], \\\"]\\\"}]\\) gives the Laplacian in the given coordinates \ \\!\\(\\*StyleBox[\\\"chart\\\", \\\"TI\\\"]\\).\"\>", "InformationUsageText", StripOnInput->False, LineSpacing->{1.5, 1.5, 3.}], FrameMargins->{{10, 10}, {8, 10}}], BaseStyle->"InformationUsageSubtitleBackground", StripOnInput->False], ItemBox["\<\"\"\>", BaseStyle->"InformationUsageSubtitleBackground", StripOnInput->False]}, { PaneBox[GridBox[{ { DynamicModuleBox[{System`InformationDump`open$$ = { False, False, False, False, False, False}}, StyleBox[GridBox[{ { TagBox[ TooltipBox[ StyleBox["\<\" Documentation\"\>", "InformationRowLabel", StripOnInput->False], "\"Documentation\"", TooltipStyle->"TextStyling"], Annotation[#, "Documentation", "Tooltip"]& ], TemplateBox[{ TemplateBox[{ "\"Local \[RightGuillemet]\"", "paclet:ref/Laplacian", "paclet:ref/Laplacian", "Link", { RGBColor[0.9686274509803922, 0.4666666666666667, 0.]}, BaseStyle -> { RGBColor[0.0784313725490196, 0.1568627450980392, 0.6]}}, "HyperlinkTemplate"], "\" \"", StyleBox[ "\"|\"", "InformationRowLabel", StripOnInput -> False], "\" \"", TemplateBox[{"\"Web \[RightGuillemet]\"", { URL[ "http://reference.wolfram.com/language/ref/Laplacian.\ html"], None}, "http://reference.wolfram.com/language/ref/Laplacian.html", "Hyperlink", { RGBColor[0.9686274509803922, 0.4666666666666667, 0.]}, BaseStyle -> { RGBColor[0.0784313725490196, 0.1568627450980392, 0.6]}}, "HyperlinkTemplate"]}, "RowDefault"]}, { TagBox[ TooltipBox[ StyleBox["\<\" Attributes\"\>", "InformationRowLabel", StripOnInput->False], "\"Attributes\"", TooltipStyle->"TextStyling"], Annotation[#, "Attributes", "Tooltip"]& ], RowBox[{"{", RowBox[{"Protected", ",", "ReadProtected"}], "}"}]}, { TagBox[ TooltipBox[ StyleBox["\<\" Full Name\"\>", "InformationRowLabel", StripOnInput->False], "\"FullName\"", TooltipStyle->"TextStyling"], Annotation[#, "FullName", "Tooltip"]& ], "\<\"System`Laplacian\"\>"} }, AutoDelete->False, GridBoxAlignment->{"Columns" -> {Right, Left}}, GridBoxDividers->None, GridBoxItemSize->{"Columns" -> {Automatic, Automatic}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[0.8]}, Offset[0.2]}}], "DialogStyle", StripOnInput->False], DynamicModuleValues:>{}]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxDividers->{"Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "Rows" -> { Offset[0.2], { Offset[3.6]}, Offset[0.2]}}], FrameMargins->{{6, 6}, {6, 3}}], ""}, { ItemBox[ TagBox[ ButtonBox[ PaneSelectorBox[{False-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "UpPointerOpener"], ImageSizeCache->{10., {3., 7.}}], True-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "UpPointerOpenerHot"], ImageSizeCache->{10., {3., 7.}}]}, Dynamic[ System`InformationDump`mouseOver$$]], Alignment->Left, Appearance->{"Default" -> None}, ButtonFunction:>FEPrivate`Set[ System`InformationDump`open$$, False], Evaluator->Automatic, FrameMargins->{{9, 0}, {0, 0}}, ImageMargins->0, ImageSize->Full, Method->"Preemptive"], EventHandlerTag[{ "MouseEntered" :> FEPrivate`Set[System`InformationDump`mouseOver$$, True], "MouseExited" :> FEPrivate`Set[System`InformationDump`mouseOver$$, False], Method -> "Preemptive", PassEventsDown -> Automatic, PassEventsUp -> True}]], BaseStyle->"InformationTitleBackground", StripOnInput->False], "\[SpanFromLeft]"} }, AutoDelete->False, FrameStyle->Directive[ GrayLevel[0.8], Thickness[Tiny]], GridBoxAlignment->{"Columns" -> {Left, Right}, "Rows" -> {{Center}}}, GridBoxDividers->{ "Columns" -> {{None}}, "Rows" -> {False, {True}, False}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], False-> TagBox[GridBox[{ { ItemBox[ PaneBox[ StyleBox["\<\" Symbol\"\>", "InformationTitleText", StripOnInput->False], FrameMargins->{{4, 0}, {-1, 1}}], BaseStyle->"InformationTitleBackground", StripOnInput->False], ItemBox[ PaneBox[ TooltipBox[ ButtonBox[ PaneSelectorBox[{False-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "InformationHelpIcon"], ImageSizeCache->{13., {4., 9.}}], True-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "InformationHelpIconHot"], ImageSizeCache->{13., {4., 9.}}]}, Dynamic[ CurrentValue["MouseOver"]]], Appearance->None, BaseStyle->"Link", ButtonData->"paclet:ref/Laplacian", ButtonNote->"paclet:ref/Laplacian"], "\"paclet:ref/Laplacian\""], FrameMargins->{{0, 4}, {0, 2}}], BaseStyle->"InformationTitleBackground", StripOnInput->False]}, { ItemBox[ PaneBox[ StyleBox["\<\"\\!\\(\\*RowBox[{\\\"Laplacian\\\", \\\"[\\\", \ RowBox[{StyleBox[\\\"f\\\", \\\"TI\\\"], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"1\\\", \ \\\"TR\\\"]], \\\",\\\", StyleBox[\\\"\[Ellipsis]\\\", \\\"TI\\\"], \ \\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"n\\\", \ \\\"TI\\\"]]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) gives the Laplacian \ \\!\\(\\*RowBox[{RowBox[{RowBox[{SuperscriptBox[\\\"\[PartialD]\\\", \ \\\"2\\\"], \\\"f\\\"}], \\\"/\\\", RowBox[{\\\"\[PartialD]\\\", \ SuperscriptBox[SubscriptBox[\\\"x\\\", \\\"1\\\"], \\\"2\\\"]}]}], \\\"+\\\", \ StyleBox[\\\"\[Ellipsis]\\\", \\\"TR\\\"], \\\"+\\\", \ RowBox[{RowBox[{SuperscriptBox[\\\"\[PartialD]\\\", \\\"2\\\"], \\\"f\\\"}], \ \\\"/\\\", RowBox[{\\\"\[PartialD]\\\", \ SuperscriptBox[SubscriptBox[\\\"x\\\", \\\"n\\\"], \\\"2\\\"]}]}]}]\\).\\n\\!\ \\(\\*RowBox[{\\\"Laplacian\\\", \\\"[\\\", RowBox[{StyleBox[\\\"f\\\", \ \\\"TI\\\"], \\\",\\\", RowBox[{\\\"{\\\", \ RowBox[{SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"1\\\", \ \\\"TR\\\"]], \\\",\\\", StyleBox[\\\"\[Ellipsis]\\\", \\\"TI\\\"], \ \\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"n\\\", \ \\\"TI\\\"]]}], \\\"}\\\"}], \\\",\\\", StyleBox[\\\"chart\\\", \ \\\"TI\\\"]}], \\\"]\\\"}]\\) gives the Laplacian in the given coordinates \ \\!\\(\\*StyleBox[\\\"chart\\\", \\\"TI\\\"]\\).\"\>", "InformationUsageText", StripOnInput->False, LineSpacing->{1.5, 1.5, 3.}], FrameMargins->{{10, 10}, {8, 10}}], BaseStyle->"InformationUsageSubtitleBackground", StripOnInput->False], ItemBox["\<\"\"\>", BaseStyle->"InformationUsageSubtitleBackground", StripOnInput->False]}, { ItemBox[ TagBox[ ButtonBox[ PaneSelectorBox[{False-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "DownPointerOpener"], ImageSizeCache->{10., {3., 7.}}], True-> DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "DownPointerOpenerHot"], ImageSizeCache->{10., {3., 7.}}]}, Dynamic[ System`InformationDump`mouseOver$$]], Alignment->Left, Appearance->{"Default" -> None}, ButtonFunction:>FEPrivate`Set[ System`InformationDump`open$$, True], Evaluator->Automatic, FrameMargins->{{9, 0}, {0, 0}}, ImageMargins->0, ImageSize->Full, Method->"Preemptive"], EventHandlerTag[{ "MouseEntered" :> FEPrivate`Set[System`InformationDump`mouseOver$$, True], "MouseExited" :> FEPrivate`Set[System`InformationDump`mouseOver$$, False], Method -> "Preemptive", PassEventsDown -> Automatic, PassEventsUp -> True}]], BaseStyle->"InformationTitleBackground", StripOnInput->False], "\[SpanFromLeft]"} }, AutoDelete->False, FrameStyle->Directive[ GrayLevel[0.8], Thickness[Tiny]], GridBoxAlignment->{"Columns" -> {Left, Right}, "Rows" -> {{Center}}}, GridBoxDividers->{ "Columns" -> {{None}}, "Rows" -> {False, {True}, False}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"]}, Dynamic[System`InformationDump`open$$], BaselinePosition->Baseline, FrameMargins->0, ImageSize->Automatic], DynamicModuleValues:>{}], BaseStyle->"InformationGridFrame", StripOnInput->False], "InformationGridPlain", StripOnInput->False], InformationData[<| "ObjectType" -> "Symbol", "Usage" -> "\!\(\*RowBox[{\"Laplacian\", \"[\", RowBox[{StyleBox[\"f\", \"TI\"], \",\ \", RowBox[{\"{\", RowBox[{SubscriptBox[StyleBox[\"x\", \"TI\"], StyleBox[\"1\ \", \"TR\"]], \",\", StyleBox[\"\[Ellipsis]\", \"TI\"], \",\", \ SubscriptBox[StyleBox[\"x\", \"TI\"], StyleBox[\"n\", \"TI\"]]}], \"}\"}]}], \ \"]\"}]\) gives the Laplacian \!\(\*RowBox[{RowBox[{RowBox[{SuperscriptBox[\"\ \[PartialD]\", \"2\"], \"f\"}], \"/\", RowBox[{\"\[PartialD]\", \ SuperscriptBox[SubscriptBox[\"x\", \"1\"], \"2\"]}]}], \"+\", StyleBox[\"\ \[Ellipsis]\", \"TR\"], \"+\", \ RowBox[{RowBox[{SuperscriptBox[\"\[PartialD]\", \"2\"], \"f\"}], \"/\", \ RowBox[{\"\[PartialD]\", SuperscriptBox[SubscriptBox[\"x\", \"n\"], \ \"2\"]}]}]}]\).\n\!\(\*RowBox[{\"Laplacian\", \"[\", RowBox[{StyleBox[\"f\", \ \"TI\"], \",\", RowBox[{\"{\", RowBox[{SubscriptBox[StyleBox[\"x\", \"TI\"], \ StyleBox[\"1\", \"TR\"]], \",\", StyleBox[\"\[Ellipsis]\", \"TI\"], \",\", \ SubscriptBox[StyleBox[\"x\", \"TI\"], StyleBox[\"n\", \"TI\"]]}], \"}\"}], \ \",\", StyleBox[\"chart\", \"TI\"]}], \"]\"}]\) gives the Laplacian in the \ given coordinates \!\(\*StyleBox[\"chart\", \"TI\"]\).", "Documentation" -> <| "Local" -> "paclet:ref/Laplacian", "Web" -> "http://reference.wolfram.com/language/ref/Laplacian.html"|>, "OwnValues" -> None, "UpValues" -> None, "DownValues" -> None, "SubValues" -> None, "DefaultValues" -> None, "NValues" -> None, "FormatValues" -> None, "Options" -> None, "Attributes" -> {Protected, ReadProtected}, "FullName" -> "System`Laplacian"|>, False]]], "Output", CellChangeTimes->{3.927697580678237*^9}, CellLabel->"Out[61]=",ExpressionUUID->"a25f538d-0c3a-412b-a95f-b4358924d038"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ "Use", " ", "the", " ", "implemented", " ", "Laplacian", " ", "in", " ", "cylindrical", " ", "koordinates"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"equation", "=", RowBox[{"(", RowBox[{ RowBox[{"Laplacian", "[", RowBox[{ RowBox[{"\[Psi]", "[", "\[Rho]", "]"}], ",", RowBox[{"{", RowBox[{"\[Rho]", ",", "\[Phi]", ",", "z"}], "}"}], ",", "\"\\""}], "]"}], "==", "0"}], ")"}]}], "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.92769759942805*^9, 3.9276977449130287`*^9}, { 3.927698021099128*^9, 3.9276980371531887`*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"a42eb3a0-e348-4822-9253-7145ccee54ef"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[Psi]", "\[Prime]", MultilineFunction->None], "[", "\[Rho]", "]"}], "\[Rho]"], "+", RowBox[{ SuperscriptBox["\[Psi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Rho]", "]"}]}], "\[Equal]", "0"}]], "Output", CellChangeTimes->{{3.927697674093912*^9, 3.927697710210746*^9}, 3.927697745386858*^9, 3.9276980409117203`*^9, {3.927699265969099*^9, 3.927699281496718*^9}, 3.9277990538486223`*^9}, CellLabel->"Out[8]=",ExpressionUUID->"f69a97e0-6bf1-4e84-826e-c4468d098180"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"or", " ", RowBox[{"equivalent", ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Div", "[", RowBox[{ RowBox[{"Grad", "[", RowBox[{ RowBox[{"\[Psi]", "[", "\[Rho]", "]"}], ",", RowBox[{"{", RowBox[{"\[Rho]", ",", "\[Phi]", ",", "z"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"\[Rho]", ",", "\[Phi]", ",", "z"}], "}"}], ",", "\"\\""}], "]"}], "==", "0"}], "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.9276980040837793`*^9, 3.927698057364987*^9}, 3.9277001012419977`*^9}, CellLabel->"In[9]:=",ExpressionUUID->"4a41775d-8cc0-49ec-a08b-3536b2c31ba8"], Cell[BoxData[ RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[Psi]", "\[Prime]", MultilineFunction->None], "[", "\[Rho]", "]"}], "\[Rho]"], "+", RowBox[{ SuperscriptBox["\[Psi]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Rho]", "]"}]}], "\[Equal]", "0"}]], "Output", CellChangeTimes->{{3.9276980477420883`*^9, 3.9276980578876743`*^9}, 3.927699268047495*^9, 3.927799057398879*^9}, CellLabel->"Out[9]=",ExpressionUUID->"c93bd81c-c354-4801-913f-7924087a35f2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"sol", "=", RowBox[{"DSolve", "[", RowBox[{ RowBox[{"{", RowBox[{"equation", ",", RowBox[{ RowBox[{"\[Psi]", "[", "4", "]"}], "==", "0"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Psi]", "'"}], "[", "4", "]"}], "==", "1"}]}], "}"}], ",", "\[Psi]", ",", "\[Rho]"}], "]"}]}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.927697720994589*^9, 3.927697763144992*^9}, { 3.9276978146681767`*^9, 3.927697894046549*^9}, {3.927699211185548*^9, 3.927699245253763*^9}, {3.927699289564765*^9, 3.927699411302555*^9}, { 3.92769944511567*^9, 3.9276994506530437`*^9}, {3.927699632138036*^9, 3.927699645455179*^9}, {3.927699677888762*^9, 3.927699684909268*^9}, { 3.927699749515552*^9, 3.927699773701852*^9}, {3.927700435857765*^9, 3.927700479555806*^9}, 3.927799036672193*^9}, CellLabel->"In[10]:=",ExpressionUUID->"a1981f7b-aeaf-4b99-9144-416e59729397"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\[Psi]", "\[Rule]", RowBox[{"Function", "[", RowBox[{ RowBox[{"{", "\[Rho]", "}"}], ",", RowBox[{ RowBox[{"-", "4"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", "4", "]"}], "-", RowBox[{"Log", "[", "\[Rho]", "]"}]}], ")"}]}]}], "]"}]}], "}"}], "}"}]], "Output", CellChangeTimes->{{3.9276978282672777`*^9, 3.9276978944727163`*^9}, { 3.927699240426695*^9, 3.927699318258424*^9}, {3.927699404907178*^9, 3.927699411852713*^9}, 3.927699451005781*^9, 3.927699645821329*^9, 3.927699685271386*^9, {3.927699761140847*^9, 3.927699774017829*^9}, 3.9277004463642*^9, 3.9277004802629843`*^9, 3.927799064556157*^9}, CellLabel->"Out[10]=",ExpressionUUID->"488ab7b2-ce74-40f7-a7a9-72f97cf708f5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Psi]", "[", "\[Rho]", "]"}], "/.", "sol"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Psi]", "'"}], "[", "\[Rho]", "]"}], "/.", "sol"}], ",", RowBox[{ RowBox[{ RowBox[{"\[Psi]", "''"}], "[", "\[Rho]", "]"}], "/.", "sol"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Rho]", ",", "0", ",", "10"}], "}"}], ",", RowBox[{"GridLines", "->", "Automatic"}], ",", " ", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\"\<\[Rho]\>\"", ",", "\"\<\[Psi]\>\""}], "}"}]}], ",", " ", RowBox[{"PlotLegends", "->", RowBox[{"{", RowBox[{ "\"\<\[Psi](\[Rho])\>\"", ",", "\"\<\[Psi]'(\[Rho])\>\"", ",", "\"\<\[Psi]''(\[Rho])\>\""}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ "Hier", " ", "k\[ODoubleDot]nnt", " ", "ihr", " ", "die", " ", "Studierende", " ", "darauf", " ", "hinweisen"}], ",", " ", RowBox[{ "dass", " ", "aus", " ", "dem", " ", "Ergebnis", " ", "von", " ", "DSolve"}], ",", " ", RowBox[{ "sich", " ", "auch", " ", "die", " ", "Ableitungen", " ", "der", " ", "Funktion", " ", "bestimmen", " ", RowBox[{"lassen", "."}]}]}], "*)"}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.927699418300362*^9, 3.927699440208131*^9}, { 3.927699489943634*^9, 3.927699513699923*^9}, {3.927699653655056*^9, 3.9276996953107843`*^9}, {3.927700123948862*^9, 3.92770020735386*^9}, { 3.927700238795786*^9, 3.927700452837626*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"a5aa390c-e437-4ee1-bc54-adb8a95967c1"], Cell[BoxData[ TemplateBox[{ GraphicsBox[ InterpretationBox[{ TagBox[{{{}, {}, TagBox[{ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwBYQSe+yFib1JlAgAAAEUAAAACAAAAwjfhRvWH8D9N+q47lagVwPr+7GfX nfA/kwKUtWKTFcDr3FWozwLxPw9n0F1MMxXAzJgnKcDM8T+7EpjyoXkUwI4Q yyqhYPM/6I+43MkdE8Bi21S/A8z2P1a0AwgghBDAccWEYm8n+j9yNgzh2aIM wLFwDFMYSf0/QgEBsmsECcChe2vqMFcAQCw2mqu1gQXAgp/8UfTsAUDaDprn T4sCwADT4EC8egNABEyXZKLE/78mdGZ4VCoFQORMizqpdPq/5PWXVgu9BkBE CSsLD971v0rlan2ScQhA5M/C+Uk98b9O5JArHh4KQNBoZRj9/+m/6sNigMit C0C4ymG0k5Hivy4R1h1DXw1AgOmoe8jv1b8KP/Vh3PMOQIBJg6QCCsG/R+1a 9yJVEEAA1E0o4xC1P9jCZAFaLBFA8HsV/Zgd0j+1iMReIPURQDB7wT4zjN0/ ZgV14M7OEkDIRe2jGrLkP2Nye7UMmhNAkDSv4ub86T8vZyvOTGEUQLAn2EnY +O4/zxIsC3U5FUDQroZfihXyP7uugpssAxZAzA6TCsdq9D97ASpQzN0WQPTc 7EZl2vY/Ctx6SG60F0BE+Jh1Xyj5P+WmIZSffBhAJOyUyyQ8+z+UKBkEuVUZ QPCpDhz2af0/kJpmx2EgGkBQeaGBE2L/P1qUXc4M5xpARtolMNOgAED4RKX5 n74bQEzyFLpQnQFA4+VCeMKHHEBC/jJPE4ICQKI9MRvNYR1AkBed9Q1zA0Ct hXURZy0eQDIH7lfZTQRAh1VjSwP1HkC6ez6z0x4FQDXcoamHzR9AguSnsaL7 BUCYKZutzUsgQFr+bpZ7xAZAf8CNmEu5IEAWCbbjtpgHQE0bVaXKJCFAFlrC vNxjCEBBbsdbEYkhQBrDKsvtHAlAnxxiJMz1IUAy9FN5++AJQCTDp5ZOWyJA 6pHgZ+CTCkCQLcIq0r4iQFJ6I6mKPwtAZvME0ckqI0BiZmj3zvULQGKx8iCJ jyNAaumzFU6cDEBsglP8SpEjQAaqY+QtnwxAdVO01wyTI0DaNQJxDaIMQIj1 dY6QliNArhw7xMunDECuOfn7l50jQK5y51NFswxA+cH/1qarI0BqNHoiLMoM QJDSDI3ExyNAMoFizsj3DECao21ohskjQBYAqXGg+gxAo3TOQ0jLI0D2tVPU d/0MQLYWkPrLziNAZqQD2CUDDUDcWhNo09UjQB7xDdp+Dg1AJ+MZQ+LjI0Ce fcXSJCUNQDC0eh6k5SNA6hypcfgnDUA6hdv5ZecjQDIKp9DLKg1ATCedsOnq I0Ae6x7PcTANQHJrIB7x8SNAEuY5z7o7DUB8PIH5svMjQPYpK3CMPg1AhQ3i 1HT1I0Aqp5DRXUENQJivo4v4+CNA+grl1f9GDUCigARnuvojQNZI6njQSQ1A q1FlQnz8I0CabpDcoEwNQLQixh0+/iNAjqDiAHFPDUC+8yb5//8jQA4A7OVA Ug1AVcv8GA== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[{ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVlWk8FIgfh2eMK0cMrRiMY7TOdawkSb8ftSElyd2qKMdilQqJNrvJUWtN 0hLJUs6QNiWSK61bs9qOcUQYV8SYhhmG+fd/8f08758Xz1fL/5RrgAiBQMj8 uv/T5Ezh1O0LY7B9lPX9ggMFCQVLdQPXxiCo08b6iRkFs0TVBjvvjcGY+dm0 KHkKtncEUkvfjgFb14/D7lVBPTdBQcCOceiJiBt4eFAFp4J1yz8QWXDzADHV 55gyxnft7+mhsKDAbnxTmp0yKhuf+VxvzoLB6JceEt8qowOn3jQngAVOO067 N85txtKLro89O1igV07YuzV+M4akX2xg0CfgWkq7RnSVEopwC4YbSyeg/h9K TnymEmZ7thMetExAXrd0e9MvStipprg79csEiC+M/jx6QAkNi0vaHL0mQVrj Ljnr8zc4++w1o0VjCiI0gtTA6hsMZ+mPVVdOQ7DfM2v6vCKOHGVKNndMA+iU nS7uV8TD75ONe8an4WmmodvMS0Xc3jUZw6LMwLvwLgn2bUUkPSyUV0qagf1d o02c/YqYFae1K/rYJwj0cKf6Vytgs6LKLSv5Oaj5Y9rkQy4Zt6a2N/xgOAeL 9VqeyalkLBI/P35o7xyYd9ZVuFwk4+/8tyYhcXPwqr3r9g5fMnoMZ/yTPTUH FpR9lSFUMs6UyX9ZbfoM61d/yecVyqOUVoLu8PYFMHGRPcdIk8P2nddNfvlh AbYVbbN0j5bDRK87luquC5B+Nv2d8KgcitCf2h8JXYDo1VzXl8ZyuLI+G/Qu dwG0w7YOSzA24qdB95JXImzo/WmJT1PZiN1ZuvpN3Wxg7G0bLn8hg1ert5od Y7JhplWH7/5ABh0YtlbrLDbU9I01q+bIYKvEj447hWx4s1nztOCMDNZH0X96 arYI/+4N6JTWkcEKN35p1Z+L8FPJdL/pNWn8Q77LIP84B6oMrg9uCZPCWkv1 x87hHLB8eyj4d28pHD96CgSxHIjkUciy9lJoXaHo5pnJAaNY4Ycj2lI45fjj RdleDhxuKb+u378Bd1+eexVj/QWkGux9vJw3II8rF+mqxIVMLfrGGntJpKn7 C4U0LljwtiYQt0ui857qlAozLkwQ0vG4niQWpnvdkTzAhT0RlmzvDZLoapLf 1nCZC23VNiI7uiWwIvh7iiGbCwnRI7d/d5dA/wG3RlL3Esjs21V6LVIcpXI+ /hzBXALfeJsqr2Bx/NsnXG14YgneezeYWRwRR1J/UkwdcRkWtg1YqtmK4733 deYRlsswMOkWlCcrjhNvNEs+FCyDsZs740SpGIYwZum1MTywkDKy3/lJFBXo MaCbxIPGGY3Q9mFRrDso/jkjgwcFc9EKfv+JovQrDafTD3iga1x4q+a5KJb3 uIrpsniwqb3Hc5kuip87n8ZkuPBh7PZUapWVKEa8TPA/pbsChed3TabcICF1 fK/4kvkKnJCP3mZ8lYRdIhvK4nAFHLyHzg7Ek3ALprJTvFdgOt020SWchMy6 m/H3rq3ADFO+7K4jCW2riu4w51fA70k+jBFJSM5p79/9dBUSH6bWRJ0XwYen ZQ4rO67BsGhwUEksEbuzFWMqPNbgiqDMm36WiBOtlDy7k2vwV4B426VQIlJU 9D+FXVoDu8yq6XNHiJjQ/MPl5sdr8HFDjlmNNRE9FC49CtFehxvJB6k31gi4 8oit+Hx1Hf6+f4oemEjA/NjQGVNPAr4TFheiuxBMmzbwknwJeJOeq6fuKIQm 0RKx4RMENDhcKkeyEcJI6rhm6mkChualfpjREQL1L1/P6RQCzpdwXfW565Dd erA1v56A2pFiQV6Z65Auu/WOgjYRV6LH2dtH1+C3PMGhL7NELJhqGRKmCcDF 9GmEIYeIqwYWJLVEAVCbz1735xMxxK5QuCtOAHWjMwyG2FcvLaZ+t4IFsLiF ebCCKoLXL7JF8mwF4F/++ECgiwgO6Bs1TX5ZBdvacMf3j0Rwwm+eh8dXgfB6 BOsvkDBxyr2+3mEFvj0XeN7NQAzjSKp7XpjyYJyb6SH9XBzrZHyFbglLsI8V cjE9QhLDyhwCty1+AedxuiGVKoXhVHbtlWwOzLzwj2+vkEaGiI1v5KVFMCa/ Vd99TBYru63zosLZIAVcv0HORqwyD7fJuboA9nM+y9ru8thqTC4y856H9y0n iT5GZCyotlxzZ8zB4+TWo5pcMno1pngQLs9CoFjkSG+vApr6+PcRrT7BiTOx j2WyFbElyiekkToDJkGGvfv9NiFxV+H8cY1peKVgJB35tdNGzxiXr3zt9rPK 33KMSEqY90zfNcpuEmKJBi7dQ0oolI812nRyAqQGLziEV2/GFNWJMs9bLGAV aWXkxSmjq/mCX8vUOGToqYjWuqugvvXO5JsW40DPDmzz06Rg+YWo131ZY+CT 4dsrM0lBZ77eLEVyDHh7Cvl5Dar42k+5b8e5URhj2Z1vSVLD3JrsYq3Fj1Bg Y6ba46eOFYwbBG7YR6i4EkkO+o6KShneD08sj0CS+wknEpeKeybTStZSRsBi ML80qUcDhxttLU+qjECWfk5Fj5MmGj9vH9wSOgyXmlKznGo1cb/cN/1ncj/A AVX3wk4dLYwbIlXGDg2BbXjbEXKKFqYtnhJ79P0Q5Kn563RztbAhOaJo/tdB 0HlR/KfzEW20/3fJ2Gl8AOjftRj0NWijHkqftHIZgECO6L8dBjTU8KzMPvqk H/wfLmqmpNHQf4/4zQ6jfgj77bBg33Ua9i7s7Ttl0A+Rh6vfydygoWtveqyS Xj8kcyP/oP9Jw8/d78gBtH6otOKvZubSUGVxxlGC0g/8ZuHbovs0nCvh9R6T 6Ad6n0xqaxsNu51HTx4fZUL23Z+DEztoKNDlflIcYcLdc727HbpoSLFNGGgb YsITJfpKVy8N/ZaLOaZMJgz6KAa/fkPDEb5AVJLBBN0xld2jYzQsLq+90fGc CabVF6j3WDR8/ibn5uVnTNhxZYAfMEnD0EbbdZtaJuzXza2anqGhlWQYqbqa CWdCNalsNg3ZbLv+e/eZELfzV/7fHBo+Ouok51/KhCuyo/+d49JQeXZXmUYx E7Ie3L3G49HwSU8s+XYBEwriRYPqVmioEJY25PMXE+4fCrCLE9DQqVFbjnKH CdXa/6jvWqehpKhqETOHCQ2cb/lfDwc9430Lbt1iwv8AD9d7TQ== "]]}, Annotation[#, "Charting`Private`Tag#2"]& ], TagBox[{ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVlmk81OsfQMeMEUbWuCU0jBISleWK63nQYk+iVW6RNUmLri2tQpsl4aYU RomIGkXJ96dIZSlF1hpk35oxxoz9f/8vzue8P6+OuudxF28yiUSq/o//u9GO Nke7MIIcZwrNbucqEmePn4+Lvz2CmuVI8x6xioSnJ7vpUe0IOpi8L6rLUJFY Z3PvaKvJKKrdTl0acWsZUamw4l9T2TEkELf7dMNbgTC88aFiq+4YstAvLsqx VCAeioX27tw2hsa3ePymqykQ16e/6wdEjqHIiz41Zq3yxG528vs7g2No1/6N 0Z3O8sRwnuzkLDGOHkT+MZznIkdIql/WYv/JQY8HDY101GWID+aJ+lFbOWj9 mUeqExxp4sreDBNVFw7KL3ldql0pTZATSrcfOMpBoX/Tn/R4ShMzC6O+Lfc4 aPpX29o9+UuJkU633M9kLmqSWGpkskOKyBN6FgXJcJGpjzPLa7UU4bcsuHSp ChcZbjPOHJ2lEb32Vz/YG3FRi19qnEwejeh8VTFY48tF2ebbv0ZK0oi6NC1t oo6L9kxqS6/skCCusgw3/N3GRcNu5tqpLyQImy+Wpgt9XJSo4Oh3KEmCqFri bmu+yEVdIRkT3+0kiPIzCf6lGybQpKDc/C8QJwpcpx8XpUygwiKNHlSyhLgp W6uTeYiHLKK1xXQbqUSZiWqJUxAPnXDjElHPqESvx3E0F8FD7nL18/LJVMKs QMF1TyoPHfv4YP3MHioxaOt+dmkDDx2oNLQr6hElrC+NfQ4zm0Qma8s7tSmi RFAe2q9lO4lu5e2zNh6kEHcaE3ubdk+iTW99BKH1FIKzynha/+QkKlcspdxP oxAZ5VEa/bmTSOSthanHBgoh5MuEuCjxUTwJO20KJBMMVc/FRQYfKeMM+yOu ZMJpCyuuYAMf2U7cc3lnTiZykvZmiDvyET/HN0dCmky46GfWVFziIwiyqMl7 JkIU+G1U1uXykYA39v0nRYTw7HAFSt0U2nSz7MH9K4sgmd597ETbFIL2GN+7 hxfh2f4gFXb/FPpnTZJxu/kiUNpjwl6JCNCpYPl4pckFYLa+2nTCRID6z3nz L3gvQH8zPfdnlgBtYbF3Pto1DwFfRhPKwoTI+GeE3r/7ZkE+IQxpxQhR6EEb YaHZLLzaITaenCxEG9f1lPNVZ4H2eZV98FMh0s7qi1v2awae1LtQtfqESOl2 RsO14zMw/qk0LNl5GkW1uh6RSJyGE9WXPY9rzaDrMl8XX/IEoNa7TWxq0wx6 8p62qqVTALVkibxIPIOen9ebUnovgNX4Bjdu3wy6TH30TZAmgLZXt88zr82g fxa775tgAVgWPcxo+z2DBrMZnIjkKZBL/9BuXTqL/hEaKKa48KGi7GrUp6pZ 9C3tXe9BxIejrQ4aOxtnEYc3x0Tr+FCt2OjvMTyL1CV8/3IW40NYQpswVGUO 8UNqGx68noTu6GGlwvNzSPHHqcpWnUkoDpbatdx2Hn30ZcdfUOZB3R2FsILd 8yg6Ky+oWZwH/VXK962OzCPWwu8aS8EEKK/QHgk8N49m33028mqagMuVWy9V lsyj17W5a6viJ2C3/LnnARoLKPnwlYVWyQmYec5VeDO7gGJUjqwwluPCsp9C UxeJRTSrf1rdlsyF9eKkQwNKi+j1SlRynMcBL3fpJ3IbF5FfyxLhVDMH6kR1 t/j4LaIsvwtWw+kcyHA7clqmeREZCUm3t+tyIDPi6LDBHhLWXjN4SLZwHAwI CWHMQRJuXtt8bUfKOBCiuVS2Fwk/khO1yosah64bvfQbwSTsT/J6WLxjHNQe HNwzFEfCrfax5RTeGNyp2lGVWU7CtJcB1xMtxiBpqWGGvIYI3qezLmLb4Aho uHzN918rgp/osiPzvo1AcUpwGbFeBD9fSLJbDSPwZVVBU5CZCI7Hv995pIyA 9MY1tFpXEZzGjkj8sXUEru5eHnopRgSzVzicGs8dhov353ZOjorg49yutzFR Q+BsUHpClyeCVYKcZX8FDoFa5alEz2kRnBKhnOt8YAhe9Qx/+UIl4w3mozs9 /xyCidVtOwrUyFjqxZ/f3XmD4PmkxNHHmYzp12j+/wYOgmVZkG3rczKujzym E390AKTtdPxlXpFxtPaZSar7AHS298VuI8hY80P7+usOAxA65/6BVUfGPzXV s9/rDUARst+e2EfGSs3f3bicfqC/19pq9wcFB+YRRVLh/UD61oXLwyn4xVbW ktaUPrg8VJEZfoGC47LTpMdi+kCCdI9sGkvB224EX5EL6wN5vX1VJbcp2GV2 4VTsgT5YHdO4/WkRBZ8SZ87qqveBndlbp6x+Cv7D/WGbydNeuJWd7R7rIopt m8sz2pt/wZrTPqGuOlT80/2u4XHbHtDbzN5134CKtX2KI5MtesCQtFd/2JiK I8+MHH23qQesrtv2n7Om4ueXNeUt1HrAg7nONd+din3Cn1rm8LohpWlCnxxP xSf1jS5teNANVKNzA095VFyv1h4uWOyCXn7qbtobMXxzJHSzQREbsiw3nfrx Tgxbe10UNb7Hhr9vNMQ//SSG3whzmx2usqFdk/pxV6sYnp9eYl5whA2Nu06a 3eWJ4bDJin5jZTZUFDvQ9XSW4CrB/ovusT8h9ZjIsFPqEiyXXCZzLPgH2PUF nE06IY51S0QL2492wLazjCdbQsXx6SK11nb3DrBS7GyfihLH6YGBjgOOHbB5 q+OfB66LY3MQ69U06ACdHH0e45E4zu0bctzAbwea96RfSac49vE/zbp0oR3q es+6tm6XwEq31zu/zGoDp94EXTU1SRxTYjTaKNoKdbq9Te6akvhRUPPDfdMt YH/KJCpdRxIbnCZShsZawIb888tyE0n8gmEkUG9pASu67hkFZ0kcIf+xm/e4 BYzcqwnxi5I49ZCApbizBVSapt14fZKYtpPaqZrzHYbfeZ7/UEDD6a5OgeDZ DKsSWwNusmjYvMel235vM7h6OLm5vqbh4OD6ebZjM1QITXW6PtCw28kdMqtM myFJT65J8IuGS+oLqgUyzWCWClpaylJ4W+36NUuhCa4HqHyOviKFM68fyk/R aIL1ct9Vrf9eihXmOlgv5r+CJOIf7uRJ43P2WcYDKxph+9h+gYabLFaX39zw oaQBWt8eEdm/Tg5ndL40HXxfCyWxVR50vhy+lWrUs9f3I/hQQ7oaGuQxPfFS ZtraGvA6GVEidUcBJ/lvSlvmUg36vroNDoeX4dHVfmZryt7BZ/l1tBBTRUyO v+3iq/8WXhdeTF9HUcKZfr2rlg0SECGi41z3QwlXdqWeeewGINkZbhPE+gO/ +UoH67VvoO+hevL9yOU4BOlQ6LteQ/LaFaJlbitw+4NnNo+vlEHCHZ+aw3Rl bL222ieXVAr7kw82SA0oY+P3M7Qt2S9AuCVn+n7FSnwvIqTwi00J/OqzCn0b o4LvpJ2taKGzIOuvDSvrD6viB7H+6UEzz6AgOkTOV08N25M0I0rniyHGzcue wlfDqa2v/TKXF4NRZ+bjmPpVOL+L8YqzsQjStNML6u3pOMp0jTqprRDOETfS 7MvoeDrrnISFXQE4rnTL+aSpjrfcTVM/xs4Hy6CaA3Jx6tgpwKjekJkH91U8 Nev46tjhyD8LJ70fg+a7RylOBzRwmadTfPqOXEjQe6vztUIDa2qsF2o7PwIf nmjjRx0G9ohMkvV3eAiexRP0uHgGNugIsxTzz4HAi7vm7BIZuFTk7Zyedw6E 7GK1SN1iYFk7hcrdh3Mglh9yMyGFgYkxV6/8fTlQaDo9m3qPgTclCCiH7XJg unLx+8N8Bg4IO+g1r5sDCV+lblTVMPCWKVdZ4W8m3Mk+5nflIwM//pFlgkeZ kH26wdqmloHTOT7ucYNMeKGUMFPbwMCfhofuqnUzoXO/gt+3ZgbOUJfmuH5l gtavFdY9vxj48tBgAofFBANWuBqzj4En1Kq9bYqZsDm6Y9p7gIGvPbm6MbOA CQ5a94qGhhm4ZOLUM7eHTDh5lK7G5TLw+Vhjq0+pTIg0vzD9jMfA1fXf6rST mRC9tKfpNJ+BJVOzHK4mMCHtafY1oZCBT2RG6DjFMSHrvKjvqxkG3veyLaY4 mgn5O72tIucYOGdGtk3xIhNYGu9VLRb+68mqVY2IYkIFb830f8OHw11Ybt3h TPgfWLE8Xw== "]]}, Annotation[#, "Charting`Private`Tag#3"]& ]}, {}}, { "WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], DynamicBox[ (Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwBYQSe+yFib1JlAgAAAEUAAAACAAAAwjfhRvWH8D9N+q47lagVwPr+7GfX nfA/kwKUtWKTFcDr3FWozwLxPw9n0F1MMxXAzJgnKcDM8T+7EpjyoXkUwI4Q yyqhYPM/6I+43MkdE8Bi21S/A8z2P1a0AwgghBDAccWEYm8n+j9yNgzh2aIM wLFwDFMYSf0/QgEBsmsECcChe2vqMFcAQCw2mqu1gQXAgp/8UfTsAUDaDprn T4sCwADT4EC8egNABEyXZKLE/78mdGZ4VCoFQORMizqpdPq/5PWXVgu9BkBE CSsLD971v0rlan2ScQhA5M/C+Uk98b9O5JArHh4KQNBoZRj9/+m/6sNigMit C0C4ymG0k5Hivy4R1h1DXw1AgOmoe8jv1b8KP/Vh3PMOQIBJg6QCCsG/R+1a 9yJVEEAA1E0o4xC1P9jCZAFaLBFA8HsV/Zgd0j+1iMReIPURQDB7wT4zjN0/ ZgV14M7OEkDIRe2jGrLkP2Nye7UMmhNAkDSv4ub86T8vZyvOTGEUQLAn2EnY +O4/zxIsC3U5FUDQroZfihXyP7uugpssAxZAzA6TCsdq9D97ASpQzN0WQPTc 7EZl2vY/Ctx6SG60F0BE+Jh1Xyj5P+WmIZSffBhAJOyUyyQ8+z+UKBkEuVUZ QPCpDhz2af0/kJpmx2EgGkBQeaGBE2L/P1qUXc4M5xpARtolMNOgAED4RKX5 n74bQEzyFLpQnQFA4+VCeMKHHEBC/jJPE4ICQKI9MRvNYR1AkBed9Q1zA0Ct hXURZy0eQDIH7lfZTQRAh1VjSwP1HkC6ez6z0x4FQDXcoamHzR9AguSnsaL7 BUCYKZutzUsgQFr+bpZ7xAZAf8CNmEu5IEAWCbbjtpgHQE0bVaXKJCFAFlrC vNxjCEBBbsdbEYkhQBrDKsvtHAlAnxxiJMz1IUAy9FN5++AJQCTDp5ZOWyJA 6pHgZ+CTCkCQLcIq0r4iQFJ6I6mKPwtAZvME0ckqI0BiZmj3zvULQGKx8iCJ jyNAaumzFU6cDEBsglP8SpEjQAaqY+QtnwxAdVO01wyTI0DaNQJxDaIMQIj1 dY6QliNArhw7xMunDECuOfn7l50jQK5y51NFswxA+cH/1qarI0BqNHoiLMoM QJDSDI3ExyNAMoFizsj3DECao21ohskjQBYAqXGg+gxAo3TOQ0jLI0D2tVPU d/0MQLYWkPrLziNAZqQD2CUDDUDcWhNo09UjQB7xDdp+Dg1AJ+MZQ+LjI0Ce fcXSJCUNQDC0eh6k5SNA6hypcfgnDUA6hdv5ZecjQDIKp9DLKg1ATCedsOnq I0Ae6x7PcTANQHJrIB7x8SNAEuY5z7o7DUB8PIH5svMjQPYpK3CMPg1AhQ3i 1HT1I0Aqp5DRXUENQJivo4v4+CNA+grl1f9GDUCigARnuvojQNZI6njQSQ1A q1FlQnz8I0CabpDcoEwNQLQixh0+/iNAjqDiAHFPDUC+8yb5//8jQA4A7OVA Ug1AVcv8GA== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVlWk8FIgfh2eMK0cMrRiMY7TOdawkSb8ftSElyd2qKMdilQqJNrvJUWtN 0hLJUs6QNiWSK61bs9qOcUQYV8SYhhmG+fd/8f08758Xz1fL/5RrgAiBQMj8 uv/T5Ezh1O0LY7B9lPX9ggMFCQVLdQPXxiCo08b6iRkFs0TVBjvvjcGY+dm0 KHkKtncEUkvfjgFb14/D7lVBPTdBQcCOceiJiBt4eFAFp4J1yz8QWXDzADHV 55gyxnft7+mhsKDAbnxTmp0yKhuf+VxvzoLB6JceEt8qowOn3jQngAVOO067 N85txtKLro89O1igV07YuzV+M4akX2xg0CfgWkq7RnSVEopwC4YbSyeg/h9K TnymEmZ7thMetExAXrd0e9MvStipprg79csEiC+M/jx6QAkNi0vaHL0mQVrj Ljnr8zc4++w1o0VjCiI0gtTA6hsMZ+mPVVdOQ7DfM2v6vCKOHGVKNndMA+iU nS7uV8TD75ONe8an4WmmodvMS0Xc3jUZw6LMwLvwLgn2bUUkPSyUV0qagf1d o02c/YqYFae1K/rYJwj0cKf6Vytgs6LKLSv5Oaj5Y9rkQy4Zt6a2N/xgOAeL 9VqeyalkLBI/P35o7xyYd9ZVuFwk4+/8tyYhcXPwqr3r9g5fMnoMZ/yTPTUH FpR9lSFUMs6UyX9ZbfoM61d/yecVyqOUVoLu8PYFMHGRPcdIk8P2nddNfvlh AbYVbbN0j5bDRK87luquC5B+Nv2d8KgcitCf2h8JXYDo1VzXl8ZyuLI+G/Qu dwG0w7YOSzA24qdB95JXImzo/WmJT1PZiN1ZuvpN3Wxg7G0bLn8hg1ert5od Y7JhplWH7/5ABh0YtlbrLDbU9I01q+bIYKvEj447hWx4s1nztOCMDNZH0X96 arYI/+4N6JTWkcEKN35p1Z+L8FPJdL/pNWn8Q77LIP84B6oMrg9uCZPCWkv1 x87hHLB8eyj4d28pHD96CgSxHIjkUciy9lJoXaHo5pnJAaNY4Ycj2lI45fjj RdleDhxuKb+u378Bd1+eexVj/QWkGux9vJw3II8rF+mqxIVMLfrGGntJpKn7 C4U0LljwtiYQt0ui857qlAozLkwQ0vG4niQWpnvdkTzAhT0RlmzvDZLoapLf 1nCZC23VNiI7uiWwIvh7iiGbCwnRI7d/d5dA/wG3RlL3Esjs21V6LVIcpXI+ /hzBXALfeJsqr2Bx/NsnXG14YgneezeYWRwRR1J/UkwdcRkWtg1YqtmK4733 deYRlsswMOkWlCcrjhNvNEs+FCyDsZs740SpGIYwZum1MTywkDKy3/lJFBXo MaCbxIPGGY3Q9mFRrDso/jkjgwcFc9EKfv+JovQrDafTD3iga1x4q+a5KJb3 uIrpsniwqb3Hc5kuip87n8ZkuPBh7PZUapWVKEa8TPA/pbsChed3TabcICF1 fK/4kvkKnJCP3mZ8lYRdIhvK4nAFHLyHzg7Ek3ALprJTvFdgOt020SWchMy6 m/H3rq3ADFO+7K4jCW2riu4w51fA70k+jBFJSM5p79/9dBUSH6bWRJ0XwYen ZQ4rO67BsGhwUEksEbuzFWMqPNbgiqDMm36WiBOtlDy7k2vwV4B426VQIlJU 9D+FXVoDu8yq6XNHiJjQ/MPl5sdr8HFDjlmNNRE9FC49CtFehxvJB6k31gi4 8oit+Hx1Hf6+f4oemEjA/NjQGVNPAr4TFheiuxBMmzbwknwJeJOeq6fuKIQm 0RKx4RMENDhcKkeyEcJI6rhm6mkChualfpjREQL1L1/P6RQCzpdwXfW565Dd erA1v56A2pFiQV6Z65Auu/WOgjYRV6LH2dtH1+C3PMGhL7NELJhqGRKmCcDF 9GmEIYeIqwYWJLVEAVCbz1735xMxxK5QuCtOAHWjMwyG2FcvLaZ+t4IFsLiF ebCCKoLXL7JF8mwF4F/++ECgiwgO6Bs1TX5ZBdvacMf3j0Rwwm+eh8dXgfB6 BOsvkDBxyr2+3mEFvj0XeN7NQAzjSKp7XpjyYJyb6SH9XBzrZHyFbglLsI8V cjE9QhLDyhwCty1+AedxuiGVKoXhVHbtlWwOzLzwj2+vkEaGiI1v5KVFMCa/ Vd99TBYru63zosLZIAVcv0HORqwyD7fJuboA9nM+y9ru8thqTC4y856H9y0n iT5GZCyotlxzZ8zB4+TWo5pcMno1pngQLs9CoFjkSG+vApr6+PcRrT7BiTOx j2WyFbElyiekkToDJkGGvfv9NiFxV+H8cY1peKVgJB35tdNGzxiXr3zt9rPK 33KMSEqY90zfNcpuEmKJBi7dQ0oolI812nRyAqQGLziEV2/GFNWJMs9bLGAV aWXkxSmjq/mCX8vUOGToqYjWuqugvvXO5JsW40DPDmzz06Rg+YWo131ZY+CT 4dsrM0lBZ77eLEVyDHh7Cvl5Dar42k+5b8e5URhj2Z1vSVLD3JrsYq3Fj1Bg Y6ba46eOFYwbBG7YR6i4EkkO+o6KShneD08sj0CS+wknEpeKeybTStZSRsBi ML80qUcDhxttLU+qjECWfk5Fj5MmGj9vH9wSOgyXmlKznGo1cb/cN/1ncj/A AVX3wk4dLYwbIlXGDg2BbXjbEXKKFqYtnhJ79P0Q5Kn563RztbAhOaJo/tdB 0HlR/KfzEW20/3fJ2Gl8AOjftRj0NWijHkqftHIZgECO6L8dBjTU8KzMPvqk H/wfLmqmpNHQf4/4zQ6jfgj77bBg33Ua9i7s7Ttl0A+Rh6vfydygoWtveqyS Xj8kcyP/oP9Jw8/d78gBtH6otOKvZubSUGVxxlGC0g/8ZuHbovs0nCvh9R6T 6Ad6n0xqaxsNu51HTx4fZUL23Z+DEztoKNDlflIcYcLdc727HbpoSLFNGGgb YsITJfpKVy8N/ZaLOaZMJgz6KAa/fkPDEb5AVJLBBN0xld2jYzQsLq+90fGc CabVF6j3WDR8/ibn5uVnTNhxZYAfMEnD0EbbdZtaJuzXza2anqGhlWQYqbqa CWdCNalsNg3ZbLv+e/eZELfzV/7fHBo+Ouok51/KhCuyo/+d49JQeXZXmUYx E7Ie3L3G49HwSU8s+XYBEwriRYPqVmioEJY25PMXE+4fCrCLE9DQqVFbjnKH CdXa/6jvWqehpKhqETOHCQ2cb/lfDwc9430Lbt1iwv8AD9d7TQ== "]]}, "Charting`Private`Tag#2"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVlmk81OsfQMeMEUbWuCU0jBISleWK63nQYk+iVW6RNUmLri2tQpsl4aYU RomIGkXJ96dIZSlF1hpk35oxxoz9f/8vzue8P6+OuudxF28yiUSq/o//u9GO Nke7MIIcZwrNbucqEmePn4+Lvz2CmuVI8x6xioSnJ7vpUe0IOpi8L6rLUJFY Z3PvaKvJKKrdTl0acWsZUamw4l9T2TEkELf7dMNbgTC88aFiq+4YstAvLsqx VCAeioX27tw2hsa3ePymqykQ16e/6wdEjqHIiz41Zq3yxG528vs7g2No1/6N 0Z3O8sRwnuzkLDGOHkT+MZznIkdIql/WYv/JQY8HDY101GWID+aJ+lFbOWj9 mUeqExxp4sreDBNVFw7KL3ldql0pTZATSrcfOMpBoX/Tn/R4ShMzC6O+Lfc4 aPpX29o9+UuJkU633M9kLmqSWGpkskOKyBN6FgXJcJGpjzPLa7UU4bcsuHSp ChcZbjPOHJ2lEb32Vz/YG3FRi19qnEwejeh8VTFY48tF2ebbv0ZK0oi6NC1t oo6L9kxqS6/skCCusgw3/N3GRcNu5tqpLyQImy+Wpgt9XJSo4Oh3KEmCqFri bmu+yEVdIRkT3+0kiPIzCf6lGybQpKDc/C8QJwpcpx8XpUygwiKNHlSyhLgp W6uTeYiHLKK1xXQbqUSZiWqJUxAPnXDjElHPqESvx3E0F8FD7nL18/LJVMKs QMF1TyoPHfv4YP3MHioxaOt+dmkDDx2oNLQr6hElrC+NfQ4zm0Qma8s7tSmi RFAe2q9lO4lu5e2zNh6kEHcaE3ubdk+iTW99BKH1FIKzynha/+QkKlcspdxP oxAZ5VEa/bmTSOSthanHBgoh5MuEuCjxUTwJO20KJBMMVc/FRQYfKeMM+yOu ZMJpCyuuYAMf2U7cc3lnTiZykvZmiDvyET/HN0dCmky46GfWVFziIwiyqMl7 JkIU+G1U1uXykYA39v0nRYTw7HAFSt0U2nSz7MH9K4sgmd597ETbFIL2GN+7 hxfh2f4gFXb/FPpnTZJxu/kiUNpjwl6JCNCpYPl4pckFYLa+2nTCRID6z3nz L3gvQH8zPfdnlgBtYbF3Pto1DwFfRhPKwoTI+GeE3r/7ZkE+IQxpxQhR6EEb YaHZLLzaITaenCxEG9f1lPNVZ4H2eZV98FMh0s7qi1v2awae1LtQtfqESOl2 RsO14zMw/qk0LNl5GkW1uh6RSJyGE9WXPY9rzaDrMl8XX/IEoNa7TWxq0wx6 8p62qqVTALVkibxIPIOen9ebUnovgNX4Bjdu3wy6TH30TZAmgLZXt88zr82g fxa775tgAVgWPcxo+z2DBrMZnIjkKZBL/9BuXTqL/hEaKKa48KGi7GrUp6pZ 9C3tXe9BxIejrQ4aOxtnEYc3x0Tr+FCt2OjvMTyL1CV8/3IW40NYQpswVGUO 8UNqGx68noTu6GGlwvNzSPHHqcpWnUkoDpbatdx2Hn30ZcdfUOZB3R2FsILd 8yg6Ky+oWZwH/VXK962OzCPWwu8aS8EEKK/QHgk8N49m33028mqagMuVWy9V lsyj17W5a6viJ2C3/LnnARoLKPnwlYVWyQmYec5VeDO7gGJUjqwwluPCsp9C UxeJRTSrf1rdlsyF9eKkQwNKi+j1SlRynMcBL3fpJ3IbF5FfyxLhVDMH6kR1 t/j4LaIsvwtWw+kcyHA7clqmeREZCUm3t+tyIDPi6LDBHhLWXjN4SLZwHAwI CWHMQRJuXtt8bUfKOBCiuVS2Fwk/khO1yosah64bvfQbwSTsT/J6WLxjHNQe HNwzFEfCrfax5RTeGNyp2lGVWU7CtJcB1xMtxiBpqWGGvIYI3qezLmLb4Aho uHzN918rgp/osiPzvo1AcUpwGbFeBD9fSLJbDSPwZVVBU5CZCI7Hv995pIyA 9MY1tFpXEZzGjkj8sXUEru5eHnopRgSzVzicGs8dhov353ZOjorg49yutzFR Q+BsUHpClyeCVYKcZX8FDoFa5alEz2kRnBKhnOt8YAhe9Qx/+UIl4w3mozs9 /xyCidVtOwrUyFjqxZ/f3XmD4PmkxNHHmYzp12j+/wYOgmVZkG3rczKujzym E390AKTtdPxlXpFxtPaZSar7AHS298VuI8hY80P7+usOAxA65/6BVUfGPzXV s9/rDUARst+e2EfGSs3f3bicfqC/19pq9wcFB+YRRVLh/UD61oXLwyn4xVbW ktaUPrg8VJEZfoGC47LTpMdi+kCCdI9sGkvB224EX5EL6wN5vX1VJbcp2GV2 4VTsgT5YHdO4/WkRBZ8SZ87qqveBndlbp6x+Cv7D/WGbydNeuJWd7R7rIopt m8sz2pt/wZrTPqGuOlT80/2u4XHbHtDbzN5134CKtX2KI5MtesCQtFd/2JiK I8+MHH23qQesrtv2n7Om4ueXNeUt1HrAg7nONd+din3Cn1rm8LohpWlCnxxP xSf1jS5teNANVKNzA095VFyv1h4uWOyCXn7qbtobMXxzJHSzQREbsiw3nfrx Tgxbe10UNb7Hhr9vNMQ//SSG3whzmx2usqFdk/pxV6sYnp9eYl5whA2Nu06a 3eWJ4bDJin5jZTZUFDvQ9XSW4CrB/ovusT8h9ZjIsFPqEiyXXCZzLPgH2PUF nE06IY51S0QL2492wLazjCdbQsXx6SK11nb3DrBS7GyfihLH6YGBjgOOHbB5 q+OfB66LY3MQ69U06ACdHH0e45E4zu0bctzAbwea96RfSac49vE/zbp0oR3q es+6tm6XwEq31zu/zGoDp94EXTU1SRxTYjTaKNoKdbq9Te6akvhRUPPDfdMt YH/KJCpdRxIbnCZShsZawIb888tyE0n8gmEkUG9pASu67hkFZ0kcIf+xm/e4 BYzcqwnxi5I49ZCApbizBVSapt14fZKYtpPaqZrzHYbfeZ7/UEDD6a5OgeDZ DKsSWwNusmjYvMel235vM7h6OLm5vqbh4OD6ebZjM1QITXW6PtCw28kdMqtM myFJT65J8IuGS+oLqgUyzWCWClpaylJ4W+36NUuhCa4HqHyOviKFM68fyk/R aIL1ct9Vrf9eihXmOlgv5r+CJOIf7uRJ43P2WcYDKxph+9h+gYabLFaX39zw oaQBWt8eEdm/Tg5ndL40HXxfCyWxVR50vhy+lWrUs9f3I/hQQ7oaGuQxPfFS ZtraGvA6GVEidUcBJ/lvSlvmUg36vroNDoeX4dHVfmZryt7BZ/l1tBBTRUyO v+3iq/8WXhdeTF9HUcKZfr2rlg0SECGi41z3QwlXdqWeeewGINkZbhPE+gO/ +UoH67VvoO+hevL9yOU4BOlQ6LteQ/LaFaJlbitw+4NnNo+vlEHCHZ+aw3Rl bL222ieXVAr7kw82SA0oY+P3M7Qt2S9AuCVn+n7FSnwvIqTwi00J/OqzCn0b o4LvpJ2taKGzIOuvDSvrD6viB7H+6UEzz6AgOkTOV08N25M0I0rniyHGzcue wlfDqa2v/TKXF4NRZ+bjmPpVOL+L8YqzsQjStNML6u3pOMp0jTqprRDOETfS 7MvoeDrrnISFXQE4rnTL+aSpjrfcTVM/xs4Hy6CaA3Jx6tgpwKjekJkH91U8 Nev46tjhyD8LJ70fg+a7RylOBzRwmadTfPqOXEjQe6vztUIDa2qsF2o7PwIf nmjjRx0G9ohMkvV3eAiexRP0uHgGNugIsxTzz4HAi7vm7BIZuFTk7Zyedw6E 7GK1SN1iYFk7hcrdh3Mglh9yMyGFgYkxV6/8fTlQaDo9m3qPgTclCCiH7XJg unLx+8N8Bg4IO+g1r5sDCV+lblTVMPCWKVdZ4W8m3Mk+5nflIwM//pFlgkeZ kH26wdqmloHTOT7ucYNMeKGUMFPbwMCfhofuqnUzoXO/gt+3ZgbOUJfmuH5l gtavFdY9vxj48tBgAofFBANWuBqzj4En1Kq9bYqZsDm6Y9p7gIGvPbm6MbOA CQ5a94qGhhm4ZOLUM7eHTDh5lK7G5TLw+Vhjq0+pTIg0vzD9jMfA1fXf6rST mRC9tKfpNJ+BJVOzHK4mMCHtafY1oZCBT2RG6DjFMSHrvKjvqxkG3veyLaY4 mgn5O72tIucYOGdGtk3xIhNYGu9VLRb+68mqVY2IYkIFb830f8OHw11Ybt3h TPgfWLE8Xw== "]]}, "Charting`Private`Tag#3"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0, 10}, {-5.414631779246133, 6.5712287857828}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0, 10}, {-5.414631779246133, 6.5712287857828}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache -> {{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwBYQSe+yFib1JlAgAAAEUAAAACAAAAwjfhRvWH8D9N+q47lagVwPr+7GfX nfA/kwKUtWKTFcDr3FWozwLxPw9n0F1MMxXAzJgnKcDM8T+7EpjyoXkUwI4Q yyqhYPM/6I+43MkdE8Bi21S/A8z2P1a0AwgghBDAccWEYm8n+j9yNgzh2aIM wLFwDFMYSf0/QgEBsmsECcChe2vqMFcAQCw2mqu1gQXAgp/8UfTsAUDaDprn T4sCwADT4EC8egNABEyXZKLE/78mdGZ4VCoFQORMizqpdPq/5PWXVgu9BkBE CSsLD971v0rlan2ScQhA5M/C+Uk98b9O5JArHh4KQNBoZRj9/+m/6sNigMit C0C4ymG0k5Hivy4R1h1DXw1AgOmoe8jv1b8KP/Vh3PMOQIBJg6QCCsG/R+1a 9yJVEEAA1E0o4xC1P9jCZAFaLBFA8HsV/Zgd0j+1iMReIPURQDB7wT4zjN0/ ZgV14M7OEkDIRe2jGrLkP2Nye7UMmhNAkDSv4ub86T8vZyvOTGEUQLAn2EnY +O4/zxIsC3U5FUDQroZfihXyP7uugpssAxZAzA6TCsdq9D97ASpQzN0WQPTc 7EZl2vY/Ctx6SG60F0BE+Jh1Xyj5P+WmIZSffBhAJOyUyyQ8+z+UKBkEuVUZ QPCpDhz2af0/kJpmx2EgGkBQeaGBE2L/P1qUXc4M5xpARtolMNOgAED4RKX5 n74bQEzyFLpQnQFA4+VCeMKHHEBC/jJPE4ICQKI9MRvNYR1AkBed9Q1zA0Ct hXURZy0eQDIH7lfZTQRAh1VjSwP1HkC6ez6z0x4FQDXcoamHzR9AguSnsaL7 BUCYKZutzUsgQFr+bpZ7xAZAf8CNmEu5IEAWCbbjtpgHQE0bVaXKJCFAFlrC vNxjCEBBbsdbEYkhQBrDKsvtHAlAnxxiJMz1IUAy9FN5++AJQCTDp5ZOWyJA 6pHgZ+CTCkCQLcIq0r4iQFJ6I6mKPwtAZvME0ckqI0BiZmj3zvULQGKx8iCJ jyNAaumzFU6cDEBsglP8SpEjQAaqY+QtnwxAdVO01wyTI0DaNQJxDaIMQIj1 dY6QliNArhw7xMunDECuOfn7l50jQK5y51NFswxA+cH/1qarI0BqNHoiLMoM QJDSDI3ExyNAMoFizsj3DECao21ohskjQBYAqXGg+gxAo3TOQ0jLI0D2tVPU d/0MQLYWkPrLziNAZqQD2CUDDUDcWhNo09UjQB7xDdp+Dg1AJ+MZQ+LjI0Ce fcXSJCUNQDC0eh6k5SNA6hypcfgnDUA6hdv5ZecjQDIKp9DLKg1ATCedsOnq I0Ae6x7PcTANQHJrIB7x8SNAEuY5z7o7DUB8PIH5svMjQPYpK3CMPg1AhQ3i 1HT1I0Aqp5DRXUENQJivo4v4+CNA+grl1f9GDUCigARnuvojQNZI6njQSQ1A q1FlQnz8I0CabpDcoEwNQLQixh0+/iNAjqDiAHFPDUC+8yb5//8jQA4A7OVA Ug1AVcv8GA== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVlWk8FIgfh2eMK0cMrRiMY7TOdawkSb8ftSElyd2qKMdilQqJNrvJUWtN 0hLJUs6QNiWSK61bs9qOcUQYV8SYhhmG+fd/8f08758Xz1fL/5RrgAiBQMj8 uv/T5Ezh1O0LY7B9lPX9ggMFCQVLdQPXxiCo08b6iRkFs0TVBjvvjcGY+dm0 KHkKtncEUkvfjgFb14/D7lVBPTdBQcCOceiJiBt4eFAFp4J1yz8QWXDzADHV 55gyxnft7+mhsKDAbnxTmp0yKhuf+VxvzoLB6JceEt8qowOn3jQngAVOO067 N85txtKLro89O1igV07YuzV+M4akX2xg0CfgWkq7RnSVEopwC4YbSyeg/h9K TnymEmZ7thMetExAXrd0e9MvStipprg79csEiC+M/jx6QAkNi0vaHL0mQVrj Ljnr8zc4++w1o0VjCiI0gtTA6hsMZ+mPVVdOQ7DfM2v6vCKOHGVKNndMA+iU nS7uV8TD75ONe8an4WmmodvMS0Xc3jUZw6LMwLvwLgn2bUUkPSyUV0qagf1d o02c/YqYFae1K/rYJwj0cKf6Vytgs6LKLSv5Oaj5Y9rkQy4Zt6a2N/xgOAeL 9VqeyalkLBI/P35o7xyYd9ZVuFwk4+/8tyYhcXPwqr3r9g5fMnoMZ/yTPTUH FpR9lSFUMs6UyX9ZbfoM61d/yecVyqOUVoLu8PYFMHGRPcdIk8P2nddNfvlh AbYVbbN0j5bDRK87luquC5B+Nv2d8KgcitCf2h8JXYDo1VzXl8ZyuLI+G/Qu dwG0w7YOSzA24qdB95JXImzo/WmJT1PZiN1ZuvpN3Wxg7G0bLn8hg1ert5od Y7JhplWH7/5ABh0YtlbrLDbU9I01q+bIYKvEj447hWx4s1nztOCMDNZH0X96 arYI/+4N6JTWkcEKN35p1Z+L8FPJdL/pNWn8Q77LIP84B6oMrg9uCZPCWkv1 x87hHLB8eyj4d28pHD96CgSxHIjkUciy9lJoXaHo5pnJAaNY4Ycj2lI45fjj RdleDhxuKb+u378Bd1+eexVj/QWkGux9vJw3II8rF+mqxIVMLfrGGntJpKn7 C4U0LljwtiYQt0ui857qlAozLkwQ0vG4niQWpnvdkTzAhT0RlmzvDZLoapLf 1nCZC23VNiI7uiWwIvh7iiGbCwnRI7d/d5dA/wG3RlL3Esjs21V6LVIcpXI+ /hzBXALfeJsqr2Bx/NsnXG14YgneezeYWRwRR1J/UkwdcRkWtg1YqtmK4733 deYRlsswMOkWlCcrjhNvNEs+FCyDsZs740SpGIYwZum1MTywkDKy3/lJFBXo MaCbxIPGGY3Q9mFRrDso/jkjgwcFc9EKfv+JovQrDafTD3iga1x4q+a5KJb3 uIrpsniwqb3Hc5kuip87n8ZkuPBh7PZUapWVKEa8TPA/pbsChed3TabcICF1 fK/4kvkKnJCP3mZ8lYRdIhvK4nAFHLyHzg7Ek3ALprJTvFdgOt020SWchMy6 m/H3rq3ADFO+7K4jCW2riu4w51fA70k+jBFJSM5p79/9dBUSH6bWRJ0XwYen ZQ4rO67BsGhwUEksEbuzFWMqPNbgiqDMm36WiBOtlDy7k2vwV4B426VQIlJU 9D+FXVoDu8yq6XNHiJjQ/MPl5sdr8HFDjlmNNRE9FC49CtFehxvJB6k31gi4 8oit+Hx1Hf6+f4oemEjA/NjQGVNPAr4TFheiuxBMmzbwknwJeJOeq6fuKIQm 0RKx4RMENDhcKkeyEcJI6rhm6mkChualfpjREQL1L1/P6RQCzpdwXfW565Dd erA1v56A2pFiQV6Z65Auu/WOgjYRV6LH2dtH1+C3PMGhL7NELJhqGRKmCcDF 9GmEIYeIqwYWJLVEAVCbz1735xMxxK5QuCtOAHWjMwyG2FcvLaZ+t4IFsLiF ebCCKoLXL7JF8mwF4F/++ECgiwgO6Bs1TX5ZBdvacMf3j0Rwwm+eh8dXgfB6 BOsvkDBxyr2+3mEFvj0XeN7NQAzjSKp7XpjyYJyb6SH9XBzrZHyFbglLsI8V cjE9QhLDyhwCty1+AedxuiGVKoXhVHbtlWwOzLzwj2+vkEaGiI1v5KVFMCa/ Vd99TBYru63zosLZIAVcv0HORqwyD7fJuboA9nM+y9ru8thqTC4y856H9y0n iT5GZCyotlxzZ8zB4+TWo5pcMno1pngQLs9CoFjkSG+vApr6+PcRrT7BiTOx j2WyFbElyiekkToDJkGGvfv9NiFxV+H8cY1peKVgJB35tdNGzxiXr3zt9rPK 33KMSEqY90zfNcpuEmKJBi7dQ0oolI812nRyAqQGLziEV2/GFNWJMs9bLGAV aWXkxSmjq/mCX8vUOGToqYjWuqugvvXO5JsW40DPDmzz06Rg+YWo131ZY+CT 4dsrM0lBZ77eLEVyDHh7Cvl5Dar42k+5b8e5URhj2Z1vSVLD3JrsYq3Fj1Bg Y6ba46eOFYwbBG7YR6i4EkkO+o6KShneD08sj0CS+wknEpeKeybTStZSRsBi ML80qUcDhxttLU+qjECWfk5Fj5MmGj9vH9wSOgyXmlKznGo1cb/cN/1ncj/A AVX3wk4dLYwbIlXGDg2BbXjbEXKKFqYtnhJ79P0Q5Kn563RztbAhOaJo/tdB 0HlR/KfzEW20/3fJ2Gl8AOjftRj0NWijHkqftHIZgECO6L8dBjTU8KzMPvqk H/wfLmqmpNHQf4/4zQ6jfgj77bBg33Ua9i7s7Ttl0A+Rh6vfydygoWtveqyS Xj8kcyP/oP9Jw8/d78gBtH6otOKvZubSUGVxxlGC0g/8ZuHbovs0nCvh9R6T 6Ad6n0xqaxsNu51HTx4fZUL23Z+DEztoKNDlflIcYcLdc727HbpoSLFNGGgb YsITJfpKVy8N/ZaLOaZMJgz6KAa/fkPDEb5AVJLBBN0xld2jYzQsLq+90fGc CabVF6j3WDR8/ibn5uVnTNhxZYAfMEnD0EbbdZtaJuzXza2anqGhlWQYqbqa CWdCNalsNg3ZbLv+e/eZELfzV/7fHBo+Ouok51/KhCuyo/+d49JQeXZXmUYx E7Ie3L3G49HwSU8s+XYBEwriRYPqVmioEJY25PMXE+4fCrCLE9DQqVFbjnKH CdXa/6jvWqehpKhqETOHCQ2cb/lfDwc9430Lbt1iwv8AD9d7TQ== "]]}, "Charting`Private`Tag#2"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVlmk81OsfQMeMEUbWuCU0jBISleWK63nQYk+iVW6RNUmLri2tQpsl4aYU RomIGkXJ96dIZSlF1hpk35oxxoz9f/8vzue8P6+OuudxF28yiUSq/o//u9GO Nke7MIIcZwrNbucqEmePn4+Lvz2CmuVI8x6xioSnJ7vpUe0IOpi8L6rLUJFY Z3PvaKvJKKrdTl0acWsZUamw4l9T2TEkELf7dMNbgTC88aFiq+4YstAvLsqx VCAeioX27tw2hsa3ePymqykQ16e/6wdEjqHIiz41Zq3yxG528vs7g2No1/6N 0Z3O8sRwnuzkLDGOHkT+MZznIkdIql/WYv/JQY8HDY101GWID+aJ+lFbOWj9 mUeqExxp4sreDBNVFw7KL3ldql0pTZATSrcfOMpBoX/Tn/R4ShMzC6O+Lfc4 aPpX29o9+UuJkU633M9kLmqSWGpkskOKyBN6FgXJcJGpjzPLa7UU4bcsuHSp ChcZbjPOHJ2lEb32Vz/YG3FRi19qnEwejeh8VTFY48tF2ebbv0ZK0oi6NC1t oo6L9kxqS6/skCCusgw3/N3GRcNu5tqpLyQImy+Wpgt9XJSo4Oh3KEmCqFri bmu+yEVdIRkT3+0kiPIzCf6lGybQpKDc/C8QJwpcpx8XpUygwiKNHlSyhLgp W6uTeYiHLKK1xXQbqUSZiWqJUxAPnXDjElHPqESvx3E0F8FD7nL18/LJVMKs QMF1TyoPHfv4YP3MHioxaOt+dmkDDx2oNLQr6hElrC+NfQ4zm0Qma8s7tSmi RFAe2q9lO4lu5e2zNh6kEHcaE3ubdk+iTW99BKH1FIKzynha/+QkKlcspdxP oxAZ5VEa/bmTSOSthanHBgoh5MuEuCjxUTwJO20KJBMMVc/FRQYfKeMM+yOu ZMJpCyuuYAMf2U7cc3lnTiZykvZmiDvyET/HN0dCmky46GfWVFziIwiyqMl7 JkIU+G1U1uXykYA39v0nRYTw7HAFSt0U2nSz7MH9K4sgmd597ETbFIL2GN+7 hxfh2f4gFXb/FPpnTZJxu/kiUNpjwl6JCNCpYPl4pckFYLa+2nTCRID6z3nz L3gvQH8zPfdnlgBtYbF3Pto1DwFfRhPKwoTI+GeE3r/7ZkE+IQxpxQhR6EEb YaHZLLzaITaenCxEG9f1lPNVZ4H2eZV98FMh0s7qi1v2awae1LtQtfqESOl2 RsO14zMw/qk0LNl5GkW1uh6RSJyGE9WXPY9rzaDrMl8XX/IEoNa7TWxq0wx6 8p62qqVTALVkibxIPIOen9ebUnovgNX4Bjdu3wy6TH30TZAmgLZXt88zr82g fxa775tgAVgWPcxo+z2DBrMZnIjkKZBL/9BuXTqL/hEaKKa48KGi7GrUp6pZ 9C3tXe9BxIejrQ4aOxtnEYc3x0Tr+FCt2OjvMTyL1CV8/3IW40NYQpswVGUO 8UNqGx68noTu6GGlwvNzSPHHqcpWnUkoDpbatdx2Hn30ZcdfUOZB3R2FsILd 8yg6Ky+oWZwH/VXK962OzCPWwu8aS8EEKK/QHgk8N49m33028mqagMuVWy9V lsyj17W5a6viJ2C3/LnnARoLKPnwlYVWyQmYec5VeDO7gGJUjqwwluPCsp9C UxeJRTSrf1rdlsyF9eKkQwNKi+j1SlRynMcBL3fpJ3IbF5FfyxLhVDMH6kR1 t/j4LaIsvwtWw+kcyHA7clqmeREZCUm3t+tyIDPi6LDBHhLWXjN4SLZwHAwI CWHMQRJuXtt8bUfKOBCiuVS2Fwk/khO1yosah64bvfQbwSTsT/J6WLxjHNQe HNwzFEfCrfax5RTeGNyp2lGVWU7CtJcB1xMtxiBpqWGGvIYI3qezLmLb4Aho uHzN918rgp/osiPzvo1AcUpwGbFeBD9fSLJbDSPwZVVBU5CZCI7Hv995pIyA 9MY1tFpXEZzGjkj8sXUEru5eHnopRgSzVzicGs8dhov353ZOjorg49yutzFR Q+BsUHpClyeCVYKcZX8FDoFa5alEz2kRnBKhnOt8YAhe9Qx/+UIl4w3mozs9 /xyCidVtOwrUyFjqxZ/f3XmD4PmkxNHHmYzp12j+/wYOgmVZkG3rczKujzym E390AKTtdPxlXpFxtPaZSar7AHS298VuI8hY80P7+usOAxA65/6BVUfGPzXV s9/rDUARst+e2EfGSs3f3bicfqC/19pq9wcFB+YRRVLh/UD61oXLwyn4xVbW ktaUPrg8VJEZfoGC47LTpMdi+kCCdI9sGkvB224EX5EL6wN5vX1VJbcp2GV2 4VTsgT5YHdO4/WkRBZ8SZ87qqveBndlbp6x+Cv7D/WGbydNeuJWd7R7rIopt m8sz2pt/wZrTPqGuOlT80/2u4XHbHtDbzN5134CKtX2KI5MtesCQtFd/2JiK I8+MHH23qQesrtv2n7Om4ueXNeUt1HrAg7nONd+din3Cn1rm8LohpWlCnxxP xSf1jS5teNANVKNzA095VFyv1h4uWOyCXn7qbtobMXxzJHSzQREbsiw3nfrx Tgxbe10UNb7Hhr9vNMQ//SSG3whzmx2usqFdk/pxV6sYnp9eYl5whA2Nu06a 3eWJ4bDJin5jZTZUFDvQ9XSW4CrB/ovusT8h9ZjIsFPqEiyXXCZzLPgH2PUF nE06IY51S0QL2492wLazjCdbQsXx6SK11nb3DrBS7GyfihLH6YGBjgOOHbB5 q+OfB66LY3MQ69U06ACdHH0e45E4zu0bctzAbwea96RfSac49vE/zbp0oR3q es+6tm6XwEq31zu/zGoDp94EXTU1SRxTYjTaKNoKdbq9Te6akvhRUPPDfdMt YH/KJCpdRxIbnCZShsZawIb888tyE0n8gmEkUG9pASu67hkFZ0kcIf+xm/e4 BYzcqwnxi5I49ZCApbizBVSapt14fZKYtpPaqZrzHYbfeZ7/UEDD6a5OgeDZ DKsSWwNusmjYvMel235vM7h6OLm5vqbh4OD6ebZjM1QITXW6PtCw28kdMqtM myFJT65J8IuGS+oLqgUyzWCWClpaylJ4W+36NUuhCa4HqHyOviKFM68fyk/R aIL1ct9Vrf9eihXmOlgv5r+CJOIf7uRJ43P2WcYDKxph+9h+gYabLFaX39zw oaQBWt8eEdm/Tg5ndL40HXxfCyWxVR50vhy+lWrUs9f3I/hQQ7oaGuQxPfFS ZtraGvA6GVEidUcBJ/lvSlvmUg36vroNDoeX4dHVfmZryt7BZ/l1tBBTRUyO v+3iq/8WXhdeTF9HUcKZfr2rlg0SECGi41z3QwlXdqWeeewGINkZbhPE+gO/ +UoH67VvoO+hevL9yOU4BOlQ6LteQ/LaFaJlbitw+4NnNo+vlEHCHZ+aw3Rl bL222ieXVAr7kw82SA0oY+P3M7Qt2S9AuCVn+n7FSnwvIqTwi00J/OqzCn0b o4LvpJ2taKGzIOuvDSvrD6viB7H+6UEzz6AgOkTOV08N25M0I0rniyHGzcue wlfDqa2v/TKXF4NRZ+bjmPpVOL+L8YqzsQjStNML6u3pOMp0jTqprRDOETfS 7MvoeDrrnISFXQE4rnTL+aSpjrfcTVM/xs4Hy6CaA3Jx6tgpwKjekJkH91U8 Nev46tjhyD8LJ70fg+a7RylOBzRwmadTfPqOXEjQe6vztUIDa2qsF2o7PwIf nmjjRx0G9ohMkvV3eAiexRP0uHgGNugIsxTzz4HAi7vm7BIZuFTk7Zyedw6E 7GK1SN1iYFk7hcrdh3Mglh9yMyGFgYkxV6/8fTlQaDo9m3qPgTclCCiH7XJg unLx+8N8Bg4IO+g1r5sDCV+lblTVMPCWKVdZ4W8m3Mk+5nflIwM//pFlgkeZ kH26wdqmloHTOT7ucYNMeKGUMFPbwMCfhofuqnUzoXO/gt+3ZgbOUJfmuH5l gtavFdY9vxj48tBgAofFBANWuBqzj4En1Kq9bYqZsDm6Y9p7gIGvPbm6MbOA CQ5a94qGhhm4ZOLUM7eHTDh5lK7G5TLw+Vhjq0+pTIg0vzD9jMfA1fXf6rST mRC9tKfpNJ+BJVOzHK4mMCHtafY1oZCBT2RG6DjFMSHrvKjvqxkG3veyLaY4 mgn5O72tIucYOGdGtk3xIhNYGu9VLRb+68mqVY2IYkIFb830f8OHw11Ybt3h TPgfWLE8Xw== "]]}, "Charting`Private`Tag#3"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0, 10}, {-5.414631779246133, 6.5712287857828}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox[ TagBox["\"\[Rho]\"", HoldForm], TraditionalForm], FormBox[ TagBox["\"\[Psi]\"", HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction -> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImagePadding -> All, Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 10}, {-5.414631779246133, 6.5712287857828}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks -> {Automatic, Automatic}], FormBox[ FormBox[ TemplateBox[{ "\"\[Psi](\[Rho])\"", "\"\[Psi]'(\[Rho])\"", "\"\[Psi]''(\[Rho])\""}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.18000000000000002`] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.18000000000000002`] -> Baseline)], #2}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], { LineBox[{{0, 12.5}, {20, 12.5}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], {}}}, AspectRatio -> Full, ImageSize -> {20, 12.5}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.18000000000000002`] -> Baseline)], #3}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", TemplateBox[<| "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, "RGBColorSwatchTemplate"], ",", RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2, ",", #3}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}]& ), Editable->True, InterpretationFunction->(RowBox[{"Legended", "[", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", CellChangeTimes->{ 3.92769951433293*^9, {3.927699654243231*^9, 3.927699695805295*^9}, 3.9276997768886843`*^9, {3.927700129772596*^9, 3.927700136765641*^9}, { 3.927700197705901*^9, 3.927700207877286*^9}, {3.9277002425397177`*^9, 3.927700300065175*^9}, 3.927700368735448*^9, 3.927700420079899*^9, 3.927700453307364*^9, 3.927799071430563*^9}, CellLabel->"Out[11]=",ExpressionUUID->"b209c5ba-2a97-439e-951e-4f55d6635f1b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["3. Aufgabe", "Subsection", CellChangeTimes->{{3.927702464160159*^9, 3.92770246812077*^9}},ExpressionUUID->"43cba288-ba28-4e34-a72b-\ 8a11b306f21a"], Cell[TextData[{ "Berechnen Sie den Logarithmus des Fakult\[ADoubleDot]t der ersten 35 nat\ \[UDoubleDot]rlich Zahlen exakt und mit Hilfe der Stirling-Formel:\n\t\t\t\t\ ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"ln", RowBox[{"(", RowBox[{ StyleBox["n", "TI"], "!"}], ")"}], "\[TildeTilde]", StyleBox["n", "TI"], "ln", RowBox[{"(", StyleBox["n", "TI"], ")"}], "-", StyleBox["n", "TI"], "+", FractionBox["1", "2"], "ln", RowBox[{"(", RowBox[{"2", "\[Pi]", StyleBox["n", "TI"]}], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\ln(n!) \\approx n \\ln(n) - n + \\frac{1}{2} \\ln (2 \\pi n)", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "9e31f716-eddc-4e90-a250-3960ab243a3a"], "\nPlotten Sie anschlie\[SZ]end die relativen Abweichungen :\n\t\t\t\t", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ FractionBox[ RowBox[{"ln", RowBox[{"(", RowBox[{ StyleBox["n", "TI"], "!"}], ")"}], "-", StyleBox["n", "TI"], "ln", RowBox[{"(", StyleBox["n", "TI"], ")"}], "+", StyleBox["n", "TI"], "-", FractionBox["1", "2"], "ln", RowBox[{"(", RowBox[{"2", "\[Pi]", StyleBox["n", "TI"]}], ")"}]}], RowBox[{"ln", "(", RowBox[{ StyleBox["n", "TI"], "!"}], ")"}]], TraditionalForm], "errors" -> {}, "input" -> "\\frac{\\ln(n!) - n \\ln(n) + n -\\frac{1}{2} \\ln (2 \\pi \ n)}{\\ln(n!)}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "f833d9bd-640f-4bd1-be04-4ebac2fbbb65"], "\n\t\t\t\t\nStarten Sie mit n=2. " }], "Text", CellChangeTimes->{{3.927702434731071*^9, 3.927702457089232*^9}, { 3.9277051623698893`*^9, 3.927705175989855*^9}, {3.927881004567774*^9, 3.9278810112517967`*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"be039d1d-af75-4238-a10b-1d9e1eb4177e"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle: ", StyleBox["Table[ ], ListPlot[ ].", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.927704909439678*^9, 3.927704951922731*^9}, { 3.92779911414296*^9, 3.927799125205274*^9}},ExpressionUUID->"d576638a-d62a-44a4-9eed-\ 91475c41dd95"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Sterling", "[", "n_", "]"}], ":=", " ", RowBox[{ RowBox[{"n", "*", RowBox[{"Log", "[", "n", "]"}]}], "-", "n", "+", RowBox[{"0.5", "*", RowBox[{"Log", "[", RowBox[{"2", "*", "Pi", "*", "n"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"exakt", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"Log", "[", RowBox[{"k", "!"}], "]"}], "//", "N"}], ",", RowBox[{"{", RowBox[{"k", ",", "2", ",", "35"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"approximativ", "=", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"Sterling", "[", "k", "]"}], "//", "N"}], ",", RowBox[{"{", RowBox[{"k", ",", "2", ",", "35"}], "}"}]}], "]"}]}]}]}]], "Input", CellChangeTimes->{{3.927704611992621*^9, 3.9277047471014967`*^9}, { 3.9277048708659983`*^9, 3.9277048784794827`*^9}}, CellLabel->"In[24]:=",ExpressionUUID->"06cfa839-0f15-4da3-a03b-b4c83a03a61e"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.6931471805599453`", ",", "1.791759469228055`", ",", "3.1780538303479458`", ",", "4.787491742782046`", ",", "6.579251212010101`", ",", "8.525161361065415`", ",", "10.60460290274525`", ",", "12.801827480081469`", ",", "15.104412573075516`", ",", "17.502307845873887`", ",", "19.987214495661885`", ",", "22.552163853123425`", ",", "25.19122118273868`", ",", "27.89927138384089`", ",", "30.671860106080672`", ",", "33.50507345013689`", ",", "36.39544520803305`", ",", "39.339884187199495`", ",", "42.335616460753485`", ",", "45.38013889847691`", ",", "48.47118135183523`", ",", "51.60667556776438`", ",", "54.78472939811232`", ",", "58.00360522298052`", ",", "61.261701761002`", ",", "64.55753862700634`", ",", "67.88974313718154`", ",", "71.25703896716801`", ",", "74.65823634883016`", ",", "78.0922235533153`", ",", "81.55795945611504`", ",", "85.05446701758152`", ",", "88.58082754219768`", ",", "92.1361756036871`"}], "}"}]], "Output", CellChangeTimes->{{3.9277046816114817`*^9, 3.927704749127516*^9}, { 3.927704871605484*^9, 3.927704878861991*^9}, 3.927799099217524*^9, 3.927881071392584*^9}, CellLabel->"Out[25]=",ExpressionUUID->"1c2c5535-700d-40ad-bd20-a34cea8c6350"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.6518064846045359`", ",", "1.7640815435430568`", ",", "3.1572631582441804`", ",", "4.7708470515922246`", ",", "6.565375083187031`", ",", "8.513264651119522`", ",", "10.594191637483277`", ",", "12.792572017898756`", ",", "15.096082009642156`", ",", "17.494734170385932`", ",", "19.98027165555468`", ",", "22.54575485893542`", ",", "25.18526981262592`", ",", "27.89371665028893`", ",", "30.66665245016106`", ",", "33.500172054188454`", ",", "36.39081605428372`", ",", "39.335498626950255`", ",", "42.33145014106148`", ",", "45.37617094425826`", ",", "48.46739373376679`", ",", "51.60305260753968`", ",", "54.78125737672934`", ",", "58.000272067343786`", ",", "61.258496790773954`", ",", "64.55445234832374`", ",", "67.88676707319799`", ",", "71.25416551780566`", ",", "74.65545867390041`", ",", "78.08953547448678`", ",", "81.55535537419578`", ",", "85.05194184233177`", ",", "88.57837663246224`", ",", "92.13379471607885`"}], "}"}]], "Output", CellChangeTimes->{{3.9277046816114817`*^9, 3.927704749127516*^9}, { 3.927704871605484*^9, 3.927704878861991*^9}, 3.927799099217524*^9, 3.927881071394517*^9}, CellLabel->"Out[26]=",ExpressionUUID->"6f25c7d7-8b0e-4ba9-905e-ab27f452cdbf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"relativeAbweichung", "=", " ", RowBox[{ RowBox[{"(", RowBox[{"exakt", "-", "approximativ"}], ")"}], "/", "exakt"}]}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.927704769681799*^9, 3.927704837094407*^9}, { 3.927881074169342*^9, 3.927881075285853*^9}}, CellLabel->"In[27]:=",ExpressionUUID->"b2e99fe6-dedc-4c1a-bafc-e2a75cefa3ad"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.05964201704176749`", ",", "0.015447344445693182`", ",", "0.006541950896246824`", ",", "0.0034767038950857614`", ",", "0.002109074175149296`", ",", "0.0013954820843890348`", ",", "0.0009817685166955631`", ",", "0.0007229797618436663`", ",", "0.0005515317721265891`", ",", "0.00043272439010034666`", ",", "0.0003473640665992108`", ",", "0.00028418533271324276`", ",", "0.00023624778130404078`", ",", "0.0001990995920838936`", ",", "0.00016978611344735335`", ",", "0.00014628817202061513`", ",", "0.00012719046910608648`", ",", "0.00011147872800975241`", ",", "0.00009841169304494267`", ",", "0.00008743812414329116`", ",", "0.00007814164959057694`", ",", "0.00007020332514809891`", ",", "0.00006337571474972708`", ",", "0.00005746462868847618`", ",", "0.00005231604960226007`", ",", "0.0000478066349529464`", ",", "0.000043836724754421305`", ",", "0.000040325130036325496`", ",", "0.000037205204215749244`", ",", "0.00003442185029718906`", ",", "0.000031929218639414006`", ",", "0.000029688919797968542`", ",", "0.000027668625406286448`", ",", "0.000025840964123374876`"}], "}"}]], "Output", CellChangeTimes->{{3.9277048194056377`*^9, 3.9277048374762707`*^9}, 3.927704881910685*^9, 3.9277991062052107`*^9, 3.927881076145862*^9}, CellLabel->"Out[27]=",ExpressionUUID->"d6797216-b61c-419c-b782-d4afab3b4343"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"ListPlot", "[", RowBox[{"relativeAbweichung", ",", " ", RowBox[{"Frame", "->", "True"}], ",", " ", RowBox[{"GridLines", "->", "Automatic"}]}], "]"}], " ", RowBox[{"(*", " ", RowBox[{"--", RowBox[{"->", " ", RowBox[{"Relative", " ", "Abweichung", " ", "geht", " ", "gegen", " ", RowBox[{"Null", "."}]}]}]}], "*)"}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.927704884225371*^9, 3.9277048954677343`*^9}, { 3.927881062847905*^9, 3.9278811026574173`*^9}, {3.9282131225516443`*^9, 3.9282131241466618`*^9}},ExpressionUUID->"70216854-6053-48de-b223-\ 5f76d104cffb"], Cell[BoxData[ GraphicsBox[{{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ 0.012833333333333334`], AbsoluteThickness[2], PointBox[CompressedData[" 1:eJwtyFkowwEcB/A/iyZizTX3xqwRcm2u2b5IS41YkiPK/fIfpRwjIaXJw8ry oNGQJyQpLzQPNCUW5XiRhkRG4sWR1ly/b3379vmKmjq1rZ4Mw8T+9Hf/86KK uNJ6tI2vqujATvuC/mLBSOZCLWMntw76yTyYmh2pyQMsOQjyNp3JT91IFmDx xtAfeFlFjsQt99N5FlxOFqJ+pjXrYE1NjkVDYXHPFL+QLMb23Hj4Q52CLMG6 SFNm35WTpaj82Nk4t6STEzHilrqk7ynkJIyeJuhXBInkFDzbXsyBBRJyKiIE JaezSXHkNLjuu47sy0JyOkqj9t9kOVHkDFjGVBzNYRg5E9fsicHxGEKWQWms rXAPBJHl0JcoXova+eQssHbxIH+WR86GI6PDbBP6k3MQEH2xZ9X5knNheYvp G+L5kPNwbNpsWfryJitgmn92Vou9yPkoj08Lnh7hkJXQPchsXn6eZBVCa9TT vVaGDNwlTHCNIrfyj8OAh9nanc9x/ZspgPOJNcwLvpTfEtuIaA== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Point[CompressedData[" 1:eJwtyFkowwEcB/A/iyZizTX3xqwRcm2u2b5IS41YkiPK/fIfpRwjIaXJw8ry oNGQJyQpLzQPNCUW5XiRhkRG4sWR1ly/b3379vmKmjq1rZ4Mw8T+9Hf/86KK uNJ6tI2vqujATvuC/mLBSOZCLWMntw76yTyYmh2pyQMsOQjyNp3JT91IFmDx xtAfeFlFjsQt99N5FlxOFqJ+pjXrYE1NjkVDYXHPFL+QLMb23Hj4Q52CLMG6 SFNm35WTpaj82Nk4t6STEzHilrqk7ynkJIyeJuhXBInkFDzbXsyBBRJyKiIE JaezSXHkNLjuu47sy0JyOkqj9t9kOVHkDFjGVBzNYRg5E9fsicHxGEKWQWms rXAPBJHl0JcoXova+eQssHbxIH+WR86GI6PDbBP6k3MQEH2xZ9X5knNheYvp G+L5kPNwbNpsWfryJitgmn92Vou9yPkoj08Lnh7hkJXQPchsXn6eZBVCa9TT vVaGDNwlTHCNIrfyj8OAh9nanc9x/ZspgPOJNcwLvpTfEtuIaA== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0., 34.}, {0, 0.0034328974046489635`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0., 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0., 34.}, {0, 0.0034328974046489635`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0., 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}]}, Annotation[{{ Annotation[{ Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Point[CompressedData[" 1:eJwtyFkowwEcB/A/iyZizTX3xqwRcm2u2b5IS41YkiPK/fIfpRwjIaXJw8ry oNGQJyQpLzQPNCUW5XiRhkRG4sWR1ly/b3379vmKmjq1rZ4Mw8T+9Hf/86KK uNJ6tI2vqujATvuC/mLBSOZCLWMntw76yTyYmh2pyQMsOQjyNp3JT91IFmDx xtAfeFlFjsQt99N5FlxOFqJ+pjXrYE1NjkVDYXHPFL+QLMb23Hj4Q52CLMG6 SFNm35WTpaj82Nk4t6STEzHilrqk7ynkJIyeJuhXBInkFDzbXsyBBRJyKiIE JaezSXHkNLjuu47sy0JyOkqj9t9kOVHkDFjGVBzNYRg5E9fsicHxGEKWQWms rXAPBJHl0JcoXova+eQssHbxIH+WR86GI6PDbBP6k3MQEH2xZ9X5knNheYvp G+L5kPNwbNpsWfryJitgmn92Vou9yPkoj08Lnh7hkJXQPchsXn6eZBVCa9TT vVaGDNwlTHCNIrfyj8OAh9nanc9x/ZspgPOJNcwLvpTfEtuIaA== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0., 34.}, {0, 0.0034328974046489635`}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0., 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ PointSize[0.012833333333333334`], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[2]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[2]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0., 34.}, {0, 0.0034328974046489635`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.927704896034815*^9, {3.927881068357333*^9, 3.9278810784279346`*^9}}, CellLabel->"Out[28]=",ExpressionUUID->"4e0440be-bd26-44ba-a534-8c954344bc12"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["4. Aufgabe: ", "Subsection", CellChangeTimes->{{3.9273707561824512`*^9, 3.927370759986985*^9}, { 3.9277024718055773`*^9, 3.927702471961231*^9}},ExpressionUUID->"8c4f473a-1422-457a-9abc-\ 01d6455c0083"], Cell[TextData[{ "Gegeben eine Liste mit Paaren {i,j}, erzeugen Sie eine Liste mit dem \ Produkt i*j. Vergleichen Sie die Laufzeit der naiven Umsetzung mit einem ", StyleBox["For[ ]", FontWeight->"Bold"], "-Loop mit der Laufzeit f\[UDoubleDot]r die Umsetzung mit ", StyleBox["Table[ ] ", FontWeight->"Bold"], "und schlie\[SZ]lich mit", StyleBox[" Map[ ]", FontWeight->"Bold"], " mit ", StyleBox["AbsoluteTiming[ ].", FontWeight->"Bold"] }], "Text", CellChangeTimes->{ 3.92737077097237*^9, {3.927604486722774*^9, 3.927604491953952*^9}, { 3.9276045372296753`*^9, 3.927604573768821*^9}, {3.927801068780904*^9, 3.927801078303049*^9}, {3.927801249029561*^9, 3.9278014725584173`*^9}, { 3.928208799663024*^9, 3.928208869817666*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"eec1f6e5-df75-4341-8880-d804f815ce28"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{"Liste", " ", "mit", " ", "Paaren", " ", RowBox[{"{", RowBox[{"i", ",", "j"}], "}"}]}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Listij", " ", "=", " ", RowBox[{"Tuples", "[", RowBox[{ RowBox[{"Range", "[", "50", "]"}], ",", "2"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Length", "[", "Listij", "]"}]}]}]], "Input", CellChangeTimes->{{3.927705203692625*^9, 3.9277052177274*^9}, { 3.927705295624855*^9, 3.92770534949144*^9}, {3.9277054012609158`*^9, 3.927705421267086*^9}, {3.9277055227016563`*^9, 3.927705654556589*^9}, { 3.9277059611917343`*^9, 3.927705965380355*^9}, {3.927706144286662*^9, 3.927706151580028*^9}, {3.927706182881267*^9, 3.927706191303512*^9}, 3.927799152915201*^9, {3.9278011680214233`*^9, 3.927801275554077*^9}, { 3.927801309645856*^9, 3.927801326858859*^9}, {3.927801483466179*^9, 3.927801496499401*^9}, {3.9278807789351997`*^9, 3.927880833202626*^9}, { 3.927880976342176*^9, 3.927880984520981*^9}, {3.9278868491015787`*^9, 3.927886850216467*^9}}, CellLabel-> "In[275]:=",ExpressionUUID->"294e9a44-5167-439a-b0f4-44b4f945403f"], Cell[BoxData["2500"], "Output", CellChangeTimes->{3.92788098489781*^9, 3.927886850547729*^9}, CellLabel-> "Out[276]=",ExpressionUUID->"33e593d3-55f1-488d-9880-f836e9c921f4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", "L\[ODoubleDot]sung", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"result", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"AbsoluteTiming", "[", "\[IndentingNewLine]", RowBox[{"For", "[", RowBox[{ RowBox[{"ll", "=", "1"}], ",", RowBox[{"ll", "<", RowBox[{"Length", "[", "Listij", "]"}]}], ",", RowBox[{"ll", "++"}], ",", "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"result", ",", RowBox[{ RowBox[{ RowBox[{"Listij", "[", RowBox[{"[", "ll", "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "*", RowBox[{ RowBox[{"Listij", "[", RowBox[{"[", "ll", "]"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}]}]}], "]"}]}], "]"}], "\[IndentingNewLine]", "]"}], " ", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"AbsoluteTiming", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Listij", "[", RowBox[{"[", "ll", "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "*", RowBox[{ RowBox[{"Listij", "[", RowBox[{"[", "ll", "]"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"ll", ",", RowBox[{"Length", "[", "Listij", "]"}]}], "}"}]}], "]"}], ";"}], "]"}], " ", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], "*", RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}]}], "&"}], ",", " ", "Listij"}], "]"}], ";"}], "//", "AbsoluteTiming", " "}]}]}]], "Input", CellChangeTimes->{{3.927705203692625*^9, 3.9277052177274*^9}, { 3.927705295624855*^9, 3.92770534949144*^9}, {3.9277054012609158`*^9, 3.927705421267086*^9}, {3.9277055227016563`*^9, 3.927705654556589*^9}, { 3.9277059611917343`*^9, 3.927705965380355*^9}, {3.927706144286662*^9, 3.927706151580028*^9}, {3.927706182881267*^9, 3.927706191303512*^9}, 3.927799152915201*^9, {3.9278011680214233`*^9, 3.927801275554077*^9}, { 3.927801309645856*^9, 3.927801326858859*^9}, {3.927801483466179*^9, 3.927801496499401*^9}, {3.927880911463264*^9, 3.927880919906065*^9}}, CellLabel-> "In[277]:=",ExpressionUUID->"5c732e71-c021-45d0-aca7-0a8ce56bbdbf"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.017756`", ",", "Null"}], "}"}]], "Output", CellChangeTimes->{{3.927705611184453*^9, 3.9277056549818783`*^9}, { 3.9277056880894213`*^9, 3.927705689938876*^9}, 3.927705933337195*^9, 3.927705965730147*^9, 3.927706152215232*^9, 3.927706191674698*^9, { 3.927801220136795*^9, 3.9278012388284883`*^9}, {3.9278013102734413`*^9, 3.927801327257676*^9}, 3.927880786229801*^9, {3.92788082756002*^9, 3.92788084319676*^9}, 3.927886853187297*^9}, CellLabel-> "Out[278]=",ExpressionUUID->"136e7971-38a0-471f-be1b-61c523dc6468"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.000436`", ",", "Null"}], "}"}]], "Output", CellChangeTimes->{{3.927705611184453*^9, 3.9277056549818783`*^9}, { 3.9277056880894213`*^9, 3.927705689938876*^9}, 3.927705933337195*^9, 3.927705965730147*^9, 3.927706152215232*^9, 3.927706191674698*^9, { 3.927801220136795*^9, 3.9278012388284883`*^9}, {3.9278013102734413`*^9, 3.927801327257676*^9}, 3.927880786229801*^9, {3.92788082756002*^9, 3.92788084319676*^9}, 3.927886853194108*^9}, CellLabel-> "Out[279]=",ExpressionUUID->"f993d96b-e447-4ab9-80a8-4486065c369a"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.000169`", ",", "Null"}], "}"}]], "Output", CellChangeTimes->{{3.927705611184453*^9, 3.9277056549818783`*^9}, { 3.9277056880894213`*^9, 3.927705689938876*^9}, 3.927705933337195*^9, 3.927705965730147*^9, 3.927706152215232*^9, 3.927706191674698*^9, { 3.927801220136795*^9, 3.9278012388284883`*^9}, {3.9278013102734413`*^9, 3.927801327257676*^9}, 3.927880786229801*^9, {3.92788082756002*^9, 3.92788084319676*^9}, 3.927886853196147*^9}, CellLabel-> "Out[280]=",ExpressionUUID->"734c1e66-702a-409f-aac2-8c262672ac5f"] }, Open ]], Cell[BoxData[ RowBox[{"(*", " ", RowBox[{"Lesson", " ", "of", " ", "the", " ", RowBox[{"story", ":", " ", RowBox[{"vor", "-", RowBox[{ "implementierte", " ", "Mathematica", " ", "Funktionen", " ", "sind", " ", "immer", " ", "effizienter"}]}]}]}], "*)"}]], "Input", CellChangeTimes->{{3.927880922123939*^9, 3.927880967599845*^9}},ExpressionUUID->"7b83cdaa-0d90-43b1-81bb-\ 9d64d7f937dd"], Cell[BoxData[ RowBox[{"(*", " ", RowBox[{ RowBox[{"Fun", " ", RowBox[{"Fact", ":", " ", RowBox[{ "Parallel", " ", "Table", " ", "ist", " ", "hier", " ", "sehr", " ", RowBox[{"ineffizient", ".", " ", "Wir"}], " ", "werden", " ", "in", " ", "den", " ", "kommenden", " ", "\[CapitalUDoubleDot]bungsbl\[ADoubleDot]tter", " ", "Beispiele", " ", "sehen"}]}]}], ",", " ", RowBox[{ "wo", " ", "ParallelTable", " ", "doch", " ", "sehr", " ", "praktisch", " ", RowBox[{"ist", "."}]}]}], "*)"}]], "Input", CellChangeTimes->{{3.927880870169002*^9, 3.927880902563019*^9}, { 3.928213881757862*^9, 3.928213926298214*^9}},ExpressionUUID->"131e0bc4-a266-4dc7-99b5-\ 22dd9e82499c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"AbsoluteTiming", "[", RowBox[{ RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Listij", "[", RowBox[{"[", "ll", "]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "*", RowBox[{ RowBox[{"Listij", "[", RowBox[{"[", "ll", "]"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"ll", ",", RowBox[{"Length", "[", "Listij", "]"}]}], "}"}]}], "]"}], ";"}], "]"}], " "}]], "Input", CellChangeTimes->{ 3.9277054793167257`*^9, {3.9277055523250723`*^9, 3.9277055548874283`*^9}, { 3.9277056668429956`*^9, 3.927705669800728*^9}, {3.927706173913512*^9, 3.927706180750215*^9}, {3.927706232424101*^9, 3.92770624076009*^9}, { 3.927801514372636*^9, 3.927801527074319*^9}, {3.9278808968417177`*^9, 3.927880899938819*^9}}, CellLabel-> "In[281]:=",ExpressionUUID->"cbdb6666-368d-4854-9a93-75da54689089"], Cell[BoxData[ RowBox[{"{", RowBox[{"0.039866`", ",", "Null"}], "}"}]], "Output", CellChangeTimes->{{3.927705672763934*^9, 3.927705694002923*^9}, 3.927705935342342*^9, 3.92770597143048*^9, {3.9277061580108232`*^9, 3.927706175644301*^9}, 3.92770624115466*^9, {3.927880791042754*^9, 3.927880797085793*^9}, 3.9278808473806868`*^9, 3.9278809061223383`*^9, 3.927886856118725*^9}, CellLabel-> "Out[281]=",ExpressionUUID->"e81ad994-38a4-4a1f-a601-27014a8e3533"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["5. Aufgabe: ", "Subsection", CellChangeTimes->{{3.927278023076239*^9, 3.927278026394217*^9}, { 3.927370765496957*^9, 3.9273707656029*^9}, {3.927881646956622*^9, 3.927881648708869*^9}},ExpressionUUID->"740c0ed1-9ee0-49e8-9232-\ 43460aa154dd"], Cell[TextData[{ StyleBox["a-", FontWeight->"Bold"], " Definieren Sie das elektrostatische Potential f\[UDoubleDot]r zwei \ Punktladungen mit entgegengesetzter Ladung an den Orten x = a und x = -a. F\ \[UDoubleDot]hren Sie eine Taylorentwicklung erster Ordnung in a um a=0 \ durch. \n", StyleBox["b-", FontWeight->"Bold"], " Berechnen Sie daraus das elektrische Feld ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["E", "TI"], "\[RightVector]"], RowBox[{"(", StyleBox["r", "TI"], ")"}], "\[LongEqual]", "-", "\[Del]", StyleBox["V", "TI"], RowBox[{"(", StyleBox["r", "TI"], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec E(r) = -\\nabla V(r)", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "455c7198-0d0c-46db-8966-b126f8b0bfd6"], ". Zeigen Sie anschlie\[SZ]end, dass dieses gegeben ist durch ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ FractionBox[ RowBox[{"3", RowBox[{"(", RowBox[{ OverscriptBox[ StyleBox["p", "TI"], "\[RightVector]"], "\[CenterDot]", OverscriptBox[ StyleBox["r", "TI"], "\[RightVector]"]}], ")"}], OverscriptBox[ StyleBox["r", "TI"], "\[RightVector]"]}], SuperscriptBox[ StyleBox["r", "TI"], "5"]], "-", FractionBox[ OverscriptBox[ StyleBox["p", "TI"], "\[RightVector]"], SuperscriptBox[ StyleBox["r", "TI"], "3"]]}], TraditionalForm], "errors" -> {}, "input" -> "\\frac{3 (\\vec p \\cdot \\vec r) \\vec r}{r^5} - \\frac{\\vec p \ }{r^3}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "ccbfebe1-efa3-4db7-91e7-7e615acc2617"], " mit ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["p", "TI"], "\[RightVector]"], "\[LongEqual]", "2", StyleBox["a", "TI"], SubscriptBox[ OverscriptBox[ StyleBox["e", "TI"], "^"], StyleBox["x", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec p = 2 a \\hat{e}_{x}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "f10abaa2-2804-461d-89bf-bac424f4b228"], ". " }], "Text", CellChangeTimes->{{3.927278028098712*^9, 3.9272780288943167`*^9}, { 3.927278422359684*^9, 3.927278426086553*^9}, {3.92727916015779*^9, 3.927279228861969*^9}, {3.92760466808855*^9, 3.927604738107882*^9}, 3.927700503294981*^9, {3.927701749927978*^9, 3.927701752353475*^9}, { 3.927799200509972*^9, 3.9277992079124193`*^9}, {3.927799565704369*^9, 3.92779958691671*^9}, {3.927799735439652*^9, 3.927799785884523*^9}, { 3.9278002007644577`*^9, 3.9278002371094646`*^9}, {3.927800382117272*^9, 3.927800403509564*^9}, {3.927800450669961*^9, 3.927800528982606*^9}, { 3.927800644203082*^9, 3.927800662560444*^9}, {3.9278007553413267`*^9, 3.9278008335019093`*^9}, {3.9278008688424253`*^9, 3.927800925606985*^9}, { 3.9278009868014517`*^9, 3.9278010478265743`*^9}, {3.9278811339889107`*^9, 3.92788122436613*^9}, {3.927881264235811*^9, 3.927881387955288*^9}, { 3.928209483348955*^9, 3.92820948460139*^9}, {3.9282131769736013`*^9, 3.928213194727045*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"a94ca375-dac9-4465-910a-9aee90011488"], Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", "a", "]"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{"Potential", " ", "mit", " ", "q"}], "=", RowBox[{"+", RowBox[{"/", RowBox[{"-", " ", "1"}]}]}]}], "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"V", "[", RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=", RowBox[{ RowBox[{"1", "/", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "-", "a"}], ")"}], "^", "2"}], "+", RowBox[{"y", "^", "2"}], "+", RowBox[{"z", "^", "2"}]}], "]"}]}], "-", RowBox[{"1", "/", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "+", "a"}], ")"}], "^", "2"}], "+", RowBox[{"y", "^", "2"}], "+", RowBox[{"z", "^", "2"}]}], "]"}]}]}]}]}], "Input", CellChangeTimes->{{3.5682172561230173`*^9, 3.5682173031534986`*^9}, { 3.5682174745157948`*^9, 3.568217478571802*^9}, {3.5682176516387005`*^9, 3.5682177029255886`*^9}, {3.927606130337317*^9, 3.9276061408044367`*^9}, { 3.927700577555128*^9, 3.927700660104311*^9}, 3.927701143640381*^9, { 3.9277012070376053`*^9, 3.927701310586022*^9}, {3.9277013755752993`*^9, 3.927701376414895*^9}, {3.927701449382058*^9, 3.927701456185322*^9}, { 3.9277015249346933`*^9, 3.927701582506587*^9}, {3.927701632947831*^9, 3.9277016398247213`*^9}, 3.9277017378531923`*^9, {3.927701783188821*^9, 3.9277018198831997`*^9}, {3.927701868200397*^9, 3.927701894324912*^9}, 3.9277992273578444`*^9, {3.927799373054276*^9, 3.927799381045504*^9}, { 3.9278814006748247`*^9, 3.9278814143625097`*^9}},ExpressionUUID->"848eee4c-23d9-4711-9c8b-\ 917e53a2a212"], Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{"Taylorentwicklung", ".", " ", "der"}], " ", "V", RowBox[{"(", RowBox[{"a", "=", "0"}], ")"}], " ", RowBox[{"(", "Monopol", ")"}], " ", "term", " ", RowBox[{"verschwindet", ".", " ", "Der"}], " ", "erste", " ", "nicht", " ", "venschwindende", " ", "Term", " ", "ist", " ", "der", " ", "Dipolterm"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Vapprox", "[", RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"V", "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", "a"}], "]"}], "/.", RowBox[{"{", RowBox[{"a", "->", "0"}], "}"}]}], ")"}], "*", "a"}]}]}]], "Input", CellChangeTimes->{{3.9277012575940943`*^9, 3.927701258880623*^9}, { 3.927799235469139*^9, 3.9277992479408627`*^9}, {3.927799324707058*^9, 3.927799358936758*^9}, {3.9277994067421923`*^9, 3.9277994074529743`*^9}, { 3.927881455282063*^9, 3.927881506097949*^9}, {3.927881541122098*^9, 3.927881565491847*^9}, {3.928213208513714*^9, 3.9282132253510942`*^9}, { 3.928213255573408*^9, 3.9282132791080217`*^9}},ExpressionUUID->"66cc94e5-b9ca-48cf-9ba7-\ bce85031a220"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{"E", "-", "Feld"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Eapprox", "[", RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=", RowBox[{ RowBox[{"-", RowBox[{"Grad", "[", RowBox[{ RowBox[{"Vapprox", "[", RowBox[{"xx", ",", "yy", ",", "zz"}], "]"}], ",", RowBox[{"{", RowBox[{"xx", ",", "yy", ",", "zz"}], "}"}]}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"xx", "->", "x"}], ",", RowBox[{"yy", "->", "y"}], ",", RowBox[{"zz", "->", "z"}]}], "}"}]}]}]}]], "Input", CellChangeTimes->{{3.9277012575940943`*^9, 3.927701258880623*^9}, { 3.927799235469139*^9, 3.9277992479408627`*^9}, {3.927799324707058*^9, 3.927799358936758*^9}, {3.9277994067421923`*^9, 3.9277994074529743`*^9}, { 3.927881455282063*^9, 3.927881506097949*^9}, {3.927881541122098*^9, 3.927881565491847*^9}},ExpressionUUID->"94867706-02b5-41e9-8ec3-\ 540c8eb113c7"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", "a", " ", "x"}], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"], "+", SuperscriptBox["z", "2"]}], ")"}], RowBox[{"3", "/", "2"}]]]], "Output", CellChangeTimes->{3.9277994078912477`*^9}, CellLabel->"Out[41]=",ExpressionUUID->"f0500fcf-5dfe-4fd8-9237-9c6b3eaad24a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"p", "=", RowBox[{"{", RowBox[{ RowBox[{"2", "a"}], ",", "0", ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"r", "=", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], ";"}], " "}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Edipole", "[", RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"3", RowBox[{"p", ".", "r"}], " ", RowBox[{"r", "/", RowBox[{ RowBox[{"Norm", "[", "r", "]"}], "^", "5"}]}]}], "-", RowBox[{"p", "/", RowBox[{ RowBox[{"Norm", "[", "r", "]"}], "^", "3"}]}]}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"x", " ", "\[Element]", " ", "Reals"}], ",", RowBox[{"y", " ", "\[Element]", " ", "Reals"}], ",", RowBox[{"z", "\[Element]", " ", "Reals"}]}], StyleBox["}", "TR"]}]}]}], "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{"Eapprox", "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}], "==", RowBox[{"Edipole", "[", RowBox[{"x", ",", "y", ",", "z"}], "]"}]}], "]"}]}], "Input", CellChangeTimes->{{3.9277992441110764`*^9, 3.9277992897818604`*^9}}, CellLabel->"In[43]:=",ExpressionUUID->"797335c3-b537-4bb2-a482-7aaf85330d08"], Cell[BoxData["True"], "Output", CellChangeTimes->{3.9277993630492373`*^9, 3.927799400077733*^9, 3.927799511470908*^9}, CellLabel->"Out[46]=",ExpressionUUID->"e3870425-453b-410a-993b-04e220decfaa"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["6. Aufgabe", "Subsection", CellChangeTimes->{{3.92788163522797*^9, 3.927881644241858*^9}},ExpressionUUID->"a8035bea-e525-4423-8c84-\ 225cdc45482c"], Cell[TextData[{ "Implementieren Sie den Kettenbruch ", Cell[BoxData[ FormBox[ FractionBox["1", RowBox[{"1", "+", FractionBox["1", RowBox[{"1", "+", FractionBox["1", RowBox[{ RowBox[{"1", "+"}], "..."}]]}]]}]], TraditionalForm]],ExpressionUUID-> "5bf9e08d-1638-4425-9871-7c8c3a7197fa"], ", also eine Zahlenfolge mit ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["f", "1"], "=", "1"}], TraditionalForm]],ExpressionUUID-> "d37feec0-53f3-449d-8356-3dac081d9277"], " und ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["f", "n"], " ", "=", " ", RowBox[{"1", "+", RowBox[{ FractionBox["1", RowBox[{" ", SubscriptBox["f", RowBox[{"n", "-", "1"}]]}]], "."}]}]}], TraditionalForm]], ExpressionUUID->"e48ce32e-d0e2-43df-be0e-9d983fc75730"], " Stellen Sie die Zahlenfolge graphisch dar und \[UDoubleDot]berpr\ \[UDoubleDot]fen Sie, dass die Folge f\[UDoubleDot]r gro\[SZ]e n gegen den \ Goldenen Schnitt ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"\[Phi]", "\[LongEqual]", FractionBox[ RowBox[{"1", "+", SqrtBox["5"]}], "2"]}], TraditionalForm], "errors" -> {}, "input" -> "\\phi= \\frac{1+\\sqrt{5}}{2}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "06b0c365-67a3-4b9d-a48d-946c918280c2"], " konvergiert." }], "Text", CellChangeTimes->{{3.927801965724678*^9, 3.927801967820498*^9}, 3.92788163038666*^9, {3.927881790514579*^9, 3.927881830327923*^9}, { 3.927881863751809*^9, 3.927881944899067*^9}, {3.927882325970059*^9, 3.927882364160006*^9}, {3.927882397545876*^9, 3.927882543724637*^9}, 3.927882578446169*^9, 3.927885975252193*^9, {3.928209171355524*^9, 3.928209268471307*^9}, {3.928209386229618*^9, 3.9282094053739443`*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"43498629-e356-4c77-80b8-e9fcab297361"], Cell[TextData[{ StyleBox["Hinweis : ListLogPlot [ ], Table[ ] ", FontWeight->"Bold"], "." }], "Text", CellChangeTimes->{{3.927801965724678*^9, 3.927801967820498*^9}, 3.92788163038666*^9, {3.927881790514579*^9, 3.927881830327923*^9}, { 3.927881863751809*^9, 3.927881944899067*^9}, {3.927882325970059*^9, 3.927882364160006*^9}, {3.927882397545876*^9, 3.927882570905937*^9}},ExpressionUUID->"57213f74-b610-4fd9-992a-\ 1afcbc57a3ce"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Clear", "[", "f", "]"}], "\n", RowBox[{ RowBox[{ RowBox[{"f", "[", "n_", "]"}], ":=", RowBox[{ RowBox[{"f", "[", "n", "]"}], "=", RowBox[{"1", "+", RowBox[{"1", "/", RowBox[{"(", RowBox[{"f", "[", RowBox[{"n", "-", "1"}], "]"}], ")"}]}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{ RowBox[{"f", "[", "1", "]"}], "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"fList", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"f", "[", "n", "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "1", ",", "20"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Phi]", "=", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{"Sqrt", "[", "5", "]"}]}], ")"}], "/", "2"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ListLogPlot", "[", RowBox[{"fList", ",", " ", RowBox[{"GridLines", "->", RowBox[{"{", RowBox[{ RowBox[{"{", "}"}], ",", " ", RowBox[{"{", "\[Phi]", "}"}]}], "}"}]}], ",", " ", RowBox[{"GridLinesStyle", "->", RowBox[{"Directive", "[", RowBox[{"Red", ",", " ", "Thick"}], "]"}]}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{ 3.9277991731225*^9, {3.92780191761301*^9, 3.927801962047842*^9}, { 3.927881974508514*^9, 3.927882052732153*^9}, {3.927882106000351*^9, 3.927882188376851*^9}, {3.927882219427869*^9, 3.927882312736574*^9}, 3.927882808631506*^9, {3.928209274646493*^9, 3.9282093173805513`*^9}, { 3.928209389919887*^9, 3.9282094180687037`*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"630115d4-1424-43f1-9697-c52bcd3819ea"], Cell[BoxData[ GraphicsBox[{{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQAWIQDQEf7BlQgcN7y1//nPSeQcU5HHxm7H+j/PkmlC/g ECTS+GtdxAMoX8ThvJq6VJfIPShfwuEt2/r4fqH7UL6MA4PwR8/gjTB5BQfV X15Z+ddgfCWH+vrnvY4nYHwVB4sDFvdXn4Xx1RyyLAKDZp2G8TUcNOtmTks5 A+NrObS/1QgRh/N1HP6IXr1mAufrORycaDxRE843cDjyM/O+Lpxv6HDhd7qV Dpxv5HC9yfw2gm/sIPvq1FwE38SBXddxK4gPAJBnWgQ= "]]}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., -0.05424270050976861}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, GridLines->NCache[{{}, { Log[Rational[1, 2] (1 + 5^Rational[1, 2])]}}, {{}, { 0.48121182505960347`}}], GridLinesStyle->Directive[ RGBColor[1, 0, 0], Thickness[Large]], Method->{ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Exp[ Part[#, 2]]}& )}}, PlotRange->{{0., 20}, {-0.05424270050976861, 0.6931471805599453}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->FrontEndValueCache[{Automatic, Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> 15.954589770191003`, RotateLabel -> 0]}, {Automatic, {{0., FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.0\"", ShowStringCharacters -> False], 1.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.1823215567939546, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.2\"", ShowStringCharacters -> False], 1.2`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.3364722366212129, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.4\"", ShowStringCharacters -> False], 1.4`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.47000362924573563`, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.6\"", ShowStringCharacters -> False], 1.6`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.5877866649021191, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"1.8\"", ShowStringCharacters -> False], 1.8`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, { 0.6931471805599453, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"2.0\"", ShowStringCharacters -> False], 2.`15.954589770191003, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, {-0.2231435513142097, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.16251892949777494`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.10536051565782628`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.05129329438755058, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.04879016416943205, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.09531017980432493, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.13976194237515863`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.22314355131420976`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.26236426446749106`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.30010459245033816`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.371563556432483, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.4054651081081644, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.4382549309311553, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.5007752879124892, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.5306282510621704, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.5596157879354227, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.6151856390902335, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.6418538861723947, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.6678293725756554, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.7178397931503168, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.7419373447293773, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.7654678421395714, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.7884573603642703, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}}}]]], "Output", CellChangeTimes->{{3.928209391946539*^9, 3.928209418394306*^9}}, CellLabel->"Out[26]=",ExpressionUUID->"1afb56aa-9170-42fc-b15b-c6c112d95a4f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "\[Phi]", "]"}]], "Input", CellChangeTimes->{{3.9282093282666483`*^9, 3.9282093356117373`*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"673bc7b5-dbe7-41d0-a4d2-6dbe78ee3c77"], Cell[BoxData["1.618033988749895`"], "Output", CellChangeTimes->{{3.9278019560578814`*^9, 3.9278019624885817`*^9}, 3.927882029519928*^9, 3.927882066371907*^9, {3.927882145348727*^9, 3.927882148096574*^9}, 3.927882180358302*^9, 3.9278822505624113`*^9, { 3.927882280745269*^9, 3.927882304981729*^9}, {3.927882790780007*^9, 3.927882809275712*^9}, {3.9282093182725573`*^9, 3.928209335890676*^9}}, CellLabel->"Out[8]=",ExpressionUUID->"493c9b73-421b-45bf-ab74-a58618d5f12d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["7. Aufgabe: ", "Subsection", CellChangeTimes->{{3.927882830883445*^9, 3.927882834506486*^9}},ExpressionUUID->"e8ae6ba6-96a5-4994-9ba2-\ b6fd7fc43846"], Cell[TextData[{ "Definieren Sie eine Funktion ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["f", "TI"], RowBox[{"(", StyleBox["x", "TI"], ")"}], "\[LongEqual]", FractionBox[ SuperscriptBox[ StyleBox["x", "TI"], "3"], RowBox[{ SuperscriptBox[ StyleBox["x", "TI"], "4"], "+", "4"}]]}], TraditionalForm], "errors" -> {}, "input" -> "f(x)=\\frac{x^3}{x^4+4}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "ec93433f-a7b9-4107-87da-7513ffaf6169"], " . Berechnen Sie die Ableitung ", Cell[BoxData[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox[ StyleBox["f", "TI"], "\[Prime]"], "(", StyleBox["x", "TI"], ")"}], TraditionalForm], "errors" -> {}, "input" -> "f'(x)", "state" -> "Boxes"|>, "TeXAssistantTemplate"]], "InlineCode",ExpressionUUID-> "b7124c21-9f12-4193-90cd-9ceabe6f7736"], " und ihre Nullstellen. Erstellen Sie schlie\[SZ]lich einen Plot mit der \ Funktion ", Cell[BoxData[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["f", "TI"], TraditionalForm], "errors" -> {}, "input" -> "f", "state" -> "Boxes"|>, "TeXAssistantTemplate"]], "InlineCode",ExpressionUUID-> "d6c23afc-c4d5-4003-b411-17a7305909b9"], " und ihrer Ableitung. Markieren dabei die Extremstellen von ", Cell[BoxData[ FormBox[ RowBox[{ TemplateBox[<|"boxes" -> FormBox[ StyleBox["f", "TI"], TraditionalForm], "errors" -> {}, "input" -> "f", "state" -> "Boxes"|>, "TeXAssistantTemplate"], RowBox[{ RowBox[{"(", "x", ")"}], ".", " "}]}], TraditionalForm]],ExpressionUUID-> "1e25b762-8f88-48dd-adc9-9406a0c1cfb4"], " " }], "Text", CellChangeTimes->{{3.927371053261033*^9, 3.927371084275147*^9}, { 3.9276048923264713`*^9, 3.927604897725162*^9}, {3.92770208010575*^9, 3.927702083311602*^9}, {3.927885022915522*^9, 3.92788505108515*^9}, { 3.927885084140616*^9, 3.9278852227764072`*^9}, {3.928209440488678*^9, 3.928209464348074*^9}, {3.92821334635754*^9, 3.928213357351821*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"dcf7572b-ff97-4210-87e7-4fb6d8188322"], Cell[TextData[{ "\n", StyleBox["Hinweis: SolveValues, Solve. ", FontWeight->"Bold"], "Um Punkte in einen Plot hinzuf\[UDoubleDot]gen, k\[ODoubleDot]nnen Sie ", StyleBox["Plot[ .... , Epilog -> {.., Point[... ]}] ", FontWeight->"Bold"], " benutzen. " }], "Text", CellChangeTimes->{{3.9278859822309923`*^9, 3.9278861601663437`*^9}, { 3.92821336589966*^9, 3.928213371978347*^9}},ExpressionUUID->"e897ea03-112e-47be-b9d0-\ 4c16da5d6297"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", " ", RowBox[{ RowBox[{"x", "^", "3"}], "/", RowBox[{"(", RowBox[{ RowBox[{"x", "^", "4"}], "+", "4"}], ")"}]}]}], ";"}], " ", "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "'"}], "[", "x", "]"}], "\[IndentingNewLine]", RowBox[{"sols", "=", " ", RowBox[{"SolveValues", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"f", "'"}], "[", "x", "]"}], "==", "0"}], ",", "x", ",", " ", "Reals"}], "]"}]}]}]}]], "Input", CellChangeTimes->{ 3.927702052298167*^9, {3.927702089162418*^9, 3.927702129686356*^9}, { 3.927709007053021*^9, 3.927709009037599*^9}, {3.927883321099765*^9, 3.927883321293502*^9}, {3.927883359971694*^9, 3.927883411470619*^9}, { 3.927884155628954*^9, 3.927884186553234*^9}, {3.927884303803418*^9, 3.927884311537694*^9}, {3.927884555862844*^9, 3.927884615742971*^9}, { 3.927884843775282*^9, 3.927884905713593*^9}, {3.927884985604999*^9, 3.927884997045703*^9}, {3.9278850553125277`*^9, 3.927885074620574*^9}, { 3.927885232765196*^9, 3.9278852833896217`*^9}, {3.927885430812928*^9, 3.927885520237401*^9}, {3.927885942912921*^9, 3.927885946478149*^9}}, CellLabel-> "In[271]:=",ExpressionUUID->"ec286203-9f4c-42d0-bed4-935749764267"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"4", " ", SuperscriptBox["x", "6"]}], SuperscriptBox[ RowBox[{"(", RowBox[{"4", "+", SuperscriptBox["x", "4"]}], ")"}], "2"]]}], "+", FractionBox[ RowBox[{"3", " ", SuperscriptBox["x", "2"]}], RowBox[{"4", "+", SuperscriptBox["x", "4"]}]]}]], "Output", CellChangeTimes->{{3.9278854990218573`*^9, 3.927885520547295*^9}, 3.9278859468060217`*^9}, CellLabel-> "Out[272]=",ExpressionUUID->"b391b241-1a6f-4e77-b2d2-6c2d4cf91e2c"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"-1.86\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], -1.86120971820419911502142440440366044641`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "12"}], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "1"}], "]"}], Short[#, 7]& ], -1.8612097182041991`}, "NumericalApproximation"], Root[-12 + #^4& , 1, 0]], ",", InterpretationBox[ TemplateBox[{"Root", InterpretationBox[ StyleBox[ TemplateBox[{"\"1.86\"", DynamicBox[ FEPrivate`FrontEndResource[ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"], ShowStringCharacters -> False], 1.86120971820419911502142440440366044641`15.954589770191003, Editable -> False], TagBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "12"}], "+", SuperscriptBox["#1", "4"]}], "&"}], ",", "2"}], "]"}], Short[#, 7]& ], 1.8612097182041991`}, "NumericalApproximation"], Root[-12 + #^4& , 2, 0]]}], "}"}]], "Output", CellChangeTimes->{{3.9278854990218573`*^9, 3.927885520547295*^9}, 3.927885946809713*^9}, CellLabel-> "Out[273]=",ExpressionUUID->"0eb682c8-198d-4e04-83f8-4a7d6b7c61eb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ "Man", " ", "k\[ODoubleDot]nnte", " ", "hier", " ", "nat\[UDoubleDot]rlich", " ", "auch", " ", "die", " ", "Extremstellen", " ", "durch", " ", "Gridlines", " ", "oder", " ", "\[ADoubleDot]hnliches", " ", RowBox[{"markieren", "."}]}], "*)"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"f", "[", "x", "]"}], ",", RowBox[{ RowBox[{"f", "'"}], "[", "x", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}], ",", " ", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"GridLines", "->", "Automatic"}], ",", RowBox[{"Epilog", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"PointSize", "->", "Medium"}], ",", "Red", ",", " ", RowBox[{"Point", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"f", "[", "#", "]"}]}], "}"}], "&"}], "/@", "sols"}], "]"}]}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{ 3.927702052298167*^9, {3.927702089162418*^9, 3.927702129686356*^9}, { 3.927709007053021*^9, 3.927709009037599*^9}, {3.927883321099765*^9, 3.927883321293502*^9}, {3.927883359971694*^9, 3.927883411470619*^9}, { 3.927884155628954*^9, 3.927884186553234*^9}, {3.927884303803418*^9, 3.927884311537694*^9}, {3.927884555862844*^9, 3.927884615742971*^9}, { 3.927884843775282*^9, 3.927884905713593*^9}, {3.927884985604999*^9, 3.927884997045703*^9}, {3.9278850553125277`*^9, 3.927885074620574*^9}, { 3.927885232765196*^9, 3.9278852833896217`*^9}, {3.927885430812928*^9, 3.927885493446184*^9}, {3.9278855270305653`*^9, 3.927885735473236*^9}, { 3.9278858032814217`*^9, 3.92788592173429*^9}, 3.927886169839221*^9, { 3.928214382454574*^9, 3.928214421961088*^9}},ExpressionUUID->"9b199053-0396-4aa1-8b9e-\ cc527e004cdb"], Cell[BoxData[ GraphicsBox[ InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwtmnk8Vd/3/5HKFBJJKRKRqUipd2VdKSSFQkqGCslUNFCZk0hlCElCiSiZ Z7rrEqHM4z2lDCEkmYfLvb7n8/j9/rn38Xzsfc5Ze63Xeu19Ho+z9eLVU7Yc bGxsd8if//0rw/qR5WUBWsK98t3zfo14dWFb0AJDgGbiG3jrZWAjZuWqbJ+a EaA9VNCe0gppRFW5ExcH/wjQ2KYV4iIjG1F9bcC3uk4B2s47DflH3jYi5dfE l+eZAjT+CPNzPXWNeOpB/fvdVgK0sOWBxXt8TejeGOB8mcpP+3nFyT36XBO2 tfGOlF9YQ7u/z2ly5Zpm3Ey7Kqwuzkfz7GH/EYbNmO9YuVLgBw9Nojf99/k7 LWj9SGWc8OemKa5+beVzqhXnI+4GIXDReOP/s82Xa8Mk/p9iMb2raHJlIiXa m9sxTk/FrTV4Ja2l+G/g4voO9He64LHjGCdNIc0Gj63oxLsr3rm7/eWg2U4K 1C8vdaLLc8tV1kMctKJbTtH32Oh4cee6qBO/OGjbNLn4VnHSUc/cM0eO4KDl TNcMreKl44bck39/VnLQHvKu6JnbQMe8i1MXj8dx0MY2llyKUKPjWPnBk9LH OWj/Sl9/DHCgY9+Zia612hw0rfP9Am3OdGz/m+y4TOGgfQh6cnGrKx3LxASC v+3loA1rLo7nu9MxxLX3U5gUB+2X3/iqzwF0lNsauJ+5wE6rfij83DOejhd8 G6U7UtlppgsFa0Wa6GhKJGj8SGKnnTra/YWrlYxX9ZpZfzw77XOx5peFdjqq 9Qs+moxkp91Q9vVp/U5HLt1TU/x+7DRv24FFm990zBBoL9c5y06LUstpX2DS cTH+m2UxNzvN5XekRb4cgeNz7zxonOw0N+e8U1oKBPYb3o2oXmaj5UReiKpX IrCBQ/xz+wwbbeAdZ2+HKoGv7SyUJnvZaJ+7xl6WHiRQV7lnUb6EjSYU8Huw yoDAqI8DMXEO5PiPtwVxbgRaesR6q9uy0Z4dmQpuuEGg3G4DmxYrNlpKuUgi 4xaBJalFO7lM2GiieXutNe8S+PNpyOfrwEab72OWPLhH4NuTlHT+/9hoxGLC rof3CbzGPROepsZGG9xR4xX4gEAOH0uL7h1stNzxkMtOIQTKOqhM6wmz0YLW 5E/+iSDXJz1IDPCz0V4PD8SXRhJY3B2LvtxstE07z+cERBP47B3XemfmMq57 49POEUtgj2+G1pGWZXRU3XDzQyKBbkqM+Mm7yyh1Tkg8M51AzqRLDnKuyyi2 7H+aP4PA6A31eyztlnFydTuHXSaBpSsS62oNl7G0JfQhK5uc/+0oI1FmGTuc 1QNaCsj5BplVHRuX8Yy7cPlUIZmPqg3hfILLmMhbOstXTOCJrD+yHgwWiite 5pUtJecHhpsYNLLQqllEYJ5Kzl9iSN6vZGFm6SudTiTz52ozWlLMQk8D7pkP NAK7z6vf2/6GhcXPeB01K8j4WxJPnn/OQoOH1WtZJHPq8myMeMLCtvpXw9mf /lePH1lMDxbWRsoOsSr/Vw9tz90uLJw7aT36rIpA/S1ZOlcusXBsoblL9vP/ 6iO2LsGMhbvyRFIzSHblvvez7QQLJ2JzDipWk/f3GU3j0WJh7ODm4ESSo6dN blL2sVCPq/Qubw35PAek3FJioXnNdw5nkku65fjSpVjYZUvjqyLZ8yD7h9gN LNyjM/uUv5bAQ8+JE8H8LPR/IFliQDJrJnvMnZOFnTLvrwWRTDv1MNSOwUSR /2ZSi0j2z7y4y2Scifn8RsY9JB/hO9CsNcjEWwc4bZZJXnVlnZtqFxM/0HRq Rb4QWF31R2hrCxONtune3EZykFRlrkANE5uCZc7KkaznE2fM+sjEZGLKVppk vq4bM6O5TIxvL3kkSnLDvhPR39OYuPrQLSo7yWFRMupfEpjo/0dktI98ntEk s7Moiol5C16rSkkWMujweBvCRPwZyAomue19hli0HxMDIpiV/1tfNNeDkgB3 cjwrSY+P5DO2VubXnZk4HLfTF8n8bKhQX7pwiYlsb/VNr5D8bYvgS8Oz5PpV XnzkJjnu7tAhMGBicXtWyv/yb0mn/VQ6ysRToRs4lEnuDXeV5FVh4pfF9mYF sn6vx46VL2xnov74Gtk4st42x6UuDokzsaz5fBYHyUOcrUlVXEw83hgtmUPq 5d2F90fyWEvIRxUZYpB6cqTeG3g9vYTcL1rf7Cd5zF1N1rdnCY8FNFBjSD1m tfHVuHQsYUWe6VIRqVdXlQF7i7oldPHJ+9dA6nl6JOrdf0VLuNlKvuh7GYEF Oi7Hd2QsoeW2484tpP493miPir5Zwrzjp2OoJQQuWswpzYQuYeXtTgH3IgLL Shobft1fwkfXJA9qkf3kLZp6teXuEi5I/nnJSfYbR7NZdublJdyRZ1Jul0sg 15ESNQdYwp7cc+UpHwj8khjRbrZnCR+alLVuJPv7EdPhlo7CEoo3pD6/945A gcJNRdKi5P1vV7FU3xK4Xt7rQPfYIpatSbq0mvQHeqBJV33/IuZVCOlKxBP4 /JeSV9m3RRxNmzqvEEeg+Muf1OefF1G04kiHRAyB2wQph43jFzHKy/4/j1AC n+zqvePwdBEj1v9RYz0icN7QP9c3aBGTu+7m3HxIYF14pfQHt0X0Vhjo20f6 3411x1av0llEqzcz9WvukP24ewTEDy6ioCV39GZ30o+NQzxUVRbRa/rF/i2k 326Oqh+23LSIzeHFOOFM4Of1p+oK/zHwdWGAb7c1gbvUpzgb+hnYECv547oF gbFnIg/1EwwMqfnpMn+WwKsxHRmClQzcemZXd/MpUn8bzcOvxDBQQeVx7ict Ah0225hu0mSgq+XKs+FSpJ4PrQxV2cvA+94xNyS2EKhhmVKto8DAhfStfnFi BK5LGNp3Q4SBGjF2Wy4JkvWTdN5UP7yAXy816kiS+xO/9K0e74gFNGqxiDlG 7nceR0TFoh4s4EDQUtnHenK/tSkyeu+5gDYHTZMkauhYmMyo6LRbwIqXvs7p ZXS0lvVJ3nVgAQWdXLiH3tAxRz7Ioe/XPLI1hDjRyf1Yotm6WIGYx6T7U6oU Rzo+ct/PdbNhHnmL4UKUDR1tK0eSVxfP4/WOyNLVZ8jzgOWJXsUn8+hfMP2d 5wAdvcKFzNz3zeOPbvv1PsudOKL+J4WmNI+KDvZzBXOdaPrz0wz3tnmcagq9 +v1fJ+5SuPk0bs08tsnVzA93d2JfZWdDed8ctt2OOyKOnag7H3eU7/EcKm36 T7v+difmx9+MNPGfQ5pq92DttU6UOnryV7z7HKnrsw9zLnfiYviyr8rFObwZ fo2qY9KJGQoXy0zV59D2UL6i385OFLaS3f2qdxZlZJgFCj0d2F2VLbl37yxm 0x2mTqh2oOfphSP7FGdRxetmVIhsB27opVz5T2oWL0XaJBeKd6DhUmO2Bv8s atWlbf6+qoOMY+ywzuAMDvq4DRl8a8fEBHlbs+gZPB8+VDTj1Y4Xbyel3Zmd xnXWZRoORW04oBiligVTpM+FXO5aakF57+SxofdTeGNEhqN6tAVdGvPfCb2a QtpMr8qrrhacd+2QsguZQgm+yQ7pshbkKRRdt8Z6Cht1nrCcyPPhLs3YqXPc UxgkEBItOd2Md00S8mbNJ3FyLf2w4o8mXOudtleZfQLlBfMuDUvUo+Lef4rJ U6N4O+lm8RX9SrRT9vEp/jGKV8W+Ku2QrcSE7QIt9dWjqLszyZXBXolCojvd Z1+MYmXuy81thZ9wbs6lXOfIKEKgxber0p+wonjMZCTyDw5XEPuS2SvQ7NCY 9869I5h0jzfI/yVixB7vZi3JEdw199aT/SziVyV+aTOeEVTPr7tbJoyosUW5 1vfnMPJF9O8cfkTFbcvO61oCh7G/9u3Gnb4fcYz29+2NziGcPLiYMOVWiveO /G0q9viNbpMhVTKPC7FCd9RA7dJvZBiPbTA9VYhsJ/40ZJz4jQntkheaRAvR 02S4LknqN16yi4E3SQV4y26g5nHdIFL1ehpaqPloH/SDdkFyEHNXftcJX5GH +nX1Wdw1/bhF2VftbE0WPmyq2xmQ049vr12IPv0sC2vavmaw4voxYdvehwl2 WXj0R236lGs/KmxcjlZclYUaY1WpPzb1o+TX0/UHIjJwlyA1MfvqLxxJYyui l71HEeOMsLOifZgb35ec8jgFc7aHlBxd0YcWAQW2JkdT0HDhcr/Kv148P0o5 EcFMxofxW/fxVPei3+HPg/lXk5E1FNldcqsXVfTl1iSce4ODXneVxTt6kJ76 26BG7zXeMzQz46roQbcd9yopvK9Rctse/+kPPSjyc2OuVt0rPFcz1l53vwcd t09/+W3wChuELnp57elBVeW96xItEtHFIDzm445u9NO708Al8xJTp/VGo9i7 8WPcwMGFgjjse85JcSF+4kTFN/OpY3Fo2u/+e0vwTzx4knGB/foLhNuWe32H fmA0jH93an6OgkkKbYffdqFJtt5sMTUa9XQHZDf5dKFa2IBHl3U0BvyNvztl 2oUK7r1yjBXROK8utO3Nqi7k+rKWf9uJKOytm3ddafcd+5ND9fj/PMWc2SqB GulvKCP43M/COByfvHtdobFA4Lnm7gDJ5TB0tPS5mV9PoPAqDJ59F4bSn/d9 f02eo09KhlDbV4ZhdNT7FC/SF62sRkNdwh7jHbXwQ7udOhFV+zfZLAWh6ZDz eBqlE1Xeugb1uAXh7ji9JEmRTjzyd+9Poz8PcHQFJzc/tQOPnfhuuaovEC1b b7UNCXRgGIdJkPlgAB52O+8Yn9uGJ6/EjzXp+OGW7fu3iAS14VKF9ca1Xb64 SIg0h5xvQx3j/0YF3XwxT7Nx7+2VbXhcX83nnrYPbl97mMP4TCvuo7+9xq/m iRxVW/K/KLTibETc7Wr3u9jtsXhZk60VJ0Jb99VQ72BMT169cloLerUVZQaY 3kaeLNnn3IvNeFmJ13xb+i0cvMSp79vYjMW2heuMuW/hJ9Fe1mxSM7rZuJY9 vXITPX1ibfr1m/HRzQqlbbtv4NjJNbswvgn7T7hPFQ27YvL3gcfDAQ0YPp+Q 01TmiN881ye83N2Av88f2JvR64D8W3SyjPrq8ZrX+Ox6Xge8ZZ3aUgz1KBx6 W/ecoz1qDziIPmR8xTExrS1m1rZ4J/CFnEbaV5yVComGVBvMkK3bP3nmK25e TthxavoSijoonT+X/wUlvhGmNTEXcWjsX6L8tVo8LZ19MGWtNYqHSeb83FKL 6eGR4nJTlmioYvQpor4GD65iGsR8scCi6zkDDPkapOZ9hvZQcwyevyH/deAz PmtpOLPB9QxSnycf8In8jK7rOTP/3THFyf869HdrfcaeKcmhmBATPOelfvVF YhXe6Q12WKadRnkORq6jeSX+qdFZvnbbEC2T5KskeCrRjX9P1BkXA4w4Yt7R WvQJHzufXDsycwIZgWXzB9Z/wkRh88lXcsdRWe4v93hlBe7tpl2xbT2GF2s3 b3pzvQKbhbr/+AXr4lden0N8zeVYIMDBzyGqjWwfMk/SfMpRc13vmxVjR1Dt ZI/VDeVyTHHyVYtt1MK4ME3/rhAartj1i7ciWxPp8lxPzj6mYnJQtPUh4gBS nK9klY98xM79B53bZP7D1MwvLTt0P2II0S4XELAPb6s9FmVwlKGOshW+ubUH +26N7b9oXUrqK2KTEbca6hUbnP/ysQT3Pk3b8ThdFTdqCL2K9ShGF1sKKGzb hf6+1z9xdBQh67GEbfgfJfxT0TbgsLsI54VdrYgMBSzTeSZ/YKwA623VBb0f yaL0w3n9pOMF+IzzoLdRsgw+qjt7lTctH1efTrwqQWxDCyPxvO+X8nD58mr5 mCeSODo1s/9mZS4y1jQlCChuQc/oRuSXyUWpwdD+YftNyLc/7Wjq/Rx8/+y2 q37LBoz77v9VczAbZQxNIyrt1qOi93mj79rZyPj1M7RbWhhLJfd23nibhQ/U ubLkeYUw72tLlUFzBko6V1fzRfFhm2Bgs3/EB3xZu2P8oiY3Tpns/5F/Oh3l sgus76muQqEXo0NDwu/x5wa98CDbFajakzC9qSMNBSfZ5x51sqGRzGk2g2ep OE5R4jblZVKvOazi8zd7i6FmZ0wYxDw1LLNYNF8sBQ+uV806IDJDzZx22jb0 7Q0KF56bPlk4QW3YL7lzU1wS/ipOnmq+8Zc65t3630mL12j9u13RS2WIuqYy UNtvyyscAc2D3M9/Uc2EbryxxwScL6p+jNBNfRb3rbRB8yWyfj372XaDTu3Y rtmqVhmLslPK6TIlLVTh7Lcjsdox+CfY+wrPxFfq6QP8HOy1USgxdsL+sUol NaLqhtjl409xxZqNETP8ZdQmg++76uvD0JxnjDERlEPdkncvzC7xEW57sq6j eCiF+qLGEFWTH+B5WRm2NS3PqRt+bB5jpfkj75vErCe2wVSFX+37oy3u4pqc +gdmK25Qt/Nde6Z82RXTjlEf1kUbU33b5No2fbJAYdHjNoVUMaqiwA+HlUpH QMil848bT9Ohjgn/BMF5e4hZeX7DncsaGuMGspNX3W5BUstOPiVRO427T7W/ OKr5gvvS+0bdBF8NlvftFwk770NljVRTSkSEhq9DulOr/ENYf1ig8LzPK40V pt2HVm8PhX7ToCvG9z5ofJIMfvBSMAJer5y8aLi6UCMgWuqa+pNIKI7OXfFu lqahzVdm1sz7DOrd9CTVhqo1VvubaDoGP4cjbgo8hlpNGjVzYztWro6D3RcX 87b5tms8dA4SSgiIB/fil63l5d81UibCvMT9EkEyVP3p+9BejcD0H67D+ArM Nint4aIPaFy+LG9XwHoNlWfmFB5XjWjoSrmfu3foDXTHRNoPqYxryP34dNLQ Mxm2uPl/VLOa0uCOEdTaXJoCVSoDH2+Nz2qMnLJQH1l4Cxt03cNu/2FofFnz TqFwXxr09Iqf5TJd1nhfMysR4P4OHIV2i89t5IBH97SEjQrew5N2P5m7NZzg pBHGtWUmHVK1ottuFqyGEwtdSyO7M4D3MSOn7jcPKOftmCh0ywQt9uM6tlb8 EKRe6lZhlgXZcfYPhQTXwnxk76jcfBa46IfUe6xfB/aTqy+HPsuGlQMF8mZH RIBuoNw7szcHtjvvt9j2QhSKee62V9zMhXezglK6teKQqCTSmimVBy/4Bxvj f0lAoGFmU1xjHpRfLznzMHYrOF8/1hDsmQ+27n98y622gXH0r6+3dhRAwAVB vwuHZeBAsVftpY4CuJd1adJUSxakukSrDe8VgnmSl+OTSztgfKt+hfyPIojc J1d6c6UydB4ZRNGHxXDIvtrY58guoF72/cipXgIHSk7+/vhMBUI+5BX9DCuF rW/XnfW/oQZuTScLvh4qA3r03w/TrD1gNjWUWzRSBo3inVwlceqwff/mzIgj VHD/GBy5XvgA8J0vTPeZoMJC01fx2LGDMOVt9M4pHuEHw/3ssZ8aYN1XcWqb Jw3cu+3z/Xw0oW0qtPl5Cw1OW39Q94o5DDorLQwFd5TDhV2pnxhlWqAsN3eC 2V4OCp7zq+x3aMPr/ZV11xUr4JpEbVm9qw6IHA8/PuJfAduiuzxefdaFJWeF Y507P8GPkxod3tHHoTbX6kh2cCV8ZLe/VT5iCAerFD/J9lTCwIv2cwOfjCCr Y0Ezfm8VpKfNdyi8OQXRC08h5FcVJMkXKEbfMQYbqPnP9lA1ZNu9zlzvbwZ0 w6ji70+r4eYO7er7z87C8YsX950aqYa2f+k6HPnnQPX+0h54VgMSfckJMVwW sPxll4rYRC083qJXUMBzAdy6mJmhOl8gV77u9KHCCzD494vyqvgvsMalyg/s L0KdoK3ilN5X0HlmVTPeeQliTZ/L1r+pA1Wfpm8v/9kBv71ditZiHewTbh15 Vn4Z/G7vlikxqgedozeT/WLswT6uXuotqx5y/W/3WJg4wJ4+9i1+Zo0gcjq0 v47PBZRLzkzsSmuE7Qe1Kn7PusD2iA+VPQuN8J/eVq+cgavA+yp9T+KJJpA0 V+f4NHQNlgzNupbHmkDVj9abN+EG8wdXfD4j2gz39FpXS9+5DtNyGZmZ0Aw3 9zdbiK28AaNsnPeswppB+bnn4w9SN+FHVuYOVGmB2iOB68S93OFb3Ll1ouda IPQsvff8Rg/oCFrJdPFvge2rdfyMSjygwdq8aUtrC9xmS69z4rgDVMHV7t43 WsFfvFCQO88TEq5ZVh4qbIO/WkvGXYZ+EHeeOyOquw0Erz7OdCjwgxjdvGd/ V7eDiH6Cqc9mfwiT5HF8adYO4QKZ57XH/cG3KX8tc6EdLIqsAqNTA0idrbEq O9gJ5c+4V4fbBYGleJGusG0nXOESKPw0EATnuC6pOj3uhNo3jztS7ILhVE/R SvGfnfDnR1RwkPNDOBxmk37Xhw7Gkk+E2MIewbbx0oX/KgiQr9p5fyoyDDzr tQKm/xKwaWZjtepwGHS8+8qfIfYN9h/v5X2gEQ4Pbb9v2+r6DXh+injdGA2H 8W+ME6slv8Ps75VuISZPgVq1/3WrVxekW3Us91lEw4akcsXHaV3gJuepLF4Z DW6+xwq127tgZZios6/CM5A5cLauWPEHqN3Tk25kPoNHWR6zCd9/wL8/z4ff Zj2Hcy8K9Zz2d0PQ7maOE4YvIc8D2mVsu8FiT/WGz7Uvgd+02qo7rBu+fXnw 2PNIPJQLdt44NdQN0jfbHyUfSgBhrbsGccd7QPLOytN+CYlwtyj2tj+jB/Rd xpzO4Gs4lkTUnzTrA+/E28FX776F8fsZdlXOffBh1+/Dx76+hRj7e8sH7vVB lqu8zudNqTCkpKSyI6MPLNdO5L2jpkJQkW/kCs5f0CS8WUSS7x3U1MuaF2X+ gnt/8vJrq9JBZ/7m0NbVAyAaPP1r4Gw2jH3T84sRH4BNa/nWcT3KhuiPEhsF VAfANaey7A41Gwb9a48vnR+A57wFPYbSORC4ZnNmR84AyITrvy6dyoHPUpU3 QywHQaSp66zlqzw4ekJoxUz+b0gw+LibZ28RPLnAPbFQ+xsM7Y50lzsXAf0m Wzfrx29QphtOFiYXgUP8WAnXqiE4vpXOtFhfDE/+fXETNx2CijeV4kGMYqCH 3+vTmh2CL/eVuFc0lIJDx3R5xN4R4BE2OVpM+mKoVafvrsJRKO7hGu8c+ATV JzevMRSaAHt/C1l/83oQVu5d7yY+ASEp28PzvevBek2yZOT2CVjlL36h+1U9 ML4qqtH/mwC1ML5K4aF6UDx20Nz60gT8sjsct3S9AcK0zNOu5U2AdXYIyzW4 Ec7te3403HQS2jKNi/TamiBF1MIg13oSjDXWxMz0N8HUrOTZdodJeNS/ZBw9 0wSP8lOdxHwm4d+1U/VF65sBVYuevno7CUv9EzFeZs0grdTZmz0/CUKcITmD RDP83Sri3RI7BfzfvzsfI/t4391XruVvpuBcTn+zRF8L+Lcp2WZlTMHs+51e Q+MtsP6Btv6Tiik4o3RRy5C/FTRG3TfqjUwBjLZ33NJthdCCbwXl+6ch2NMk mLekFVSOJ/7Lok+DoLWObXl4G3i+UfyV0DcNulm14/nxbfCZWdTxZHQaGnd4 UGLft8G5rOaPTmwzsOP04JRKVRv4i6x4JCc3A2IOT3bHzbVBa7etXKL7DJSe f+dtdLYdbt5QuBC6fhZuPOm1WRLogPU8/8pMt86CaIjoWtqmDihKyNmwRZHk jUoGV2U7YOnL/qZ0zVngqthzNUyjA/y36sIXp1l4wCohuhw74EmDzeaVn2ah 5zE1IK6iA3bZyN2uq5+Fz1RtoQ31HdC88KftKX0WQtZcEvPp7ABhmeuPpMZm wSCr6IXAaAfE3vVbBLE5UHd4XfSfcCekyMUTd67OQahtf36ZdSfoUi/sOXxn DsSSOq9PXOmE4dMy4dz350CIa2J87fVOUPRJ142JnQPxy+eOrr/fCTntJYX5 VXOg4y2uopTaCVT/zqjxTfOQ8M+4/cVIJ3R2CZ6yq5mHQz/kxGqs6aAXYku/ 0TIPBUbO2cKX6VC2v8TyXtc8/DCx7jZ0pkNi9CXHxPF50EwuVYy5TQd7w4KA bxsWQEIx9/elcDowPpkXnryyAHfOaIsvfqSDk1vWIYvrCyCsMLis/YkOPyVX Vjp6LYAR7dyxezV0qPDKaAoKJ8ezCo7Wt9AhRJ19pKJ4AayGj7qmDtJB/H2K uDoPA06a+WoH8RLw5Ozi66PCDFA7OHq0V4AANi7DHcZbGJCqLh6lIExAv83C HldVBizBsFWkOAEftugbvD/HgAnvENMiRQIk6xPbi20YEBs85f9yFwERd2fM a1wY0NY5fOeGGgG36PH2A/4MOJvkyDd/gACNiAk/ifcMGL/88doZPQKyKNpc yvkM6OXek1d3ggCpf7FPDiJ5fZjqYTUjAlbpH3lxtpUBEcLzXt/OENC48lne 00UG/OJaVr9vQ4D17YO/V+svQsDduMELd8l9w6amfcx0EYY5T1w74E3A1Enj yvYLi6ARlCG4yo+AQGmnV0nuixDvuHrYJZCA9MYX5pC0CDVF0prhYWS8JbJ6 2zMWIVjWtHYmggBIzt23pngRsqavCOhHEdBy56vI94ZF+MzokGt4TsCCzGLj LcYiJLIXE/KvCagQfEC1WLkEk9KTzyXeEPBoUejDEcEl0J3gx1UpZL6a5R8K bV+CnHSVkPQ0AkZKCzwWdi2BksAXc8f3BOSmHL7cc2AJuJUc+sU/EKDtee5I htESiKxNuWaWRYDg5UHVqPNLsGyT9LIvmwDCyG2r5+UlSKt1aLfKJcBJ9iHr mNcSNKjXFu4uIOvRUlw0kLoETelcD7RKCTj/8ejbutwlUBmoP2ZfRoBManNU LnUJjI6bl/p+JKDIa9jNr20JJHhFlh4hAf72Ny/Ydy+BpV3tlC+NgOOn2Q0N RpYg29jkj305AT/lxJQ2szHh1dv78iKfCEhdl7yJk5cJzkXGsQTJrqxdPH9E mOCyzfBcRCUB/w2XzTdLMkGnxtkbqgjgbNP9XaTABIfr0Rt7SW6gtrUn7GVC a2zyYffPBDxLs64M1GTCevErPBzVZL0jR3Oc9ZnAt5R4349keR+PV8ZnmNAh u1w9Q/L0Fc6wAxeZYKMuO2BZQ8BH4zBvKWcm6KtkjJeRHAjiztweTJAy3MgS qCXAUD7VfNyfCdtr+yTNSN4ooqbX+ZgJxyKvOkWR/GsZ91FjmJCwR2y6muT0 keOyyUlM2Bgk9/UfybfaO0UeZZDjwR2ca74QQKFd4rxezAQ7Of08CZK53/+b PFvJhJS1r0dlSW6JuttLaWRCmF8PTYbkON/VTbLfmHBLeFlLjGQ7x6dU/gEm nH/eH8RB8i5TiQ8z/5gQPmD3upd8HoPy/kUXgwk5aXpJBSR/UlB/+GklC7J1 tOL9SLbcaZw0IcAC1cYxCR2S51VdyyQ2smDtodQVnCRH7H3SfkKaBbsbfMyK yHwo/vd+7K4yC/SlPZRsSP58qGb1u30s2KQYGL6aZGvNAUn6YRZc4Qx/+prM b6SuxGm1MywY5plOR7I+yvoHnS5eYAHzeVuvJsk1BmfvhzmywPJJxb9Ssp5M 06eFoz4sKNc40PyMrH/MuaymjQ9ZIG/ZVb5A6kPVsn5YN5KMx7+w6jTJdrar xZNTyfiZqZRxUl9sV6T3tOawQPjwhTZVkmOdNE+yf2TB9qPP8pxJPTZcv+tr 0cyCxdLNT+uoBKj7/+sXYbBAgVFotIvUe8t9PpYW5zKEqw237C0h+yN4h6gb /zJUXDYW3FtMQGLYpWMNUsvQvP7Z7JZCArgSOj8EHl8Gq6S3oy9yCHj9evpz nskyuKr//XqF7LeDKWt7+qyWIb3ubOsush+vfTguBDeWoeW9R+g7sl+JUrw1 F7cM/G5iCidTCXhHfwv2Y8tQOjihfCGOgKNdlWbR88tgz6IlVscSMP5vfN9F djYKy7VvlRzpJw+n1pwK42WjBGmy93aQfkNl6ASMSrBRuuK9JcaeELCdu2zo jS4bZVHQUm6NLwGT1coOr0+wUST1NM9IkX5HDXz1J+EUG6Wsy8NR1ZMAU84H Y7Hn2SjSu3VdtDwIuL9sNB12jY2SFLjAIX+N9PeZ38ueMWyUvV2n7ISsyPX2 rRM1GWKjrOdOEo/aT4DLq8CYU3/ZKIaCP103qpP9a70gZjjJRnHWjut/Qfp7 y4+f4seX2Cjpz/m0n+4kgJ1Ik9IUZKfMvCv5ayxD6qcRlJX2sVPenfyrryBI wOYyx6Mrg9gpl/XNgy1+0UFYjMFwecxOOeIBeeo9dOC7FZRFj2CnlHRt8+b/ QYelncmb0l+yU+Z2cwjndNDhW9LPiVO57JTm3et0W2rpEB1iFJ/4k50iHR0d 551JB35z9bkDezgoQoKVGys86MDG4Ehz6+OgPGJjs3vJSYc5o4+WVTKcFJsH afkHN3fCdzWrTTIBKym3NhVI7yDPJ9fOCK6V6lpF8WRuFFLe2g5ikf1mnJu5 KN6vztIcKW2QYZ74dsqDm7IcG2rdZ9YKZw756NZ85KGkbYvbbPC4BbItnaX+ W+KlbFPpdylvboZ5Hq0VxSZrKDcufeV2WNcMp5oP7N0cw0/Rp/23O8y5CXgO 8JaXveSnuOuV2VQ6NEH5m2/HzyfxU4x63zgsXG6CXR63L7zI4KdsVnw/aXux CfglCh+JVfFTvrsGjeqeaYJaJ9VfIpP8FNuyvQZ7NZuAwrUjjF9fgFIseIr3 g0gTzLvOb8wwEqAo7fugvyjUBJnfq5NPnBGgTFaYntMTbIItmXaljy4KUK4H hhIjPE2wZPJmkOe2AMVX7Zr1HrYmKEySOLQ6hbz+79EPPe2N4LLmX3XKewGK tpyTZ3QT+R7sTj2lnS1A2XRx+fuJr40QqWdhf79MgGIgaq1XTmsEt4nYpyta BSj7JrLaS943gry5w5YkugDlYvKAmFdKI/RW7k87/FOAsr7IeYTyqhEMY+hU v2EByjEpR+X66Ebg4kg9tvWfACVj7bfEqPBGQEf3Ntq0AMUsLPSl1aNG0n+1 rawZApSnV7mkFR6QYvt/3+NR/v/3ePB/+Q/wmA== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJw1m3k4Vd/3+A33IokmyTvzlBRJMlXWISFFSBElCpmSqChDkkRJKJLILGSe roR9ypBkLOO91xgyuyhzfM/neX6/v+7zes5aa6+19tpr732ec0Wv3jS2ZWFi YpJiZWL6368c7Brf2ODBW/xLlGPCs9HNZfGg5RUe3MynJ8T+TTbKKzwkNf+X Bz92jUtJNTEbKUjrXx2Z4MEZzMUBA3nZSHlbALWhkwdnkji206AlG2G/Zuvf 5PLg6T1r61E8Ocj4SeOHw1d4cOmW+IrfL3KQR3PAjeuV3LjWPQMN79e5qK1t 8/hn6y14AJ9PzdRSHhLEb+5UFuDCt/Nri54SL0DFTtVknh5O3DVY1ezyuUJk FXKI0e2/CQ+5t8hvm1CEliK8ghBw4PROpTDqt2L0W+DzuLYaB65i4Oae0lSM OtLY9JsUOfCAT6OeTj+LUWFZ+LaefRy4gEAUYtCLkcvg+5iVHRz4kstxzs6Z YvTrUFvWkVF23PAkfykHbwlqajnQ+iGMHV/S17uWdakElZu7HT78jB2/ffnf NKt1CfowRIkse8yO97sa8ZralqCgJU3zb/fZcaZ0tDxzowSdELn4a8SGHV+7 ZREx7luCSm8+/iuqyo5X3+AWX4gvQcncvfzRA2z42ic52eWeEhRhAeyqdDbc 6lTfzciBEuSfnvCnu4MN/6Pm+nT/cAm6qnmteU8DG+73E1hOTpYgsbujAfEl bLhA3OHt+1dKUFLP3EzaMzb89lU0VriTgiJkTHp0Atlww6QHp4f5KMjfo7h+ 1I8NV/TuseLZQ0FXt3mmytxlw3UdVMz0RSlI9OQ/8xwrNtx5TlbfRZaCErLY a4uPsOFFzcoOCloUFLZsX3hBng33PpsQOKxNQX7a9QmLMmy4yE99rrBTFGTV H+KlKsKGm0lRF+sNKEh45/ZDFZxseMOx4u52MwritnYXsiSz4a7DbtUaFhS0 nt22eWODjI+K5VmnXKagXp3XI9hfMh7gb3te/yoFvfMSiK3uI+OTTQmP9jtR UGidT7AtlYzX6T601btBQb68fXfZ2sm44ovnKlduUpBlbqKRbj0ZX3Ke0nd0 pyDBX1LsDUVk/NWY0Q1WLwrikg/645xLxp1TnbY1e1PQmvfYwJZMMo5T93a/ 8KUg+q6s8rPxZLwr6Z894yEFxeodcvsZTMbtd4+/kgmiIInNevUtAWR8a8fl 4UfBFPTh+1WxpgdkXAUps/18SkFlZ179qLtD+HvG5LLxcwrS3JItU+tKxndr 6tn6h1JQfWONf5UTGV97wDXw/gUFdRssKlRaE/HLhbb/CCfyx7P12adLZNzb PleoK4KCRpulf5WaEuMtXPH+8ZKClgzNXxbqk3GONrOdaZFE/re5T+TpknEm 5gzBB1EUxP7j2YmcE2Q8qOB195nXFLTrXMV8uioZ/9Nzn1wbTeRzR8fpNEUy fhvtPHHrDQVJtk0nJx8k/HV43bQ1hoKyXrGvJciQ8dgkm9AUghXPi5i8kyTj 6QF59gfeUlA5r2rWWxEin2oPT6QTfKLDiPRmD6FPySHtjiXii3K8FLWLGO/W YLgXwcamj4pebiPjDbtft/wgmMoXyxXORcR7dneaYBwFWXcV2YSyk3EJO/9F C4JHoxvLn7GQ8aEtXzKeE+x6cWRn8D8SLsH7KrGA4CX+DefAJRKuIvC4qp5g PypfzaN5Et6vPzvfTjDHW3nBh9MkPIyXxNdG8AuLU3d8x0h4Xgdlaw3BuwSu NnoNkfD0pPbqdILf0e9L3usj4WYzf3Y9IFgq7qXPXSoJXzrjNa5DcM7lrHb3 dhJO3xMrxkqwklCN7K0WYjwNs6Q8Ip6K3p7HLt9J+GSfzxlDgrXiF3qcakm4 DVs66yCRn4YrPEoOn0m4n6N6pi3BJiLSoXblhD//3RGjEfml9WMj1ygkfFTh jIEmwVcTL6pbF5Bwk7AXPG+J+Rm3douyzCbhBwI7dIaJ+XMTezZtkU7CL4U9 6hIheHkwWftiMhEve3WSPjHfHDbtC+fekPAs0Yzr94n6CJOYNjB6RdjfGit+ /xUF8Q2zvTd4QcKdnSrfOhL1JGWnYnrqMRHvegcmSNRfjpRRrrYf4f9FO9k+ oj6Vfjuwa3kRXHPhfDhRvyft31LUbxH5L5Zuq3lGxCddxHPMmYSfcRka1SHq 32Ss4brqdcJftuKij8R6sXFc51O8TPhj3jnu9JjoP87WnvtOkfCUi8a87MR6 6w21jC07QcJfSTV1dhDrUy3fAj+tTvBDsmzEPQqa+3uew+Uw4T+zGbX+NgUZ 7D53YEOWhEdvWuvQcaOgTDVDwzBpwn8359xcYv1bP9CLLhAk9NWkVcGRqNdE nfITu0m4vIB5iN11CtpdrdXftp0Y/7bEhocNBbVwgPQiO8Ft7x6ZWVIQFnG4 9OgcK54w0l/MaUSs/yJ5esMkK67LPVzso0/UX4csk+VvVjwk4seZbqLf5e2R 1vWjs+KX1j1un9Ik+l2qQFd1LSsukuzMyaFAQfe/8q+d/8yK//HMES8j+mnH 2C6R358IXvugeG4f0c/kttlvymfFsV3W11VFiH5IIS/pv2XF6cbZgi1cFGRO ZRHoi2TFGW7nyEXsFFSytgGuYaz46NwuOR8WCnLRWHkS8ZgV977uY1W5WIJ6 6qf5Om+y4ibm88wL/SVIZWriqL0jK661xTTnH7UEveIZu7Jsw4r3/+xuGG0r QWdMfr3fY86KCwzr37KvI/a3nk5lKy3C3k3ej2w5JWg3U7vFrDor/krZzFz8 fQm6Lfbjgb8qKx6deuuxaEIJOnC94WuKHCt+oMHQ53N4CYpl4KZju1mJ/bFq Oci9BHmxZnq4TbHgIrbNC2vyJcjljSWb1SgLvlRQdS9LmtjPDu6I1P/FgnPt UqQfFylBehbeBdLdLDgTT/UlMg8xfqHBVG81C94in8EmOlGMiq7OXz0dy4LL H/IrMo0rRulL72dVXrPguts4Jza9LEZvQy/5SUWw4G1xO87GBBUj/7KaOOYg FlzLQf29iXsxMtoe3UVxZ8H9Hn75KK1TjKY/HzOQOP0/exSjXaNFaNB0lr5N mxi/cv3Zc1oRap9KddrAWHBs7PNYb1MRKufnCaYqseB5iVNMPMVF6Nmtgaow MRY87LW1WNyDIiQtGqj6b5kZj+az3a+4pQgJUNTqxv8w46M2OyVl1wsRj/7M ha4ZZpxDp6lndboQLXia3S4cZsalM5rs+FsKUXWLTK5DKzMub8xdfiasEFn7 NUt0pDPjW8vrbhlzFKIL3fHqPcnMeIuQglnvQgHSU3A1G3pHyPd57Dw+XIAU h7aGzL1ixlUsqoZufS5AHLrG89wPCfntL7PzPApQDk/7Z52LzHhC0l5hjJaP ku1TaQYmzLh9/6ef7bX5KPrznb/nzxLyDwUiVAvy0UP3XftsTjLjpdeuTjsE 5SOTTtMwv0PMuIjMpmu2Cvlo9R3V8uMmgjmeH/HzzkOMxUxPnMSMLx2szGix yUNDhl4RXzeY8H5jFe7xM3moiUWgtv0vE44dqDe9K5CHkuwuy84NMOF5XvjF zlu5SFeuf1WmjAl3fSDH8a8xG0VWDEfHOhLPqwQfVclkIkvPGF9lW4KnBcLX RjKQ9OGzNj+uEPb4WYRjkjJQWXrpQY7zhH7qqf82+DJQ78tnte7AhG/drsdv uvoe7XU89EdvJ8EVWLhbcipiSIx0D3Mz4S1FLocCz6eij30xyG8TE25Y6pM7 w5aKXmdy7LrxbwP1K/hF4ddTUL9fzgmtHxsowdhSBxNNRm6yK+/mvDaQCOX5 njG3BERKvuYofWsDGW6nH5rkT0BRuxuPWNoR8klFI85+8egTa0LDN0PC3mBa qirvO0SinlxJkCT0Wc0PHpR9i6ICw8+fbV5HmPRu8cWdkaisT5orS2wdMY2S bct6fZH3MebsmN3ryC+Rq8/6uRc6/qZbP5ib4JmjBzWUPBFu/PSF3co/5Mfw rI24ewt9rZnYLvrjH2JaY1dNeqKP2j7k8Ec9JJ6fvHojatETpj0U9/r1ryE/ p0JBM0ok5LVx1bl0rCGmXTmjh8qj4NahYfvLDWsI+1bjl/DlNfwZj8xUKyVY aOE8tL2B1cuLsn9frKGEcF3+N5zvgEOrTNER1lBLy4T+/qvJIL4V0zR5t4oY +T/fVlCyIFR+4L7jy1WUMKHzSN46G5YM/Qv9glYRU/tfhzebc6AhvFoi220V tZyt49a/lgu3d5xiZ9NZRXVWwhkCPPlQu8u4gTKzgqy6uCrW+wvBUdDmwh6N FeTZNf4J6/sIBTJBjoO/ltClqh81n6OqQLjV6uP+7iUU1LIYc6SpCkI8VDnu NC0hlaOD/7WTq8G2ejyV/eMSut2bOP/qTjXsttQfOBC6hEySjl3mMK0Bn/Dt Zh4qS8jbpyJbWfQr6C7FnuR6vojajJjvzjbWQ19NvoiS0gKC4eIdMQdawfvc spbKgQVk9y30O9Jthd0DmIOa2AIK/170r8+mFQzXmvPVuRfQleHDP7fEtQKu MK2pM/IXfdB0F9u25QckxMvYmkX9RXOM95GaEz/g6r3kjPsLf1Dd0TekkNg2 WGebaPSe/IMm5c5fWy1pg5hXCnO+g3/QFmvJkXOtbfAj97Pao6Y/yGr1Hnsl uR1OjPR9f5b2B+md++Rmd6MdJM4JTMde+IP+pb3sD1DugOEDkQqoZB75bKgP dxd0goxv6vToh3n0TlEn9OD3TnBpLs7cnjiPkk0Mj5r86oSlWx1ids/m0TLD qIB9RxdwUvh2bLGaRw4bSXksrl0grxEzb75pHunFVPulC3fDnYjM3ID1OeIc yUOOVuyGsl9lTjnzc2iKZ0Th9KluOBFI+8XcO4de24hTl291w4XvAm3pBXPE uan6uy3eDV7n44sWLOZQxK0HzaOGVMDTcl1FjOZQuI+uUo01FUhL6ICe9hx6 ePLKYQs3KoTG9KfEyc+hGK+29PwIKiT0iUZqkeeQx++itaVmKgzLKxi5rMwi RwWHgIheKsj4a26JnplFPCK/dAcmqVAoce3xRPcs+v7yZUAsBw1qHVLuROTM IlvTooPex2iw+VPRofLkWTS5OLCQr0sDQ66aqeHoWaQUtCH/xoQG3TnDtqqP ZpGmarrOfScaCDEtiF7znEWvjJzOut+lwVUjtt6QG7Po5lSciMBDGkzOS13o N51Fn/ziIrwiaSB/Unk7p/4sYjOtcT8UT4M7UTpNhzVnkViJSHxkOg3WVey1 nxyYRSIpmu7Xy2iwzTdDSY55FrG0rJOlqTQILJGu27rIQOZjkRot/TRYmX5/ cX6SgbolvGQO/qbB4JU079IuBjoWHSy3dZ4GF6Ilud82MVDlY7+h8CUa1Lek xPtUM5BQ93Wfb/9oUKCR/EUzj4FGHuSmXWSng9R9MRPJNAbaOSQxlL+ZDjEF icPssQzU9qjMEvHQgXtCxGM8nIGGUurmHu6gg794AkfjEwZx71z3Xd5FhwUL 4ZhcHwaydLYZkvyPDo6v3u2PcGegMzaWbOyCdOhtEKy47cBAuh+z62OF6WBM jjMwvcJAtSLu/L9F6VB7XKBf9Tzhj518z7A4HdTuvr0lcJqBfFnqWd5I0iEn 5z/WDYyQfxh0j2kvHcR+v3k1oMRAds38hwWk6RAlzC9VfYCBVs5GiE8SzGkW TUkTY6Cszhsarvvo4BvGdyp4NwPNeoQ9Tid4vi6K6sTNQMaSOhOvCL7OvMvZ gMRAvEd0XY8QXOIus2r9ZwYNFBTufErYezckLbS3fwZJhO6gRRDjB57fqzH5 fQa5x1vUnZWig0utpE0+ZQaFPx77hUvQ4YKyxJO7yTPopXmA8ogYHdTTxTKP vphBmdilZiRCh738oo1MXjNo+9dNZfpCdNj6VJhRYzeDpqWec4TtocPSiuCO Z8YzyMBMvylwNx36nQSUDNVnkN3GLlEFXjrU0f+7yCszg6QV9vBHbKNDnj6/ N5V3Bhnumm5J20KH6Eq++HjmGSRk9tjWdRMd7BN2Du/rnkY5a0UpYkx0MNy2 g2Omeho1Wm+N3LxKAxX/bfuL8qbRJbaCqYy/NNhkw31LPWgaKQyJ+LCP02Cu jesV6+1plIE7c339RQPqyc2UuivTqKZ5oehYDw0y93L8M1aeRtzxEgKnm2kQ Ec0mslt8Gml7Z58c+kqD+5vIJ3q4p5HNGRVLRZwGehPMwddHppDAlb96K7k0 mMhZ3ekdOYWOJXTzSoTQoE14RVnj4RSSpV7J9PKnQXnYkjnbjSmkdNpdK8ST BiFufxPCtKaQ7dUXFd3XaHBAaeZA6vwk4ikMS5NTpoGd3IMHH3sm0X+vrL9d kKFBvBTPj8avk4j6GeXLCdJgO99Bj4W3k8hOPyR3hpkGi4sun3W0JtHTZumV qq9UkGes77gkN4mGnedaPEqp4Dgaaue6exL5aVY69KVTgd6Vs/nN5ARaqVbl aQiiwpeP0+fHX02gA4Mp0zInqbCW75u+7juBpF78FxxymApHMrlXtztMIL6R iz5polRIj5FLOHp8ArF7Lo2S/3XDcy+X8ZDhcZT2eeNuQF43mB2f9j2oNI5K dM+v7djcDRFHfFtPiIyjWO0dTKf+dsF3WW4JM85x5DvydYtGXxeoC8l98+sd Qwma/gd8CrpAfOPGjh+BY0juMzeH2oUumMan3t/uHEXtlu/fu7zshEdaUy0f PX+jnZupnMrj7fBFd/Ks4rXfKI7pV2V9Uzsw6U805ej/RrVYXfHRwnbwPj/W kCz2G1l+CfUu9WqHu3bDdc8bRpBAQ2KvwuZ2sA/qwa1FRtDAt/GVdok2ONPQ mLepbgjt1Xmku0f3B/Ca5IRd5BtE13I6JLdONUCB1LOyk6yDiMcj7va1ogYw XL4+dGhmAD0QoZz66tUAT9+JqnB+HUBVh6rEqzkbYH30VV/Z3QH0c/LzjQ/7 vsOIj5ecQEc/Op758wjD6Ru4nA2PrtjXh/LvHG4aZK+F9D96k5HMfeiqTM6F vh81MPiGhLl096JtYnpnyO9q4MKQx2+h4F7EsWeVu0WxBuCepZLfaA+6/yXj pptNNWxN3t+m+Z6OFq/F9d5s+AIFCzU8dRJU1J7kGi8ciCA0M+mL+nI3+jbx gqdeBIGT5YM7xY3dqOK1wYV/nypBolaFlnS3Gx3ZZuDL8qcCoiI/pPnUdSFm ln8tSY7lcF8x/Phh506kyhRnu8n9I1wYvcHIwDpRzuedbgW7PsLhWL1kEd5O dHVtf+pcWSlMspI2cVd2oPiMHb5HyaVg+fNu2yhPBzpRtM7LmlgCmm6XnN4V tqFPFIru+t9CEJJSFeINakMvBZfznJILYbWbt/XZpTbEfU/uyX2jQijSaFa6 R25DyVOZr3xzC0BqmyaLielPVKFzX0LOPR848/a+2bTaiqLCYi+JHs6BVNrw 87GAJnTK8XYFU30qUL13xccdbkJ2LW/55i6kAreQTp7RYCOxHvb1bx1OgbtW 6T8+QiPSG7LZ00VKAe1hR76nK9/RRs3G0SjjJBidnkmQcf2GPo22DogavAOB MJGCXqFvSPE3z6aV53FgeMioKqKxDl1TWKk60hILpe4FwysydQi0TwZ1W7yF 4KXbMt+Ha9H7kuP+9BfRIMOyUuhkUY0MnJ6X7nJ6CZbJMjXCnNVI0rlAzLA1 AiK0LDp+llah053lI7OqEbASWL50dFcV4mvW0r25PRy+b35wnKv1M3JT+riR hT8HpuxcA/zBZ8SS0leYWxgCigb9V27LEc2DTar98YdnEBum4U9/hiP/1oM3 sjOCoUuGI/Ti80p0j+1PKKPvMWA3HPI+j1egEGPPa5HLAZCeW/9jn24FUqS2 2PPsDoB7is/5VljKUYBKfPaja/7wn/r2xBjPj+hsXI7eoL0v+Pu5V7F0lKKn n/sVn4x5w8SXtmHHw6XI4qllQpe7F5TrvJY5Ol2CWn4d//gw1RMuGwkU0a4V oUC7XutZb3fi/PFX9U51IaJYaPONGbqBd1Qz4pYsRGseX/jl5G5BLM3/u8ZI PjqrIFKJbXKBA76XjGja+cjwbnDE21Un+CSi1Hn7fR4ymj0YH87kCEXff9Sc bc1BObz/Os5q2kHb1sBW/4hslO8HR3Y/sIH586o9xeeykNhXZwXvpqug0B// Z09HBtq8Up0ip3cFjCTPMZ19nY5KAtf2xpldAldHNi5/s/dod5mQ7YmQi5D7 x1l8lJqCbpZevqJ8zQSaVEUO7olNRjIxm9QfsxnDtO9PNYPLSSjh2hfFXe/O wpbqQO2HQoloVxDHevi902C2/XaKPYpHeNzxMZ94HXgdS/3UpBGHQjpMSFQe LeiQ0vipWB2D9spfME+rx2Bn/vvxGO1odKU07ndN/FE4d5SbhflbJBr465oj DEoQUXOb//rpl6jcMGe7ufshaDlLk29sDENkF1WlcU8ZECp6FGaXEIJqrQqi BxTF4W2dIVJIfYLeRd9MVTzyH+zuEZxez/BHUfChWdpkK+z/1a4addkLxUi2 XIfnzCDF5fpa7votdEdIKb7eZlLdr026bU/VZfTRoouj5Eu1+gGeHkeyrBZ4 5Krt/7bzpXrHrH/81iV7aBhxGHNQ7VFnnN07d9PtLozunf/s/G5R3euldr2T oh+QHPj+ab3jgHXfe2/jDz4GzeLMJwc4ecHPMcv5p8xT0JeNTrnEJQKsF/qO s0u9gGKH35Y2FVJQJRL8JG5rBJjf2eMiGy0HAVFirsqhr+CS7aVhi6bDoM1V bta6+TV8IZUXPRxWAXb/8xpOwW9g5f1OwaBwdahbnN5HZo8FM0pssLKDJjy9 EbQ9PuAdvED/ae1pOwlps2E+Ag8T4KrhCcWbwafg+nUZu5L1JLDpM8ALxwxB V8zD/NHxFPCIXqaTFc+BdE+VgaF3Klww+2/2RfJ5GDe+rDy+/B6C0z9Wn54z h/otmfspKhkwKUC54tN6GT7ULQgHeGRCtjNmMu9oBc7qYRxCf7PA4J/i+MH3 10B/mb42TvSxSc/KMmVrW5Ar2jdLccuFG6GfhGmy12Hp1cCk9FIeyFt7nPqz 7ggfOb3av9wphP2vy28q4bcgQZb3Z65YESSqupyQYnaHQMPcltjmIvCV5Yzi 0L8NJlG/vt/dVwJeWu0HUsgewBA980WmpxSSxc4/Uljxhk6tEcT39CN8W2ir yY/whcrrfhUk5TLQ21JK2rbHD55lF5X2hn2CG0Wn1MebHoKUqmBuhFYl6NzV 5T3m+Ri4LlGyHsxWgjrfHrOjroEw72uU6fwOgXi4YVH+jSdgNfjFWNwbB87P fFUs94JBTnpR/1/7Z3BhGX8t1/ocvhVe0coProZ9cxFqeVUv4VjNgaq9/dVA r7P1PO/0CvI6ljXeKdWAzXnOY4W8kRC1/BKe/aqBpWm+/a/dosAG6tRsj38F n4XtxYtn3sBGvfwh/tlvxDnX/17to3hwo//LfaFTD+PrPndt9ifAyFS9HNu7 evB7vS9HPSoBGrbaHpjX+w6Yo/ns2s1EiLnwZm9jSgNc5rwsEH04GY4MMgs9 NGuGw2bvvZZX0kCuzHRWPqMZTGIeDl269R6kIrKr+5ebIXCQ+vj36HvYnJh1 JEG/Ba5wrre50tJhzdCMvjHdAr/NTLJ0mjKhJy93Hzr0A76v/S18O54D8a6W 1ccpbVAYY3x1aK0QYi9tyonsa4O579uKSXpFEK1b9HqKvR04pV4X57wugjAR Tqc4s3ZwkI6cjVMsBr+W4m3/ltuB7TCrGP12CVjLb7lSfqwTWFSv77Tl/gji jE/Lal+Ie7HV5De/xErwbjwR8GeqG8QW9+9+w4agI/M7dw4/FdgjpAqOOiN4 aksTF71FBa7cgNrnAjgwqCv67CI0kGx8E/FyEofKGtWknz50yC+Kwwujv4D5 W4qes2of7HP+fCRJoBZOJXc3GpgNAnfT5VM/UxqB8TjHrubGIOzmSCzLGGiE aPtHG0cfDYK8W77jc6EmGJWVPbQvZxCoptHdHtFNEFTq94qV9AuWvc4kU0Ka oa5xr0Vp7i9QLUrZM1rWAjpLd0ZF2YeBzPz4TmbCD5im6j2MFhgGcwXOmrzK HxBVIfwfj8IwKKlfqU6n/4AR/2+n1y4Ng8VPwTnH3T8hcItgbkfBMPAn8lSK v/gJtWLVd55ZjgDLnHDEF882OKm/nfVv8W9wST7R6aHcAaHWm2aXv/2Gdnmh u56GHdB1h6lvvec3KPFn0k0dOsDx3XQZB9soCPbQn+XFEPIz9W4CF0ZhtTL0 dOkqIR/+aPDEwihscWLmeVPSCaJp91t0Ocegg0eHfLyxExzLblXqC42BNGvC jpJfnbA2eCXGVHsMDsvhApJbu0BU8ZixU9QYWKFc/xG7LnDs+PM5QmkcclQq Be8S5+/C8Ync13rjICX010hKuBvW1gfjYi3H4W/cjSdJCt0Qurf1XlrgOFzv dG1ZMyPkPbMPlXWMQ67y/FaZZEI+JEUYjY+D6SZ13/3F3aCd+HZL9fo4fJLl QX9qu6HrW/BYo9QE3Jp58Ik+Rsj/Z5c4cHcC/JsLJv4coMLJg5dfjDydgCjJ YJW9x6kQesLEZ+LdBJzhqvAW1KeCqLPmxb+1EyD49vJuE2cqaFcIbdvENwmd xDbT854KL650+slTJoHjkACFaQcNAiePwUjDJDj+1S3XIurO917Sv7eDk/DA oM1eTZYGLi9v3GfnnoItvK0MFW3iPiXyU6VCfApyPyrNYMY0sMxWWXRTnYKM tDnq0mUaGHxlvd1rMwUWb9p67t6mgbaJg8Kr+1NAOvZE9tgDGqgPNDFOhU2B OFBoucE0kFt9c6P40xSseV3+lRBHA+6D8tdDtk/Dl7fOcgmfacBWHimpKT0N dyrlp5q+0WBdd/XX4vFp+DG5+U5GKw2mr9ZaXXOYhqxErNGqnwYjM/uF+R9M w24DfM/x3zTo9Q7vaXo1DZhV1sHqKRo0RV0yV8On4Z9FfE3rMg1qxb/sZrRP gxJVq9d0gwaVeXs7UyemIeDQ27EnJOL+f/x5pAXzDEjfLC6zJu7POfVz57bx zcCzB1/3DhP36zRTs+1fD8yAPPs+zu3b//d+oKLFW3MGrjKZqY8S9/OoW+Iv FMxm4LrgavJ1fjqErgfpj96YgZrpX4JhAnQIfDa9+d0jQr5xa4S1MB18d5vU n3szA5pBOWM0UTrcTf0YtCl3BoLb+bdtiNPBRUFYB1XPwI/A/sV6STrYoQDy HeoMmPt9CYO9dLA8M14lw5iBw+4FrZek6fBhcq8Gg4UBIuYdhWL76LC30Fzk +xYGqHx8cjic4OR7zzdSdzNAPuGc4f/ehwhjeK+fOAM0b65w2RP8lm2+wkKO Ab8sb95sIezxNUrGKakygFTf6TdAjPfypZn3Ni0GGB99qv9Wig485s8sJg0Y cPH4luF/EnR4JlKp9vUiA3KmeM03Ef6z/2bwJ9kwwO1c4JcKETo8yhZf9r7J AIN7Tsp7hOiw4X6hy/Q+Yf/0apvoHjp4qQVTFB4zQFk5oqyVjw6LTOVRW8IY cCQyj3P/Tjq4f52+MxrDgMjmxXHZrXSYeS56viqVAXXn9gZQN9Ph939Pdtz7 xICljcqXh1jocG3g49y5WgZUnBJ0oq/RoO/9ZKtcKxGvg27FoUUadCoahw2N MKD+xNNi+jgNzq0G3ESzDHD9j9GmMESD5s8Ug5g1BtwNoFgr9tDgq4HgFsPt s2DY0tmh1kSDnXIDu9wEZqF3zK+qvpYGVltSRV5JzYKcguDCNkSDle8HFLvU ZiFdhl3haw4NDpw6ZmF1bRYuXT8R3/aUBp7STLb+N2bh3748bamHNKhhr3ZJ 8ZgFk1KNO4c8iPVWe9p/9NksRMqS8+5cpUHYCYsM16JZMPe4QUZHaEAXEy6M qJyFIfsJbGQfDfax/CovqpsFPare12+CNPiCO7Ys0WdBJH5S7SuJBn+P31/0 I8+B88l9zWnNVDBXeXMy/MIcaAoOj164SIU0vstnC63mwNfp48Hbp6gwvyBy sd1xDrZ+LU00UaVCSHG6M/+DOXBPvbVgtZsKSKH0ZeL7OTj+eUyt+Gc3SMh2 DuQvzcG3cRNZBN0wJcrr+yNmHmI67yXJzHaCilfirc8p89CBvGwlaZ3g3yZr m5czD8/mJKIXqjth1xPtM6Ff5iFD0CRMKLoT1Cc9/tMbnwfmJzsrXhH77osS asln1T8g3sAaEuPbAYdOJ8zkdf2BAvuBu3wTbXDn9n7rF7sW4MDxswl5j1uh k77V2K5uCS65NClaSFaD3jPbrts/lmAyvusN12wVlKuWWT6iL0HY82uyQ+VV kBB1zSmBsQR0lJvAfr4K7A1LAqi7l4Fp4FDw/idfYKXKgmLgsAwpX0PVYR4H gQ9pAsqcKxA2tecrvfsThF5cTTq5cwX619NiFbw/AROH4T4ToRWwvx9pMyb0 CYZslo/cUlgBw9xTTl62ZZAtdObsB/MVSOgIXDm6WArqEbMPhT+sQDq7wvg9 2RKwunfsN/uZVbCaejSWNJIHMjZ17dMXVoGjlsuaHpoH8wYm1e3Wq9CixmsR ppwHgRLOickeqyC/qUS5ZWcuZDW/tYDkVWCqusGZ55QFy5KrzXdXVsH1hXq8 m857iPjxsXQ4fQ2YkmuPfnV6C5cqTr5vKFwDzHxgT9ypGJBMb40srFwDv9s1 7Yb73kCpz5jbw7Y1sNrgmtSfjoJeaX5ZQaZ/0H/aLPFhaATIPPBMNDH9B5id REuifgBU7Vd+WkVeBybhi9pOuneQ5UGT5FkegrGQrr05nmhJ4Va58H/r4Jc+ 92xhizc6oPZh2ktuHTB1rc6Zyw/RK13hc4qm64AP6R8vH32C7GzZBVLTCfns v5l71SIQk4PEkZ8F6yCypKUSsBaBYpw1DJgr1qE/yDjdq+IlanL38rvcSnB3 LofG0Uik7D8zxLtCjF99lvWsVDTiiO/MDjy9ASKHNmprPsWhpKQ/tUXnNwBj /PfI3/4dOpa2rX/wygbgvw5undsRj1yzT2+H2xvAuNFB9zicgLo/obuLsRvQ kibAX+ebiDK73oP99AYwhSocu7KYjKQ2lY+m6DJhfld4jVrupKO5r3KOSfpM WMJb6+SnlHRUGZg4EW/MhPW/bHtUvpSOLpCeTMdcIp5z7mwNvpeBHm8Y/Qlz ZcLCFiY/9d7OREN/f294RxPPKXNt24h7d16R+cP7cUyYofCFyZiQLOTt3sji mcSEYZt/LKTVZKGdswVk9yxCvmI4X08pG52Y9NnsgDNheGalZtu2HJQ0uIPv /CghPzzj+LQgF7kkBkYbTzFh8t3oe+RQLlKzWuY3nCPkNa1f8G3OQz96egVO rzFhXQdJkuzH8hBzd4aYxlZmDLu1N1f3bR6yagY5WRVmjCPNdOXd2XwkWO50 khzEjIm07uTuDC9AO/lXVlyeM2NMGvlnJ1MLENfdoLyuCGZMl2F0v/5jAVo7 mLonK44Z64os5/nVX4Coyb2zxoXMmN/jppoXBwpR1DOjdwm9zFjLi0IlmbJC FDrad45ziBlLsOArWKkvRI9Pumy6PcaMMZZPL7yhFaLbG09v6/wh7D3fqqG9 VoiM3av1pjexYEvZQXFXjhYhbgvlxaNHWLC6fBJ1IK8IsZXWZKWqsWAtvn3/ 1VUWoX87Ta7yYCyY/a7Xof4NRWiyybVxUI8Fs2pcNrvzuwjVa2YmB1uxYPLH be0t9hSjJzKChp3PWLAhvxL7m17FyPfJB7JGOKH/jPq2MrAY3R1S/ZQZxYK5 tlsujIQXI7t3F6R8E1mw6qF2g+r3xUhre9iaBIUFW5vMyP/YWoyYVlgy3AZZ sIatO6aahEqQ1a/u+Qe/WbB+n29CantLEN6Qp/58kgVzTrO69uRgCfKLt2x7 v8CCMQRCWL9BCdrQKtugc7Jifphm0rRlCbKUC9cb52HF6Mz5N13tSlAln33k 4k5WjBRvTuq4UYJ8x3n3bxdmxfLe+5jqe5eg9Re3LugcZsX++Glbzb0m9O/p JpqosGKXXnNIRr8j9K8KT1ofZ8XKp0SNxFMJ/SOND711WDGRoccZ4/kl6B9V OjvfghWr3iPfqllfgtYk+1kFAgh/mEh5JxZK0CUeisG+YFZMQh1bvbBagsqX nr9RCmXFJuMyC42ZKMj7+9GDRtGsGB6pJE7ipKBV19fmgVmsmHebw8w5AQoy N3dJfZnPigl8sYjOFaGgshMnGQklrNjOOHfevxIUdH/X/ONPOOGf/zE1dVkK WvlkkM9oI/zh7hloPEbop0qu/etmxUoDYge8MUI/dE17cx8rFhJawMmnRUH3 rDPpkmOEf/2mvltOU9ASGxuHxT9WTPrq76vsZhRkxqAb27OQsCGhOKmdFhRU 2l0Yd4edhJlll5lusaQgzyzrw2HbSFgY/8n4mmsUtGhUYVkjScJcpVaZjF0o yL87t0d9PwnTbTGSXXH93/eUSZdK5UlYUalHfYg7BUm5PjH/cJSEaSkX7HTz pKCCxXvdEhokrE4gV7jmPgUdf+Bs9k6bhHFRz5iy+lCQSajRhXAjEvZnIpSk +ZCC+nm12jlNSVgek1u75iMKcopTMgm4RMLO2N0OPvi/77ey9hh7XCdhng8q 9BuDiPEVuVsZziTMey69xPcpBb35xGTo6EbCVA6sFwqEUFBe/bD+ZR8SxgjP 5hd+QUHHjLsaOvxJWNC0aNejMAr62l1/2jCIiM/+SGd7OAUZW1fUf3tOxJMg q8H7koJ6R3NPnXhJwlr0mDHNVxTk6JpUVx5NwhJSzf5diqSgv4uvdJTekTCJ v8+TbKMoiIv9/sl9GUR+XTx1NaIpKDrUuToph4TZeFjF7HxDQeK7rpwQKCLs iTy/20FwTpzRl8iPhD/t3aQnMRSkJqmlwYNIWHVbh7PUWwqqzVLCg6pJmHTG t/Yigo0V9wFLPeFvfLadQizh36c9lV7NJCzgmKJ2PMEOJ7iP/20jYekFNTGr BP+pZyp3oZIwQ9OHT//3PaGf8bzaaB+RTz71o48I5qIOf7QeJvIz8fRHDsHR 1l0qtHFi/g1y7/zv+0aJsXqKCYOEYVkfTnUQnOtaodT0l5j/blX3HwSrLeUW 66ySsJRHjbsQwbUPkhQ/M5Exv9RXZrEEG7NHFqqxkTGBRY9LjgT3hD5RKNpM xuyt9mjvI9h+1/182W1kbMihV6X7f/7GOcu/30XGTLLppvcJ9pO8kisiQOhr T9dwEbw520guRpSMeWLpqWFEPqIUtbJ37CVj3psu87MRLFaudOD5AUK+R+DE DSKfOSf2fWBTIGMSR0q0aol8q37fI+OnTMbqlEpgG8HVxtwZy8fIGEnE4bwB MV+GVCZpd00yxiiipvm8piC69XzapA4Zq/7QYRJPzO/1sWFJO30ydoB/7EEh Mf++S/XiF83IWCmbdlMhUS+cfhVJPy6TMWl9l0MJERQUyZ4neuYaGQtxcgh/ QNRX1q5IYXAhY2v1E9V8RD3SFK/skQwg9E2szfKDKchu+QjP42AylvCsYBmI +mZUcLEOh5IxPIq28iWQgkg6ZeMpb4h41TeHpBHrQ+4ib5lELhnLIgePjXgT 61lwMjugiIy1tVc+3eNFQZqDXxKHPpIx5y28tifvUZCpk2twSjUZK6KOyt67 Q+TX57uZBJXw98ujwWs3CP81k84E9JGxBk9vkZNOhP9s97ChITIW1MFmI+BA QZkvpKRTZsiYypkrltk2FPQz8eGiOJkNi2YP+mpB9BOpWuUocXk2rJTEsmVD m1h/T7mfPjrChpk9EG0+TfQntbPDPr/U2LAUu/7NYRoUdLYrwjb5JBsWFG56 ZuMo0X/GpxTFLdiwtdUADS95CvrOnfJTLJAN+6M7dWSVj4JcTbduE6OzYXVF ka0pAyXoavrBGMkBNsy7b8BSu7cEnV82EN83woYZnnoeO0gtQWpvnx+RZ7Bh DCdOq81tJYjcx2muTmLH6q4ffCRcW4Ji7MjJ5gfYsdHMR1WXM0pQ9Z0VxZfe 7JiuOL9XsHMJ4n81ZEYS5MD8jsr0cY8WoxyLhPfznpswM0PnY80ZRcj0+APd ugpO7HZYR4v/rUKUb3lDTG1tM2a+1jtoplGAljhPsH48vwVbENktkcuaj4xb jyoJRnNjdZ6JL2I6cxHn0c2fy+O4MUMvvHBvUy76nEI9fSmZG3PW/5lLqc5F 8p73rN/mcGMpjV8V+vNzEbcwJYS/hhuT9ovzOBeSi745K/zinePGvMvuh1Rp 5CKMY18Y9xkeLGtP6NPGnBy0dGvpvxwjHqz0s1dDSWoOyqV9TdU35cFUvI4u JMXmIKFcu08hxImBbq/EEvA0B62dTxnhvEfIezxhcbDLQZRk4ePsaTyYmXxE Y6VQDnLZMvM17QMPNiQZl9LBm4OkPCqNtfN5MN17InazXDnold5l+8flPNjo u5b0g6vZyG025iXrT8Ke6Jpsc2c2krFwFEru4sGkA1jN15uy0UC1aoZmLyFf +slVvjYbGUZ3VT4c48FajPZaxhVlIw6W9FOiMzyYfGCdYteHbIScPNrwPzxY udrCX97kbHS3XfuK1QoP1jCakHghJhv9v/+TYP///yT/B1D2vaY= "]]}, Annotation[#, "Charting`Private`Tag#2"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwtmnk8Vd/3/5HKFBJJKRKRqUipd2VdKSSFQkqGCslUNFCZk0hlCElCiSiZ Z7rrEqHM4z2lDCEkmYfLvb7n8/j9/rn38Xzsfc5Ze63Xeu19Ho+z9eLVU7Yc bGxsd8if//0rw/qR5WUBWsK98t3zfo14dWFb0AJDgGbiG3jrZWAjZuWqbJ+a EaA9VNCe0gppRFW5ExcH/wjQ2KYV4iIjG1F9bcC3uk4B2s47DflH3jYi5dfE l+eZAjT+CPNzPXWNeOpB/fvdVgK0sOWBxXt8TejeGOB8mcpP+3nFyT36XBO2 tfGOlF9YQ7u/z2ly5Zpm3Ey7Kqwuzkfz7GH/EYbNmO9YuVLgBw9Nojf99/k7 LWj9SGWc8OemKa5+beVzqhXnI+4GIXDReOP/s82Xa8Mk/p9iMb2raHJlIiXa m9sxTk/FrTV4Ja2l+G/g4voO9He64LHjGCdNIc0Gj63oxLsr3rm7/eWg2U4K 1C8vdaLLc8tV1kMctKJbTtH32Oh4cee6qBO/OGjbNLn4VnHSUc/cM0eO4KDl TNcMreKl44bck39/VnLQHvKu6JnbQMe8i1MXj8dx0MY2llyKUKPjWPnBk9LH OWj/Sl9/DHCgY9+Zia612hw0rfP9Am3OdGz/m+y4TOGgfQh6cnGrKx3LxASC v+3loA1rLo7nu9MxxLX3U5gUB+2X3/iqzwF0lNsauJ+5wE6rfij83DOejhd8 G6U7UtlppgsFa0Wa6GhKJGj8SGKnnTra/YWrlYxX9ZpZfzw77XOx5peFdjqq 9Qs+moxkp91Q9vVp/U5HLt1TU/x+7DRv24FFm990zBBoL9c5y06LUstpX2DS cTH+m2UxNzvN5XekRb4cgeNz7zxonOw0N+e8U1oKBPYb3o2oXmaj5UReiKpX IrCBQ/xz+wwbbeAdZ2+HKoGv7SyUJnvZaJ+7xl6WHiRQV7lnUb6EjSYU8Huw yoDAqI8DMXEO5PiPtwVxbgRaesR6q9uy0Z4dmQpuuEGg3G4DmxYrNlpKuUgi 4xaBJalFO7lM2GiieXutNe8S+PNpyOfrwEab72OWPLhH4NuTlHT+/9hoxGLC rof3CbzGPROepsZGG9xR4xX4gEAOH0uL7h1stNzxkMtOIQTKOqhM6wmz0YLW 5E/+iSDXJz1IDPCz0V4PD8SXRhJY3B2LvtxstE07z+cERBP47B3XemfmMq57 49POEUtgj2+G1pGWZXRU3XDzQyKBbkqM+Mm7yyh1Tkg8M51AzqRLDnKuyyi2 7H+aP4PA6A31eyztlnFydTuHXSaBpSsS62oNl7G0JfQhK5uc/+0oI1FmGTuc 1QNaCsj5BplVHRuX8Yy7cPlUIZmPqg3hfILLmMhbOstXTOCJrD+yHgwWiite 5pUtJecHhpsYNLLQqllEYJ5Kzl9iSN6vZGFm6SudTiTz52ozWlLMQk8D7pkP NAK7z6vf2/6GhcXPeB01K8j4WxJPnn/OQoOH1WtZJHPq8myMeMLCtvpXw9mf /lePH1lMDxbWRsoOsSr/Vw9tz90uLJw7aT36rIpA/S1ZOlcusXBsoblL9vP/ 6iO2LsGMhbvyRFIzSHblvvez7QQLJ2JzDipWk/f3GU3j0WJh7ODm4ESSo6dN blL2sVCPq/Qubw35PAek3FJioXnNdw5nkku65fjSpVjYZUvjqyLZ8yD7h9gN LNyjM/uUv5bAQ8+JE8H8LPR/IFliQDJrJnvMnZOFnTLvrwWRTDv1MNSOwUSR /2ZSi0j2z7y4y2Scifn8RsY9JB/hO9CsNcjEWwc4bZZJXnVlnZtqFxM/0HRq Rb4QWF31R2hrCxONtune3EZykFRlrkANE5uCZc7KkaznE2fM+sjEZGLKVppk vq4bM6O5TIxvL3kkSnLDvhPR39OYuPrQLSo7yWFRMupfEpjo/0dktI98ntEk s7Moiol5C16rSkkWMujweBvCRPwZyAomue19hli0HxMDIpiV/1tfNNeDkgB3 cjwrSY+P5DO2VubXnZk4HLfTF8n8bKhQX7pwiYlsb/VNr5D8bYvgS8Oz5PpV XnzkJjnu7tAhMGBicXtWyv/yb0mn/VQ6ysRToRs4lEnuDXeV5FVh4pfF9mYF sn6vx46VL2xnov74Gtk4st42x6UuDokzsaz5fBYHyUOcrUlVXEw83hgtmUPq 5d2F90fyWEvIRxUZYpB6cqTeG3g9vYTcL1rf7Cd5zF1N1rdnCY8FNFBjSD1m tfHVuHQsYUWe6VIRqVdXlQF7i7oldPHJ+9dA6nl6JOrdf0VLuNlKvuh7GYEF Oi7Hd2QsoeW2484tpP493miPir5Zwrzjp2OoJQQuWswpzYQuYeXtTgH3IgLL Shobft1fwkfXJA9qkf3kLZp6teXuEi5I/nnJSfYbR7NZdublJdyRZ1Jul0sg 15ESNQdYwp7cc+UpHwj8khjRbrZnCR+alLVuJPv7EdPhlo7CEoo3pD6/945A gcJNRdKi5P1vV7FU3xK4Xt7rQPfYIpatSbq0mvQHeqBJV33/IuZVCOlKxBP4 /JeSV9m3RRxNmzqvEEeg+Muf1OefF1G04kiHRAyB2wQph43jFzHKy/4/j1AC n+zqvePwdBEj1v9RYz0icN7QP9c3aBGTu+7m3HxIYF14pfQHt0X0Vhjo20f6 3411x1av0llEqzcz9WvukP24ewTEDy6ioCV39GZ30o+NQzxUVRbRa/rF/i2k 326Oqh+23LSIzeHFOOFM4Of1p+oK/zHwdWGAb7c1gbvUpzgb+hnYECv547oF gbFnIg/1EwwMqfnpMn+WwKsxHRmClQzcemZXd/MpUn8bzcOvxDBQQeVx7ict Ah0225hu0mSgq+XKs+FSpJ4PrQxV2cvA+94xNyS2EKhhmVKto8DAhfStfnFi BK5LGNp3Q4SBGjF2Wy4JkvWTdN5UP7yAXy816kiS+xO/9K0e74gFNGqxiDlG 7nceR0TFoh4s4EDQUtnHenK/tSkyeu+5gDYHTZMkauhYmMyo6LRbwIqXvs7p ZXS0lvVJ3nVgAQWdXLiH3tAxRz7Ioe/XPLI1hDjRyf1Yotm6WIGYx6T7U6oU Rzo+ct/PdbNhHnmL4UKUDR1tK0eSVxfP4/WOyNLVZ8jzgOWJXsUn8+hfMP2d 5wAdvcKFzNz3zeOPbvv1PsudOKL+J4WmNI+KDvZzBXOdaPrz0wz3tnmcagq9 +v1fJ+5SuPk0bs08tsnVzA93d2JfZWdDed8ctt2OOyKOnag7H3eU7/EcKm36 T7v+difmx9+MNPGfQ5pq92DttU6UOnryV7z7HKnrsw9zLnfiYviyr8rFObwZ fo2qY9KJGQoXy0zV59D2UL6i385OFLaS3f2qdxZlZJgFCj0d2F2VLbl37yxm 0x2mTqh2oOfphSP7FGdRxetmVIhsB27opVz5T2oWL0XaJBeKd6DhUmO2Bv8s atWlbf6+qoOMY+ywzuAMDvq4DRl8a8fEBHlbs+gZPB8+VDTj1Y4Xbyel3Zmd xnXWZRoORW04oBiligVTpM+FXO5aakF57+SxofdTeGNEhqN6tAVdGvPfCb2a QtpMr8qrrhacd+2QsguZQgm+yQ7pshbkKRRdt8Z6Cht1nrCcyPPhLs3YqXPc UxgkEBItOd2Md00S8mbNJ3FyLf2w4o8mXOudtleZfQLlBfMuDUvUo+Lef4rJ U6N4O+lm8RX9SrRT9vEp/jGKV8W+Ku2QrcSE7QIt9dWjqLszyZXBXolCojvd Z1+MYmXuy81thZ9wbs6lXOfIKEKgxber0p+wonjMZCTyDw5XEPuS2SvQ7NCY 9869I5h0jzfI/yVixB7vZi3JEdw199aT/SziVyV+aTOeEVTPr7tbJoyosUW5 1vfnMPJF9O8cfkTFbcvO61oCh7G/9u3Gnb4fcYz29+2NziGcPLiYMOVWiveO /G0q9viNbpMhVTKPC7FCd9RA7dJvZBiPbTA9VYhsJ/40ZJz4jQntkheaRAvR 02S4LknqN16yi4E3SQV4y26g5nHdIFL1ehpaqPloH/SDdkFyEHNXftcJX5GH +nX1Wdw1/bhF2VftbE0WPmyq2xmQ049vr12IPv0sC2vavmaw4voxYdvehwl2 WXj0R236lGs/KmxcjlZclYUaY1WpPzb1o+TX0/UHIjJwlyA1MfvqLxxJYyui l71HEeOMsLOifZgb35ec8jgFc7aHlBxd0YcWAQW2JkdT0HDhcr/Kv148P0o5 EcFMxofxW/fxVPei3+HPg/lXk5E1FNldcqsXVfTl1iSce4ODXneVxTt6kJ76 26BG7zXeMzQz46roQbcd9yopvK9Rctse/+kPPSjyc2OuVt0rPFcz1l53vwcd t09/+W3wChuELnp57elBVeW96xItEtHFIDzm445u9NO708Al8xJTp/VGo9i7 8WPcwMGFgjjse85JcSF+4kTFN/OpY3Fo2u/+e0vwTzx4knGB/foLhNuWe32H fmA0jH93an6OgkkKbYffdqFJtt5sMTUa9XQHZDf5dKFa2IBHl3U0BvyNvztl 2oUK7r1yjBXROK8utO3Nqi7k+rKWf9uJKOytm3ddafcd+5ND9fj/PMWc2SqB GulvKCP43M/COByfvHtdobFA4Lnm7gDJ5TB0tPS5mV9PoPAqDJ59F4bSn/d9 f02eo09KhlDbV4ZhdNT7FC/SF62sRkNdwh7jHbXwQ7udOhFV+zfZLAWh6ZDz eBqlE1Xeugb1uAXh7ji9JEmRTjzyd+9Poz8PcHQFJzc/tQOPnfhuuaovEC1b b7UNCXRgGIdJkPlgAB52O+8Yn9uGJ6/EjzXp+OGW7fu3iAS14VKF9ca1Xb64 SIg0h5xvQx3j/0YF3XwxT7Nx7+2VbXhcX83nnrYPbl97mMP4TCvuo7+9xq/m iRxVW/K/KLTibETc7Wr3u9jtsXhZk60VJ0Jb99VQ72BMT169cloLerUVZQaY 3kaeLNnn3IvNeFmJ13xb+i0cvMSp79vYjMW2heuMuW/hJ9Fe1mxSM7rZuJY9 vXITPX1ibfr1m/HRzQqlbbtv4NjJNbswvgn7T7hPFQ27YvL3gcfDAQ0YPp+Q 01TmiN881ye83N2Av88f2JvR64D8W3SyjPrq8ZrX+Ox6Xge8ZZ3aUgz1KBx6 W/ecoz1qDziIPmR8xTExrS1m1rZ4J/CFnEbaV5yVComGVBvMkK3bP3nmK25e TthxavoSijoonT+X/wUlvhGmNTEXcWjsX6L8tVo8LZ19MGWtNYqHSeb83FKL 6eGR4nJTlmioYvQpor4GD65iGsR8scCi6zkDDPkapOZ9hvZQcwyevyH/deAz PmtpOLPB9QxSnycf8In8jK7rOTP/3THFyf869HdrfcaeKcmhmBATPOelfvVF YhXe6Q12WKadRnkORq6jeSX+qdFZvnbbEC2T5KskeCrRjX9P1BkXA4w4Yt7R WvQJHzufXDsycwIZgWXzB9Z/wkRh88lXcsdRWe4v93hlBe7tpl2xbT2GF2s3 b3pzvQKbhbr/+AXr4lden0N8zeVYIMDBzyGqjWwfMk/SfMpRc13vmxVjR1Dt ZI/VDeVyTHHyVYtt1MK4ME3/rhAartj1i7ciWxPp8lxPzj6mYnJQtPUh4gBS nK9klY98xM79B53bZP7D1MwvLTt0P2II0S4XELAPb6s9FmVwlKGOshW+ubUH +26N7b9oXUrqK2KTEbca6hUbnP/ysQT3Pk3b8ThdFTdqCL2K9ShGF1sKKGzb hf6+1z9xdBQh67GEbfgfJfxT0TbgsLsI54VdrYgMBSzTeSZ/YKwA623VBb0f yaL0w3n9pOMF+IzzoLdRsgw+qjt7lTctH1efTrwqQWxDCyPxvO+X8nD58mr5 mCeSODo1s/9mZS4y1jQlCChuQc/oRuSXyUWpwdD+YftNyLc/7Wjq/Rx8/+y2 q37LBoz77v9VczAbZQxNIyrt1qOi93mj79rZyPj1M7RbWhhLJfd23nibhQ/U ubLkeYUw72tLlUFzBko6V1fzRfFhm2Bgs3/EB3xZu2P8oiY3Tpns/5F/Oh3l sgus76muQqEXo0NDwu/x5wa98CDbFajakzC9qSMNBSfZ5x51sqGRzGk2g2ep OE5R4jblZVKvOazi8zd7i6FmZ0wYxDw1LLNYNF8sBQ+uV806IDJDzZx22jb0 7Q0KF56bPlk4QW3YL7lzU1wS/ipOnmq+8Zc65t3630mL12j9u13RS2WIuqYy UNtvyyscAc2D3M9/Uc2EbryxxwScL6p+jNBNfRb3rbRB8yWyfj372XaDTu3Y rtmqVhmLslPK6TIlLVTh7Lcjsdox+CfY+wrPxFfq6QP8HOy1USgxdsL+sUol NaLqhtjl409xxZqNETP8ZdQmg++76uvD0JxnjDERlEPdkncvzC7xEW57sq6j eCiF+qLGEFWTH+B5WRm2NS3PqRt+bB5jpfkj75vErCe2wVSFX+37oy3u4pqc +gdmK25Qt/Nde6Z82RXTjlEf1kUbU33b5No2fbJAYdHjNoVUMaqiwA+HlUpH QMil848bT9Ohjgn/BMF5e4hZeX7DncsaGuMGspNX3W5BUstOPiVRO427T7W/ OKr5gvvS+0bdBF8NlvftFwk770NljVRTSkSEhq9DulOr/ENYf1ig8LzPK40V pt2HVm8PhX7ToCvG9z5ofJIMfvBSMAJer5y8aLi6UCMgWuqa+pNIKI7OXfFu lqahzVdm1sz7DOrd9CTVhqo1VvubaDoGP4cjbgo8hlpNGjVzYztWro6D3RcX 87b5tms8dA4SSgiIB/fil63l5d81UibCvMT9EkEyVP3p+9BejcD0H67D+ArM Nint4aIPaFy+LG9XwHoNlWfmFB5XjWjoSrmfu3foDXTHRNoPqYxryP34dNLQ Mxm2uPl/VLOa0uCOEdTaXJoCVSoDH2+Nz2qMnLJQH1l4Cxt03cNu/2FofFnz TqFwXxr09Iqf5TJd1nhfMysR4P4OHIV2i89t5IBH97SEjQrew5N2P5m7NZzg pBHGtWUmHVK1ottuFqyGEwtdSyO7M4D3MSOn7jcPKOftmCh0ywQt9uM6tlb8 EKRe6lZhlgXZcfYPhQTXwnxk76jcfBa46IfUe6xfB/aTqy+HPsuGlQMF8mZH RIBuoNw7szcHtjvvt9j2QhSKee62V9zMhXezglK6teKQqCTSmimVBy/4Bxvj f0lAoGFmU1xjHpRfLznzMHYrOF8/1hDsmQ+27n98y622gXH0r6+3dhRAwAVB vwuHZeBAsVftpY4CuJd1adJUSxakukSrDe8VgnmSl+OTSztgfKt+hfyPIojc J1d6c6UydB4ZRNGHxXDIvtrY58guoF72/cipXgIHSk7+/vhMBUI+5BX9DCuF rW/XnfW/oQZuTScLvh4qA3r03w/TrD1gNjWUWzRSBo3inVwlceqwff/mzIgj VHD/GBy5XvgA8J0vTPeZoMJC01fx2LGDMOVt9M4pHuEHw/3ssZ8aYN1XcWqb Jw3cu+3z/Xw0oW0qtPl5Cw1OW39Q94o5DDorLQwFd5TDhV2pnxhlWqAsN3eC 2V4OCp7zq+x3aMPr/ZV11xUr4JpEbVm9qw6IHA8/PuJfAduiuzxefdaFJWeF Y507P8GPkxod3tHHoTbX6kh2cCV8ZLe/VT5iCAerFD/J9lTCwIv2cwOfjCCr Y0Ezfm8VpKfNdyi8OQXRC08h5FcVJMkXKEbfMQYbqPnP9lA1ZNu9zlzvbwZ0 w6ji70+r4eYO7er7z87C8YsX950aqYa2f+k6HPnnQPX+0h54VgMSfckJMVwW sPxll4rYRC083qJXUMBzAdy6mJmhOl8gV77u9KHCCzD494vyqvgvsMalyg/s L0KdoK3ilN5X0HlmVTPeeQliTZ/L1r+pA1Wfpm8v/9kBv71ditZiHewTbh15 Vn4Z/G7vlikxqgedozeT/WLswT6uXuotqx5y/W/3WJg4wJ4+9i1+Zo0gcjq0 v47PBZRLzkzsSmuE7Qe1Kn7PusD2iA+VPQuN8J/eVq+cgavA+yp9T+KJJpA0 V+f4NHQNlgzNupbHmkDVj9abN+EG8wdXfD4j2gz39FpXS9+5DtNyGZmZ0Aw3 9zdbiK28AaNsnPeswppB+bnn4w9SN+FHVuYOVGmB2iOB68S93OFb3Ll1ouda IPQsvff8Rg/oCFrJdPFvge2rdfyMSjygwdq8aUtrC9xmS69z4rgDVMHV7t43 WsFfvFCQO88TEq5ZVh4qbIO/WkvGXYZ+EHeeOyOquw0Erz7OdCjwgxjdvGd/ V7eDiH6Cqc9mfwiT5HF8adYO4QKZ57XH/cG3KX8tc6EdLIqsAqNTA0idrbEq O9gJ5c+4V4fbBYGleJGusG0nXOESKPw0EATnuC6pOj3uhNo3jztS7ILhVE/R SvGfnfDnR1RwkPNDOBxmk37Xhw7Gkk+E2MIewbbx0oX/KgiQr9p5fyoyDDzr tQKm/xKwaWZjtepwGHS8+8qfIfYN9h/v5X2gEQ4Pbb9v2+r6DXh+injdGA2H 8W+ME6slv8Ps75VuISZPgVq1/3WrVxekW3Us91lEw4akcsXHaV3gJuepLF4Z DW6+xwq127tgZZios6/CM5A5cLauWPEHqN3Tk25kPoNHWR6zCd9/wL8/z4ff Zj2Hcy8K9Zz2d0PQ7maOE4YvIc8D2mVsu8FiT/WGz7Uvgd+02qo7rBu+fXnw 2PNIPJQLdt44NdQN0jfbHyUfSgBhrbsGccd7QPLOytN+CYlwtyj2tj+jB/Rd xpzO4Gs4lkTUnzTrA+/E28FX776F8fsZdlXOffBh1+/Dx76+hRj7e8sH7vVB lqu8zudNqTCkpKSyI6MPLNdO5L2jpkJQkW/kCs5f0CS8WUSS7x3U1MuaF2X+ gnt/8vJrq9JBZ/7m0NbVAyAaPP1r4Gw2jH3T84sRH4BNa/nWcT3KhuiPEhsF VAfANaey7A41Gwb9a48vnR+A57wFPYbSORC4ZnNmR84AyITrvy6dyoHPUpU3 QywHQaSp66zlqzw4ekJoxUz+b0gw+LibZ28RPLnAPbFQ+xsM7Y50lzsXAf0m Wzfrx29QphtOFiYXgUP8WAnXqiE4vpXOtFhfDE/+fXETNx2CijeV4kGMYqCH 3+vTmh2CL/eVuFc0lIJDx3R5xN4R4BE2OVpM+mKoVafvrsJRKO7hGu8c+ATV JzevMRSaAHt/C1l/83oQVu5d7yY+ASEp28PzvevBek2yZOT2CVjlL36h+1U9 ML4qqtH/mwC1ML5K4aF6UDx20Nz60gT8sjsct3S9AcK0zNOu5U2AdXYIyzW4 Ec7te3403HQS2jKNi/TamiBF1MIg13oSjDXWxMz0N8HUrOTZdodJeNS/ZBw9 0wSP8lOdxHwm4d+1U/VF65sBVYuevno7CUv9EzFeZs0grdTZmz0/CUKcITmD RDP83Sri3RI7BfzfvzsfI/t4391XruVvpuBcTn+zRF8L+Lcp2WZlTMHs+51e Q+MtsP6Btv6Tiik4o3RRy5C/FTRG3TfqjUwBjLZ33NJthdCCbwXl+6ch2NMk mLekFVSOJ/7Lok+DoLWObXl4G3i+UfyV0DcNulm14/nxbfCZWdTxZHQaGnd4 UGLft8G5rOaPTmwzsOP04JRKVRv4i6x4JCc3A2IOT3bHzbVBa7etXKL7DJSe f+dtdLYdbt5QuBC6fhZuPOm1WRLogPU8/8pMt86CaIjoWtqmDihKyNmwRZHk jUoGV2U7YOnL/qZ0zVngqthzNUyjA/y36sIXp1l4wCohuhw74EmDzeaVn2ah 5zE1IK6iA3bZyN2uq5+Fz1RtoQ31HdC88KftKX0WQtZcEvPp7ABhmeuPpMZm wSCr6IXAaAfE3vVbBLE5UHd4XfSfcCekyMUTd67OQahtf36ZdSfoUi/sOXxn DsSSOq9PXOmE4dMy4dz350CIa2J87fVOUPRJ142JnQPxy+eOrr/fCTntJYX5 VXOg4y2uopTaCVT/zqjxTfOQ8M+4/cVIJ3R2CZ6yq5mHQz/kxGqs6aAXYku/ 0TIPBUbO2cKX6VC2v8TyXtc8/DCx7jZ0pkNi9CXHxPF50EwuVYy5TQd7w4KA bxsWQEIx9/elcDowPpkXnryyAHfOaIsvfqSDk1vWIYvrCyCsMLis/YkOPyVX Vjp6LYAR7dyxezV0qPDKaAoKJ8ezCo7Wt9AhRJ19pKJ4AayGj7qmDtJB/H2K uDoPA06a+WoH8RLw5Ozi66PCDFA7OHq0V4AANi7DHcZbGJCqLh6lIExAv83C HldVBizBsFWkOAEftugbvD/HgAnvENMiRQIk6xPbi20YEBs85f9yFwERd2fM a1wY0NY5fOeGGgG36PH2A/4MOJvkyDd/gACNiAk/ifcMGL/88doZPQKyKNpc yvkM6OXek1d3ggCpf7FPDiJ5fZjqYTUjAlbpH3lxtpUBEcLzXt/OENC48lne 00UG/OJaVr9vQ4D17YO/V+svQsDduMELd8l9w6amfcx0EYY5T1w74E3A1Enj yvYLi6ARlCG4yo+AQGmnV0nuixDvuHrYJZCA9MYX5pC0CDVF0prhYWS8JbJ6 2zMWIVjWtHYmggBIzt23pngRsqavCOhHEdBy56vI94ZF+MzokGt4TsCCzGLj LcYiJLIXE/KvCagQfEC1WLkEk9KTzyXeEPBoUejDEcEl0J3gx1UpZL6a5R8K bV+CnHSVkPQ0AkZKCzwWdi2BksAXc8f3BOSmHL7cc2AJuJUc+sU/EKDtee5I htESiKxNuWaWRYDg5UHVqPNLsGyT9LIvmwDCyG2r5+UlSKt1aLfKJcBJ9iHr mNcSNKjXFu4uIOvRUlw0kLoETelcD7RKCTj/8ejbutwlUBmoP2ZfRoBManNU LnUJjI6bl/p+JKDIa9jNr20JJHhFlh4hAf72Ny/Ydy+BpV3tlC+NgOOn2Q0N RpYg29jkj305AT/lxJQ2szHh1dv78iKfCEhdl7yJk5cJzkXGsQTJrqxdPH9E mOCyzfBcRCUB/w2XzTdLMkGnxtkbqgjgbNP9XaTABIfr0Rt7SW6gtrUn7GVC a2zyYffPBDxLs64M1GTCevErPBzVZL0jR3Oc9ZnAt5R4349keR+PV8ZnmNAh u1w9Q/L0Fc6wAxeZYKMuO2BZQ8BH4zBvKWcm6KtkjJeRHAjiztweTJAy3MgS qCXAUD7VfNyfCdtr+yTNSN4ooqbX+ZgJxyKvOkWR/GsZ91FjmJCwR2y6muT0 keOyyUlM2Bgk9/UfybfaO0UeZZDjwR2ca74QQKFd4rxezAQ7Of08CZK53/+b PFvJhJS1r0dlSW6JuttLaWRCmF8PTYbkON/VTbLfmHBLeFlLjGQ7x6dU/gEm nH/eH8RB8i5TiQ8z/5gQPmD3upd8HoPy/kUXgwk5aXpJBSR/UlB/+GklC7J1 tOL9SLbcaZw0IcAC1cYxCR2S51VdyyQ2smDtodQVnCRH7H3SfkKaBbsbfMyK yHwo/vd+7K4yC/SlPZRsSP58qGb1u30s2KQYGL6aZGvNAUn6YRZc4Qx/+prM b6SuxGm1MywY5plOR7I+yvoHnS5eYAHzeVuvJsk1BmfvhzmywPJJxb9Ssp5M 06eFoz4sKNc40PyMrH/MuaymjQ9ZIG/ZVb5A6kPVsn5YN5KMx7+w6jTJdrar xZNTyfiZqZRxUl9sV6T3tOawQPjwhTZVkmOdNE+yf2TB9qPP8pxJPTZcv+tr 0cyCxdLNT+uoBKj7/+sXYbBAgVFotIvUe8t9PpYW5zKEqw237C0h+yN4h6gb /zJUXDYW3FtMQGLYpWMNUsvQvP7Z7JZCArgSOj8EHl8Gq6S3oy9yCHj9evpz nskyuKr//XqF7LeDKWt7+qyWIb3ubOsush+vfTguBDeWoeW9R+g7sl+JUrw1 F7cM/G5iCidTCXhHfwv2Y8tQOjihfCGOgKNdlWbR88tgz6IlVscSMP5vfN9F djYKy7VvlRzpJw+n1pwK42WjBGmy93aQfkNl6ASMSrBRuuK9JcaeELCdu2zo jS4bZVHQUm6NLwGT1coOr0+wUST1NM9IkX5HDXz1J+EUG6Wsy8NR1ZMAU84H Y7Hn2SjSu3VdtDwIuL9sNB12jY2SFLjAIX+N9PeZ38ueMWyUvV2n7ISsyPX2 rRM1GWKjrOdOEo/aT4DLq8CYU3/ZKIaCP103qpP9a70gZjjJRnHWjut/Qfp7 y4+f4seX2Cjpz/m0n+4kgJ1Ik9IUZKfMvCv5ayxD6qcRlJX2sVPenfyrryBI wOYyx6Mrg9gpl/XNgy1+0UFYjMFwecxOOeIBeeo9dOC7FZRFj2CnlHRt8+b/ QYelncmb0l+yU+Z2cwjndNDhW9LPiVO57JTm3et0W2rpEB1iFJ/4k50iHR0d 551JB35z9bkDezgoQoKVGys86MDG4Ehz6+OgPGJjs3vJSYc5o4+WVTKcFJsH afkHN3fCdzWrTTIBKym3NhVI7yDPJ9fOCK6V6lpF8WRuFFLe2g5ikf1mnJu5 KN6vztIcKW2QYZ74dsqDm7IcG2rdZ9YKZw756NZ85KGkbYvbbPC4BbItnaX+ W+KlbFPpdylvboZ5Hq0VxSZrKDcufeV2WNcMp5oP7N0cw0/Rp/23O8y5CXgO 8JaXveSnuOuV2VQ6NEH5m2/HzyfxU4x63zgsXG6CXR63L7zI4KdsVnw/aXux CfglCh+JVfFTvrsGjeqeaYJaJ9VfIpP8FNuyvQZ7NZuAwrUjjF9fgFIseIr3 g0gTzLvOb8wwEqAo7fugvyjUBJnfq5NPnBGgTFaYntMTbIItmXaljy4KUK4H hhIjPE2wZPJmkOe2AMVX7Zr1HrYmKEySOLQ6hbz+79EPPe2N4LLmX3XKewGK tpyTZ3QT+R7sTj2lnS1A2XRx+fuJr40QqWdhf79MgGIgaq1XTmsEt4nYpyta BSj7JrLaS943gry5w5YkugDlYvKAmFdKI/RW7k87/FOAsr7IeYTyqhEMY+hU v2EByjEpR+X66Ebg4kg9tvWfACVj7bfEqPBGQEf3Ntq0AMUsLPSl1aNG0n+1 rawZApSnV7mkFR6QYvt/3+NR/v/3ePB/+Q/wmA== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[CompressedData[" 1:eJw1m3k4Vd/3+A33IokmyTvzlBRJMlXWISFFSBElCpmSqChDkkRJKJLILGSe roR9ypBkLOO91xgyuyhzfM/neX6/v+7zes5aa6+19tpr732ec0Wv3jS2ZWFi YpJiZWL6368c7Brf2ODBW/xLlGPCs9HNZfGg5RUe3MynJ8T+TTbKKzwkNf+X Bz92jUtJNTEbKUjrXx2Z4MEZzMUBA3nZSHlbALWhkwdnkji206AlG2G/Zuvf 5PLg6T1r61E8Ocj4SeOHw1d4cOmW+IrfL3KQR3PAjeuV3LjWPQMN79e5qK1t 8/hn6y14AJ9PzdRSHhLEb+5UFuDCt/Nri54SL0DFTtVknh5O3DVY1ezyuUJk FXKI0e2/CQ+5t8hvm1CEliK8ghBw4PROpTDqt2L0W+DzuLYaB65i4Oae0lSM OtLY9JsUOfCAT6OeTj+LUWFZ+LaefRy4gEAUYtCLkcvg+5iVHRz4kstxzs6Z YvTrUFvWkVF23PAkfykHbwlqajnQ+iGMHV/S17uWdakElZu7HT78jB2/ffnf NKt1CfowRIkse8yO97sa8ZralqCgJU3zb/fZcaZ0tDxzowSdELn4a8SGHV+7 ZREx7luCSm8+/iuqyo5X3+AWX4gvQcncvfzRA2z42ic52eWeEhRhAeyqdDbc 6lTfzciBEuSfnvCnu4MN/6Pm+nT/cAm6qnmteU8DG+73E1hOTpYgsbujAfEl bLhA3OHt+1dKUFLP3EzaMzb89lU0VriTgiJkTHp0Atlww6QHp4f5KMjfo7h+ 1I8NV/TuseLZQ0FXt3mmytxlw3UdVMz0RSlI9OQ/8xwrNtx5TlbfRZaCErLY a4uPsOFFzcoOCloUFLZsX3hBng33PpsQOKxNQX7a9QmLMmy4yE99rrBTFGTV H+KlKsKGm0lRF+sNKEh45/ZDFZxseMOx4u52MwritnYXsiSz4a7DbtUaFhS0 nt22eWODjI+K5VmnXKagXp3XI9hfMh7gb3te/yoFvfMSiK3uI+OTTQmP9jtR UGidT7AtlYzX6T601btBQb68fXfZ2sm44ovnKlduUpBlbqKRbj0ZX3Ke0nd0 pyDBX1LsDUVk/NWY0Q1WLwrikg/645xLxp1TnbY1e1PQmvfYwJZMMo5T93a/ 8KUg+q6s8rPxZLwr6Z894yEFxeodcvsZTMbtd4+/kgmiIInNevUtAWR8a8fl 4UfBFPTh+1WxpgdkXAUps/18SkFlZ179qLtD+HvG5LLxcwrS3JItU+tKxndr 6tn6h1JQfWONf5UTGV97wDXw/gUFdRssKlRaE/HLhbb/CCfyx7P12adLZNzb PleoK4KCRpulf5WaEuMtXPH+8ZKClgzNXxbqk3GONrOdaZFE/re5T+TpknEm 5gzBB1EUxP7j2YmcE2Q8qOB195nXFLTrXMV8uioZ/9Nzn1wbTeRzR8fpNEUy fhvtPHHrDQVJtk0nJx8k/HV43bQ1hoKyXrGvJciQ8dgkm9AUghXPi5i8kyTj 6QF59gfeUlA5r2rWWxEin2oPT6QTfKLDiPRmD6FPySHtjiXii3K8FLWLGO/W YLgXwcamj4pebiPjDbtft/wgmMoXyxXORcR7dneaYBwFWXcV2YSyk3EJO/9F C4JHoxvLn7GQ8aEtXzKeE+x6cWRn8D8SLsH7KrGA4CX+DefAJRKuIvC4qp5g PypfzaN5Et6vPzvfTjDHW3nBh9MkPIyXxNdG8AuLU3d8x0h4Xgdlaw3BuwSu NnoNkfD0pPbqdILf0e9L3usj4WYzf3Y9IFgq7qXPXSoJXzrjNa5DcM7lrHb3 dhJO3xMrxkqwklCN7K0WYjwNs6Q8Ip6K3p7HLt9J+GSfzxlDgrXiF3qcakm4 DVs66yCRn4YrPEoOn0m4n6N6pi3BJiLSoXblhD//3RGjEfml9WMj1ygkfFTh jIEmwVcTL6pbF5Bwk7AXPG+J+Rm3douyzCbhBwI7dIaJ+XMTezZtkU7CL4U9 6hIheHkwWftiMhEve3WSPjHfHDbtC+fekPAs0Yzr94n6CJOYNjB6RdjfGit+ /xUF8Q2zvTd4QcKdnSrfOhL1JGWnYnrqMRHvegcmSNRfjpRRrrYf4f9FO9k+ oj6Vfjuwa3kRXHPhfDhRvyft31LUbxH5L5Zuq3lGxCddxHPMmYSfcRka1SHq 32Ss4brqdcJftuKij8R6sXFc51O8TPhj3jnu9JjoP87WnvtOkfCUi8a87MR6 6w21jC07QcJfSTV1dhDrUy3fAj+tTvBDsmzEPQqa+3uew+Uw4T+zGbX+NgUZ 7D53YEOWhEdvWuvQcaOgTDVDwzBpwn8359xcYv1bP9CLLhAk9NWkVcGRqNdE nfITu0m4vIB5iN11CtpdrdXftp0Y/7bEhocNBbVwgPQiO8Ft7x6ZWVIQFnG4 9OgcK54w0l/MaUSs/yJ5esMkK67LPVzso0/UX4csk+VvVjwk4seZbqLf5e2R 1vWjs+KX1j1un9Ik+l2qQFd1LSsukuzMyaFAQfe/8q+d/8yK//HMES8j+mnH 2C6R358IXvugeG4f0c/kttlvymfFsV3W11VFiH5IIS/pv2XF6cbZgi1cFGRO ZRHoi2TFGW7nyEXsFFSytgGuYaz46NwuOR8WCnLRWHkS8ZgV977uY1W5WIJ6 6qf5Om+y4ibm88wL/SVIZWriqL0jK661xTTnH7UEveIZu7Jsw4r3/+xuGG0r QWdMfr3fY86KCwzr37KvI/a3nk5lKy3C3k3ej2w5JWg3U7vFrDor/krZzFz8 fQm6Lfbjgb8qKx6deuuxaEIJOnC94WuKHCt+oMHQ53N4CYpl4KZju1mJ/bFq Oci9BHmxZnq4TbHgIrbNC2vyJcjljSWb1SgLvlRQdS9LmtjPDu6I1P/FgnPt UqQfFylBehbeBdLdLDgTT/UlMg8xfqHBVG81C94in8EmOlGMiq7OXz0dy4LL H/IrMo0rRulL72dVXrPguts4Jza9LEZvQy/5SUWw4G1xO87GBBUj/7KaOOYg FlzLQf29iXsxMtoe3UVxZ8H9Hn75KK1TjKY/HzOQOP0/exSjXaNFaNB0lr5N mxi/cv3Zc1oRap9KddrAWHBs7PNYb1MRKufnCaYqseB5iVNMPMVF6Nmtgaow MRY87LW1WNyDIiQtGqj6b5kZj+az3a+4pQgJUNTqxv8w46M2OyVl1wsRj/7M ha4ZZpxDp6lndboQLXia3S4cZsalM5rs+FsKUXWLTK5DKzMub8xdfiasEFn7 NUt0pDPjW8vrbhlzFKIL3fHqPcnMeIuQglnvQgHSU3A1G3pHyPd57Dw+XIAU h7aGzL1ixlUsqoZufS5AHLrG89wPCfntL7PzPApQDk/7Z52LzHhC0l5hjJaP ku1TaQYmzLh9/6ef7bX5KPrznb/nzxLyDwUiVAvy0UP3XftsTjLjpdeuTjsE 5SOTTtMwv0PMuIjMpmu2Cvlo9R3V8uMmgjmeH/HzzkOMxUxPnMSMLx2szGix yUNDhl4RXzeY8H5jFe7xM3moiUWgtv0vE44dqDe9K5CHkuwuy84NMOF5XvjF zlu5SFeuf1WmjAl3fSDH8a8xG0VWDEfHOhLPqwQfVclkIkvPGF9lW4KnBcLX RjKQ9OGzNj+uEPb4WYRjkjJQWXrpQY7zhH7qqf82+DJQ78tnte7AhG/drsdv uvoe7XU89EdvJ8EVWLhbcipiSIx0D3Mz4S1FLocCz6eij30xyG8TE25Y6pM7 w5aKXmdy7LrxbwP1K/hF4ddTUL9fzgmtHxsowdhSBxNNRm6yK+/mvDaQCOX5 njG3BERKvuYofWsDGW6nH5rkT0BRuxuPWNoR8klFI85+8egTa0LDN0PC3mBa qirvO0SinlxJkCT0Wc0PHpR9i6ICw8+fbV5HmPRu8cWdkaisT5orS2wdMY2S bct6fZH3MebsmN3ryC+Rq8/6uRc6/qZbP5ib4JmjBzWUPBFu/PSF3co/5Mfw rI24ewt9rZnYLvrjH2JaY1dNeqKP2j7k8Ec9JJ6fvHojatETpj0U9/r1ryE/ p0JBM0ok5LVx1bl0rCGmXTmjh8qj4NahYfvLDWsI+1bjl/DlNfwZj8xUKyVY aOE8tL2B1cuLsn9frKGEcF3+N5zvgEOrTNER1lBLy4T+/qvJIL4V0zR5t4oY +T/fVlCyIFR+4L7jy1WUMKHzSN46G5YM/Qv9glYRU/tfhzebc6AhvFoi220V tZyt49a/lgu3d5xiZ9NZRXVWwhkCPPlQu8u4gTKzgqy6uCrW+wvBUdDmwh6N FeTZNf4J6/sIBTJBjoO/ltClqh81n6OqQLjV6uP+7iUU1LIYc6SpCkI8VDnu NC0hlaOD/7WTq8G2ejyV/eMSut2bOP/qTjXsttQfOBC6hEySjl3mMK0Bn/Dt Zh4qS8jbpyJbWfQr6C7FnuR6vojajJjvzjbWQ19NvoiS0gKC4eIdMQdawfvc spbKgQVk9y30O9Jthd0DmIOa2AIK/170r8+mFQzXmvPVuRfQleHDP7fEtQKu MK2pM/IXfdB0F9u25QckxMvYmkX9RXOM95GaEz/g6r3kjPsLf1Dd0TekkNg2 WGebaPSe/IMm5c5fWy1pg5hXCnO+g3/QFmvJkXOtbfAj97Pao6Y/yGr1Hnsl uR1OjPR9f5b2B+md++Rmd6MdJM4JTMde+IP+pb3sD1DugOEDkQqoZB75bKgP dxd0goxv6vToh3n0TlEn9OD3TnBpLs7cnjiPkk0Mj5r86oSlWx1ids/m0TLD qIB9RxdwUvh2bLGaRw4bSXksrl0grxEzb75pHunFVPulC3fDnYjM3ID1OeIc yUOOVuyGsl9lTjnzc2iKZ0Th9KluOBFI+8XcO4de24hTl291w4XvAm3pBXPE uan6uy3eDV7n44sWLOZQxK0HzaOGVMDTcl1FjOZQuI+uUo01FUhL6ICe9hx6 ePLKYQs3KoTG9KfEyc+hGK+29PwIKiT0iUZqkeeQx++itaVmKgzLKxi5rMwi RwWHgIheKsj4a26JnplFPCK/dAcmqVAoce3xRPcs+v7yZUAsBw1qHVLuROTM IlvTooPex2iw+VPRofLkWTS5OLCQr0sDQ66aqeHoWaQUtCH/xoQG3TnDtqqP ZpGmarrOfScaCDEtiF7znEWvjJzOut+lwVUjtt6QG7Po5lSciMBDGkzOS13o N51Fn/ziIrwiaSB/Unk7p/4sYjOtcT8UT4M7UTpNhzVnkViJSHxkOg3WVey1 nxyYRSIpmu7Xy2iwzTdDSY55FrG0rJOlqTQILJGu27rIQOZjkRot/TRYmX5/ cX6SgbolvGQO/qbB4JU079IuBjoWHSy3dZ4GF6Ilud82MVDlY7+h8CUa1Lek xPtUM5BQ93Wfb/9oUKCR/EUzj4FGHuSmXWSng9R9MRPJNAbaOSQxlL+ZDjEF icPssQzU9qjMEvHQgXtCxGM8nIGGUurmHu6gg794AkfjEwZx71z3Xd5FhwUL 4ZhcHwaydLYZkvyPDo6v3u2PcGegMzaWbOyCdOhtEKy47cBAuh+z62OF6WBM jjMwvcJAtSLu/L9F6VB7XKBf9Tzhj518z7A4HdTuvr0lcJqBfFnqWd5I0iEn 5z/WDYyQfxh0j2kvHcR+v3k1oMRAds38hwWk6RAlzC9VfYCBVs5GiE8SzGkW TUkTY6Cszhsarvvo4BvGdyp4NwPNeoQ9Tid4vi6K6sTNQMaSOhOvCL7OvMvZ gMRAvEd0XY8QXOIus2r9ZwYNFBTufErYezckLbS3fwZJhO6gRRDjB57fqzH5 fQa5x1vUnZWig0utpE0+ZQaFPx77hUvQ4YKyxJO7yTPopXmA8ogYHdTTxTKP vphBmdilZiRCh738oo1MXjNo+9dNZfpCdNj6VJhRYzeDpqWec4TtocPSiuCO Z8YzyMBMvylwNx36nQSUDNVnkN3GLlEFXjrU0f+7yCszg6QV9vBHbKNDnj6/ N5V3Bhnumm5J20KH6Eq++HjmGSRk9tjWdRMd7BN2Du/rnkY5a0UpYkx0MNy2 g2Omeho1Wm+N3LxKAxX/bfuL8qbRJbaCqYy/NNhkw31LPWgaKQyJ+LCP02Cu jesV6+1plIE7c339RQPqyc2UuivTqKZ5oehYDw0y93L8M1aeRtzxEgKnm2kQ Ec0mslt8Gml7Z58c+kqD+5vIJ3q4p5HNGRVLRZwGehPMwddHppDAlb96K7k0 mMhZ3ekdOYWOJXTzSoTQoE14RVnj4RSSpV7J9PKnQXnYkjnbjSmkdNpdK8ST BiFufxPCtKaQ7dUXFd3XaHBAaeZA6vwk4ikMS5NTpoGd3IMHH3sm0X+vrL9d kKFBvBTPj8avk4j6GeXLCdJgO99Bj4W3k8hOPyR3hpkGi4sun3W0JtHTZumV qq9UkGes77gkN4mGnedaPEqp4Dgaaue6exL5aVY69KVTgd6Vs/nN5ARaqVbl aQiiwpeP0+fHX02gA4Mp0zInqbCW75u+7juBpF78FxxymApHMrlXtztMIL6R iz5polRIj5FLOHp8ArF7Lo2S/3XDcy+X8ZDhcZT2eeNuQF43mB2f9j2oNI5K dM+v7djcDRFHfFtPiIyjWO0dTKf+dsF3WW4JM85x5DvydYtGXxeoC8l98+sd Qwma/gd8CrpAfOPGjh+BY0juMzeH2oUumMan3t/uHEXtlu/fu7zshEdaUy0f PX+jnZupnMrj7fBFd/Ks4rXfKI7pV2V9Uzsw6U805ej/RrVYXfHRwnbwPj/W kCz2G1l+CfUu9WqHu3bDdc8bRpBAQ2KvwuZ2sA/qwa1FRtDAt/GVdok2ONPQ mLepbgjt1Xmku0f3B/Ca5IRd5BtE13I6JLdONUCB1LOyk6yDiMcj7va1ogYw XL4+dGhmAD0QoZz66tUAT9+JqnB+HUBVh6rEqzkbYH30VV/Z3QH0c/LzjQ/7 vsOIj5ecQEc/Op758wjD6Ru4nA2PrtjXh/LvHG4aZK+F9D96k5HMfeiqTM6F vh81MPiGhLl096JtYnpnyO9q4MKQx2+h4F7EsWeVu0WxBuCepZLfaA+6/yXj pptNNWxN3t+m+Z6OFq/F9d5s+AIFCzU8dRJU1J7kGi8ciCA0M+mL+nI3+jbx gqdeBIGT5YM7xY3dqOK1wYV/nypBolaFlnS3Gx3ZZuDL8qcCoiI/pPnUdSFm ln8tSY7lcF8x/Phh506kyhRnu8n9I1wYvcHIwDpRzuedbgW7PsLhWL1kEd5O dHVtf+pcWSlMspI2cVd2oPiMHb5HyaVg+fNu2yhPBzpRtM7LmlgCmm6XnN4V tqFPFIru+t9CEJJSFeINakMvBZfznJILYbWbt/XZpTbEfU/uyX2jQijSaFa6 R25DyVOZr3xzC0BqmyaLielPVKFzX0LOPR848/a+2bTaiqLCYi+JHs6BVNrw 87GAJnTK8XYFU30qUL13xccdbkJ2LW/55i6kAreQTp7RYCOxHvb1bx1OgbtW 6T8+QiPSG7LZ00VKAe1hR76nK9/RRs3G0SjjJBidnkmQcf2GPo22DogavAOB MJGCXqFvSPE3z6aV53FgeMioKqKxDl1TWKk60hILpe4FwysydQi0TwZ1W7yF 4KXbMt+Ha9H7kuP+9BfRIMOyUuhkUY0MnJ6X7nJ6CZbJMjXCnNVI0rlAzLA1 AiK0LDp+llah053lI7OqEbASWL50dFcV4mvW0r25PRy+b35wnKv1M3JT+riR hT8HpuxcA/zBZ8SS0leYWxgCigb9V27LEc2DTar98YdnEBum4U9/hiP/1oM3 sjOCoUuGI/Ti80p0j+1PKKPvMWA3HPI+j1egEGPPa5HLAZCeW/9jn24FUqS2 2PPsDoB7is/5VljKUYBKfPaja/7wn/r2xBjPj+hsXI7eoL0v+Pu5V7F0lKKn n/sVn4x5w8SXtmHHw6XI4qllQpe7F5TrvJY5Ol2CWn4d//gw1RMuGwkU0a4V oUC7XutZb3fi/PFX9U51IaJYaPONGbqBd1Qz4pYsRGseX/jl5G5BLM3/u8ZI PjqrIFKJbXKBA76XjGja+cjwbnDE21Un+CSi1Hn7fR4ymj0YH87kCEXff9Sc bc1BObz/Os5q2kHb1sBW/4hslO8HR3Y/sIH586o9xeeykNhXZwXvpqug0B// Z09HBtq8Up0ip3cFjCTPMZ19nY5KAtf2xpldAldHNi5/s/dod5mQ7YmQi5D7 x1l8lJqCbpZevqJ8zQSaVEUO7olNRjIxm9QfsxnDtO9PNYPLSSjh2hfFXe/O wpbqQO2HQoloVxDHevi902C2/XaKPYpHeNzxMZ94HXgdS/3UpBGHQjpMSFQe LeiQ0vipWB2D9spfME+rx2Bn/vvxGO1odKU07ndN/FE4d5SbhflbJBr465oj DEoQUXOb//rpl6jcMGe7ufshaDlLk29sDENkF1WlcU8ZECp6FGaXEIJqrQqi BxTF4W2dIVJIfYLeRd9MVTzyH+zuEZxez/BHUfChWdpkK+z/1a4addkLxUi2 XIfnzCDF5fpa7votdEdIKb7eZlLdr026bU/VZfTRoouj5Eu1+gGeHkeyrBZ4 5Krt/7bzpXrHrH/81iV7aBhxGHNQ7VFnnN07d9PtLozunf/s/G5R3euldr2T oh+QHPj+ab3jgHXfe2/jDz4GzeLMJwc4ecHPMcv5p8xT0JeNTrnEJQKsF/qO s0u9gGKH35Y2FVJQJRL8JG5rBJjf2eMiGy0HAVFirsqhr+CS7aVhi6bDoM1V bta6+TV8IZUXPRxWAXb/8xpOwW9g5f1OwaBwdahbnN5HZo8FM0pssLKDJjy9 EbQ9PuAdvED/ae1pOwlps2E+Ag8T4KrhCcWbwafg+nUZu5L1JLDpM8ALxwxB V8zD/NHxFPCIXqaTFc+BdE+VgaF3Klww+2/2RfJ5GDe+rDy+/B6C0z9Wn54z h/otmfspKhkwKUC54tN6GT7ULQgHeGRCtjNmMu9oBc7qYRxCf7PA4J/i+MH3 10B/mb42TvSxSc/KMmVrW5Ar2jdLccuFG6GfhGmy12Hp1cCk9FIeyFt7nPqz 7ggfOb3av9wphP2vy28q4bcgQZb3Z65YESSqupyQYnaHQMPcltjmIvCV5Yzi 0L8NJlG/vt/dVwJeWu0HUsgewBA980WmpxSSxc4/Uljxhk6tEcT39CN8W2ir yY/whcrrfhUk5TLQ21JK2rbHD55lF5X2hn2CG0Wn1MebHoKUqmBuhFYl6NzV 5T3m+Ri4LlGyHsxWgjrfHrOjroEw72uU6fwOgXi4YVH+jSdgNfjFWNwbB87P fFUs94JBTnpR/1/7Z3BhGX8t1/ocvhVe0coProZ9cxFqeVUv4VjNgaq9/dVA r7P1PO/0CvI6ljXeKdWAzXnOY4W8kRC1/BKe/aqBpWm+/a/dosAG6tRsj38F n4XtxYtn3sBGvfwh/tlvxDnX/17to3hwo//LfaFTD+PrPndt9ifAyFS9HNu7 evB7vS9HPSoBGrbaHpjX+w6Yo/ns2s1EiLnwZm9jSgNc5rwsEH04GY4MMgs9 NGuGw2bvvZZX0kCuzHRWPqMZTGIeDl269R6kIrKr+5ebIXCQ+vj36HvYnJh1 JEG/Ba5wrre50tJhzdCMvjHdAr/NTLJ0mjKhJy93Hzr0A76v/S18O54D8a6W 1ccpbVAYY3x1aK0QYi9tyonsa4O579uKSXpFEK1b9HqKvR04pV4X57wugjAR Tqc4s3ZwkI6cjVMsBr+W4m3/ltuB7TCrGP12CVjLb7lSfqwTWFSv77Tl/gji jE/Lal+Ie7HV5De/xErwbjwR8GeqG8QW9+9+w4agI/M7dw4/FdgjpAqOOiN4 aksTF71FBa7cgNrnAjgwqCv67CI0kGx8E/FyEofKGtWknz50yC+Kwwujv4D5 W4qes2of7HP+fCRJoBZOJXc3GpgNAnfT5VM/UxqB8TjHrubGIOzmSCzLGGiE aPtHG0cfDYK8W77jc6EmGJWVPbQvZxCoptHdHtFNEFTq94qV9AuWvc4kU0Ka oa5xr0Vp7i9QLUrZM1rWAjpLd0ZF2YeBzPz4TmbCD5im6j2MFhgGcwXOmrzK HxBVIfwfj8IwKKlfqU6n/4AR/2+n1y4Ng8VPwTnH3T8hcItgbkfBMPAn8lSK v/gJtWLVd55ZjgDLnHDEF882OKm/nfVv8W9wST7R6aHcAaHWm2aXv/2Gdnmh u56GHdB1h6lvvec3KPFn0k0dOsDx3XQZB9soCPbQn+XFEPIz9W4CF0ZhtTL0 dOkqIR/+aPDEwihscWLmeVPSCaJp91t0Ocegg0eHfLyxExzLblXqC42BNGvC jpJfnbA2eCXGVHsMDsvhApJbu0BU8ZixU9QYWKFc/xG7LnDs+PM5QmkcclQq Be8S5+/C8Ync13rjICX010hKuBvW1gfjYi3H4W/cjSdJCt0Qurf1XlrgOFzv dG1ZMyPkPbMPlXWMQ67y/FaZZEI+JEUYjY+D6SZ13/3F3aCd+HZL9fo4fJLl QX9qu6HrW/BYo9QE3Jp58Ik+Rsj/Z5c4cHcC/JsLJv4coMLJg5dfjDydgCjJ YJW9x6kQesLEZ+LdBJzhqvAW1KeCqLPmxb+1EyD49vJuE2cqaFcIbdvENwmd xDbT854KL650+slTJoHjkACFaQcNAiePwUjDJDj+1S3XIurO917Sv7eDk/DA oM1eTZYGLi9v3GfnnoItvK0MFW3iPiXyU6VCfApyPyrNYMY0sMxWWXRTnYKM tDnq0mUaGHxlvd1rMwUWb9p67t6mgbaJg8Kr+1NAOvZE9tgDGqgPNDFOhU2B OFBoucE0kFt9c6P40xSseV3+lRBHA+6D8tdDtk/Dl7fOcgmfacBWHimpKT0N dyrlp5q+0WBdd/XX4vFp+DG5+U5GKw2mr9ZaXXOYhqxErNGqnwYjM/uF+R9M w24DfM/x3zTo9Q7vaXo1DZhV1sHqKRo0RV0yV8On4Z9FfE3rMg1qxb/sZrRP gxJVq9d0gwaVeXs7UyemIeDQ27EnJOL+f/x5pAXzDEjfLC6zJu7POfVz57bx zcCzB1/3DhP36zRTs+1fD8yAPPs+zu3b//d+oKLFW3MGrjKZqY8S9/OoW+Iv FMxm4LrgavJ1fjqErgfpj96YgZrpX4JhAnQIfDa9+d0jQr5xa4S1MB18d5vU n3szA5pBOWM0UTrcTf0YtCl3BoLb+bdtiNPBRUFYB1XPwI/A/sV6STrYoQDy HeoMmPt9CYO9dLA8M14lw5iBw+4FrZek6fBhcq8Gg4UBIuYdhWL76LC30Fzk +xYGqHx8cjic4OR7zzdSdzNAPuGc4f/ehwhjeK+fOAM0b65w2RP8lm2+wkKO Ab8sb95sIezxNUrGKakygFTf6TdAjPfypZn3Ni0GGB99qv9Wig485s8sJg0Y cPH4luF/EnR4JlKp9vUiA3KmeM03Ef6z/2bwJ9kwwO1c4JcKETo8yhZf9r7J AIN7Tsp7hOiw4X6hy/Q+Yf/0apvoHjp4qQVTFB4zQFk5oqyVjw6LTOVRW8IY cCQyj3P/Tjq4f52+MxrDgMjmxXHZrXSYeS56viqVAXXn9gZQN9Ph939Pdtz7 xICljcqXh1jocG3g49y5WgZUnBJ0oq/RoO/9ZKtcKxGvg27FoUUadCoahw2N MKD+xNNi+jgNzq0G3ESzDHD9j9GmMESD5s8Ug5g1BtwNoFgr9tDgq4HgFsPt s2DY0tmh1kSDnXIDu9wEZqF3zK+qvpYGVltSRV5JzYKcguDCNkSDle8HFLvU ZiFdhl3haw4NDpw6ZmF1bRYuXT8R3/aUBp7STLb+N2bh3748bamHNKhhr3ZJ 8ZgFk1KNO4c8iPVWe9p/9NksRMqS8+5cpUHYCYsM16JZMPe4QUZHaEAXEy6M qJyFIfsJbGQfDfax/CovqpsFPare12+CNPiCO7Ys0WdBJH5S7SuJBn+P31/0 I8+B88l9zWnNVDBXeXMy/MIcaAoOj164SIU0vstnC63mwNfp48Hbp6gwvyBy sd1xDrZ+LU00UaVCSHG6M/+DOXBPvbVgtZsKSKH0ZeL7OTj+eUyt+Gc3SMh2 DuQvzcG3cRNZBN0wJcrr+yNmHmI67yXJzHaCilfirc8p89CBvGwlaZ3g3yZr m5czD8/mJKIXqjth1xPtM6Ff5iFD0CRMKLoT1Cc9/tMbnwfmJzsrXhH77osS asln1T8g3sAaEuPbAYdOJ8zkdf2BAvuBu3wTbXDn9n7rF7sW4MDxswl5j1uh k77V2K5uCS65NClaSFaD3jPbrts/lmAyvusN12wVlKuWWT6iL0HY82uyQ+VV kBB1zSmBsQR0lJvAfr4K7A1LAqi7l4Fp4FDw/idfYKXKgmLgsAwpX0PVYR4H gQ9pAsqcKxA2tecrvfsThF5cTTq5cwX619NiFbw/AROH4T4ToRWwvx9pMyb0 CYZslo/cUlgBw9xTTl62ZZAtdObsB/MVSOgIXDm6WArqEbMPhT+sQDq7wvg9 2RKwunfsN/uZVbCaejSWNJIHMjZ17dMXVoGjlsuaHpoH8wYm1e3Wq9CixmsR ppwHgRLOickeqyC/qUS5ZWcuZDW/tYDkVWCqusGZ55QFy5KrzXdXVsH1hXq8 m857iPjxsXQ4fQ2YkmuPfnV6C5cqTr5vKFwDzHxgT9ypGJBMb40srFwDv9s1 7Yb73kCpz5jbw7Y1sNrgmtSfjoJeaX5ZQaZ/0H/aLPFhaATIPPBMNDH9B5id REuifgBU7Vd+WkVeBybhi9pOuneQ5UGT5FkegrGQrr05nmhJ4Va58H/r4Jc+ 92xhizc6oPZh2ktuHTB1rc6Zyw/RK13hc4qm64AP6R8vH32C7GzZBVLTCfns v5l71SIQk4PEkZ8F6yCypKUSsBaBYpw1DJgr1qE/yDjdq+IlanL38rvcSnB3 LofG0Uik7D8zxLtCjF99lvWsVDTiiO/MDjy9ASKHNmprPsWhpKQ/tUXnNwBj /PfI3/4dOpa2rX/wygbgvw5undsRj1yzT2+H2xvAuNFB9zicgLo/obuLsRvQ kibAX+ebiDK73oP99AYwhSocu7KYjKQ2lY+m6DJhfld4jVrupKO5r3KOSfpM WMJb6+SnlHRUGZg4EW/MhPW/bHtUvpSOLpCeTMdcIp5z7mwNvpeBHm8Y/Qlz ZcLCFiY/9d7OREN/f294RxPPKXNt24h7d16R+cP7cUyYofCFyZiQLOTt3sji mcSEYZt/LKTVZKGdswVk9yxCvmI4X08pG52Y9NnsgDNheGalZtu2HJQ0uIPv /CghPzzj+LQgF7kkBkYbTzFh8t3oe+RQLlKzWuY3nCPkNa1f8G3OQz96egVO rzFhXQdJkuzH8hBzd4aYxlZmDLu1N1f3bR6yagY5WRVmjCPNdOXd2XwkWO50 khzEjIm07uTuDC9AO/lXVlyeM2NMGvlnJ1MLENfdoLyuCGZMl2F0v/5jAVo7 mLonK44Z64os5/nVX4Coyb2zxoXMmN/jppoXBwpR1DOjdwm9zFjLi0IlmbJC FDrad45ziBlLsOArWKkvRI9Pumy6PcaMMZZPL7yhFaLbG09v6/wh7D3fqqG9 VoiM3av1pjexYEvZQXFXjhYhbgvlxaNHWLC6fBJ1IK8IsZXWZKWqsWAtvn3/ 1VUWoX87Ta7yYCyY/a7Xof4NRWiyybVxUI8Fs2pcNrvzuwjVa2YmB1uxYPLH be0t9hSjJzKChp3PWLAhvxL7m17FyPfJB7JGOKH/jPq2MrAY3R1S/ZQZxYK5 tlsujIQXI7t3F6R8E1mw6qF2g+r3xUhre9iaBIUFW5vMyP/YWoyYVlgy3AZZ sIatO6aahEqQ1a/u+Qe/WbB+n29CantLEN6Qp/58kgVzTrO69uRgCfKLt2x7 v8CCMQRCWL9BCdrQKtugc7Jifphm0rRlCbKUC9cb52HF6Mz5N13tSlAln33k 4k5WjBRvTuq4UYJ8x3n3bxdmxfLe+5jqe5eg9Re3LugcZsX++Glbzb0m9O/p JpqosGKXXnNIRr8j9K8KT1ofZ8XKp0SNxFMJ/SOND711WDGRoccZ4/kl6B9V OjvfghWr3iPfqllfgtYk+1kFAgh/mEh5JxZK0CUeisG+YFZMQh1bvbBagsqX nr9RCmXFJuMyC42ZKMj7+9GDRtGsGB6pJE7ipKBV19fmgVmsmHebw8w5AQoy N3dJfZnPigl8sYjOFaGgshMnGQklrNjOOHfevxIUdH/X/ONPOOGf/zE1dVkK WvlkkM9oI/zh7hloPEbop0qu/etmxUoDYge8MUI/dE17cx8rFhJawMmnRUH3 rDPpkmOEf/2mvltOU9ASGxuHxT9WTPrq76vsZhRkxqAb27OQsCGhOKmdFhRU 2l0Yd4edhJlll5lusaQgzyzrw2HbSFgY/8n4mmsUtGhUYVkjScJcpVaZjF0o yL87t0d9PwnTbTGSXXH93/eUSZdK5UlYUalHfYg7BUm5PjH/cJSEaSkX7HTz pKCCxXvdEhokrE4gV7jmPgUdf+Bs9k6bhHFRz5iy+lCQSajRhXAjEvZnIpSk +ZCC+nm12jlNSVgek1u75iMKcopTMgm4RMLO2N0OPvi/77ey9hh7XCdhng8q 9BuDiPEVuVsZziTMey69xPcpBb35xGTo6EbCVA6sFwqEUFBe/bD+ZR8SxgjP 5hd+QUHHjLsaOvxJWNC0aNejMAr62l1/2jCIiM/+SGd7OAUZW1fUf3tOxJMg q8H7koJ6R3NPnXhJwlr0mDHNVxTk6JpUVx5NwhJSzf5diqSgv4uvdJTekTCJ v8+TbKMoiIv9/sl9GUR+XTx1NaIpKDrUuToph4TZeFjF7HxDQeK7rpwQKCLs iTy/20FwTpzRl8iPhD/t3aQnMRSkJqmlwYNIWHVbh7PUWwqqzVLCg6pJmHTG t/Yigo0V9wFLPeFvfLadQizh36c9lV7NJCzgmKJ2PMEOJ7iP/20jYekFNTGr BP+pZyp3oZIwQ9OHT//3PaGf8bzaaB+RTz71o48I5qIOf7QeJvIz8fRHDsHR 1l0qtHFi/g1y7/zv+0aJsXqKCYOEYVkfTnUQnOtaodT0l5j/blX3HwSrLeUW 66ySsJRHjbsQwbUPkhQ/M5Exv9RXZrEEG7NHFqqxkTGBRY9LjgT3hD5RKNpM xuyt9mjvI9h+1/182W1kbMihV6X7f/7GOcu/30XGTLLppvcJ9pO8kisiQOhr T9dwEbw520guRpSMeWLpqWFEPqIUtbJ37CVj3psu87MRLFaudOD5AUK+R+DE DSKfOSf2fWBTIGMSR0q0aol8q37fI+OnTMbqlEpgG8HVxtwZy8fIGEnE4bwB MV+GVCZpd00yxiiipvm8piC69XzapA4Zq/7QYRJPzO/1sWFJO30ydoB/7EEh Mf++S/XiF83IWCmbdlMhUS+cfhVJPy6TMWl9l0MJERQUyZ4neuYaGQtxcgh/ QNRX1q5IYXAhY2v1E9V8RD3SFK/skQwg9E2szfKDKchu+QjP42AylvCsYBmI +mZUcLEOh5IxPIq28iWQgkg6ZeMpb4h41TeHpBHrQ+4ib5lELhnLIgePjXgT 61lwMjugiIy1tVc+3eNFQZqDXxKHPpIx5y28tifvUZCpk2twSjUZK6KOyt67 Q+TX57uZBJXw98ujwWs3CP81k84E9JGxBk9vkZNOhP9s97ChITIW1MFmI+BA QZkvpKRTZsiYypkrltk2FPQz8eGiOJkNi2YP+mpB9BOpWuUocXk2rJTEsmVD m1h/T7mfPjrChpk9EG0+TfQntbPDPr/U2LAUu/7NYRoUdLYrwjb5JBsWFG56 ZuMo0X/GpxTFLdiwtdUADS95CvrOnfJTLJAN+6M7dWSVj4JcTbduE6OzYXVF ka0pAyXoavrBGMkBNsy7b8BSu7cEnV82EN83woYZnnoeO0gtQWpvnx+RZ7Bh DCdOq81tJYjcx2muTmLH6q4ffCRcW4Ji7MjJ5gfYsdHMR1WXM0pQ9Z0VxZfe 7JiuOL9XsHMJ4n81ZEYS5MD8jsr0cY8WoxyLhPfznpswM0PnY80ZRcj0+APd ugpO7HZYR4v/rUKUb3lDTG1tM2a+1jtoplGAljhPsH48vwVbENktkcuaj4xb jyoJRnNjdZ6JL2I6cxHn0c2fy+O4MUMvvHBvUy76nEI9fSmZG3PW/5lLqc5F 8p73rN/mcGMpjV8V+vNzEbcwJYS/hhuT9ovzOBeSi745K/zinePGvMvuh1Rp 5CKMY18Y9xkeLGtP6NPGnBy0dGvpvxwjHqz0s1dDSWoOyqV9TdU35cFUvI4u JMXmIKFcu08hxImBbq/EEvA0B62dTxnhvEfIezxhcbDLQZRk4ePsaTyYmXxE Y6VQDnLZMvM17QMPNiQZl9LBm4OkPCqNtfN5MN17InazXDnold5l+8flPNjo u5b0g6vZyG025iXrT8Ke6Jpsc2c2krFwFEru4sGkA1jN15uy0UC1aoZmLyFf +slVvjYbGUZ3VT4c48FajPZaxhVlIw6W9FOiMzyYfGCdYteHbIScPNrwPzxY udrCX97kbHS3XfuK1QoP1jCakHghJhv9v/+TYP///yT/B1D2vaY= "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{-4, 4}, {-0.40296372132993685`, 0.4400426201190149}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{-4, 4}, {-0.40296372132993685`, 0.4400426201190149}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwtmnk8Vd/3/5HKFBJJKRKRqUipd2VdKSSFQkqGCslUNFCZk0hlCElCiSiZ Z7rrEqHM4z2lDCEkmYfLvb7n8/j9/rn38Xzsfc5Ze63Xeu19Ho+z9eLVU7Yc bGxsd8if//0rw/qR5WUBWsK98t3zfo14dWFb0AJDgGbiG3jrZWAjZuWqbJ+a EaA9VNCe0gppRFW5ExcH/wjQ2KYV4iIjG1F9bcC3uk4B2s47DflH3jYi5dfE l+eZAjT+CPNzPXWNeOpB/fvdVgK0sOWBxXt8TejeGOB8mcpP+3nFyT36XBO2 tfGOlF9YQ7u/z2ly5Zpm3Ey7Kqwuzkfz7GH/EYbNmO9YuVLgBw9Nojf99/k7 LWj9SGWc8OemKa5+beVzqhXnI+4GIXDReOP/s82Xa8Mk/p9iMb2raHJlIiXa m9sxTk/FrTV4Ja2l+G/g4voO9He64LHjGCdNIc0Gj63oxLsr3rm7/eWg2U4K 1C8vdaLLc8tV1kMctKJbTtH32Oh4cee6qBO/OGjbNLn4VnHSUc/cM0eO4KDl TNcMreKl44bck39/VnLQHvKu6JnbQMe8i1MXj8dx0MY2llyKUKPjWPnBk9LH OWj/Sl9/DHCgY9+Zia612hw0rfP9Am3OdGz/m+y4TOGgfQh6cnGrKx3LxASC v+3loA1rLo7nu9MxxLX3U5gUB+2X3/iqzwF0lNsauJ+5wE6rfij83DOejhd8 G6U7UtlppgsFa0Wa6GhKJGj8SGKnnTra/YWrlYxX9ZpZfzw77XOx5peFdjqq 9Qs+moxkp91Q9vVp/U5HLt1TU/x+7DRv24FFm990zBBoL9c5y06LUstpX2DS cTH+m2UxNzvN5XekRb4cgeNz7zxonOw0N+e8U1oKBPYb3o2oXmaj5UReiKpX IrCBQ/xz+wwbbeAdZ2+HKoGv7SyUJnvZaJ+7xl6WHiRQV7lnUb6EjSYU8Huw yoDAqI8DMXEO5PiPtwVxbgRaesR6q9uy0Z4dmQpuuEGg3G4DmxYrNlpKuUgi 4xaBJalFO7lM2GiieXutNe8S+PNpyOfrwEab72OWPLhH4NuTlHT+/9hoxGLC rof3CbzGPROepsZGG9xR4xX4gEAOH0uL7h1stNzxkMtOIQTKOqhM6wmz0YLW 5E/+iSDXJz1IDPCz0V4PD8SXRhJY3B2LvtxstE07z+cERBP47B3XemfmMq57 49POEUtgj2+G1pGWZXRU3XDzQyKBbkqM+Mm7yyh1Tkg8M51AzqRLDnKuyyi2 7H+aP4PA6A31eyztlnFydTuHXSaBpSsS62oNl7G0JfQhK5uc/+0oI1FmGTuc 1QNaCsj5BplVHRuX8Yy7cPlUIZmPqg3hfILLmMhbOstXTOCJrD+yHgwWiite 5pUtJecHhpsYNLLQqllEYJ5Kzl9iSN6vZGFm6SudTiTz52ozWlLMQk8D7pkP NAK7z6vf2/6GhcXPeB01K8j4WxJPnn/OQoOH1WtZJHPq8myMeMLCtvpXw9mf /lePH1lMDxbWRsoOsSr/Vw9tz90uLJw7aT36rIpA/S1ZOlcusXBsoblL9vP/ 6iO2LsGMhbvyRFIzSHblvvez7QQLJ2JzDipWk/f3GU3j0WJh7ODm4ESSo6dN blL2sVCPq/Qubw35PAek3FJioXnNdw5nkku65fjSpVjYZUvjqyLZ8yD7h9gN LNyjM/uUv5bAQ8+JE8H8LPR/IFliQDJrJnvMnZOFnTLvrwWRTDv1MNSOwUSR /2ZSi0j2z7y4y2Scifn8RsY9JB/hO9CsNcjEWwc4bZZJXnVlnZtqFxM/0HRq Rb4QWF31R2hrCxONtune3EZykFRlrkANE5uCZc7KkaznE2fM+sjEZGLKVppk vq4bM6O5TIxvL3kkSnLDvhPR39OYuPrQLSo7yWFRMupfEpjo/0dktI98ntEk s7Moiol5C16rSkkWMujweBvCRPwZyAomue19hli0HxMDIpiV/1tfNNeDkgB3 cjwrSY+P5DO2VubXnZk4HLfTF8n8bKhQX7pwiYlsb/VNr5D8bYvgS8Oz5PpV XnzkJjnu7tAhMGBicXtWyv/yb0mn/VQ6ysRToRs4lEnuDXeV5FVh4pfF9mYF sn6vx46VL2xnov74Gtk4st42x6UuDokzsaz5fBYHyUOcrUlVXEw83hgtmUPq 5d2F90fyWEvIRxUZYpB6cqTeG3g9vYTcL1rf7Cd5zF1N1rdnCY8FNFBjSD1m tfHVuHQsYUWe6VIRqVdXlQF7i7oldPHJ+9dA6nl6JOrdf0VLuNlKvuh7GYEF Oi7Hd2QsoeW2484tpP493miPir5Zwrzjp2OoJQQuWswpzYQuYeXtTgH3IgLL Shobft1fwkfXJA9qkf3kLZp6teXuEi5I/nnJSfYbR7NZdublJdyRZ1Jul0sg 15ESNQdYwp7cc+UpHwj8khjRbrZnCR+alLVuJPv7EdPhlo7CEoo3pD6/945A gcJNRdKi5P1vV7FU3xK4Xt7rQPfYIpatSbq0mvQHeqBJV33/IuZVCOlKxBP4 /JeSV9m3RRxNmzqvEEeg+Muf1OefF1G04kiHRAyB2wQph43jFzHKy/4/j1AC n+zqvePwdBEj1v9RYz0icN7QP9c3aBGTu+7m3HxIYF14pfQHt0X0Vhjo20f6 3411x1av0llEqzcz9WvukP24ewTEDy6ioCV39GZ30o+NQzxUVRbRa/rF/i2k 326Oqh+23LSIzeHFOOFM4Of1p+oK/zHwdWGAb7c1gbvUpzgb+hnYECv547oF gbFnIg/1EwwMqfnpMn+WwKsxHRmClQzcemZXd/MpUn8bzcOvxDBQQeVx7ict Ah0225hu0mSgq+XKs+FSpJ4PrQxV2cvA+94xNyS2EKhhmVKto8DAhfStfnFi BK5LGNp3Q4SBGjF2Wy4JkvWTdN5UP7yAXy816kiS+xO/9K0e74gFNGqxiDlG 7nceR0TFoh4s4EDQUtnHenK/tSkyeu+5gDYHTZMkauhYmMyo6LRbwIqXvs7p ZXS0lvVJ3nVgAQWdXLiH3tAxRz7Ioe/XPLI1hDjRyf1Yotm6WIGYx6T7U6oU Rzo+ct/PdbNhHnmL4UKUDR1tK0eSVxfP4/WOyNLVZ8jzgOWJXsUn8+hfMP2d 5wAdvcKFzNz3zeOPbvv1PsudOKL+J4WmNI+KDvZzBXOdaPrz0wz3tnmcagq9 +v1fJ+5SuPk0bs08tsnVzA93d2JfZWdDed8ctt2OOyKOnag7H3eU7/EcKm36 T7v+difmx9+MNPGfQ5pq92DttU6UOnryV7z7HKnrsw9zLnfiYviyr8rFObwZ fo2qY9KJGQoXy0zV59D2UL6i385OFLaS3f2qdxZlZJgFCj0d2F2VLbl37yxm 0x2mTqh2oOfphSP7FGdRxetmVIhsB27opVz5T2oWL0XaJBeKd6DhUmO2Bv8s atWlbf6+qoOMY+ywzuAMDvq4DRl8a8fEBHlbs+gZPB8+VDTj1Y4Xbyel3Zmd xnXWZRoORW04oBiligVTpM+FXO5aakF57+SxofdTeGNEhqN6tAVdGvPfCb2a QtpMr8qrrhacd+2QsguZQgm+yQ7pshbkKRRdt8Z6Cht1nrCcyPPhLs3YqXPc UxgkEBItOd2Md00S8mbNJ3FyLf2w4o8mXOudtleZfQLlBfMuDUvUo+Lef4rJ U6N4O+lm8RX9SrRT9vEp/jGKV8W+Ku2QrcSE7QIt9dWjqLszyZXBXolCojvd Z1+MYmXuy81thZ9wbs6lXOfIKEKgxber0p+wonjMZCTyDw5XEPuS2SvQ7NCY 9869I5h0jzfI/yVixB7vZi3JEdw199aT/SziVyV+aTOeEVTPr7tbJoyosUW5 1vfnMPJF9O8cfkTFbcvO61oCh7G/9u3Gnb4fcYz29+2NziGcPLiYMOVWiveO /G0q9viNbpMhVTKPC7FCd9RA7dJvZBiPbTA9VYhsJ/40ZJz4jQntkheaRAvR 02S4LknqN16yi4E3SQV4y26g5nHdIFL1ehpaqPloH/SDdkFyEHNXftcJX5GH +nX1Wdw1/bhF2VftbE0WPmyq2xmQ049vr12IPv0sC2vavmaw4voxYdvehwl2 WXj0R236lGs/KmxcjlZclYUaY1WpPzb1o+TX0/UHIjJwlyA1MfvqLxxJYyui l71HEeOMsLOifZgb35ec8jgFc7aHlBxd0YcWAQW2JkdT0HDhcr/Kv148P0o5 EcFMxofxW/fxVPei3+HPg/lXk5E1FNldcqsXVfTl1iSce4ODXneVxTt6kJ76 26BG7zXeMzQz46roQbcd9yopvK9Rctse/+kPPSjyc2OuVt0rPFcz1l53vwcd t09/+W3wChuELnp57elBVeW96xItEtHFIDzm445u9NO708Al8xJTp/VGo9i7 8WPcwMGFgjjse85JcSF+4kTFN/OpY3Fo2u/+e0vwTzx4knGB/foLhNuWe32H fmA0jH93an6OgkkKbYffdqFJtt5sMTUa9XQHZDf5dKFa2IBHl3U0BvyNvztl 2oUK7r1yjBXROK8utO3Nqi7k+rKWf9uJKOytm3ddafcd+5ND9fj/PMWc2SqB GulvKCP43M/COByfvHtdobFA4Lnm7gDJ5TB0tPS5mV9PoPAqDJ59F4bSn/d9 f02eo09KhlDbV4ZhdNT7FC/SF62sRkNdwh7jHbXwQ7udOhFV+zfZLAWh6ZDz eBqlE1Xeugb1uAXh7ji9JEmRTjzyd+9Poz8PcHQFJzc/tQOPnfhuuaovEC1b b7UNCXRgGIdJkPlgAB52O+8Yn9uGJ6/EjzXp+OGW7fu3iAS14VKF9ca1Xb64 SIg0h5xvQx3j/0YF3XwxT7Nx7+2VbXhcX83nnrYPbl97mMP4TCvuo7+9xq/m iRxVW/K/KLTibETc7Wr3u9jtsXhZk60VJ0Jb99VQ72BMT169cloLerUVZQaY 3kaeLNnn3IvNeFmJ13xb+i0cvMSp79vYjMW2heuMuW/hJ9Fe1mxSM7rZuJY9 vXITPX1ibfr1m/HRzQqlbbtv4NjJNbswvgn7T7hPFQ27YvL3gcfDAQ0YPp+Q 01TmiN881ye83N2Av88f2JvR64D8W3SyjPrq8ZrX+Ox6Xge8ZZ3aUgz1KBx6 W/ecoz1qDziIPmR8xTExrS1m1rZ4J/CFnEbaV5yVComGVBvMkK3bP3nmK25e TthxavoSijoonT+X/wUlvhGmNTEXcWjsX6L8tVo8LZ19MGWtNYqHSeb83FKL 6eGR4nJTlmioYvQpor4GD65iGsR8scCi6zkDDPkapOZ9hvZQcwyevyH/deAz PmtpOLPB9QxSnycf8In8jK7rOTP/3THFyf869HdrfcaeKcmhmBATPOelfvVF YhXe6Q12WKadRnkORq6jeSX+qdFZvnbbEC2T5KskeCrRjX9P1BkXA4w4Yt7R WvQJHzufXDsycwIZgWXzB9Z/wkRh88lXcsdRWe4v93hlBe7tpl2xbT2GF2s3 b3pzvQKbhbr/+AXr4lden0N8zeVYIMDBzyGqjWwfMk/SfMpRc13vmxVjR1Dt ZI/VDeVyTHHyVYtt1MK4ME3/rhAartj1i7ciWxPp8lxPzj6mYnJQtPUh4gBS nK9klY98xM79B53bZP7D1MwvLTt0P2II0S4XELAPb6s9FmVwlKGOshW+ubUH +26N7b9oXUrqK2KTEbca6hUbnP/ysQT3Pk3b8ThdFTdqCL2K9ShGF1sKKGzb hf6+1z9xdBQh67GEbfgfJfxT0TbgsLsI54VdrYgMBSzTeSZ/YKwA623VBb0f yaL0w3n9pOMF+IzzoLdRsgw+qjt7lTctH1efTrwqQWxDCyPxvO+X8nD58mr5 mCeSODo1s/9mZS4y1jQlCChuQc/oRuSXyUWpwdD+YftNyLc/7Wjq/Rx8/+y2 q37LBoz77v9VczAbZQxNIyrt1qOi93mj79rZyPj1M7RbWhhLJfd23nibhQ/U ubLkeYUw72tLlUFzBko6V1fzRfFhm2Bgs3/EB3xZu2P8oiY3Tpns/5F/Oh3l sgus76muQqEXo0NDwu/x5wa98CDbFajakzC9qSMNBSfZ5x51sqGRzGk2g2ep OE5R4jblZVKvOazi8zd7i6FmZ0wYxDw1LLNYNF8sBQ+uV806IDJDzZx22jb0 7Q0KF56bPlk4QW3YL7lzU1wS/ipOnmq+8Zc65t3630mL12j9u13RS2WIuqYy UNtvyyscAc2D3M9/Uc2EbryxxwScL6p+jNBNfRb3rbRB8yWyfj372XaDTu3Y rtmqVhmLslPK6TIlLVTh7Lcjsdox+CfY+wrPxFfq6QP8HOy1USgxdsL+sUol NaLqhtjl409xxZqNETP8ZdQmg++76uvD0JxnjDERlEPdkncvzC7xEW57sq6j eCiF+qLGEFWTH+B5WRm2NS3PqRt+bB5jpfkj75vErCe2wVSFX+37oy3u4pqc +gdmK25Qt/Nde6Z82RXTjlEf1kUbU33b5No2fbJAYdHjNoVUMaqiwA+HlUpH QMil848bT9Ohjgn/BMF5e4hZeX7DncsaGuMGspNX3W5BUstOPiVRO427T7W/ OKr5gvvS+0bdBF8NlvftFwk770NljVRTSkSEhq9DulOr/ENYf1ig8LzPK40V pt2HVm8PhX7ToCvG9z5ofJIMfvBSMAJer5y8aLi6UCMgWuqa+pNIKI7OXfFu lqahzVdm1sz7DOrd9CTVhqo1VvubaDoGP4cjbgo8hlpNGjVzYztWro6D3RcX 87b5tms8dA4SSgiIB/fil63l5d81UibCvMT9EkEyVP3p+9BejcD0H67D+ArM Nint4aIPaFy+LG9XwHoNlWfmFB5XjWjoSrmfu3foDXTHRNoPqYxryP34dNLQ Mxm2uPl/VLOa0uCOEdTaXJoCVSoDH2+Nz2qMnLJQH1l4Cxt03cNu/2FofFnz TqFwXxr09Iqf5TJd1nhfMysR4P4OHIV2i89t5IBH97SEjQrew5N2P5m7NZzg pBHGtWUmHVK1ottuFqyGEwtdSyO7M4D3MSOn7jcPKOftmCh0ywQt9uM6tlb8 EKRe6lZhlgXZcfYPhQTXwnxk76jcfBa46IfUe6xfB/aTqy+HPsuGlQMF8mZH RIBuoNw7szcHtjvvt9j2QhSKee62V9zMhXezglK6teKQqCTSmimVBy/4Bxvj f0lAoGFmU1xjHpRfLznzMHYrOF8/1hDsmQ+27n98y622gXH0r6+3dhRAwAVB vwuHZeBAsVftpY4CuJd1adJUSxakukSrDe8VgnmSl+OTSztgfKt+hfyPIojc J1d6c6UydB4ZRNGHxXDIvtrY58guoF72/cipXgIHSk7+/vhMBUI+5BX9DCuF rW/XnfW/oQZuTScLvh4qA3r03w/TrD1gNjWUWzRSBo3inVwlceqwff/mzIgj VHD/GBy5XvgA8J0vTPeZoMJC01fx2LGDMOVt9M4pHuEHw/3ssZ8aYN1XcWqb Jw3cu+3z/Xw0oW0qtPl5Cw1OW39Q94o5DDorLQwFd5TDhV2pnxhlWqAsN3eC 2V4OCp7zq+x3aMPr/ZV11xUr4JpEbVm9qw6IHA8/PuJfAduiuzxefdaFJWeF Y507P8GPkxod3tHHoTbX6kh2cCV8ZLe/VT5iCAerFD/J9lTCwIv2cwOfjCCr Y0Ezfm8VpKfNdyi8OQXRC08h5FcVJMkXKEbfMQYbqPnP9lA1ZNu9zlzvbwZ0 w6ji70+r4eYO7er7z87C8YsX950aqYa2f+k6HPnnQPX+0h54VgMSfckJMVwW sPxll4rYRC083qJXUMBzAdy6mJmhOl8gV77u9KHCCzD494vyqvgvsMalyg/s L0KdoK3ilN5X0HlmVTPeeQliTZ/L1r+pA1Wfpm8v/9kBv71ditZiHewTbh15 Vn4Z/G7vlikxqgedozeT/WLswT6uXuotqx5y/W/3WJg4wJ4+9i1+Zo0gcjq0 v47PBZRLzkzsSmuE7Qe1Kn7PusD2iA+VPQuN8J/eVq+cgavA+yp9T+KJJpA0 V+f4NHQNlgzNupbHmkDVj9abN+EG8wdXfD4j2gz39FpXS9+5DtNyGZmZ0Aw3 9zdbiK28AaNsnPeswppB+bnn4w9SN+FHVuYOVGmB2iOB68S93OFb3Ll1ouda IPQsvff8Rg/oCFrJdPFvge2rdfyMSjygwdq8aUtrC9xmS69z4rgDVMHV7t43 WsFfvFCQO88TEq5ZVh4qbIO/WkvGXYZ+EHeeOyOquw0Erz7OdCjwgxjdvGd/ V7eDiH6Cqc9mfwiT5HF8adYO4QKZ57XH/cG3KX8tc6EdLIqsAqNTA0idrbEq O9gJ5c+4V4fbBYGleJGusG0nXOESKPw0EATnuC6pOj3uhNo3jztS7ILhVE/R SvGfnfDnR1RwkPNDOBxmk37Xhw7Gkk+E2MIewbbx0oX/KgiQr9p5fyoyDDzr tQKm/xKwaWZjtepwGHS8+8qfIfYN9h/v5X2gEQ4Pbb9v2+r6DXh+injdGA2H 8W+ME6slv8Ps75VuISZPgVq1/3WrVxekW3Us91lEw4akcsXHaV3gJuepLF4Z DW6+xwq127tgZZios6/CM5A5cLauWPEHqN3Tk25kPoNHWR6zCd9/wL8/z4ff Zj2Hcy8K9Zz2d0PQ7maOE4YvIc8D2mVsu8FiT/WGz7Uvgd+02qo7rBu+fXnw 2PNIPJQLdt44NdQN0jfbHyUfSgBhrbsGccd7QPLOytN+CYlwtyj2tj+jB/Rd xpzO4Gs4lkTUnzTrA+/E28FX776F8fsZdlXOffBh1+/Dx76+hRj7e8sH7vVB lqu8zudNqTCkpKSyI6MPLNdO5L2jpkJQkW/kCs5f0CS8WUSS7x3U1MuaF2X+ gnt/8vJrq9JBZ/7m0NbVAyAaPP1r4Gw2jH3T84sRH4BNa/nWcT3KhuiPEhsF VAfANaey7A41Gwb9a48vnR+A57wFPYbSORC4ZnNmR84AyITrvy6dyoHPUpU3 QywHQaSp66zlqzw4ekJoxUz+b0gw+LibZ28RPLnAPbFQ+xsM7Y50lzsXAf0m Wzfrx29QphtOFiYXgUP8WAnXqiE4vpXOtFhfDE/+fXETNx2CijeV4kGMYqCH 3+vTmh2CL/eVuFc0lIJDx3R5xN4R4BE2OVpM+mKoVafvrsJRKO7hGu8c+ATV JzevMRSaAHt/C1l/83oQVu5d7yY+ASEp28PzvevBek2yZOT2CVjlL36h+1U9 ML4qqtH/mwC1ML5K4aF6UDx20Nz60gT8sjsct3S9AcK0zNOu5U2AdXYIyzW4 Ec7te3403HQS2jKNi/TamiBF1MIg13oSjDXWxMz0N8HUrOTZdodJeNS/ZBw9 0wSP8lOdxHwm4d+1U/VF65sBVYuevno7CUv9EzFeZs0grdTZmz0/CUKcITmD RDP83Sri3RI7BfzfvzsfI/t4391XruVvpuBcTn+zRF8L+Lcp2WZlTMHs+51e Q+MtsP6Btv6Tiik4o3RRy5C/FTRG3TfqjUwBjLZ33NJthdCCbwXl+6ch2NMk mLekFVSOJ/7Lok+DoLWObXl4G3i+UfyV0DcNulm14/nxbfCZWdTxZHQaGnd4 UGLft8G5rOaPTmwzsOP04JRKVRv4i6x4JCc3A2IOT3bHzbVBa7etXKL7DJSe f+dtdLYdbt5QuBC6fhZuPOm1WRLogPU8/8pMt86CaIjoWtqmDihKyNmwRZHk jUoGV2U7YOnL/qZ0zVngqthzNUyjA/y36sIXp1l4wCohuhw74EmDzeaVn2ah 5zE1IK6iA3bZyN2uq5+Fz1RtoQ31HdC88KftKX0WQtZcEvPp7ABhmeuPpMZm wSCr6IXAaAfE3vVbBLE5UHd4XfSfcCekyMUTd67OQahtf36ZdSfoUi/sOXxn DsSSOq9PXOmE4dMy4dz350CIa2J87fVOUPRJ142JnQPxy+eOrr/fCTntJYX5 VXOg4y2uopTaCVT/zqjxTfOQ8M+4/cVIJ3R2CZ6yq5mHQz/kxGqs6aAXYku/ 0TIPBUbO2cKX6VC2v8TyXtc8/DCx7jZ0pkNi9CXHxPF50EwuVYy5TQd7w4KA bxsWQEIx9/elcDowPpkXnryyAHfOaIsvfqSDk1vWIYvrCyCsMLis/YkOPyVX Vjp6LYAR7dyxezV0qPDKaAoKJ8ezCo7Wt9AhRJ19pKJ4AayGj7qmDtJB/H2K uDoPA06a+WoH8RLw5Ozi66PCDFA7OHq0V4AANi7DHcZbGJCqLh6lIExAv83C HldVBizBsFWkOAEftugbvD/HgAnvENMiRQIk6xPbi20YEBs85f9yFwERd2fM a1wY0NY5fOeGGgG36PH2A/4MOJvkyDd/gACNiAk/ifcMGL/88doZPQKyKNpc yvkM6OXek1d3ggCpf7FPDiJ5fZjqYTUjAlbpH3lxtpUBEcLzXt/OENC48lne 00UG/OJaVr9vQ4D17YO/V+svQsDduMELd8l9w6amfcx0EYY5T1w74E3A1Enj yvYLi6ARlCG4yo+AQGmnV0nuixDvuHrYJZCA9MYX5pC0CDVF0prhYWS8JbJ6 2zMWIVjWtHYmggBIzt23pngRsqavCOhHEdBy56vI94ZF+MzokGt4TsCCzGLj LcYiJLIXE/KvCagQfEC1WLkEk9KTzyXeEPBoUejDEcEl0J3gx1UpZL6a5R8K bV+CnHSVkPQ0AkZKCzwWdi2BksAXc8f3BOSmHL7cc2AJuJUc+sU/EKDtee5I htESiKxNuWaWRYDg5UHVqPNLsGyT9LIvmwDCyG2r5+UlSKt1aLfKJcBJ9iHr mNcSNKjXFu4uIOvRUlw0kLoETelcD7RKCTj/8ejbutwlUBmoP2ZfRoBManNU LnUJjI6bl/p+JKDIa9jNr20JJHhFlh4hAf72Ny/Ydy+BpV3tlC+NgOOn2Q0N RpYg29jkj305AT/lxJQ2szHh1dv78iKfCEhdl7yJk5cJzkXGsQTJrqxdPH9E mOCyzfBcRCUB/w2XzTdLMkGnxtkbqgjgbNP9XaTABIfr0Rt7SW6gtrUn7GVC a2zyYffPBDxLs64M1GTCevErPBzVZL0jR3Oc9ZnAt5R4349keR+PV8ZnmNAh u1w9Q/L0Fc6wAxeZYKMuO2BZQ8BH4zBvKWcm6KtkjJeRHAjiztweTJAy3MgS qCXAUD7VfNyfCdtr+yTNSN4ooqbX+ZgJxyKvOkWR/GsZ91FjmJCwR2y6muT0 keOyyUlM2Bgk9/UfybfaO0UeZZDjwR2ca74QQKFd4rxezAQ7Of08CZK53/+b PFvJhJS1r0dlSW6JuttLaWRCmF8PTYbkON/VTbLfmHBLeFlLjGQ7x6dU/gEm nH/eH8RB8i5TiQ8z/5gQPmD3upd8HoPy/kUXgwk5aXpJBSR/UlB/+GklC7J1 tOL9SLbcaZw0IcAC1cYxCR2S51VdyyQ2smDtodQVnCRH7H3SfkKaBbsbfMyK yHwo/vd+7K4yC/SlPZRsSP58qGb1u30s2KQYGL6aZGvNAUn6YRZc4Qx/+prM b6SuxGm1MywY5plOR7I+yvoHnS5eYAHzeVuvJsk1BmfvhzmywPJJxb9Ssp5M 06eFoz4sKNc40PyMrH/MuaymjQ9ZIG/ZVb5A6kPVsn5YN5KMx7+w6jTJdrar xZNTyfiZqZRxUl9sV6T3tOawQPjwhTZVkmOdNE+yf2TB9qPP8pxJPTZcv+tr 0cyCxdLNT+uoBKj7/+sXYbBAgVFotIvUe8t9PpYW5zKEqw237C0h+yN4h6gb /zJUXDYW3FtMQGLYpWMNUsvQvP7Z7JZCArgSOj8EHl8Gq6S3oy9yCHj9evpz nskyuKr//XqF7LeDKWt7+qyWIb3ubOsush+vfTguBDeWoeW9R+g7sl+JUrw1 F7cM/G5iCidTCXhHfwv2Y8tQOjihfCGOgKNdlWbR88tgz6IlVscSMP5vfN9F djYKy7VvlRzpJw+n1pwK42WjBGmy93aQfkNl6ASMSrBRuuK9JcaeELCdu2zo jS4bZVHQUm6NLwGT1coOr0+wUST1NM9IkX5HDXz1J+EUG6Wsy8NR1ZMAU84H Y7Hn2SjSu3VdtDwIuL9sNB12jY2SFLjAIX+N9PeZ38ueMWyUvV2n7ISsyPX2 rRM1GWKjrOdOEo/aT4DLq8CYU3/ZKIaCP103qpP9a70gZjjJRnHWjut/Qfp7 y4+f4seX2Cjpz/m0n+4kgJ1Ik9IUZKfMvCv5ayxD6qcRlJX2sVPenfyrryBI wOYyx6Mrg9gpl/XNgy1+0UFYjMFwecxOOeIBeeo9dOC7FZRFj2CnlHRt8+b/ QYelncmb0l+yU+Z2cwjndNDhW9LPiVO57JTm3et0W2rpEB1iFJ/4k50iHR0d 551JB35z9bkDezgoQoKVGys86MDG4Ehz6+OgPGJjs3vJSYc5o4+WVTKcFJsH afkHN3fCdzWrTTIBKym3NhVI7yDPJ9fOCK6V6lpF8WRuFFLe2g5ikf1mnJu5 KN6vztIcKW2QYZ74dsqDm7IcG2rdZ9YKZw756NZ85KGkbYvbbPC4BbItnaX+ W+KlbFPpdylvboZ5Hq0VxSZrKDcufeV2WNcMp5oP7N0cw0/Rp/23O8y5CXgO 8JaXveSnuOuV2VQ6NEH5m2/HzyfxU4x63zgsXG6CXR63L7zI4KdsVnw/aXux CfglCh+JVfFTvrsGjeqeaYJaJ9VfIpP8FNuyvQZ7NZuAwrUjjF9fgFIseIr3 g0gTzLvOb8wwEqAo7fugvyjUBJnfq5NPnBGgTFaYntMTbIItmXaljy4KUK4H hhIjPE2wZPJmkOe2AMVX7Zr1HrYmKEySOLQ6hbz+79EPPe2N4LLmX3XKewGK tpyTZ3QT+R7sTj2lnS1A2XRx+fuJr40QqWdhf79MgGIgaq1XTmsEt4nYpyta BSj7JrLaS943gry5w5YkugDlYvKAmFdKI/RW7k87/FOAsr7IeYTyqhEMY+hU v2EByjEpR+X66Ebg4kg9tvWfACVj7bfEqPBGQEf3Ntq0AMUsLPSl1aNG0n+1 rawZApSnV7mkFR6QYvt/3+NR/v/3ePB/+Q/wmA== "]]}, "Charting`Private`Tag#1"], Annotation[{ Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Line[CompressedData[" 1:eJw1m3k4Vd/3+A33IokmyTvzlBRJMlXWISFFSBElCpmSqChDkkRJKJLILGSe roR9ypBkLOO91xgyuyhzfM/neX6/v+7zes5aa6+19tpr732ec0Wv3jS2ZWFi YpJiZWL6368c7Brf2ODBW/xLlGPCs9HNZfGg5RUe3MynJ8T+TTbKKzwkNf+X Bz92jUtJNTEbKUjrXx2Z4MEZzMUBA3nZSHlbALWhkwdnkji206AlG2G/Zuvf 5PLg6T1r61E8Ocj4SeOHw1d4cOmW+IrfL3KQR3PAjeuV3LjWPQMN79e5qK1t 8/hn6y14AJ9PzdRSHhLEb+5UFuDCt/Nri54SL0DFTtVknh5O3DVY1ezyuUJk FXKI0e2/CQ+5t8hvm1CEliK8ghBw4PROpTDqt2L0W+DzuLYaB65i4Oae0lSM OtLY9JsUOfCAT6OeTj+LUWFZ+LaefRy4gEAUYtCLkcvg+5iVHRz4kstxzs6Z YvTrUFvWkVF23PAkfykHbwlqajnQ+iGMHV/S17uWdakElZu7HT78jB2/ffnf NKt1CfowRIkse8yO97sa8ZralqCgJU3zb/fZcaZ0tDxzowSdELn4a8SGHV+7 ZREx7luCSm8+/iuqyo5X3+AWX4gvQcncvfzRA2z42ic52eWeEhRhAeyqdDbc 6lTfzciBEuSfnvCnu4MN/6Pm+nT/cAm6qnmteU8DG+73E1hOTpYgsbujAfEl bLhA3OHt+1dKUFLP3EzaMzb89lU0VriTgiJkTHp0Atlww6QHp4f5KMjfo7h+ 1I8NV/TuseLZQ0FXt3mmytxlw3UdVMz0RSlI9OQ/8xwrNtx5TlbfRZaCErLY a4uPsOFFzcoOCloUFLZsX3hBng33PpsQOKxNQX7a9QmLMmy4yE99rrBTFGTV H+KlKsKGm0lRF+sNKEh45/ZDFZxseMOx4u52MwritnYXsiSz4a7DbtUaFhS0 nt22eWODjI+K5VmnXKagXp3XI9hfMh7gb3te/yoFvfMSiK3uI+OTTQmP9jtR UGidT7AtlYzX6T601btBQb68fXfZ2sm44ovnKlduUpBlbqKRbj0ZX3Ke0nd0 pyDBX1LsDUVk/NWY0Q1WLwrikg/645xLxp1TnbY1e1PQmvfYwJZMMo5T93a/ 8KUg+q6s8rPxZLwr6Z894yEFxeodcvsZTMbtd4+/kgmiIInNevUtAWR8a8fl 4UfBFPTh+1WxpgdkXAUps/18SkFlZ179qLtD+HvG5LLxcwrS3JItU+tKxndr 6tn6h1JQfWONf5UTGV97wDXw/gUFdRssKlRaE/HLhbb/CCfyx7P12adLZNzb PleoK4KCRpulf5WaEuMtXPH+8ZKClgzNXxbqk3GONrOdaZFE/re5T+TpknEm 5gzBB1EUxP7j2YmcE2Q8qOB195nXFLTrXMV8uioZ/9Nzn1wbTeRzR8fpNEUy fhvtPHHrDQVJtk0nJx8k/HV43bQ1hoKyXrGvJciQ8dgkm9AUghXPi5i8kyTj 6QF59gfeUlA5r2rWWxEin2oPT6QTfKLDiPRmD6FPySHtjiXii3K8FLWLGO/W YLgXwcamj4pebiPjDbtft/wgmMoXyxXORcR7dneaYBwFWXcV2YSyk3EJO/9F C4JHoxvLn7GQ8aEtXzKeE+x6cWRn8D8SLsH7KrGA4CX+DefAJRKuIvC4qp5g PypfzaN5Et6vPzvfTjDHW3nBh9MkPIyXxNdG8AuLU3d8x0h4Xgdlaw3BuwSu NnoNkfD0pPbqdILf0e9L3usj4WYzf3Y9IFgq7qXPXSoJXzrjNa5DcM7lrHb3 dhJO3xMrxkqwklCN7K0WYjwNs6Q8Ip6K3p7HLt9J+GSfzxlDgrXiF3qcakm4 DVs66yCRn4YrPEoOn0m4n6N6pi3BJiLSoXblhD//3RGjEfml9WMj1ygkfFTh jIEmwVcTL6pbF5Bwk7AXPG+J+Rm3douyzCbhBwI7dIaJ+XMTezZtkU7CL4U9 6hIheHkwWftiMhEve3WSPjHfHDbtC+fekPAs0Yzr94n6CJOYNjB6RdjfGit+ /xUF8Q2zvTd4QcKdnSrfOhL1JGWnYnrqMRHvegcmSNRfjpRRrrYf4f9FO9k+ oj6Vfjuwa3kRXHPhfDhRvyft31LUbxH5L5Zuq3lGxCddxHPMmYSfcRka1SHq 32Ss4brqdcJftuKij8R6sXFc51O8TPhj3jnu9JjoP87WnvtOkfCUi8a87MR6 6w21jC07QcJfSTV1dhDrUy3fAj+tTvBDsmzEPQqa+3uew+Uw4T+zGbX+NgUZ 7D53YEOWhEdvWuvQcaOgTDVDwzBpwn8359xcYv1bP9CLLhAk9NWkVcGRqNdE nfITu0m4vIB5iN11CtpdrdXftp0Y/7bEhocNBbVwgPQiO8Ft7x6ZWVIQFnG4 9OgcK54w0l/MaUSs/yJ5esMkK67LPVzso0/UX4csk+VvVjwk4seZbqLf5e2R 1vWjs+KX1j1un9Ik+l2qQFd1LSsukuzMyaFAQfe/8q+d/8yK//HMES8j+mnH 2C6R358IXvugeG4f0c/kttlvymfFsV3W11VFiH5IIS/pv2XF6cbZgi1cFGRO ZRHoi2TFGW7nyEXsFFSytgGuYaz46NwuOR8WCnLRWHkS8ZgV977uY1W5WIJ6 6qf5Om+y4ibm88wL/SVIZWriqL0jK661xTTnH7UEveIZu7Jsw4r3/+xuGG0r QWdMfr3fY86KCwzr37KvI/a3nk5lKy3C3k3ej2w5JWg3U7vFrDor/krZzFz8 fQm6Lfbjgb8qKx6deuuxaEIJOnC94WuKHCt+oMHQ53N4CYpl4KZju1mJ/bFq Oci9BHmxZnq4TbHgIrbNC2vyJcjljSWb1SgLvlRQdS9LmtjPDu6I1P/FgnPt UqQfFylBehbeBdLdLDgTT/UlMg8xfqHBVG81C94in8EmOlGMiq7OXz0dy4LL H/IrMo0rRulL72dVXrPguts4Jza9LEZvQy/5SUWw4G1xO87GBBUj/7KaOOYg FlzLQf29iXsxMtoe3UVxZ8H9Hn75KK1TjKY/HzOQOP0/exSjXaNFaNB0lr5N mxi/cv3Zc1oRap9KddrAWHBs7PNYb1MRKufnCaYqseB5iVNMPMVF6Nmtgaow MRY87LW1WNyDIiQtGqj6b5kZj+az3a+4pQgJUNTqxv8w46M2OyVl1wsRj/7M ha4ZZpxDp6lndboQLXia3S4cZsalM5rs+FsKUXWLTK5DKzMub8xdfiasEFn7 NUt0pDPjW8vrbhlzFKIL3fHqPcnMeIuQglnvQgHSU3A1G3pHyPd57Dw+XIAU h7aGzL1ixlUsqoZufS5AHLrG89wPCfntL7PzPApQDk/7Z52LzHhC0l5hjJaP ku1TaQYmzLh9/6ef7bX5KPrznb/nzxLyDwUiVAvy0UP3XftsTjLjpdeuTjsE 5SOTTtMwv0PMuIjMpmu2Cvlo9R3V8uMmgjmeH/HzzkOMxUxPnMSMLx2szGix yUNDhl4RXzeY8H5jFe7xM3moiUWgtv0vE44dqDe9K5CHkuwuy84NMOF5XvjF zlu5SFeuf1WmjAl3fSDH8a8xG0VWDEfHOhLPqwQfVclkIkvPGF9lW4KnBcLX RjKQ9OGzNj+uEPb4WYRjkjJQWXrpQY7zhH7qqf82+DJQ78tnte7AhG/drsdv uvoe7XU89EdvJ8EVWLhbcipiSIx0D3Mz4S1FLocCz6eij30xyG8TE25Y6pM7 w5aKXmdy7LrxbwP1K/hF4ddTUL9fzgmtHxsowdhSBxNNRm6yK+/mvDaQCOX5 njG3BERKvuYofWsDGW6nH5rkT0BRuxuPWNoR8klFI85+8egTa0LDN0PC3mBa qirvO0SinlxJkCT0Wc0PHpR9i6ICw8+fbV5HmPRu8cWdkaisT5orS2wdMY2S bct6fZH3MebsmN3ryC+Rq8/6uRc6/qZbP5ib4JmjBzWUPBFu/PSF3co/5Mfw rI24ewt9rZnYLvrjH2JaY1dNeqKP2j7k8Ec9JJ6fvHojatETpj0U9/r1ryE/ p0JBM0ok5LVx1bl0rCGmXTmjh8qj4NahYfvLDWsI+1bjl/DlNfwZj8xUKyVY aOE8tL2B1cuLsn9frKGEcF3+N5zvgEOrTNER1lBLy4T+/qvJIL4V0zR5t4oY +T/fVlCyIFR+4L7jy1WUMKHzSN46G5YM/Qv9glYRU/tfhzebc6AhvFoi220V tZyt49a/lgu3d5xiZ9NZRXVWwhkCPPlQu8u4gTKzgqy6uCrW+wvBUdDmwh6N FeTZNf4J6/sIBTJBjoO/ltClqh81n6OqQLjV6uP+7iUU1LIYc6SpCkI8VDnu NC0hlaOD/7WTq8G2ejyV/eMSut2bOP/qTjXsttQfOBC6hEySjl3mMK0Bn/Dt Zh4qS8jbpyJbWfQr6C7FnuR6vojajJjvzjbWQ19NvoiS0gKC4eIdMQdawfvc spbKgQVk9y30O9Jthd0DmIOa2AIK/170r8+mFQzXmvPVuRfQleHDP7fEtQKu MK2pM/IXfdB0F9u25QckxMvYmkX9RXOM95GaEz/g6r3kjPsLf1Dd0TekkNg2 WGebaPSe/IMm5c5fWy1pg5hXCnO+g3/QFmvJkXOtbfAj97Pao6Y/yGr1Hnsl uR1OjPR9f5b2B+md++Rmd6MdJM4JTMde+IP+pb3sD1DugOEDkQqoZB75bKgP dxd0goxv6vToh3n0TlEn9OD3TnBpLs7cnjiPkk0Mj5r86oSlWx1ids/m0TLD qIB9RxdwUvh2bLGaRw4bSXksrl0grxEzb75pHunFVPulC3fDnYjM3ID1OeIc yUOOVuyGsl9lTjnzc2iKZ0Th9KluOBFI+8XcO4de24hTl291w4XvAm3pBXPE uan6uy3eDV7n44sWLOZQxK0HzaOGVMDTcl1FjOZQuI+uUo01FUhL6ICe9hx6 ePLKYQs3KoTG9KfEyc+hGK+29PwIKiT0iUZqkeeQx++itaVmKgzLKxi5rMwi RwWHgIheKsj4a26JnplFPCK/dAcmqVAoce3xRPcs+v7yZUAsBw1qHVLuROTM IlvTooPex2iw+VPRofLkWTS5OLCQr0sDQ66aqeHoWaQUtCH/xoQG3TnDtqqP ZpGmarrOfScaCDEtiF7znEWvjJzOut+lwVUjtt6QG7Po5lSciMBDGkzOS13o N51Fn/ziIrwiaSB/Unk7p/4sYjOtcT8UT4M7UTpNhzVnkViJSHxkOg3WVey1 nxyYRSIpmu7Xy2iwzTdDSY55FrG0rJOlqTQILJGu27rIQOZjkRot/TRYmX5/ cX6SgbolvGQO/qbB4JU079IuBjoWHSy3dZ4GF6Ilud82MVDlY7+h8CUa1Lek xPtUM5BQ93Wfb/9oUKCR/EUzj4FGHuSmXWSng9R9MRPJNAbaOSQxlL+ZDjEF icPssQzU9qjMEvHQgXtCxGM8nIGGUurmHu6gg794AkfjEwZx71z3Xd5FhwUL 4ZhcHwaydLYZkvyPDo6v3u2PcGegMzaWbOyCdOhtEKy47cBAuh+z62OF6WBM jjMwvcJAtSLu/L9F6VB7XKBf9Tzhj518z7A4HdTuvr0lcJqBfFnqWd5I0iEn 5z/WDYyQfxh0j2kvHcR+v3k1oMRAds38hwWk6RAlzC9VfYCBVs5GiE8SzGkW TUkTY6Cszhsarvvo4BvGdyp4NwPNeoQ9Tid4vi6K6sTNQMaSOhOvCL7OvMvZ gMRAvEd0XY8QXOIus2r9ZwYNFBTufErYezckLbS3fwZJhO6gRRDjB57fqzH5 fQa5x1vUnZWig0utpE0+ZQaFPx77hUvQ4YKyxJO7yTPopXmA8ogYHdTTxTKP vphBmdilZiRCh738oo1MXjNo+9dNZfpCdNj6VJhRYzeDpqWec4TtocPSiuCO Z8YzyMBMvylwNx36nQSUDNVnkN3GLlEFXjrU0f+7yCszg6QV9vBHbKNDnj6/ N5V3Bhnumm5J20KH6Eq++HjmGSRk9tjWdRMd7BN2Du/rnkY5a0UpYkx0MNy2 g2Omeho1Wm+N3LxKAxX/bfuL8qbRJbaCqYy/NNhkw31LPWgaKQyJ+LCP02Cu jesV6+1plIE7c339RQPqyc2UuivTqKZ5oehYDw0y93L8M1aeRtzxEgKnm2kQ Ec0mslt8Gml7Z58c+kqD+5vIJ3q4p5HNGRVLRZwGehPMwddHppDAlb96K7k0 mMhZ3ekdOYWOJXTzSoTQoE14RVnj4RSSpV7J9PKnQXnYkjnbjSmkdNpdK8ST BiFufxPCtKaQ7dUXFd3XaHBAaeZA6vwk4ikMS5NTpoGd3IMHH3sm0X+vrL9d kKFBvBTPj8avk4j6GeXLCdJgO99Bj4W3k8hOPyR3hpkGi4sun3W0JtHTZumV qq9UkGes77gkN4mGnedaPEqp4Dgaaue6exL5aVY69KVTgd6Vs/nN5ARaqVbl aQiiwpeP0+fHX02gA4Mp0zInqbCW75u+7juBpF78FxxymApHMrlXtztMIL6R iz5polRIj5FLOHp8ArF7Lo2S/3XDcy+X8ZDhcZT2eeNuQF43mB2f9j2oNI5K dM+v7djcDRFHfFtPiIyjWO0dTKf+dsF3WW4JM85x5DvydYtGXxeoC8l98+sd Qwma/gd8CrpAfOPGjh+BY0juMzeH2oUumMan3t/uHEXtlu/fu7zshEdaUy0f PX+jnZupnMrj7fBFd/Ks4rXfKI7pV2V9Uzsw6U805ej/RrVYXfHRwnbwPj/W kCz2G1l+CfUu9WqHu3bDdc8bRpBAQ2KvwuZ2sA/qwa1FRtDAt/GVdok2ONPQ mLepbgjt1Xmku0f3B/Ca5IRd5BtE13I6JLdONUCB1LOyk6yDiMcj7va1ogYw XL4+dGhmAD0QoZz66tUAT9+JqnB+HUBVh6rEqzkbYH30VV/Z3QH0c/LzjQ/7 vsOIj5ecQEc/Op758wjD6Ru4nA2PrtjXh/LvHG4aZK+F9D96k5HMfeiqTM6F vh81MPiGhLl096JtYnpnyO9q4MKQx2+h4F7EsWeVu0WxBuCepZLfaA+6/yXj pptNNWxN3t+m+Z6OFq/F9d5s+AIFCzU8dRJU1J7kGi8ciCA0M+mL+nI3+jbx gqdeBIGT5YM7xY3dqOK1wYV/nypBolaFlnS3Gx3ZZuDL8qcCoiI/pPnUdSFm ln8tSY7lcF8x/Phh506kyhRnu8n9I1wYvcHIwDpRzuedbgW7PsLhWL1kEd5O dHVtf+pcWSlMspI2cVd2oPiMHb5HyaVg+fNu2yhPBzpRtM7LmlgCmm6XnN4V tqFPFIru+t9CEJJSFeINakMvBZfznJILYbWbt/XZpTbEfU/uyX2jQijSaFa6 R25DyVOZr3xzC0BqmyaLielPVKFzX0LOPR848/a+2bTaiqLCYi+JHs6BVNrw 87GAJnTK8XYFU30qUL13xccdbkJ2LW/55i6kAreQTp7RYCOxHvb1bx1OgbtW 6T8+QiPSG7LZ00VKAe1hR76nK9/RRs3G0SjjJBidnkmQcf2GPo22DogavAOB MJGCXqFvSPE3z6aV53FgeMioKqKxDl1TWKk60hILpe4FwysydQi0TwZ1W7yF 4KXbMt+Ha9H7kuP+9BfRIMOyUuhkUY0MnJ6X7nJ6CZbJMjXCnNVI0rlAzLA1 AiK0LDp+llah053lI7OqEbASWL50dFcV4mvW0r25PRy+b35wnKv1M3JT+riR hT8HpuxcA/zBZ8SS0leYWxgCigb9V27LEc2DTar98YdnEBum4U9/hiP/1oM3 sjOCoUuGI/Ti80p0j+1PKKPvMWA3HPI+j1egEGPPa5HLAZCeW/9jn24FUqS2 2PPsDoB7is/5VljKUYBKfPaja/7wn/r2xBjPj+hsXI7eoL0v+Pu5V7F0lKKn n/sVn4x5w8SXtmHHw6XI4qllQpe7F5TrvJY5Ol2CWn4d//gw1RMuGwkU0a4V oUC7XutZb3fi/PFX9U51IaJYaPONGbqBd1Qz4pYsRGseX/jl5G5BLM3/u8ZI PjqrIFKJbXKBA76XjGja+cjwbnDE21Un+CSi1Hn7fR4ymj0YH87kCEXff9Sc bc1BObz/Os5q2kHb1sBW/4hslO8HR3Y/sIH586o9xeeykNhXZwXvpqug0B// Z09HBtq8Up0ip3cFjCTPMZ19nY5KAtf2xpldAldHNi5/s/dod5mQ7YmQi5D7 x1l8lJqCbpZevqJ8zQSaVEUO7olNRjIxm9QfsxnDtO9PNYPLSSjh2hfFXe/O wpbqQO2HQoloVxDHevi902C2/XaKPYpHeNzxMZ94HXgdS/3UpBGHQjpMSFQe LeiQ0vipWB2D9spfME+rx2Bn/vvxGO1odKU07ndN/FE4d5SbhflbJBr465oj DEoQUXOb//rpl6jcMGe7ufshaDlLk29sDENkF1WlcU8ZECp6FGaXEIJqrQqi BxTF4W2dIVJIfYLeRd9MVTzyH+zuEZxez/BHUfChWdpkK+z/1a4addkLxUi2 XIfnzCDF5fpa7votdEdIKb7eZlLdr026bU/VZfTRoouj5Eu1+gGeHkeyrBZ4 5Krt/7bzpXrHrH/81iV7aBhxGHNQ7VFnnN07d9PtLozunf/s/G5R3euldr2T oh+QHPj+ab3jgHXfe2/jDz4GzeLMJwc4ecHPMcv5p8xT0JeNTrnEJQKsF/qO s0u9gGKH35Y2FVJQJRL8JG5rBJjf2eMiGy0HAVFirsqhr+CS7aVhi6bDoM1V bta6+TV8IZUXPRxWAXb/8xpOwW9g5f1OwaBwdahbnN5HZo8FM0pssLKDJjy9 EbQ9PuAdvED/ae1pOwlps2E+Ag8T4KrhCcWbwafg+nUZu5L1JLDpM8ALxwxB V8zD/NHxFPCIXqaTFc+BdE+VgaF3Klww+2/2RfJ5GDe+rDy+/B6C0z9Wn54z h/otmfspKhkwKUC54tN6GT7ULQgHeGRCtjNmMu9oBc7qYRxCf7PA4J/i+MH3 10B/mb42TvSxSc/KMmVrW5Ar2jdLccuFG6GfhGmy12Hp1cCk9FIeyFt7nPqz 7ggfOb3av9wphP2vy28q4bcgQZb3Z65YESSqupyQYnaHQMPcltjmIvCV5Yzi 0L8NJlG/vt/dVwJeWu0HUsgewBA980WmpxSSxc4/Uljxhk6tEcT39CN8W2ir yY/whcrrfhUk5TLQ21JK2rbHD55lF5X2hn2CG0Wn1MebHoKUqmBuhFYl6NzV 5T3m+Ri4LlGyHsxWgjrfHrOjroEw72uU6fwOgXi4YVH+jSdgNfjFWNwbB87P fFUs94JBTnpR/1/7Z3BhGX8t1/ocvhVe0coProZ9cxFqeVUv4VjNgaq9/dVA r7P1PO/0CvI6ljXeKdWAzXnOY4W8kRC1/BKe/aqBpWm+/a/dosAG6tRsj38F n4XtxYtn3sBGvfwh/tlvxDnX/17to3hwo//LfaFTD+PrPndt9ifAyFS9HNu7 evB7vS9HPSoBGrbaHpjX+w6Yo/ns2s1EiLnwZm9jSgNc5rwsEH04GY4MMgs9 NGuGw2bvvZZX0kCuzHRWPqMZTGIeDl269R6kIrKr+5ebIXCQ+vj36HvYnJh1 JEG/Ba5wrre50tJhzdCMvjHdAr/NTLJ0mjKhJy93Hzr0A76v/S18O54D8a6W 1ccpbVAYY3x1aK0QYi9tyonsa4O579uKSXpFEK1b9HqKvR04pV4X57wugjAR Tqc4s3ZwkI6cjVMsBr+W4m3/ltuB7TCrGP12CVjLb7lSfqwTWFSv77Tl/gji jE/Lal+Ie7HV5De/xErwbjwR8GeqG8QW9+9+w4agI/M7dw4/FdgjpAqOOiN4 aksTF71FBa7cgNrnAjgwqCv67CI0kGx8E/FyEofKGtWknz50yC+Kwwujv4D5 W4qes2of7HP+fCRJoBZOJXc3GpgNAnfT5VM/UxqB8TjHrubGIOzmSCzLGGiE aPtHG0cfDYK8W77jc6EmGJWVPbQvZxCoptHdHtFNEFTq94qV9AuWvc4kU0Ka oa5xr0Vp7i9QLUrZM1rWAjpLd0ZF2YeBzPz4TmbCD5im6j2MFhgGcwXOmrzK HxBVIfwfj8IwKKlfqU6n/4AR/2+n1y4Ng8VPwTnH3T8hcItgbkfBMPAn8lSK v/gJtWLVd55ZjgDLnHDEF882OKm/nfVv8W9wST7R6aHcAaHWm2aXv/2Gdnmh u56GHdB1h6lvvec3KPFn0k0dOsDx3XQZB9soCPbQn+XFEPIz9W4CF0ZhtTL0 dOkqIR/+aPDEwihscWLmeVPSCaJp91t0Ocegg0eHfLyxExzLblXqC42BNGvC jpJfnbA2eCXGVHsMDsvhApJbu0BU8ZixU9QYWKFc/xG7LnDs+PM5QmkcclQq Be8S5+/C8Ync13rjICX010hKuBvW1gfjYi3H4W/cjSdJCt0Qurf1XlrgOFzv dG1ZMyPkPbMPlXWMQ67y/FaZZEI+JEUYjY+D6SZ13/3F3aCd+HZL9fo4fJLl QX9qu6HrW/BYo9QE3Jp58Ik+Rsj/Z5c4cHcC/JsLJv4coMLJg5dfjDydgCjJ YJW9x6kQesLEZ+LdBJzhqvAW1KeCqLPmxb+1EyD49vJuE2cqaFcIbdvENwmd xDbT854KL650+slTJoHjkACFaQcNAiePwUjDJDj+1S3XIurO917Sv7eDk/DA oM1eTZYGLi9v3GfnnoItvK0MFW3iPiXyU6VCfApyPyrNYMY0sMxWWXRTnYKM tDnq0mUaGHxlvd1rMwUWb9p67t6mgbaJg8Kr+1NAOvZE9tgDGqgPNDFOhU2B OFBoucE0kFt9c6P40xSseV3+lRBHA+6D8tdDtk/Dl7fOcgmfacBWHimpKT0N dyrlp5q+0WBdd/XX4vFp+DG5+U5GKw2mr9ZaXXOYhqxErNGqnwYjM/uF+R9M w24DfM/x3zTo9Q7vaXo1DZhV1sHqKRo0RV0yV8On4Z9FfE3rMg1qxb/sZrRP gxJVq9d0gwaVeXs7UyemIeDQ27EnJOL+f/x5pAXzDEjfLC6zJu7POfVz57bx zcCzB1/3DhP36zRTs+1fD8yAPPs+zu3b//d+oKLFW3MGrjKZqY8S9/OoW+Iv FMxm4LrgavJ1fjqErgfpj96YgZrpX4JhAnQIfDa9+d0jQr5xa4S1MB18d5vU n3szA5pBOWM0UTrcTf0YtCl3BoLb+bdtiNPBRUFYB1XPwI/A/sV6STrYoQDy HeoMmPt9CYO9dLA8M14lw5iBw+4FrZek6fBhcq8Gg4UBIuYdhWL76LC30Fzk +xYGqHx8cjic4OR7zzdSdzNAPuGc4f/ehwhjeK+fOAM0b65w2RP8lm2+wkKO Ab8sb95sIezxNUrGKakygFTf6TdAjPfypZn3Ni0GGB99qv9Wig485s8sJg0Y cPH4luF/EnR4JlKp9vUiA3KmeM03Ef6z/2bwJ9kwwO1c4JcKETo8yhZf9r7J AIN7Tsp7hOiw4X6hy/Q+Yf/0apvoHjp4qQVTFB4zQFk5oqyVjw6LTOVRW8IY cCQyj3P/Tjq4f52+MxrDgMjmxXHZrXSYeS56viqVAXXn9gZQN9Ph939Pdtz7 xICljcqXh1jocG3g49y5WgZUnBJ0oq/RoO/9ZKtcKxGvg27FoUUadCoahw2N MKD+xNNi+jgNzq0G3ESzDHD9j9GmMESD5s8Ug5g1BtwNoFgr9tDgq4HgFsPt s2DY0tmh1kSDnXIDu9wEZqF3zK+qvpYGVltSRV5JzYKcguDCNkSDle8HFLvU ZiFdhl3haw4NDpw6ZmF1bRYuXT8R3/aUBp7STLb+N2bh3748bamHNKhhr3ZJ 8ZgFk1KNO4c8iPVWe9p/9NksRMqS8+5cpUHYCYsM16JZMPe4QUZHaEAXEy6M qJyFIfsJbGQfDfax/CovqpsFPare12+CNPiCO7Ys0WdBJH5S7SuJBn+P31/0 I8+B88l9zWnNVDBXeXMy/MIcaAoOj164SIU0vstnC63mwNfp48Hbp6gwvyBy sd1xDrZ+LU00UaVCSHG6M/+DOXBPvbVgtZsKSKH0ZeL7OTj+eUyt+Gc3SMh2 DuQvzcG3cRNZBN0wJcrr+yNmHmI67yXJzHaCilfirc8p89CBvGwlaZ3g3yZr m5czD8/mJKIXqjth1xPtM6Ff5iFD0CRMKLoT1Cc9/tMbnwfmJzsrXhH77osS asln1T8g3sAaEuPbAYdOJ8zkdf2BAvuBu3wTbXDn9n7rF7sW4MDxswl5j1uh k77V2K5uCS65NClaSFaD3jPbrts/lmAyvusN12wVlKuWWT6iL0HY82uyQ+VV kBB1zSmBsQR0lJvAfr4K7A1LAqi7l4Fp4FDw/idfYKXKgmLgsAwpX0PVYR4H gQ9pAsqcKxA2tecrvfsThF5cTTq5cwX619NiFbw/AROH4T4ToRWwvx9pMyb0 CYZslo/cUlgBw9xTTl62ZZAtdObsB/MVSOgIXDm6WArqEbMPhT+sQDq7wvg9 2RKwunfsN/uZVbCaejSWNJIHMjZ17dMXVoGjlsuaHpoH8wYm1e3Wq9CixmsR ppwHgRLOickeqyC/qUS5ZWcuZDW/tYDkVWCqusGZ55QFy5KrzXdXVsH1hXq8 m857iPjxsXQ4fQ2YkmuPfnV6C5cqTr5vKFwDzHxgT9ypGJBMb40srFwDv9s1 7Yb73kCpz5jbw7Y1sNrgmtSfjoJeaX5ZQaZ/0H/aLPFhaATIPPBMNDH9B5id REuifgBU7Vd+WkVeBybhi9pOuneQ5UGT5FkegrGQrr05nmhJ4Va58H/r4Jc+ 92xhizc6oPZh2ktuHTB1rc6Zyw/RK13hc4qm64AP6R8vH32C7GzZBVLTCfns v5l71SIQk4PEkZ8F6yCypKUSsBaBYpw1DJgr1qE/yDjdq+IlanL38rvcSnB3 LofG0Uik7D8zxLtCjF99lvWsVDTiiO/MDjy9ASKHNmprPsWhpKQ/tUXnNwBj /PfI3/4dOpa2rX/wygbgvw5undsRj1yzT2+H2xvAuNFB9zicgLo/obuLsRvQ kibAX+ebiDK73oP99AYwhSocu7KYjKQ2lY+m6DJhfld4jVrupKO5r3KOSfpM WMJb6+SnlHRUGZg4EW/MhPW/bHtUvpSOLpCeTMdcIp5z7mwNvpeBHm8Y/Qlz ZcLCFiY/9d7OREN/f294RxPPKXNt24h7d16R+cP7cUyYofCFyZiQLOTt3sji mcSEYZt/LKTVZKGdswVk9yxCvmI4X08pG52Y9NnsgDNheGalZtu2HJQ0uIPv /CghPzzj+LQgF7kkBkYbTzFh8t3oe+RQLlKzWuY3nCPkNa1f8G3OQz96egVO rzFhXQdJkuzH8hBzd4aYxlZmDLu1N1f3bR6yagY5WRVmjCPNdOXd2XwkWO50 khzEjIm07uTuDC9AO/lXVlyeM2NMGvlnJ1MLENfdoLyuCGZMl2F0v/5jAVo7 mLonK44Z64os5/nVX4Coyb2zxoXMmN/jppoXBwpR1DOjdwm9zFjLi0IlmbJC FDrad45ziBlLsOArWKkvRI9Pumy6PcaMMZZPL7yhFaLbG09v6/wh7D3fqqG9 VoiM3av1pjexYEvZQXFXjhYhbgvlxaNHWLC6fBJ1IK8IsZXWZKWqsWAtvn3/ 1VUWoX87Ta7yYCyY/a7Xof4NRWiyybVxUI8Fs2pcNrvzuwjVa2YmB1uxYPLH be0t9hSjJzKChp3PWLAhvxL7m17FyPfJB7JGOKH/jPq2MrAY3R1S/ZQZxYK5 tlsujIQXI7t3F6R8E1mw6qF2g+r3xUhre9iaBIUFW5vMyP/YWoyYVlgy3AZZ sIatO6aahEqQ1a/u+Qe/WbB+n29CantLEN6Qp/58kgVzTrO69uRgCfKLt2x7 v8CCMQRCWL9BCdrQKtugc7Jifphm0rRlCbKUC9cb52HF6Mz5N13tSlAln33k 4k5WjBRvTuq4UYJ8x3n3bxdmxfLe+5jqe5eg9Re3LugcZsX++Glbzb0m9O/p JpqosGKXXnNIRr8j9K8KT1ofZ8XKp0SNxFMJ/SOND711WDGRoccZ4/kl6B9V OjvfghWr3iPfqllfgtYk+1kFAgh/mEh5JxZK0CUeisG+YFZMQh1bvbBagsqX nr9RCmXFJuMyC42ZKMj7+9GDRtGsGB6pJE7ipKBV19fmgVmsmHebw8w5AQoy N3dJfZnPigl8sYjOFaGgshMnGQklrNjOOHfevxIUdH/X/ONPOOGf/zE1dVkK WvlkkM9oI/zh7hloPEbop0qu/etmxUoDYge8MUI/dE17cx8rFhJawMmnRUH3 rDPpkmOEf/2mvltOU9ASGxuHxT9WTPrq76vsZhRkxqAb27OQsCGhOKmdFhRU 2l0Yd4edhJlll5lusaQgzyzrw2HbSFgY/8n4mmsUtGhUYVkjScJcpVaZjF0o yL87t0d9PwnTbTGSXXH93/eUSZdK5UlYUalHfYg7BUm5PjH/cJSEaSkX7HTz pKCCxXvdEhokrE4gV7jmPgUdf+Bs9k6bhHFRz5iy+lCQSajRhXAjEvZnIpSk +ZCC+nm12jlNSVgek1u75iMKcopTMgm4RMLO2N0OPvi/77ey9hh7XCdhng8q 9BuDiPEVuVsZziTMey69xPcpBb35xGTo6EbCVA6sFwqEUFBe/bD+ZR8SxgjP 5hd+QUHHjLsaOvxJWNC0aNejMAr62l1/2jCIiM/+SGd7OAUZW1fUf3tOxJMg q8H7koJ6R3NPnXhJwlr0mDHNVxTk6JpUVx5NwhJSzf5diqSgv4uvdJTekTCJ v8+TbKMoiIv9/sl9GUR+XTx1NaIpKDrUuToph4TZeFjF7HxDQeK7rpwQKCLs iTy/20FwTpzRl8iPhD/t3aQnMRSkJqmlwYNIWHVbh7PUWwqqzVLCg6pJmHTG t/Yigo0V9wFLPeFvfLadQizh36c9lV7NJCzgmKJ2PMEOJ7iP/20jYekFNTGr BP+pZyp3oZIwQ9OHT//3PaGf8bzaaB+RTz71o48I5qIOf7QeJvIz8fRHDsHR 1l0qtHFi/g1y7/zv+0aJsXqKCYOEYVkfTnUQnOtaodT0l5j/blX3HwSrLeUW 66ySsJRHjbsQwbUPkhQ/M5Exv9RXZrEEG7NHFqqxkTGBRY9LjgT3hD5RKNpM xuyt9mjvI9h+1/182W1kbMihV6X7f/7GOcu/30XGTLLppvcJ9pO8kisiQOhr T9dwEbw520guRpSMeWLpqWFEPqIUtbJ37CVj3psu87MRLFaudOD5AUK+R+DE DSKfOSf2fWBTIGMSR0q0aol8q37fI+OnTMbqlEpgG8HVxtwZy8fIGEnE4bwB MV+GVCZpd00yxiiipvm8piC69XzapA4Zq/7QYRJPzO/1sWFJO30ydoB/7EEh Mf++S/XiF83IWCmbdlMhUS+cfhVJPy6TMWl9l0MJERQUyZ4neuYaGQtxcgh/ QNRX1q5IYXAhY2v1E9V8RD3SFK/skQwg9E2szfKDKchu+QjP42AylvCsYBmI +mZUcLEOh5IxPIq28iWQgkg6ZeMpb4h41TeHpBHrQ+4ib5lELhnLIgePjXgT 61lwMjugiIy1tVc+3eNFQZqDXxKHPpIx5y28tifvUZCpk2twSjUZK6KOyt67 Q+TX57uZBJXw98ujwWs3CP81k84E9JGxBk9vkZNOhP9s97ChITIW1MFmI+BA QZkvpKRTZsiYypkrltk2FPQz8eGiOJkNi2YP+mpB9BOpWuUocXk2rJTEsmVD m1h/T7mfPjrChpk9EG0+TfQntbPDPr/U2LAUu/7NYRoUdLYrwjb5JBsWFG56 ZuMo0X/GpxTFLdiwtdUADS95CvrOnfJTLJAN+6M7dWSVj4JcTbduE6OzYXVF ka0pAyXoavrBGMkBNsy7b8BSu7cEnV82EN83woYZnnoeO0gtQWpvnx+RZ7Bh DCdOq81tJYjcx2muTmLH6q4ffCRcW4Ji7MjJ5gfYsdHMR1WXM0pQ9Z0VxZfe 7JiuOL9XsHMJ4n81ZEYS5MD8jsr0cY8WoxyLhPfznpswM0PnY80ZRcj0+APd ugpO7HZYR4v/rUKUb3lDTG1tM2a+1jtoplGAljhPsH48vwVbENktkcuaj4xb jyoJRnNjdZ6JL2I6cxHn0c2fy+O4MUMvvHBvUy76nEI9fSmZG3PW/5lLqc5F 8p73rN/mcGMpjV8V+vNzEbcwJYS/hhuT9ovzOBeSi745K/zinePGvMvuh1Rp 5CKMY18Y9xkeLGtP6NPGnBy0dGvpvxwjHqz0s1dDSWoOyqV9TdU35cFUvI4u JMXmIKFcu08hxImBbq/EEvA0B62dTxnhvEfIezxhcbDLQZRk4ePsaTyYmXxE Y6VQDnLZMvM17QMPNiQZl9LBm4OkPCqNtfN5MN17InazXDnold5l+8flPNjo u5b0g6vZyG025iXrT8Ke6Jpsc2c2krFwFEru4sGkA1jN15uy0UC1aoZmLyFf +slVvjYbGUZ3VT4c48FajPZaxhVlIw6W9FOiMzyYfGCdYteHbIScPNrwPzxY udrCX97kbHS3XfuK1QoP1jCakHghJhv9v/+TYP///yT/B1D2vaY= "]]}, "Charting`Private`Tag#2"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{-4, 4}, {-0.40296372132993685`, 0.4400426201190149}}, "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Epilog->{PointSize -> Medium, RGBColor[1, 0, 0], PointBox[ NCache[{{0, 0}, {0, 0}, { Root[-12 + #^4& , 1, 0], Root[-12 + #^4& , 1, 0]^3/(4 + Root[-12 + #^4& , 1, 0]^4)}, { Root[-12 + #^4& , 2, 0], Root[-12 + #^4& , 2, 0]^3/(4 + Root[-12 + #^4& , 2, 0]^4)}}, {{0, 0}, {0, 0}, {-1.8612097182041991`, -0.4029637244338283}, {1.8612097182041991`, 0.4029637244338283}}]]}, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{Automatic, Automatic}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-4, 4}, {-0.40296372132993685`, 0.4400426201190149}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.9278848991605997`*^9, 3.927884906065737*^9}, 3.927884997536584*^9, {3.9278850559339743`*^9, 3.927885075260625*^9}, { 3.9278852382541447`*^9, 3.9278852494819393`*^9}, 3.927885283879519*^9, { 3.927885432368437*^9, 3.927885459799293*^9}, {3.927885553083407*^9, 3.927885586401409*^9}, {3.927885637737155*^9, 3.927885673049774*^9}, 3.927885726044199*^9, {3.927885809461874*^9, 3.9278858526436577`*^9}, { 3.927885883911813*^9, 3.927885922121826*^9}, 3.927886172858591*^9}, CellLabel-> "Out[274]=",ExpressionUUID->"9686e4db-4c11-4cce-962d-a8098a6db000"] }, Open ]], Cell[BoxData["\[IndentingNewLine]"], "Input", CellChangeTimes->{{3.927884214317834*^9, 3.927884242034664*^9}, 3.927884319176897*^9},ExpressionUUID->"4b0e817d-0456-4464-9d3e-\ 9eec51784993"], Cell[BoxData[""], "Input", CellChangeTimes->{{3.927884322401353*^9, 3.927884323330668*^9}},ExpressionUUID->"ac365fe7-38e3-4bc1-a47e-\ 5c2aa98f95ca"], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.9278833015299788`*^9, 3.927883301758944*^9}},ExpressionUUID->"e37273da-c636-4fc7-96fc-\ 2868675114b0"] }, Open ]] }, Open ]] }, WindowSize->{658.5, 718.5}, WindowMargins->{{Automatic, -1425}, {Automatic, 0}}, FrontEndVersion->"13.3 for Linux x86 (64-bit) (July 24, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"75d25fc7-d9af-46c7-ac86-3a5dd2191ecb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 219, 3, 29, "Input",ExpressionUUID->"1e6115ea-cb4c-429c-be4f-790d4d1d31c1"], Cell[CellGroupData[{ Cell[802, 27, 305, 4, 117, "Chapter",ExpressionUUID->"d64facf9-cde0-44d8-9a21-ec4ca1aa32c4"], Cell[CellGroupData[{ Cell[1132, 35, 159, 3, 54, "Subsection",ExpressionUUID->"81f65acf-4ce5-4bdd-a26f-c212e099ea35"], Cell[1294, 40, 3407, 80, 109, "Text",ExpressionUUID->"dca6c4bb-3fc0-4683-9406-d7b66e69e308"], Cell[4704, 122, 359, 11, 35, "Text",ExpressionUUID->"1396b715-7b91-43f6-922e-830a151d4cc1"], Cell[5066, 135, 637, 17, 70, "Input",ExpressionUUID->"4f41e38a-00f1-4efb-b1fe-1ff3103fd6dd"], Cell[CellGroupData[{ Cell[5728, 156, 1823, 42, 110, "Input",ExpressionUUID->"fce30fe7-704b-45c4-87c3-b35e71e3adc3"], Cell[7554, 200, 326, 7, 33, "Output",ExpressionUUID->"c70907a7-4a2a-4b41-bd5a-73fe961d93e6"], Cell[7883, 209, 274, 5, 33, "Output",ExpressionUUID->"16df33bb-0f8a-4eef-85cd-842c1d09d18f"] }, Open ]], Cell[CellGroupData[{ Cell[8194, 219, 1931, 48, 110, "Input",ExpressionUUID->"c537b951-680c-40b3-9c9f-380e4281902d"], Cell[10128, 269, 596, 9, 33, "Output",ExpressionUUID->"b6f66317-8fad-4cab-940e-749629196b70"], Cell[10727, 280, 545, 7, 33, "Output",ExpressionUUID->"69bedfcd-5f71-43e6-9b4c-09cca4257997"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[11321, 293, 160, 3, 54, "Subsection",ExpressionUUID->"2edcc4ce-8d47-43a9-bbf6-269b44ac30a8"], Cell[11484, 298, 2388, 56, 101, "Text",ExpressionUUID->"5ff27437-36cf-42e7-914e-89e95677612e"], Cell[13875, 356, 441, 11, 35, "Text",ExpressionUUID->"1b9b1820-c35d-47fa-ae7b-539fd320cdba"], Cell[CellGroupData[{ Cell[14341, 371, 197, 3, 29, "Input",ExpressionUUID->"78c09c75-74e0-44c1-b81c-0602d4d00eb3"], Cell[14541, 376, 15809, 348, 190, "Output",ExpressionUUID->"a25f538d-0c3a-412b-a95f-b4358924d038"] }, Open ]], Cell[CellGroupData[{ Cell[30387, 729, 765, 19, 70, "Input",ExpressionUUID->"a42eb3a0-e348-4822-9253-7145ccee54ef"], Cell[31155, 750, 593, 14, 50, "Output",ExpressionUUID->"f69a97e0-6bf1-4e84-826e-c4468d098180"] }, Open ]], Cell[CellGroupData[{ Cell[31785, 769, 786, 21, 90, "Input",ExpressionUUID->"4a41775d-8cc0-49ec-a08b-3536b2c31ba8"], Cell[32574, 792, 521, 13, 50, "Output",ExpressionUUID->"c93bd81c-c354-4801-913f-7924087a35f2"] }, Open ]], Cell[CellGroupData[{ Cell[33132, 810, 965, 20, 50, "Input",ExpressionUUID->"a1981f7b-aeaf-4b99-9144-416e59729397"], Cell[34100, 832, 827, 19, 35, "Output",ExpressionUUID->"488ab7b2-ce74-40f7-a7a9-72f97cf708f5"] }, Open ]], Cell[CellGroupData[{ Cell[34964, 856, 1724, 43, 154, "Input",ExpressionUUID->"a5aa390c-e437-4ee1-bc54-adb8a95967c1"], Cell[36691, 901, 42860, 813, 253, "Output",ExpressionUUID->"b209c5ba-2a97-439e-951e-4f55d6635f1b"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[79600, 1720, 157, 3, 54, "Subsection",ExpressionUUID->"43cba288-ba28-4e34-a72b-8a11b306f21a"], Cell[79760, 1725, 2152, 55, 231, "Text",ExpressionUUID->"be039d1d-af75-4238-a10b-1d9e1eb4177e"], Cell[81915, 1782, 341, 10, 35, "Text",ExpressionUUID->"d576638a-d62a-44a4-9eed-91475c41dd95"], Cell[CellGroupData[{ Cell[82281, 1796, 1110, 31, 90, "Input",ExpressionUUID->"06cfa839-0f15-4da3-a03b-b4c83a03a61e"], Cell[83394, 1829, 1281, 21, 114, "Output",ExpressionUUID->"1c2c5535-700d-40ad-bd20-a34cea8c6350"], Cell[84678, 1852, 1291, 22, 114, "Output",ExpressionUUID->"6f25c7d7-8b0e-4ba9-905e-ab27f452cdbf"] }, Open ]], Cell[CellGroupData[{ Cell[86006, 1879, 398, 9, 50, "Input",ExpressionUUID->"b2e99fe6-dedc-4c1a-bafc-e2a75cefa3ad"], Cell[86407, 1890, 1422, 23, 154, "Output",ExpressionUUID->"d6797216-b61c-419c-b782-d4afab3b4343"] }, Open ]], Cell[CellGroupData[{ Cell[87866, 1918, 652, 14, 72, "Input",ExpressionUUID->"70216854-6053-48de-b223-5f76d104cffb"], Cell[88521, 1934, 9469, 215, 235, "Output",ExpressionUUID->"4e0440be-bd26-44ba-a534-8c954344bc12"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[98039, 2155, 213, 4, 54, "Subsection",ExpressionUUID->"8c4f473a-1422-457a-9abc-01d6455c0083"], Cell[98255, 2161, 853, 21, 120, "Text",ExpressionUUID->"eec1f6e5-df75-4341-8880-d804f815ce28"], Cell[CellGroupData[{ Cell[99133, 2186, 1210, 25, 70, "Input",ExpressionUUID->"294e9a44-5167-439a-b0f4-44b4f945403f"], Cell[100346, 2213, 177, 3, 33, "Output",ExpressionUUID->"33e593d3-55f1-488d-9880-f836e9c921f4"] }, Open ]], Cell[CellGroupData[{ Cell[100560, 2221, 2554, 64, 232, "Input",ExpressionUUID->"5c732e71-c021-45d0-aca7-0a8ce56bbdbf"], Cell[103117, 2287, 575, 10, 33, "Output",ExpressionUUID->"136e7971-38a0-471f-be1b-61c523dc6468"], Cell[103695, 2299, 575, 10, 33, "Output",ExpressionUUID->"f993d96b-e447-4ab9-80a8-4486065c369a"], Cell[104273, 2311, 575, 10, 33, "Output",ExpressionUUID->"734c1e66-702a-409f-aac2-8c262672ac5f"] }, Open ]], Cell[104863, 2324, 421, 10, 70, "Input",ExpressionUUID->"7b83cdaa-0d90-43b1-81bb-9d64d7f937dd"], Cell[105287, 2336, 738, 18, 90, "Input",ExpressionUUID->"131e0bc4-a266-4dc7-99b5-22dd9e82499c"], Cell[CellGroupData[{ Cell[106050, 2358, 996, 26, 50, "Input",ExpressionUUID->"cbdb6666-368d-4854-9a93-75da54689089"], Cell[107049, 2386, 477, 9, 33, "Output",ExpressionUUID->"e81ad994-38a4-4a1f-a601-27014a8e3533"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[107575, 2401, 253, 4, 54, "Subsection",ExpressionUUID->"740c0ed1-9ee0-49e8-9232-43460aa154dd"], Cell[107831, 2407, 3615, 83, 169, "Text",ExpressionUUID->"a94ca375-dac9-4465-910a-9aee90011488"], Cell[111449, 2492, 1725, 41, 91, "Input",ExpressionUUID->"848eee4c-23d9-4711-9c8b-917e53a2a212"], Cell[113177, 2535, 1281, 30, 70, "Input",ExpressionUUID->"66cc94e5-b9ca-48cf-9ba7-bce85031a220"], Cell[CellGroupData[{ Cell[114483, 2569, 994, 25, 70, "Input",ExpressionUUID->"94867706-02b5-41e9-8ec3-540c8eb113c7"], Cell[115480, 2596, 392, 11, 58, "Output",ExpressionUUID->"f0500fcf-5dfe-4fd8-9237-9c6b3eaad24a"] }, Open ]], Cell[CellGroupData[{ Cell[115909, 2612, 1465, 43, 158, "Input",ExpressionUUID->"797335c3-b537-4bb2-a482-7aaf85330d08"], Cell[117377, 2657, 201, 3, 33, "Output",ExpressionUUID->"e3870425-453b-410a-993b-04e220decfaa"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[117627, 2666, 157, 3, 54, "Subsection",ExpressionUUID->"a8035bea-e525-4423-8c84-225cdc45482c"], Cell[117787, 2671, 1983, 52, 146, "Text",ExpressionUUID->"43498629-e356-4c77-80b8-e9fcab297361"], Cell[119773, 2725, 449, 10, 35, "Text",ExpressionUUID->"57213f74-b610-4fd9-992a-1afcbc57a3ce"], Cell[CellGroupData[{ Cell[120247, 2739, 1663, 47, 174, "Input",ExpressionUUID->"630115d4-1424-43f1-9697-c52bcd3819ea"], Cell[121913, 2788, 6480, 160, 244, "Output",ExpressionUUID->"1afb56aa-9170-42fc-b15b-c6c112d95a4f"] }, Open ]], Cell[CellGroupData[{ Cell[128430, 2953, 207, 3, 29, "Input",ExpressionUUID->"673bc7b5-dbe7-41d0-a4d2-6dbe78ee3c77"], Cell[128640, 2958, 485, 6, 33, "Output",ExpressionUUID->"493c9b73-421b-45bf-ab74-a58618d5f12d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[129174, 2970, 160, 3, 54, "Subsection",ExpressionUUID->"e8ae6ba6-96a5-4994-9ba2-b6fd7fc43846"], Cell[129337, 2975, 2261, 55, 117, "Text",ExpressionUUID->"dcf7572b-ff97-4210-87e7-4fb6d8188322"], Cell[131601, 3032, 449, 12, 81, "Text",ExpressionUUID->"e897ea03-112e-47be-b9d0-4c16da5d6297"], Cell[CellGroupData[{ Cell[132075, 3048, 1379, 32, 92, "Input",ExpressionUUID->"ec286203-9f4c-42d0-bed4-935749764267"], Cell[133457, 3082, 550, 18, 58, "Output",ExpressionUUID->"b391b241-1a6f-4e77-b2d2-6c2d4cf91e2c"], Cell[134010, 3102, 1716, 48, 46, "Output",ExpressionUUID->"0eb682c8-198d-4e04-83f8-4a7d6b7c61eb"] }, Open ]], Cell[CellGroupData[{ Cell[135763, 3155, 1966, 45, 94, "Input",ExpressionUUID->"9b199053-0396-4aa1-8b9e-cc527e004cdb"], Cell[137732, 3202, 97873, 1662, 241, "Output",ExpressionUUID->"9686e4db-4c11-4cce-962d-a8098a6db000"] }, Open ]], Cell[235620, 4867, 194, 3, 50, "Input",ExpressionUUID->"4b0e817d-0456-4464-9d3e-9eec51784993"], Cell[235817, 4872, 152, 3, 29, "Input",ExpressionUUID->"ac365fe7-38e3-4bc1-a47e-5c2aa98f95ca"], Cell[235972, 4877, 208, 4, 70, "Input",ExpressionUUID->"e37273da-c636-4fc7-96fc-2868675114b0"] }, Open ]] }, Open ]] } ] *)