(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 164114, 2959] NotebookOptionsPosition[ 162051, 2921] NotebookOutlinePosition[ 162469, 2937] CellTagsIndexPosition[ 162426, 2934] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{"ClearAll", "[", "\"\\"", "]"}]], "Input", CellChangeTimes->{{3.92615667517485*^9, 3.926156686424818*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"6805077d-0e9e-4f83-838c-9a36786591cf"], Cell[CellGroupData[{ Cell["Einf\[UDoubleDot]hrung in die Computer Algebra - 2024 - \ \[CapitalUDoubleDot]bungsblatt 3", "Chapter", CellChangeTimes->{{3.9270239720010033`*^9, 3.927024011562078*^9}, { 3.927277035400279*^9, 3.927277036245101*^9}, {3.92795565435643*^9, 3.927955654579637*^9}}, TextAlignment->Center,ExpressionUUID->"2f1bea6a-2e0e-48cc-8174-5a7878587966"], Cell[CellGroupData[{ Cell[TextData[StyleBox["Mini-Projekt 2: Gekoppelte Oszillatoren", FontColor->RGBColor[0.5, 0, 0.5]]], "Subsection", CellChangeTimes->{{3.927277050612318*^9, 3.92727707649513*^9}, { 3.927949980753251*^9, 3.927950005492478*^9}},ExpressionUUID->"805c29ce-b81e-4916-943e-\ 1195a3e57ed4"], Cell[TextData[{ "Betrachten Sie ein System aus zwei K\[ODoubleDot]rpern mit gleicher Masse \ ", Cell[BoxData[ FormBox["m", TraditionalForm]],ExpressionUUID-> "60084aac-88cf-44c7-ba50-43b9bed1db85"], ", die durch Federn gekoppelt sind (siehe Skizze). Alle drei Federn haben \ die gleiche Federkonstante ", Cell[BoxData[ FormBox[ RowBox[{"k", " "}], TraditionalForm]],ExpressionUUID-> "ca6e931e-cb89-4870-b6ed-5f7e9c3695f1"], ". Im Gleichgewichtszustand haben die beiden Massen einen Abstand ", Cell[BoxData[ FormBox[ RowBox[{"L", " "}], TraditionalForm]],ExpressionUUID-> "9f4f42f5-445a-44eb-9016-6975b8e57561"], ". Die Auslenkung relativ zum Gleichgewichtszustand wird mit ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["x", "1"], " "}], TraditionalForm]],ExpressionUUID-> "1bf3ab05-ff7e-4bc2-a0be-812d7925520c"], "bzw. ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["x", "2"], " "}], TraditionalForm]],ExpressionUUID-> "082e14a1-522e-4e27-bb15-71b357020f36"], "bezeichnet.\n\n", Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[1, 0, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJw0mnc81+/3/82Xl/VaiJCUjEpRiJbrNJSkslMpRSHvIrIaaElJe1lJRlSS JDuXvUL23nu8vJ5lE/o+P7fb7+ef3G/Pp+s61zmP57nO43ZrlY2zyTkeLi4u jgAX1//+/X8/8P9/ecTv9TWEhwuKF1J9PiX7oaisCboxPxcYvTEIPpH8EunQ z1YyhLnAO/yKkOy3GNRx4tlaaRoX9DeiG6lyn5B3p7YKYnLBsZaU2MK9iShQ /s1iqyQXiNV47ZRL+I5OTGwrNZXhAn0pukT/mTTUeEVk9aAcFzj9Mbs4K56J TtkdtjqtxAUv2IXPj+/IQWGzCpzQLVzQibzYG0IKUetQvgKxjQtGx5gNG34X oTod6RcnERe827qi545eCTr2JYv9QJ8LdP/qKDA5ZWjfn98lqlZcsF32gk2J dBWyL2xZY3mGC/geRdHC8qrQZcGhLeF2XLB88qLl5Plq1NrprnrVhQt614fd W5lag7Tl2/463eOCjj2fAlsM6pHC3oL4i4+4wO9Mn+4hTj0SVJI5dfcFF7zR WfSWe9qAKsyHLfnfcUH6Dqmx0rpGpLLtYMyWTC6oecjzMc+0BaVuUTPnyeMC /9Zv2bF/WlD797mVgyVcwN5+z6voUSuqEYvy+9vABWfHUyvDi9pQoeJQ38FJ LthB+z27U7UTLYqlFLT95YLBFEfey/mdqO538ic/Xm7IFWXJdqp2ocZ7K2fl xLghcSyTk5fbhTTT7Xf/p8ENfGyBc1/7u9Gj11Fr93lxQ3izp6uleB/yulDK I3CLG6qObX998GQfsrO6NdH1gBtW7xS+/yimD8k+fa7Y+ZYbcgp/i89r9KNb tJGexRJueD5+hr1GfwAtHzj18kYtNySvnXAyfTCAaqNrT0p3cEOXhUlPdsUA +jdSIP9sghssXR1j9xgNIpV1RnUBK3lgJ0fVq/jgEBpbXf8uex0PSHh/lY+4 N4TEhzqNBbbwgJmmw+3ogiEU07qwqcGQB1TT/M6obBtGFzTkU89c44Hrd5/e 6JceQd2fI200/XlgNIso6TMaQefGhZ8sf84DfgpZ1lx3R1BZ5JSG9CceuCl1 0sRvbARN31uqH23lAZdlQVMvv46i+9/4fh4Y4oHMk/mK+7tGUaSJcXrqJA88 kihaI0BjI+hM35wnygvcscoOn+3YSFyFT+KUNC/Ur7j5+clTNso0mgmnKvOC nGpu/vVMNromkWByD3hh5yXPnPMiY2g+78Mvq0O84Lg9a8ReYwxRDQpCdI/z wl/XsIvnj42hb0o4S8WNFzQojjYukWNIurDs5sM4XphVLle7rMJBDsyZgrzv vPCFNi/kuJ+D7AUsH/Hk80L+h7iR4+c4SMPijn5EOy+UB6knK4VzkMl8263F EV744PI26V8aB1kJPmiwneWFl9FlHZU1HJRmHnDMQIwP8jpkDQ15CZSxYuJX qTwfOB9OHZ5dTqChmIExo418wJLkdQpSI5BT616Lzu18kGo0vGLdXgJ9e5Xw ye0AHwSmuez/fJRAmvn3njCO8kFGcsmuVY7k+/f/vU86yweKgnoX/a4R6Ge2 42+BG3ww+mWBIhtKoBs/9/RUB/JBTpmzxLk4AjkIiM28DeaD+z4TpjiZQDzH 0rtd3vOB+45j59blEGhb2rzZ/m98UJnkMxFTRiC6+w1e+Rzy7y2MvmyqI9Ck T+vbv+V80JD206iijeT4u23NzXygHc392quPQNcpw/9lDPCBG1VKX2OUQIki llxvJvhg5vPBTYu/CWTGJ214k4sfOMl/lBqmCCQNDtz2ovzwrcOLL3uOQJb/ udQckuaHuHeO8ckL5P71J1y0lPnBTeACNWOJQOqZ+5+s0OSHT+a6gpX/CCT6 yribfxc//LyB3/8medj2xTLOIX4IPT/SuYrkJ5Pre+qP80NdX0PGmUUCEZra 01n2/KD5MH1v4jyBAq+28EW58UOLde9T0RkCtVXuyvG/yQ/8Crk/rowTyGpb VIvjI37Y8rplZJJNIGv6LophKD8kulbv9h0gkI/mhal1cfzgpHx6WqqTQBFO d48LfOeHwMuWO/MaCOT5kW+oK5cftLLeWVyrINBVPRej1Ep+WKGhfW9vPoG2 WDjtC2jlh9dFiivl0gg0MJF6/dgQP1i33XemxpP58FZ6v2aKHyQaA+t43xKI 3ZHoPspNgcd2NomMpwSK3Bla6yhDAe8Jd6/TrgR6Aa9KVqtQ4Gm2hmH0GQJd jh9Ur9ekgPFg1rm/R8j8+9xYp3KYAr0F/Hf71xLoVulXhZLjFDiznhV/RYKM J595+ow9BaJbr1oocBHo8F8jN58bFLhWL52fTup5+Evid+6HFAjX62uNzeCg XKe9ot7BFPDSXKOU8I6DdFcF1B1PogBvzeX9lIscZJq0Ku5jLwXe3DzE93d2 DBUdWu0zQFAAPy/COc1jSPSbnKzUAgUe0vYfikkfQ2Nthx+dEBeA0hWlnys9 xtCjZZouJ/YKgFrq6nfZA2yET33+uNNIAHw8rrW8ymEjhXRVFzErAbiWWrfx VTAbxcecexR0WQC2/sovph1gI8d6fV/uSAFwKEWeguGjiOvkwzXoswD8PJPL Wuk6ir5PfS50ShOAE+KHvlzUG0V31g9wRVUKwAteQ+7M4RH0ynnwteW8ACzc nGratnYEFbTyW6zkp8KOYmnFnTPDaME7TrGBToUDj89suF0wjAznQ0TEFKmg W1a6pctqGNkkSwXnH6aCy/udSQJ+Q+iPycobfMeowHTnR8aHhlB90cZPGrZU 0AsVDxoRH0ITMRPECU8qqKF0SbHIQbTESd5dGU4F9i79HeeTB1BE5drdIiNU 0ExBKh8y+lDBVatHUhPkfiauMelefWjeV2SQvkAFd8PUZK0tfej16xZeLCoI 4+3flnl96UUZ9inTy9UFwX/O5+OJ0B7k5bkj4YqOIJTpXrVaMutBPgm8tHwQ BF6VdgVZWg9KFBeWZxkLgqG72VKVTzfqmB1QfHNJEAySfi5ZHu9CdN65JD0v QagP5jklyuhCf3Lvxzf4CsIB/RsPQwI60dLbUtOvjwRh8tOo9W+rDpThLfhW 75MgnF6I6bkw04r8JlzLKzoFoXNIdNxboBF5aB7XdhkQBN2kTdNfLRsQ/5f4 59Nscn27E6bKH+qR7GJmxPs5QdhoGeg3tr8OJfpsLApiCkEgfxfjoXc1Oiuz wllfUggixH9NXyqtQnJ2ymuaZYUgo9orulC8CkXvsjJ9oywEi5OnepJMK1D+ 5NK5hO1CULoYOxsXVoyW3z5MPQtCYDLbaFKlWoSYEbZi83uFYP6Y8/VtWQWI e7uMUvEhITA0M7CjNucirs++zCVjIVBWW1F6xy4HRd3duEHCQgisn+z3HRn4 gRxyX5b0nhSCJZuNRcWSaShM+oFm6Bkh0KHnfpna+B1puul92HxOCCo973Y4 6SWhur86T7kvCIE65dCAYXccUvmiOafjLASDP6o2bRCOQtYVV02NXIVAu12Y 2uAQgjzc1tXJeQnBjfUjmg5WDmhWtGem/qoQLPguPO3adxOHGdygXvQWgvdB p/sVTF5gocHK6W23hOCNZvfnxw0x+I3J8RaXO0KwUvrl3JH4T/j3vlsp9+4K wSZrjWXPchKxeoLsJYsAITB+3h4b8TwFt1EnT4gGCsGA6x8nsevpeBo2nYx+ KAQ1q7pL4m2zcKpMorfMYyFIIR6MmRpgPG1hVeL6RAiKKlxos5K5ePHgpgMf nwqBeXbnEc2APHz4/lbRvGdCQHw5erbmbz4+bftodcZzMh9U+/nCC4XY8vrR oGcvhGBj8YEinvYinLK7zOfgSyHIcTC9dd2wBC+3XzvYR7J7+FFCKbMUs/UL ek+9EoLqElb9lMpPvP34tH86yf90nvG0vyzH964qDU2S/F0j7HAVdyXO0i9a znwtBBuSJIPyL/zCmy8Ya9BI7uRstTX/rwqP1hkassn3Ld8J9GetrMbt43re n0h2OHHk8LPaany7r7rzIMnqs6URv+7W4BdhgY8qyHhm+3b1Om2txQtLkjHq JPdJFq1yHK3FylPS4E6eJ6y57WJmWB2+cQW8Q8nzup5O6bA6VI9PhWy5FkXm Q3e79VP9xXqM3D4fe0jmSzhgPM4rvgFv8+1JdSLzudrtyvkDRxpxY5cZcwuZ 7w2vr05c+NOIx/+sutVL1uOZjNyzjmdNeOMzZWVPsl5IL+VlsEYzPm/MK/eH rOfZfT2mwbXNOOU508/4vhDUjiQqN7u24AcCbPkiPyFQ0HIKonxpxctlFV61 3BaCozs7BEYPtmGp0NML9TdJPXRpb14cbMNRYT/X3CL19byhKzxoRQceeKC1 QeMaWW/fO31SqR1Y+rvst5+kPiu0F0eTj3TilgMpP79dFgJFO//9kqgL76VZ fOR1EYL2995fuQO6sErAwfDtTkKw5luNpktdFz6t+uPcWQchGD+RPtBg343j zJMDzMnvhWWyVFGS2I2bOybt1WyEgPpMBbTnunHDJTz15oQQ+N6XO33zXg++ YKS6uNmS1GeOQr/lrx7cmhrj+NVMCEbWRkRFS/TiUa0C1f/I7zn4QWzsk4he HPeY91zjTiGIirJKvPWlD2em3P2StVUIGvv9SvP/9OFNz/JbArWEgPkmF53X 6Mcv5iLCOKpC0NOXG9ec3I9dPy6/9ENaCPTQXi3ZxAE8NLnn1D8JIYATK7oO jg3g7AsivzaQ/So1MVi1eu0gvmN9XtxYQAjE9r2Iq48YxGFHh4xSx8n+6V+3 9dXdIRzu+drVdkwQTCTz2nZnD+Hrn2bbFgcF4dQhjUjtqSHMONrvtdQmCEEG t3QmTg9joc9LZ7WKBEHrDZeuv9oIVtBUO308RxAe5K29duDMCLaSEHrgnCEI obclvu5/NoK3GO+88F+CIDTFJViN/xnBOw5NWSW+FARTr8uGLbGj2OGe65d6 sn9XKdQc/d0wirt/768b8RcER2fnC2L8bOzATQz2XxEEl+ZVzldPsXGJ7dOb 5a6CEJA5Z5R5n41NXyrvif5PEB6fSlTgTWZjdVuPYJWTgnBlnUHXO/4xXPlP uL3eXBA2b2nlnlYdw3IeB967HxYEBhPfPmg6htdXBqk+QoLwhsnnORU2hl2/ zdepriLvs+0K8avXcLDdjQma13JB+FrtuMZ6DwfLvd73No1J3h/T4Pv8DAcf Gc/cLMMjCD1WW4s7Qzj4kFAYZ+c8Fcx8D+VMfefgqqKDrkfHqXB6se/bv18c fENg1b5LPVSo9CujsLkI3Lfkb3yphQrIclVmuSSBZ+W2hzrUUCExWkY8fAOB 1xUF3DxWRoXGh0am1rsJ/KhCwHZPHhVmh97k0y0IHHTkRrhSBhWiHDemJzgQ +PuFhWe8SVSwueX7dPtVAsfFbFwT/44KKoWSj2VDCJzImfP1CqZCQIZyuHMc gQM/sFnwlAoVFs9tE74T2MySayfvfSq8c8j7rymXwNJzZqfyblAhiP3AcKyc wH+zNzR6e1Eh7NPWGHYDgUXLxgS2XKLC9N0Hcg2dBF7TIW48ak+FcpcMxw+D BP4otUMs3JoK3ZLX9Ow4BH4Ww/py+CgVIjZxuYlMknz5uN8iOb/s91soCJ0l 4xvsm/64jwrqL6MZ4gsENnry+OxRXSrI/P2i475E4LpGUOPdQs4fl46r4H8E Hk/pS03YQCX1drbuD8l1duetj5Pz0b85se2iJCuJZd2lrCDnqU6Ns8xFAm8J LHz0TZwK4rvEzyzNEVhlzq7pjAgVjgbdN6ybIrBfgEcBk48KuGPU4PlvAgtv yPqW/1cAMo0lAraPEFh2J4fiNSEAB3tO76roIfCnbQlyaqMC0Gcc91W/hcBD 3n4nhnsEwH1hl2JCFYGL2d0rYlsE4OORJWKxkMCOX1lFDjUCcJFY46yTQeA3 f/YmbywTgEZ/F8FTnwns439Dfy5XAEIMGWrObwl8NjO6pyRdAChKIccuPCHj /Xe2581XAWh/wBCxuEHgmY96sV4fBGBGtLlG1ZnAIs+vLkKwAJhIVC5GHSCw /rrIIbOnAnD4Z+TmWC0CU0plqpzvk/NnXFRnlDyBV/sozmVeIeNvKb8YOMHB 80Fx7DEXAdjBvafsSiup/9GToOIoANVX3V7a5nHwqSiT86nHBWDNx+hytYcc 3O9uzBExFYBNzPWzYi4c/OL5380XDgpA4JWLzFlTDt4WcerogR0CcDNqbih/ GQdHfwnw9pcTAC2vQB7/J2NYhbL1sqakALRwFLX9L4zhISXnxjG6AOjGqw8/ 3j+Gc2ufbPfnFoC8zzc/4Hk2Xnfoeo/9PAXUqtg7h2vYOJ4zrGcxQYGUjMUT 8h/ZuOWl/YOT/RSYFDMIzjJn4487WhmeHRT4te+cz5p1bHyZeBb8tpECiR6V Xm8XR7HX3u3TcmUUKGGjx3XvRrH9tcj7nV8oEOhPW2HXOYJZt382X/lAgbHW tUZP40cwR9AhUjGKAhk6ZqvbvEbwkUixiqRXFOjZt+DRSBvBJ9kRqZ98KEDV 2KT7Sn0Yf+8qXGr2It9XMHlGTA/hd98baLKXKTAsWDngkTWEz+pyvW8j/RDd Ytl+Sb0hzLO1z+ioCQW6VNknGgwHsY3y0TvrD1FgSVt+rkFkEMuvD4mV0KeA X+ihrxLlA/jLlU/5qroUUHVP+2uuP4B5LybtPL6VjCd8S88J/gGc5T/9IZz0 ZxkrhAPjcvux9qyj6cX1FIgP/CyxUqcfO4//FJ5VosDW6xeuHhrvw9+MiuND VlOgOHNn/M9Pfdhyi+UrFWkKJFxSy82R7cP5Ba9PXBSigJZm2Piv6R5ccvmp 0QKFApo3po7/SuzBT7e6hb7jpYCdhu+0nmMPDnee7lBb5AdXB1ZbRGs3Vn0x t375PD9MBiltu/+8G1+o/Oi5fIYfriXbTPw26MZH+z/FW//hB43AfSX70rrw A6UV/TEcfshqOyux1akLm/F6Z/Cy+UHyyRX5bwpduIBvoIYyyA/JwrYTD6U7 canIR+v4Pn6wDAxaW3arA187USXr2MMPwg3H6Moj7ZgwU0ze2MEPe755nDVL acM1cXdrtNr4AU/WRmyQacM+kZ8/mLeQ7//xVdrq24rvrPpz7FETGf+V347X elqwq/I4T1cDPzyytRqe3duCj/wOyTeo54evWSGrU9434xMMuYzKWn5g1XG/ SRVoxiraPT9WV/PD4SHL+8HFjfiT2wjvxC9+EPq7b/VtpUZs0HjsTxvp16fn lxnk32nAXatzIroq+OFKRmzEqZ56PP3i9/qlcn7Qtn5UdgzV4zxl7ngtklPs Ji+lh9bhgJYDW/1/8oPTffddt2Zqsdc/29HxMn7Y7b04lmZSi9serW32Ijkw KEbV5nMNnvZNllpO8l6LZ6m3BGqwkvIpXFvKD31ZVYYrz1TjxODs7jiSU+M0 EnZkVGE+yfjnQSRvnFd/18mqwnc9tw1Fklxi6t2+vKEST0Rk/CkmucHPuuiZ XwU+wpWRK0Cu//fe6jANzXJ8UZDnvM3/4mkS5aP0lGFG1uuZRpL7qo98EHtc ir9uzLzuQMaPJlJ22G0vwU1ygxRx8nyxo45uAoNFWMW/KqqFZE//GGHuZ4WY ut3udBaZHx+P//KsdhRgrntV+ulk/rYTe0+uGcjDKW2XHKrJ/Ipumo4+8zgX f3DvLuUj8393UNtOTicHv6RPeZjW8EN0V0dPSc4PHPA2xesHWa8Q0UrNa4xM jBnnG3eT9Xz5WfiSvXUaXkH1D+kl691P0PXfff6OvT/nlbwl9VD04YL7jr9J OO4qv4MnqRfavx3fDfUTsQn9uOgVUl8J+t2DW/JisOVfY5moLn5wm96/yHM8 AjvIrfg4ROoxa41SaULPS3whytS4iNTv3jCvGD9tNZz8ZHf5z3F+iBstVmi4 HYPinohdF5/mh0s21LTVpz8hS7z8mvccP6QlZDfnvklEnLotRxK5KPAqQzXG yjMF0Tp/SVzlo8D+LpMQcdt0tLw1knaWSgE9/EFs/FAW0qEynYIYFDB5ePSV FSMX6Q/5/egRp4Cwv/5RnTt5yK1ziHFoOQXq/1r9cJvJRzrRJvdvkv3gXc/K 5+2tRaj+W+iY/RYKHO7Y5ykWWo4GBKeeJG6nQBRnwiiIWolO566Mk9pFAeew 9K/S7r+QtnFc/T5DCnTcqbp7WbEaJTp3X5A6S4GmXze+rZmsRV5jj6aOOZLr WfzM3Py+DrUZG8tlXKLAjp9XaI+P1qPjT3xr6r3JfvoyGkunNaCPX3eu8Aym QITxY06TczNijzzg/xhBAXn73uxvMi1omnrcaz6WAlaW9zo+F7Wg8ush1hMp FJAuSJcYXt6G5u1i4qGBAuFH/p5rS+5AF9eO2J8g74feLj9f1rFOpCj1yvLZ AAVS9e2qti10oqpN5ivMZijA2GUv9f5tF/o4erZhlbQAbDQNNRtr7UZPbfz7 pRQEwAMkfPzW9iCBaeOgdaoCsPh+97GbHj1oSD+Z9kZXAI6YEL+Cab1IaUh5 WdpZAbDnpbyhaPchR5Wya8++k/d/SM6JD3YD6F5Za/JZLAAN46uujkQPoPhT H1oMSgVg1bhM7s2eAZTAWs0waReADU7Crz6dGEQmrpsX9ChUeC+RJZ6pN4TC bnK8vjKokPvxAO26zxCqvsqSUZOhwiTd08gvZQituX2v21qdCtWpv1c7rhlG LTGDjU9OUKHtRcdpo5lhZHjAtu+uHRUsAx60KK0bQfrn/qg+dKGCgqeyxFar ERQnsc+t1J8Kte0/JoWyR1A8m1I1l0yFuhK59B1eo0i16XOyYw4VhhJ4nUqj R5GlTUzF8E8qKLUM/7xbNYrExJ2eMHup0LLumcMjRTZ6/86A84+cp9/KPy1K KGQjO01T0dYVgtB31G1b+CgbRSsb6uatFQSVPbP5yYwxJCZc9+PbLkEwDnlS aGI5hn7sdfT9cUgQzk1fW9N0dQypPOfdWnNMENKiCu1uhI0hVd8UDxnSL6A/ Gz9qtY8hJQO9/474CMKf5plCWBhDeumFOg8DBGFlu++8ozQHBb412KEYJQhR Qv+tX27GQXdyJvuz6wRhdqz+cWEWB7lJf4/e2k36o2+FSkl1HHRXefJ3Jumf hPiEfFNHOag6L1aggUL6tZVfiwUlCXRP+PKOi2JC8O+34mXz9QTq6HCqFZIX AtMOWYtUXQIV3fefP0r6v6+3x25n2hBISeb6BGWfEOxoi8qxukyg21Lm8pkm pJ+9/kaKdZtAd6yltNysheDpQ+qy1qcE6uKO7d90gfSDC/8OpL4lkMUN3D9B +mHb748M38cTKJrCNZxO+u1N35KyYtMIdDZuKPI26f8/1llDZj6BWsLbi4ze CkHvjVt3uioI9HJ8y5WuT0Ig4+CnMNpAoFu217td04Qg71sOMDoJpOaLUgUK hSDfxufdkQECmZhyJYVXC0Go6w3mBzaBTnmp3dfuEALOUR5b2XECBciqT1aP CIGDfobTh2kC6dKPf7w4IwSz5i1iRvMEKi7/ayPEJ0z6V6YOY5FAxwOs6mMZ wmCY/qB4eIlA+ruz0/RWCMPVgYnktn8EOpxjXdC7VhiCKl3nhkimJfh8ublF GLT4El/QSL7+9timlXuEYXl+deAhcj3LlZu5s44Iw0z+dU4Mud/NzMMNR62E Qa+7tlxyhkCbmYv24w7CYPzQc1cUGS9f8/OLD9yF4dZyvwv6YwRKHHcLX31L GHoqX5L3EYF8L9GTUh8JQ2vjj7tdZD5sI7utDUKF4fDfgIbaRgIFyV+zbokV hnEV3vDuSgKV1fs42CcLg0Rj5AqhQgKlU2M2/8kRhp+bToQdyiDQlnM/3D0r hCFQ5ol9fAJZX76vw3PNwnDin0StUiSBfrvd2ec1IAwBbmpbf7wg0Fo311D7 f8IQ0anrgzwJ5Be5ia9JWAQSpEs3qdoT6OrICu09UiIg6S54f4sFGY+IRQd1 kwjIRQuw3m8ikMqka4HNThEomDA/KCJHoH8MW8uUAyLAPXZZ+5kggcx37nM+ YCMCXop11/+1cxCjzuPcPScRcLNSZQwVcdC2GNI0XRWBy2aeZeMJ5Pfx/MtH yeciMKExdMHlOgcFLS8/ov2WXF9cNnfgDAe9fMW8fPiTCFDOm4nf3MdBeSq+ 8jb5IvDv1lCtsigHbfZZDJWcEIGrW+m1Zk/GkMbLlu+jSyIQ3uZDF3QeQ+z0 exu+C4nCYNfLVcOGY6g85NF65dWicGHD62h1yhgSJkxVbhiJgsKM/a05JzY6 OJgzOXNCFMxGAsJV9rNRZVoF09ZeFIbOSPQ/kGOjyYfxO1k+ouC7lxYwUTaK Th9/cqnioyi8FxENd5AeRYtWd31LUkQhS/v7cvuhEXQplGaQlCcKeS9/opvf R5DK9HyLUYsoPMlxMKEfGkHrt7g9/EqlwbdKTnS+yzDSTtuxTFqcBrWlKiZV OsPoefSLBaeVNMhjbJql/BtCUZ+Gs9u0aLDq19rOuXtDaPCgg0HOGRrI7t/r uuH5ILocd3H09gUasP6ZiuaaDqLZb2+/b/KkQVnVke+PxAZRwYPMNINAGhw7 8vx715MBVGOZeOC/7zQ4Eu/1LuxWP3px822IGi8dHB9F57ns7UWZGxq7PUXo wC0gr/VtrgdVbHzv9V6CDhVdayNNE3qQlPr6zO/KdCjlee6cKdGDJs6o/3pl QIeCxQmWU3sXGr/0ukTYlA5uigrOnIddKD420O3cCTro2MoY9+zsQreWP1Aq +o8OJrcYT07pdCJzD8kZ7Qd0SJpRrzKJaUMPlHtvVTyjg4bQZufVS63or4/E qX0hdGiab7nNZ9GKhpXHbbrjyHgj4fQy3hZEDd7uk1ZABxnegyU000Zk4W1o cfYnHYr9BTA9pgHR5J2PjlfTYXhS8qHRdD26UHjcLLmDDpc/N3XFvapDb4gs dvk0HULUPZmWv6qRAUU5RHGBDlYshg2XSjXiun8z7ysXA1rFxv6svVGFHito 2xTzM2BPEredyqlKNNf20NOIzoDNhRvOhNJLkeDL9vwnTAY8SL/+mZFRjMpK bR3zxRgQvSfrc4NtEZKY2vvpnyQDXKZ8ja5/z0e32A0WtSsZkL1t7WP/6CwU pPOqPGYVub7EyIW43+nIoGmbi6MCA7gYAdGCO1JR/d3lW8uUGDC+ginTXvUV aXXoWZxTYYDtN+1CjmYCWti349X4WgYk+Bio7C2OQ1tZNR69qgwQFqpK7a0N ReKyr8X3b2SAh5xvj+bUE6QZ6vIrTI0BMVJDNAVLLzQZLh0qt5kBCppTEiLG jzH12p54Aw0GcATPiuv7h+B4ry2tDpoM8N14gR6VFIn5Zl+/vraFAUXyIw9a Hn3Gd4++VLmkzYCH+/Vsu72/4uErVzssdMh49p7Uq9NIxm2ttCy1rQzoHdft 3zScgqf23CiYJ7ns7zYYeJOOt3+y+Zu6jQHhb+9Ythtn4YTViWfttzOg1K5Q i5cf4+HvJXyCOxhwx6Jp/F1rDq4xcO0KI5n3xsFsPc08bObTtLB6J/k8ZkHI NjAfK/kEWoeSTBl6OEL0FuDvnXdoFF0G5Fwud+3ZVoRpbisYtiSP47kf6k+L cb+U5H9JJNcniI9WDZTgL3dfK02S7BWwWi59exlukFlroIIY8KjV80bn45+Y Kyaj/TDJWtLcu7b1lmOP1W+H7Um213rwAmtV4uiAhx6XSa4eE0455/8Lf78f 8dCFZCEe98vMC1X4sK6Fjg3JOaGRqdNi1dh54vENPZJFBFf+OplZjd0an16S IZmRK9e/y6YG6yTyiPWR8YzIhauEU2uxQ+Co61uSBWbulF9MqMVzLqmhh0ie pZcJxJvW4XJBjWAOeX5z71cSZrN12Ec/0PMWyctaHbTOhNVjD3GTPYIkPz6v 86kSNWDG8GXB22Q+LahB+HVPA2Z57mokyPw/pDXj1DuN2HK3Y8YRkl9zbVxa q9SE43cs5kSS9cpaVVE9XNSEL1+z/dlE1tNr/zvKcbdmfN5joO0fWX8wT9oz Jt+CjVwHqFIku833Jbwpb8ERfHq2q0i9XBmodD/n2YoH7M5yyZJ6umcyXKG7 qg13FCpNCWgxYGlf/qRCWRv2jQvankzq0yAhoHJeqgPvrvJLd9vEgMbqfKXu 7A7cnvV4UEmdAdRLKUFZtp24X7P66+kNDJjxOLhdzrwLp29V8Rlaz4D9VJmh kZgufMms+bjNOgbMx8bRlae7cJJ57kdVZQakvP79p+dFNxa51GnsrciAQ+Kp Bid7u7GJ3hqXHPJ73Jt06/iOTT24rpnHT06eAQdePBCX+9mDHa3Vvm6VY4AY bfKujGQv1jR4X7BflgHE6X64bNOLnyrfktgpxQDuK2xL5ZlefOOQwKM1y8jv Z9WqeB/ow+K6Emf/kf0iTV1/k9L9Pgw3S6Mek/0lUSF24YRUP+ZaQRtYQWHA p56TK1ZuHMCr7xhmRfEyoEP7s1WyywDusG/7vYKbAbm3VxXdTR7AJfY8850z ZL/b0Cbaoj2IR0IqO2R76PDYsDZ2QXMIu+5qp3i00SHcu2DXTtchrJv7fGVG Ax08aUHRHxKGcN7R3wZ8ZD8NDxYJWVwzjHekiJXEJdHBnj2QdFxgBD/Ink84 E08Hb+30qtydI1i4bNuQwHs6IGP71XqXR7AUn9jjFcF0cCqfVgpuHcGyX9vD HpL9fSBxo5EdbRQHE6d3ssn+LyVPC9GHURxifd/bw4cOspJRtXrvRvGUmkxe pCfZj7POXjlZNYpztbf2Zl+iw7JknvjbS6P4x7iwcIkNHURng72njrKxRyxd V3kfHRaNF4T0/rFx26WkqUVdOmzsaSJH6jHsovVfUrE2Hba6fJH8cHAM6xi2 +2utpYMfg79M58UYftn/d3/LKjpY1Ljw01LHMNeTqROXpelAryiOGWkaw9HS ATW3hemgeUkp8ftyDla7+LrzL3l/onvSC+90ONhSwfrl+QUafHfuuvTUgoOr OytMlcdocNXqzIT7Yw6etAsV9OqngeOMvOL5jxz846NjHm6ngbbMz+ITBRws du1jiFYlDYh8Du+OKQ5+yAg9f7aIBo3tPnwqIgTWTfMPeZBNg48CmnsZqwk8 46F0pyCBBpeXnOJrDAi84pQFp+E9DVxVJnw/nSRwwTqvFb3hJO+KHvJ2JvDh pg61kUc08NLO3CD6hMCSfruL+u/SoO5m+lxJOIGf1f3yb/OhQdt1uW3X4wls I3WzstKDBq+OH7yulE5g+RUek1lONHhpbGBRXEBgR50/prF25PnEauxO/SJw mrnZ/kenaNAxr28+2kTgjTxya10taBDxu7j6YjeB73gOmJoepoEZdcXL/iEC L39vtXrzPhqM11acNiEIvF13D0HTpcFdp+X/vk0SuCHtosQIOf+M7pzfLUSO ki+tfxD5G2jg/p8y1XyBwPfN5JrDFGlwS2yZxoslAvsE31F1X0G+v34+sfgf gbklh/cekqDB3lXFngTJh6P2eSuKkvldp35XmOQ1gq/Vl/hosGQe1yuzSOA3 tKr0xgVR6NhnEyE/T2DN612XkyZFoeHrkfrl0wReUPic/ogtCsYB8tECfwi8 eVh04EKfKIgO79IeGSGwWkmZ6aE2UVD80Jab20tgTkfQSfU6URDOqvV91Erg 1R6Sp5aVi8INzbzvRjUEZghXfPmXLwrh1LlEagmZr+NrPrMzReFvwPXilCwC xzueT2z/JgpcodyWJxIJzBdaJFb7SRReB46UTkcSODxh16aKKFHQLt7z8P4L Ase1pdmUh4qCp2yOtLgfgUsFdzq0PhCFyOsSkSxbApuZKBGjt0Vh0dQ5zd+I wJXO2QTPdVF4/qyvenoHgUe3uuXqXRCFn4puMYUsAo/VZe1xPSsKEiGBOUoL HHzqKF/keytR+LD+a8SdPg4WaVYyUTkkCqZbPH5tTeLgvF0h5fN6otBUOxRh F8zBEedu6NfrisIdmWWlyb4cfMdU51SUOvn8v1p62gEO3qW5/c7rtaKw+v2O VKcNHOzCTS94Qc7r2/IFig8wODh6Ief9J3FRoF7Y73GpdgwX3MyuLRQVhc2W t6t+fBvDPsnFG0cooiBrEkXVeD6Gt3+UvmEyJwJb33f+DDoyhpXO35mO6xAB LbE7fBez2ZitE7Ig0yQCJSq998SD2PjqsxqD0GoR2Ci79+/oJTbeTJwpwgUi ECeSrKAmz8abTr41iyX9iMmrm3LK7qN437WatNsxIiC76HPHSX8UnwgZcXAi /cv410EbQnoUqxfviHUm/Y0rbsqI/DGCPw7wnVK5LgJ+i6suTM0N4wjzkn5v DxHocgzm2Vg8jNet1orqvSQCoe+a+D49H8Zd+1w/dZ0TAYuXRzZ4rRvGN5SK DsUaiUCbqb3l/SNDWOfk4Z47B0WgcU+uC11yCKfhn15u+0TA8ssBNNA+iKc2 m90L2CECqxdDrgWeH8TjaykrgtaKQNkEj+qI1wDunlZNFFYUAZ23xz3WbB/A D4wafz+TFwHdyoW/WQv9WMFMel+7JJmvL/QGuk8/9v05lx0hJgLKDgcKKnb2 49wng5+96CT76q36s9CHzb+uTLQTEIFzEcUPnK/04Vf1ggrevCKg17bdonJL Hy5YhX7Gkf5T5b2GYMhEL971bLMbzAqDuNJQle9/vZite53lMSIMh5S4z2Wa 9eBpfRH1adK/hoXQvn4R6MErz0r3PekVhok7L98LZnTjq9xbu5e1k/5bsnFq VrYba96sfMLTIgyvTGhPnld04Xtvh6IEG4XBSeuBWbh3F072/5zqWC0Mx+5+ VJRL68SHB+5LFlYKw5U6tcFJ8U6s2mEQvL1cGBb604NyL3XgweTHKd7FpH9v ryszUWzH4nXZHw4UCkMx/7XTq33acKKcktPmfGEIfvWHvlTfitP0z9JPYGEY MvTZ9ftWC87euGlH6A9hWGs7sJzV1IzHI1a2zGYKQ07qmTQL1WYcuC6V5pYh DEU6cy35vk1Yn35rSSRdGHbajOyzrmnEz1giFfmpwlDS5F6ycU0jNtjfHRaU IgznSz5v1nFvwDxDgY8ffBeGOupe65uF9bhLO6gwLJmMn2q5kSFRj6Uv3D9V /k0YaHf23h2xrcPS4T1e0iT7cF00XZZUi48WyW/2TyLXkxG+F/yvBv/BGe9Z JIdF/pW5aliDuczlx7O+kuf3fiCSHVSN00zTN94lufP8Xqv/+qrwxfg+dyeS Ze+ms+6pVWGzoJlOd5JrnWO9NCcrsX7pjjthJHcVb687cq8Cn4qc8OohmcW1 2tZJphx7XzlSu5/c778lbBn2uQx3dHvElpOct9n/d79uKQ78d4vqQsbr0f3g 4tFfxXi814eqRZ4vTVVWevFUET4zYZcmRZ6fr8tif+9YAY4zVVGRJfOzxJVn uOx6Pi6wjbBDZP5uruv2jxTMwxE7wm7eShMGhW8/T7x4lYM525r8+sl8C+n7 nfmtl43XPfvn40DWR1/w4WDyyUycNPTJU5is36r5Y6qP3dIw/+LZK5XZwvD8 /QXpoIDvOPBPTlpynjBYoZXeGue/YCVJSb6mAmEI5HpZc+/pB8xidF2WIfVz 6MDwAd70KBxaZV3FQ+rLJkEqxFrkCRafUs97T+rPIKKxX83GBY9d/dDzP312 nH3g+O2iN8r8j/hsSuq3be6lw868cLTtyXZzL1LfXl9OOShti0HrYlXX/CD1 fyC/1t6L9Qm1pSkpxfYJw08TpdfLT39DI4885/9OkHq85v56Hz9GrBQd9+YZ YbggeCL9dHsOcrYfzqj5KwyFe0/bRGjnIRVZk+tSfCLwYa8gy2ekAMVphfoQ EiKwvIftF6xfhj6Kdi9+kCafM9XNj4T/RGKCr9t9V5L9JIx7o/ZEOZIbarni TfaX9xPuB9xDfqHmXop0tq4I8IdzH//pVIMqlz69Mt4rArtzhKX7JGpRyRnU 8O+ACNT9rfFzyqpFp9ruQry5COTw8S4WCNSjjYdeU3Y7icCr3NK4P68akXy2 9ZJ+tAhkRxmOKjxvQ2I4cPl1sh/fyJ8OllFrRyjvsUpJkgioh+yK2VrWjt5H 73nxMVcEoi3ECxsWO5DyjHnwiy4R4ON2WSXyuQvtKt975MEQeR6tNT02M13I TqKmLPi3CAT77pfdvqsb2W8yd1rkEoUDlOZz9rXdSMcnOLeFvI8YV8/xuP3p QV945nkfrBcF+OS+NlS7F20+7/HVWFMU8g7Xc2l496KQst7nq/aJgr1aeVw8 pQ8lZHvvLHIUhTGdKeUnrH7EVWB+eCZVFLpYp/sdRAbRSfrVhYo8UZg/7m/9 7dAgSqiS3JZZIQr5Af8qNj0aRIeY3/SaekVhYYVMVq7IEMqBsXfiTBokm2Q1 //k3hJhdLXWvZWlwIL4s7+22YfSM07tfTYUGKdryBZfchlFINiU9GNFg7dSB jW79w2ihT2GDmTMN+F7UKP7MGkH6R51+XrpGgyuunausfo+gRYV1G9/60+Bx ps1OboVRtCZNYUYtggYH6QpjN/xGURm8dJGqIf8+VjdJGbGR590trIwOGiSW vp5c9x8brbuVW+c4SgNGzOMzWq/Y6Jcf79lZPjoc+unedWyYjX5MP6Vl6NCB WjF/NOP2GDKXf6L4U48OHL7e4F+xY+jz4YaQIRM6GNb2bOouG0Ml7B6t/Rfp UMjfEDEpykF5T67E+F+lwzZjL9XJDRy0un2JUutPBzupaM9RQw6yxbvU7kfS 4fvLFct/+HPQSaJqx8QXkuPsLryM4qBTxrOldj/o8P7RritnsjnIo0BwzKGJ DvkXj8pV/+ag4yqqxdP9dNjFP7ngSiUQq+rkh8AJOigUT67iX0kg//R3fvYC pJ/lJjbN6BPILMzHbieNAeN/3302tyKQ3PoLD5dJMKD2u87Td04EamFHlI3L MGCnsO+OFl8C1ZzW4VSvZoBi/Eepf48JxBWpWfJtLQPO7z0dRH9LoB3CN1SC SP96zzhNW/gzgQzaOB0+pD8Oitlz/U86gaI6IdOe9PeHXtOncgsJxGYoPDTR Y8Dvjg/brleR++/dtAYZMmC9/BpiZQuBNCtmjmwwZYC3vGR2fA+BXFWmOmWP MwB9jLFaPUKgZVGhUaJnyPdlfe/f+E2gW3ymjv/sGbAnplukeIpAidpXeced GMC1ISxtao5AglMOuv3uDPg1SHcQWSRQhm7ArbTrpF8O1tPi+0egBZdQ/sDb ZD5eVkyNkTx6zi/YOoABZfPj70pJ9rBVZ2g8ZcBT26Ftr5cIZPPRbzsliAHP O4rLLBYItHf60lhTOAOqXz87SyX38+DtmfkYw4CXOupr4icJVC1WqXo9ngFT fy9u3E0QyPjyplOG3xiwyWsxsWyIQI4LjFMyGQygr7jco9dNIPmwa0tDOeRz +708yU0EKq9/wPxezIArJYWWEr8I5L7v/HnfSga80lPRdiwgUJayQdP+egYU lHjMJKWR9Ydde2t6GGA7ujlpVTiBhgKlB54PM8A0oTVQn6zfoueNIZPfpN8+ 1il4jqyvlNmZYyWLDCg1URC5SepBy9noog8fE/Zu6Ei9eYBAk16pqpuEmRBm 1mlyVYtAmRe55h9IMeG/kqe8FkIEemepnaCxkgkDGWf8tk1w0Hel58cbFZkg rPehcnkrB1ka/xpmajDhn08B52csB42pU0WPHGJC1g+XomVaHBTgrh5fbcqE 2zk5ccMSHFQX/bL38HEm/El3Dc+eGkPy9wycdOyZsDvNQuhy0hiSSrPZm3+D Cb0CR94pyo+hSsquKQl/Jiwv536nMsdGOYyW4TMPmaAy7CSpXc1GTRbzM33B TPAMWUy+5sNGC5s2rn2exIRLu6Tvl1WMIo1tQZ6f0phwjcHfduTtKLJ66ZSf mc0Egal3ImznURTOEvieX8aE2aNXDjvTRlGEdU3GhR4mcOn0/6mEEXQ3O/0z DJHxj7sG6wiPoIWWSAdhDrn+OHIpqhtGfuVH392ZY4KLY++A+blhdMp8WIaH wYKSmJscz+tDKPIMf8ZaCRY8XzVrqL93CN0J6TyqL82Cbw/2/WcnPISC7jNX O65hQcbG8svPXg8iryrGyA4dFlCjdkU3xQ6gdt157+U7WcDcIlmh5ziAlpvJ a7N3sSBia9ARmuoAyr696uvlgyxQSTcLSPvcj9yVpBcETrFgbfe96egPfejF Wonfz2xYwNUjObrSvg8tGXaDmD0LButMufnX9CH2kl3IhDMLyg9kG0iE9SJ5 t+449ZssuC1/bo+fXw8aeTMre/8dC5yEh27aoy7U4ynnah3DAlOI4Bke6kSh HTK/1n5gwcEydpiUSSeqXM57NCSRBTalJXOlqzpQWHtuwlA2CxxT6yV/p7Qi 74c+RifzWLC+rNFvk3Qrir077VxYyILXBfc6P11vQZ+vlgw7l7PAPLDJ+SRq Rsb2jLWqzWS8gu9HNLIaUEv/7mXb21hQk/zxctbyBjTpK0jb2ckCXh4iJtKj Hh0cxCPL+1nw2GU8L2RjHdqhViS85TcLRH+WL/54XY1keKYXW8dZIBesWJn6 uwpZqZ146zbFAl0RpKZ1oAoV8BuWes+z4O2VytzQPxVo/dbZXA6vGNw+1lix EFOCfn8YfWNJEQMhrz4pH81iZCrldTuJKgYpm//wa+cVItdXtgZbRMXgtPS2 3JuteegKJUL2NF0M/my4GqZqn4usU9VbrjDFYCqj5tytPoxemP5bui4hBj8U Vcq/iWagIhOXE3aSYiCz5ccljnwqqpOMeIiWi8GY+tbTZzSS0UfLENtcWTGo 2HQ68GN8PNrjPM3lKCcG30vNM5mV79F4mro9j7wYfLJM4ErmRKCOyLP+PApi EKepFV6TfgcVth9GjmvEQNPLa44AC9zxbDYzV1EMPN59ez19IACDpgs/qIjB 07d+04EmkTi48Wmd3VoxyHC49ilnUxzee0Tiovc6MfDPe+epwEjA+B6b76qq GBwkeBrq+5JxQvsfodMbxKA78vGoVk0qtpnIGtTaKAZ6lnrGJdkZOPY7b8Rf krsv+xRf/vgD0y8LbP2qJgZZSWoPHhvk4JAvL9Is1MWgVtPS3xLn4tBxHkU2 yat8Tujd08jHi481/Vw2iUG8j782K7YAl1141TVA8vns3Prh5UVYAq9EhpvF 4NGTiTc8gcV4Y6nxh3cka0l4iBstluDNT7RVBkm25vUpKLxYhmcfniuU1RCD 51r+cLT9J7Y4NRewm+TGObx69mAF/mkffNuSZM2VbqJh6ZX4nq9bximSvdoz zWXEqnDPvV3bzUleX6vf1F5ShVUYiLWD5OuN4xfoPtX4T9dmQzGSA7epzXzY XINLX5+fbiH3b7r6wDp2oAbbqKXIPSc5q6P7OXdILda471K7nWTVrof+SYZ1 OPjPFYV68nxHHSI0kpfqsMvbzXLW/ztvi9hrrsR6rKt2u7aZzI/z6L+Up6cb cO3yRlM9kt33VoSfYTTiAKUVie/U/lcfh9OOuBHTmovmOGT+lwI8xd9fbML5 LcW7N5C8Qe9eC02mGf+wfvnGiqzf46D9zeHFzfisv+IKb7K+9MqvukaXW/Du +YGmp2T9PxhpynCVtOI8vds775L6KNR9LT5xqQ37NqZIXiD1c/L+myu/pdrx QqnCbRElMbgRPNY3ca4DN/gkQzGpv42o4AtHqBPvi7pffpnUZ+dimnN7QieW dJqLjyT1ayUnezLnShcWae4b010pBrTTqU6FBV246VHKql8rxKDkirm+Ib0b //fmavJPaTEwPX/zeUNkN47wubNTh/xeAkNvJ9SPduNkn0jRYPJ76uF/1ndI swf7jEi1aouLgVrO6Mp3+T14W6IBvwdLDBaDznE8hXqxwcyuqjiGGAi7OThi o15swT0QwxYRA5EBk/VBrb14tmHzb4KP1E+cD7/OSB8+JWWbXc8jBn9d2UdP qPZjZ/7Q34lcZH5Sxg06L/bjmf8qh/YvsGBp+6wNN9GP4cAK+l+y/5x5MBJ0 ZXgAX5FQ73lE9ifLtK+iF5UGMdv9xm8pDguIgOZdSTaD2EhCWJ0xzIJAw/qG dc2DuPJro82jDhb8zZg5Gf1jCE8od2g1trLgl3qa2dTkEP68InWDJNkvI0bN XQLWD+MfNrn83rUskOqzTLn6ahj/e/Iwo7eYjOe5Wfd+2xE8S4uRGC5gAeXL VZNHL0bws6SfjwdyWVD4YvdXkcIRbFb6x6YskwUdMi/vf1IYxSiuQ3brFxZs PmOrfrBxFK9PpQjwxrPAeUP5pXU8bDzx9eDyojgW3NLt6NiiysaKLgm6OpEs kOjXtqzxZuOiawGvBsPJ8/VtXzwVw8a75xbfPgkl7yeaG694ORv7yG41rXrB gvwfXvHjy8awZva2PfZPyfvvapqM9PYxLJWh5zL7kLwvrRT8zp0awzu//5IQ 8mfBqmpjpbORY9hkWN6J48WCmL8vN/av5OB9NCa66M6CO5X+x27s4GC21qaw QRcW7HX6WwSWHHzq/Vu/X44syHsQaLjxIQdHiAcc3Unej+b0gv5j7zmY09QC sbYs8NiZlR+bzcHL3ikOOFuR9wf36ItYNgcr/n0zVGnJgmGtE9steQiceMzz 8TpzMj+Z1IcqkgRu4LeybDrEgsPr13co6hKY/Tc2d50BC1g5j/ONjQi8uKfu 5NV95Hn/SMmHniHw5DKtbCY55b1eVmp05yaBD9gZlh3bzoLw3RK6Ck8I7HxP IPitNgsceBvr2t8QONzx1uFeDRZovcz6+u0jgdNVhmiK6iyw6B3xjE4hcKyA 69JZVRaMK3NVf8kl8C5nu11RKiyYsVp2sf4ngQd6JRc6yfljuU8hj0Q9gVP+ 9ZrIrGJBW6jiEad2At/6b7Oj+QpST7hKoruPwHaNl+0eLSf1GNEnf3GUwOoT 8heKyPnGdi3fLtYfAt+xS3+7yGSB4i/LQ1VTBK4ryVPUpJHzRNpzhdg5AisH F692FGIBI4UT+2qBwDlaFplvKeQ8ILyhMHyJwB9q/4nV87AgViDswv/+f7yy x1FjoX9MWOkq9mqWZMWB36/RXyZM5U0hA5JffbAWcZ9hAkVd3Tl5kcAt81q1 HyeYwHd/m5r2XwKvz+FldhNM8Olb9qxmhsDyt81HJNlMCF9hnHh3gsDg8O32 EXK+e7x6Kc6UQ+AspQjue31MeC+W+W7rEIGNuILu5XaR87JGfJFON4H10+k7 F9qYcOP9NQPjZgKXP7m8R6eZCREUS7vbVQS23qqU415Pzof548d+FRE4stq3 MbmaCe4WPv9pZRHYsb3881QFE2T3xw9+TySfb9JQ8S5iwhs3hcsCrwmstDtS vCCPCUXBW3Y03yMw7WCCkShmgtznq71FVwisKxa0PzaVCaKXlP1nLEm9tOsZ zH5jwjiVfWn7fgKfTdyoapjIhOufn4m90STwVVE32cU4Jji4f47OFCFwnvO8 y/EYJnzSjP52ZYaDNe6KamW+Y8IaxtWso93k95Kh8NQ/hAnbHt7f7ZHEwVsM t3odCSTzay2vbmRAvv+wY8r3Hjlv272KTVrPwTFjcyXf7zBBtSNQV1yEg5vO qKzc7M2EJDsjanPpGJ659njO6woTjDfxOevGjuGUFmZToTsTXOUmrGJvj+Hc VYOHXJ3I/QZ/P7u3dQzbmU9uq3Fkgt15pgmv2Bj2CHjU+D9/IH3q2t27o2yc YeZRIn2aCTzMdUGfgtl4YdsxmS0mTHixc1rx9cgo3r89WKrqMDnPy/4nez1r FF+5s5fpepAJO8avs90ejmJmzuzL/yvpvOOx/t4/jiIk695oqJSQSltyLpVQ kkpDKRIpCRUSykiRSCmhoUKIPpSMEg6yV/bee933W8Moo9/5Pn5/Ph+3s67r Otd5vTw8bhV7iD9R6TKPVRnBSzas1uZtlQJugLPJHrNhHHKn53rZJhLfW+jF uNIwnunndX7aQM6/eq9k0e8hXGVWyA1XloKnm3yrGu4M4aVSzxYME39U9Ehz qv7lIDbSF5rPXEzWixfvyz87iG1EFp3RlyH5KIlV71s5iHvPb/rcSJeC6h0n IDN2AFsylldcE5WCtIvXpBbF9ON9FdNeEwukwGLU3+6LRT/2kkqM9haUgokH fitj5Pvxs8bNGd/4pGDbkYQ7B8P6sEWGaHDlpCQsNk1ZRvfoxbdcwrYljUuC bbyc4MJtvdh+NbX79S9JWD9fIu8o1YPnnnwWiqAkwZCyuj12qger3r0zmcKV BP4ZbK0t1YM5HcW59SOScPyAyd/J/G787EfmMTQoCbsuach5rO3Gyk6njvr0 S8Ly3RHZJzu78N61+5619koCZ5/lhpdBXTg7Rf5MYpckGPUE1J4b78Trd9hL rO2UhDtWj7W4bzvxpoSmS5/bif92FhkbPNqJT16ouDPVIgljoXOOty904KzD 5su+NUvC4bl7atsq23F89MGfYU2SYN2ge114aztu3LnT26aBnGdusekigTb8 JNjE6kK9JLh7KI3vO9+KrVyli+yJX9a+Q/+TUtyC7Zp898TUSMKqo5cdVj1o xqsf3vaoqybzhT+X2Ew1YeFzvi6ShDdFdJvePtiEu1cVa52okgSB9MOCzMRG vCOf3fe+UhIefb709seiRmxWMXxVnDA4/R2WsWnAe8SP/HH7LgnLtkzceVpc j2VWCt6dIv49ufe08sVV9ThLzmiVJ+F3GxjBIV51mJJQG2ASNvDO8VzVXov1 s9fVfSmXhIny6GSZ7bVYVdNt5iLhJere486Pa7BBQO+F1YRXZNhL7uVW4z0H ahR+lklC9s20urt7q/GghaFmCeHFqskceFWFb3/gy0wknKGWmOw0WYk7kxTe RxDW//rFa93BSqyn95IRSXjwKq2wXf87PmHeJfCRsIxrvIPT33L8JW3BzTLC XVfPtqyLKcPFfjn+44RjjUor6EdK8SqLU+oqZD+PjkYrrpsrxivrMwLsCTe2 BBT5xhbhTbsuPMgl/J9e0mPlw4VY7Y3L7uXkvCnhgQ7y0/k4wSD+UyDh7T8j TzpE5mGZhv19oiR+WkUK6qr7v+GxIp32x4Tf7U5faPwzB1f7roxSIvE+tlW5 bC40Gz9V5Nf4TvjKBvWpw7eysIHW0zhPkq+r8fdQQfFXLMQqlZMk+Xb00ig4 diYVK99qXj1KeIt/+6YXMZ/wRVdPdn0tqd9PaPDg2AecUSScUkPqJ4Nz0+Qt Xwx+7L3McoDUl8NUxoongW9wyQPNeSKk/ooPmtjwa4TilHD/RU6kXh8uuqyw /9U5/K7ti0tOqyTcnxUJLOv0QMvrBxpkSH1nPtc+e93oMWp99910ktT/4n55 +wMBUciLqe/r0i0JGzlVQ4Jz75CkvcGLheT+DEdkxc1eTkR81n9vHh+QhM8z 9d3eCino5azKXukhSVh44VNxf0saWh4wyWseloTWt5LFIY/Skc3Cv9XBPBKP PP0vT/9i5Hkj3/zjhCRsTR2Mv2SWj9pfrP4g8oesX7I4zL22AK17HcG5Oi0J TVpWiWU6Rej9vAK5a6Sf3Mj+Xd+hXIqkg6yKNi2UAolh78XaDpUohSXRISYu BcU7ClNvK1WhHUz7r78lSb9lVZWrdFYh9R2jgb+YUmDzrSLnrV4NKr1bS3u/ QgrMdnxf5EOvR1kp9CK+1VKwbsYDX86vR0MXThdbKJH3EvksfuDYgAwsUmxO kv5auz2Ue66mESXJnlj7F0kBv35oQ6Z3C5rlK4n4YyoFBg9cZfxMOpFTY3XL dgsp2Djz69Wl/zrRI8+xRb4XyP7Xp/V+ne1E5aZ7Jg9cIXxT5dvLF11ovbDw H7fbUjB7wPCJbE03isgrZSuR9+vPlqik1Ut7kLe2tnEved8C0yz3Blj3oHkJ dwvdn5L30G/Xo5P/etBu8VHxg3FETxi3GqYt60OHylS5ZxOlYJ8130Ndqz7E V7Z10iOZvH9SdMul//Uh1zYZsZ4sKTC/YnHsyZZ+9ESn/+HGWtLPv2hbnYQB ZGgBbgN80qDhljZuuXYIubh+GX5E9E957ObXm88PoRXsyz+1xaTh4c9t9PXh QyhN2WZHCUsa3o+oC4cvHEY92qJRaB3R88qGLiqtwyipq7ZCbbM0pFj4P1sm PoIuDLafVyV60bE36+UGRNgRdmvqSMN9t+neyPARdFdR/UyGKfEbQhba4YdH UZHCn7c8S2mIYzHZBjdH0aY9hosVbaSBx7z5TTxmFLGZuycTiZ5OaD+mljk5 isLz/RbM3ZIGruBtw9glXBSglR9x+I40rBXnzoTv4aJh3vwa8SCir53KF8UF cJFI/hzNKVQaUu1lF2V84CKnqw1be4j+93hhXVlbzUVF5/puVsQTvWl1Wo1J 56FLiZ6HevOlgd5wQ+6rHw8lq/VOOZZJwym7tK99b3kILaIriRE/E3viN10i m4fE8va4aHdKQ8cX+8CTP3jo8vBSrcF+adgZ1i3tKkyhXZ3uXQ+40rBeqYAe soRCVqqM2f6/ZPxbydQsHQoxDJcvDeWngdLXuemikxQ6k33+gr4wDXRVnBeV 2VCoWVfk/TwJGtQG6x0pvEkh+0+szEwGDWr+9WmmB1AoZbevrYscDZb4XdoX 9YJCvPU7Hm8nflazMmbKO45CnctmZv8Sf2w+X67uVBqFDCJve2YRf34sh89B 8RuFBBOcx25vJes/1rs6XE6hh5yri/dr0iB5S6zjmwYK2SyZaqZp0yA+MFDl QCeF3lffmW7bTwPFo1sMuAMUWhzrd+jdYRp8cAh75smjUO7wpURHY+LfSeMT +U2haHR3YJcZDezrr3XcmaLQxIp1ZZJWNNh2ve72+DSFTGxS13VcpoHoj5K4 E3MU8syz6v3Pgfjbv3qQ+I9CGar+GW6uNNDPZ27/Q7jy9iW//V40yDudF7SF cNLPA8tk7tFgJjP5iNUshY573DQcDCTxCmXfv/+XQtY+OtyUpzQ43MwzjJyg UPfWuSKvlzTY2j6vIOEHhfqa1RKbImkgKIc7Fo9SaKbk4+t1cTQoEOY0RfZR 6PBlN2fvDzTYwTzTBe0UOrb+hVRjKg002t1Vx+so9C5shY5SJg2qQmmz2WUU qjiy7rfLNxp8OWv4MCqXQksuu8uzKmlwzQCrJcdTKMpw+wnzehLfQaehznAK FUVbXItvpUFGatunVY8o9CLhRd6WIRrkPtCX/XeVfD7/2UdnigZLwf9JkDmF 6CqjY2njNPiu3NsEhyj0gQ11awXoMJ1zsJhSphD6W7HBQpgOcXmDt3+wKOQ9 UXEwRJwODSMvlCXnUUipazv8kqGDoB6Oi67noeJrVImsPB2013gXLMU8tNfx Px9YTYcRLeETn6N5SOi+gMitjXQo+xcUv+8aD+26k3v36XY6xL9Y26d9gocS cHtsHKLDkbio2+c0eOhpSe2B/P10WDzLt1JEgIesNn7dn32ODnVjpd8Yt7lo n8Y9uaSLZL50teIdZ7ko62iQW7gdHUx8g9B9TS5yrA80P+9KB8dH713iJkbR ydkRdmIQHVLaOk8vOD2KlvzYknIllA729Ce/gjeNokHZe3Vrw+kwf1drwLGF o+jjFqFlQe/o0L6L63c1dQQ1UG7HF2TTQZjv5YJt80ZQVkNdQFA+HfLEl/xx rh1G6vwNusxSOpxVfPd3PGoYLehaWCVUT4fSs4av3u0eRo+eKdX6jtChLS42 c4nzEBoeiUudoDMg84qajX/WACrpP3v4ggwDRENWGOi6D6D3py5NVSxlQN+f srPqaAAlDYU1uSgx4Fm+Z2ZxRj+6NecCeogBSnYC9JqEPuTbfdDNdA8DTrgf lb91sQ/NOr7/fFGPAZ+v1OleWdGHCq48TDE+wgC7278Pbw/uRbuSFl2MOs8A A0WHF4/te1D0XdODxy8xoN19bWiuQg+au6+yd9aOAf/a5OQPNHcj+5e64/I3 GFDeaMLnrtWNJio/mpf6kf2z5laHC3ehEt97yDeeAVXXX3zYNtWK4EDRrGki A1b4zVrdMmxFl5odtNZ8YoDa2NsflTEtaOWHaqGH6QwQM7+z6tORZmQ+BZbv ixgQvFHSUexNA5pvpbxavIwBr/Rzu0/8rEfWxtX1Zt8ZUNkbqtG5qx4l5/7L aKxjAJ/VLp20rlp03FXsh2Q3A2I+uTPXsqpR6rTPxaleBtDGntMmzatQ/2bL E5UDDOioDc5UTqhEZlmXrA5xGWAtNYCb71QgGSX2wpBJMl7X478/ZUUoPNzm F99fBvR6nl78wKQQtQUvmTk5wwAF601DxiP5yKXu3YEOPiZoOH5bVSz0De30 SVFUFGFC3rN6gXybdLRyX+ban6JMcJLKUi77lIZKipLXJ4gx4dtzzR/yf5PR vGSbFTMSTNgb0NbAEE1EHOsPix5IMWFTQdePgMfvkEDo8LAUjQlrcube7JWL Qqrry69TDCbMGtvXqJ8IQsdouxT0WEywsxzgWr+4iV7Y7815wmaCbEaYbP8h GxwbIJfPL8sE8VWzZ/fZhGHd2fmqK+SYsO7w8GlV1Qj8WDPOZ8tiJpyqHHNJ fBuDFXe00zYuZUJZosMPdb2PeOhk+T65ZUzgqVqmJM9Lxrd+b3edJFzLvZ0Y mpmK+cpPxubJM8HCs9y52ukL7vH9Xnd7ORMS1bYlHliXgYsevl6weQWJx339 ifH+LHz6l+auRsK9re2uLRXZWHqPt9/llUxw6ORTy1qTi5uckvp+E27LcvjD 9v6GCz5fM7ZVIOO3yiV1teXhOO3mkSbCj1YsAfGtBTha3Sxy6yomDMqo+T8J LMQfLAfu+hC+PDNy23qgCEtJf3lZTHib/gKZu5oluLPqDjVLWNEuaW/bk1Js v8fSe+VqJlzIbFpwfrgMFzTVWewk/NDq6lkmqsBCjzPCdAkHrs8/3Rv0HTdj C5W9hNtcW4V6rlbiX5/dV20hnOD7IK9RtgrbhqwMYhOen3rjukFeFT459P0G l6zHQG1qyKYa7zx3bjCZ8O9bLYuiaTX4xQOFIVvCdonhK26l1+AoxxwfWcJP fG8+zjWrxYX791amk/N25Sz1tBWqwwG01d/1Cf+9GkG/GV+HTbTUH1WReP06 nOEydLAeW5/6skKP8Ka6rt6EX/U45yk8+UTi3bX84r2ipw3Y4krFmCThZOq/ yA3bG/GWn50xUSR/8zwqocO1CV/cs29ZC8mvUWGOkYxcM/G3XtnzCXurtvMF fW3Go/8ZfN6whAkStNeeK6dacGhf4frNpH5Gzi9kbAluxau8mqVVSH1tKL2a dWVDG+7rjDb+zWGCdPgz+lGrdjzUsLU7n9Tn8l2rk37xdWD1RxJy90n9XlX1 14kL68CVMerUGJ0JlS+e5K6y6MTWD/5uUyH344vfI68p/y5sPLXh/NtFTLjz 9PBN19ouvC3+rDGN3KeT6Rk7bsl2YzEX655yYSbQ/Y+KTcd0Y7PUkUiZBSRe H+RUrnC7cZ5h8k0TQSYEaTYrmar1YHSjogbzMyEpiC36PL0HaxvtcOv6x4C/ r4uZfbM9WGB45dOpWQYwVLknX0EvHrs6emMB6Qc35s0sOp3XixeH0ILifjBg GptEF+f14fyn9KMuFAOEohqbzs7rx6+VJHSB9BeVXT/ST2n144wrvssTBxmg ruj1+PLXfszI/u4s28EA+hXr6aaYAcw04/m+aiX9OGh388GuAazhoxAm08wA yxcWfzgyg3g5NK2aqCX9Xfjl86h7g7gbL+TbW8KA1DejU1ZmQ7htdxPrTiED Hmo90DJ6MoRPnBaVzMgj/bQ075Fv4RA2y97IlMYM2O9IC/imPIzPLTqWepb0 4/frGT9PjQxje3EjsXMfCDsaHjvLGcGD2WEbTv/HgOavgrWRe0fw+TQrS40Y BtjLHFnYEj6CLYZGW989Y4DHD6Qypj2KR5RDmI4h5P3QnZz6enkUi/EZy6o/ YUDtjN7Br09G8balHguSAhiQsSJCw7BzFC/fwrfekrwf0pESyT3zuVghovSt tA8DNrZNOkYrcvEm/d2zJh4MaJAwak65zMUliofl/7oxQD6E5c8XyMVL0u1Y QeQ9ah8WiHFK5OLV9zX4Pl1lwPdV15y7uFx87e8r5wwLBoQMUa5hZjycWbo2 ud+MAc4Wb96Y3uThrLWBMmKnGTD6ZfbJijAe/uxbzdY7yoCU9kJ4U87DKlGh ImcPMeCe/icN434evhs1We9wgAE6d48ELJwj4y/Wpj/UZsDBZZ+kTZQoTEUZ KIdpMcD80drKKU0KJ6YdVwnfyYBc445f/ocpDE+2j7zazoClS2YaWJYUzswz Dg7fzIDGtJsdoU4UTh3eeuLZBgYknF/jJOFD4Y6dNmcfr2XAws9PJF2fUrhY OW72pgJ5T0+vPbguicK9AYdG7eQZYHoKC1/PovC8KJ9G08UMGKB1j30sprBV v+7YAQ4D0kdcYztqKGyk/+asOoMB8a0nm/61UnhNQdxJBSkG7Dm4dYt0H4Un Uu+LSCxiwOZ3qS7MUQonXHZ8MSlM9MXDy5fEflJ46mWEVsd8Bsx2dtX9mqDw 58ajqwv4GKB4yv9h2V8K681vdH0/Q4drfM0uT2f/9/fuTpeDpuhQobj25qF/ FO7edVvJ+Tcd9u9r950lnC5o2HV6jA7bHDVCnxG+Lbw+e/co0X/eAQmKcxQ+ 0OMwvmaQDtL84o0x0xT2OXw5UbKXDvwZY2vYUxTuTDgnN9VBB+Ccyb3xi8La li+sO1voIC91raiMS2FJO6Oi4gY68HqRjdQAhW+V4HPJNXTo8yno1+mg8IVf Cy69/k4H54ypG/b1FD5hsk/sAdFv9X0p9vfLKCw6+NTxZiEdBgKKloTlUPj4 OV6t7Tc6ZL7q6QxLoXDEPzhhjungc+yV3INYCteW26w98ZUOqMsRnJ6ReG3X 8DJMo8O6r/jb4fsUtvCx8N7/iQ6rvySuWulK4YwD3mf1EukwVWrwc/gihR9P yOvsi6fDr+vXP8ccp7BLjG3X0Ug6/DAsiRFcT/ZDixoze0XW83myLFaGwjfX nM20e04HYnM37p5Pxq9auzvsMR3G0+NXnq/l4U9S+UeTA+nwW3x+GJXOwy7p vxpr7hO9PZZU5fCah+Ukn3Qv8ybnGXzOcbrAw/z85jkGHiReLfPn/d7Hw+b7 3XI83eggayVteUWFhyvyXWonHeggIyz61naUixOKs+atOU/0eMDhi4/MuFhY 4+1orjkd5nozLZN2cnHe22Anc1M6rDTvrJ7mcLHjkxcTSSfo8FfvwXKxylEc euCvyUui73UYEf2gNooNEuYJXtAl+rpPyf+b8CiWUXx9ars2HYziqnyut49g B7v6kDFNOjSWvjjv7DOCjz3sbUhWI/6kw/ogf+UwNrl4x/PzOqL/7beIqL0e xh51v5q/qdBhjYeKa7jdMK50K+T8XEWHJVSIwnqxYaxvcG75B1k6NJmYLjHV GMLb30vG/GbTwSUhaDpYaAi/iXlZocWkg9a0lwm9chAXr9NznZCkw7vGxRNc M8JOmnZlQnQwnNuSp+UygG2zp9Ybz6fDSa38ui7NASz6IMOZ4id+Q9vOr15g APPHdQptn6WB2anbZXm+/fgH/wXB3b9pYGJoYtDv34cf1Ml3LflJA+bxwDET /T5c6+NNFxyjwYK4todbFvZh1657fWMjNNA5aXJIxqcXj6S41ev20uCl2Yhd 0/Ue/KHBieXSTQPHxRMeL8n7tuLBe9vUTuLfQ/eL1Y52Y/vwJV8M22hwPibx 1WvTbhx1fEtjQgsNtvdHf1Znd+PRZciS3UwDD80Xlw9WduH5yrBYvIEGz2Zn Jsc0u7B5+ZUrz+poYCuxcNZzvJPUo9BdtVoalCXvnA2O78Ssq3R0t4r41fcm TgeZnTjoh7ToLuJXf03bXf8Z3IH981y7Rb7ToMd0dM3puXaM4gvnZ5URv7v4 sde9sjb8c5jW+LiU+FOD3PQjCm14ofi0knMJDe4+6rkmf7MVXzkmTbtUTAO7 NobpVE0Ljv5g/9amiAbp2tWb29e0YMnZ/ybcCmkw3zL9S+OtZhx6ulvmRQHx +7fOJ3Orm/BPjrjSgnwayLdJnLrl3Iglpz6oH8mjgb3lvmzBkgYcGPv6YgLx 2+2tp8WxTANu+mxTxCbsHZy18YN1PZ5eKX8hKJcGzv3RCh1f6vDfb9rGsoQd H/R0HBKuw2Gf2+I/5dDAr+2VhfixWvy2/7zdKcJmMRsyZCJrcJZNU5I0YV3+ vt9uVDWOXR7j3ZRNA1RSuHzHjmqsKPf1ZyLhbfMcTU/drcIO62+IPiVsONlR 3FNZiVXuZjbeJ3x/49K7zTKVeGJF68VHhHtibV3uF1XgpDuvi6MJvzpYuv34 yXKsu+XAvDLCN/bXJawcKcWyts/l+cn6Kndi9/K5lmCl1HTVvYRPbX3oNCFS jAsDDTc9J0zjf/6VFlqIpeWdd/CR800mqz6zUCjAov05+o6ERwafvxz/mIct zm+0/0s4S+/j8Zqd37Dg2N7/Akm8YlMNzESLc7DWsRHRzSS+KxWnjGKOZOPi lNuBw4T/lVZ+uPw1Ex/eOQAfSD7OLNNZeb8iHQtMm628S/J1aUbaJLszDT9M SNS0Ifn0/PE9bdXPZLzmteATc5JvnwhOeINAEpZxE1a8SOph0MZ0slEhAatt rJp1J/Wip7zxzuyeWHzhw3HndlJffw6JxAgKhOGFdXeXraqgQabIR8FVN/zw IoczUrdIPT5zu63cYn0cq55uLj9TTYO1mo1TrfSnaH4dFdrTSAO1Xdn1P3U+ oiWTa678R+7Ht3k/ZC9tTUa+L83u+LTS4IjOuZ2bVqWh6vA/hjbkvqX7/nE5 wp+JEgMjOicHadC9ZI+yx9E8lKp8Tng3ub+PH/MG5IrzUaTvIY1wLg0YL3oG Z3YUovk8h2hvcv+DNF76GS0tQe/sMxwlSb+oMRSMmd/yHfWKXF8V/48GzW8s 4yNCKlH6dv4HRwToIHcu5T9trSr0277uePkCOnjkdib+C6pGixJUX5yj0WGp 1uDNz+vq0JlNVKk16WfRu2t6zOvq0OE7qUbuHDr0zA2bXHCpRzmHh9Url9JB XMebdiW3ATkHThdIrCX9+sVq9596zeiMTZmqx3o6jBiq7OMNNSPJE3HOsxvp 8KHWrGjJvRa08Xme3ZIddDgz/FhmYX4rMkvuEZjSo8MjZXnZQLUOdO5gk9af i3TYcPeWicJYF9IQQWrrbOnADFTanrqtG+WFtlTYX6XDbEH+lUyPbuTRWZ7E dKXD+RtPXFZJ9KCV9Yovh/3poLD8np2iQi/i36V90fURHd7IRDzZcLEXKRXO V2A9Jf29e/T+6/e9aNO5XiE78l4aC23ki93Qh7wN4iJeJtHhc6uf7apN/ehe XrzcbfI+f/ctcFh9rR/lNrFTrmbQYV7Flf5bH/tRlFd5tV0BHWas3VPWqAwg ab+L79ub6RCc8iBXgzOIlncu3eUoSPQV7htuqBxCzg/f+9eIMiDglMnJy/OG 0ZCOaMl2SQaYGcwb0d48jJ49nYxaLMsA65Ux5elPh1Gy4aM7iOg9mXXSxgGG I+jBgm3SzVsYsM027DLj5ggKcwx57qrBgGX4GLcudgRFq/or1OgwIPyWx87p 2RGkbDASVHmGAW8iiktSwkeR6DPT26+I3m27XPO1I28UCdgVXnawZsCSqVVl 24ZH0bHoD/HrnIh+752gOahxUdLhCxkMoqdfb5uHjI5yEZPfS4vfi+hHCV97 0+tctCI+QH6Q6HWHDGPJX5+5aGrFjW09jxkwNOITcaORi9g+X3f0hDHgU82c 1+pJLgKx2Js/3hJ9/2P8y/gGHrJqsl+5O4sBeiEb1mi/5CGvl5a1Z4kfmbXg KlMpPBRvtOqkN/EvvatEN6eX85Csgb9xbT0Dth7L+u/DXx66832dP38bAx4N d9U3S1CoMv+lkFoPA9bN872xYiWF5NyLdr8gfqsz7UPvon0Uav+bl1U3zoAN VUNhCacoNGq56KfUDAMGt8pEXLKhkP/GB18MBZgwcCn99h43Cjkulv/xiPhF VeuvpdvuU+iA0gOHOnEmnBm7t0g3jEJvkv2XyjKYMPdQqudKNIXc3CpOvid+ ufrbnSpaFoW+HN8SMUn8fnR+q+b9Igo1z7i471El/j68YFC2mkKDXRIVQZuY sKig8l5+M4X85p252K3OBIGlzB6fbgq95eWpbNRiwtY8yDAfopB+yfNf3jpM cHp1v+coRaHfZ9XCGg4wQb/m29qzvylUsK56SsmICRG/9Zy8pyi0xQpzb51k QgKd9gpPU+jzv+1HaszIes/fPZSeI+vhW/MVrZiweGyt+s1/FIrbW9TqdpnM P3ns0T/CJRzDtKprTIg8eTUojPDB/w7arXJhAjfSAvaT8cft+TtdPJhwfs27 KPoMhTIa3vRW3GWCUNGh7+NkfXbWCtf4ACasrA5s8Sf7m2gw3ebzhAkbOe5c abL/rY9cuWefM6EvZGCj7yCFpFe9vbQjgkn6d3z/aCeF/qoxvGnvmPBSpGCv ViOFNPdICg8nMqGVpxN+p4JCuywHi7JSmWCifwzSv1FoZ+JcyKNMwqqr73Wk UehWQ95e8zwmhL2aaxuPI/vJzIpeX8qEzbrK/82+oJDYxO17M1VMOI0FbCcD KBR/Kic7v5EJvMC21z03KWT4VH2JfwcTmGPS33NJfZyJLb12sJ8J0iq//YJP Usj1pOLBsl9M8NbMk2dvJPkP3Xjjzl8mTMWLGhQvplDAn8YedX4WuHe9jrNf QOqxqSAvTJwFSeKr/0Q18NBRsYOduxgsGD9jfntjFg8Z1/y6OyDLgvu+TrZf I3lILSMuZ/kaFrA6j0+lX+Kh87JrZz6vY0HCRj/HTQY8BHcTxfdtYcHClIOS 8et4aBfNTtRkNwt4Bq/SH1NcZCiy44H6aRbwH3G7e+UcuX9+458jzrFAb/Lj 8Z87ucibxToz35oFr4M1TW6wuEh4aZzNJycWHN+yW+lV4Sg64fNs+msgC9YX qNbayY0i86znJ0aCWXBM59U/HWoEZW081in9ggXPLXXubcgZQXX+7WV6sSzw k/jTp2k+gqQmyj8dzmZB4Clanl3YMKppPzOnWcCCTtcDsf8shlFjedKm5WUs MLMYkE5YN4y67ZJLyhpYIOEU8vpy7hDyYMk4J/BYcPqh+K74tkF0bqt22W0Z NjS/CzerG+1Hvkp3fK4tZQMzffOnsMR+NFCgY2m8kg0Wr5duTbnSjza3zskt UGWDyoVxkT+/+tDywyh8ANjAniu+ODDWiybiI/zvaLPhub9JUmhCL/rEeljB 3seGvKP+jA+XelFS9pGRJUfYQLHiJtm9PUjOaCsv2oINavH6SaIV3WhHi1vr 6AU2HEhz27rSpxs58pTPrb7Mhs87k9o/oW5Um2bVfcORDX6BV/t2Jnah9XGP jwfdISxXyN3q24nGvgeluUeywb4yL/yQTiuKbXsRJRjDhoYdibH741pQU9mr 37fi2HA7ubH+ulgL+jHzwW3/Rzas+3zmn3NFE3ry8I3rviw2LGP6nn6t14Ci He6UXcxhQ/yVHvX/ouuR9dlDwm55JB6eU/el5tWjdS45C2+UsOHjt8zHv77U ol5P476aOjY8Eva7E7msGvUYrVW918iGEx/Qmp/OVehHjZLAhhY2qIveKc6q rERXsleuONHJhk26N1eUzlag7wff7Z43zAbdFDXB/vhiNLE+qm3/KBtMafPM nY4WoR3t4hl3eSRff8T+OzRXgPyfmCvV/GTDdL3ylKRBHloQnLGs4C+ZLyUv Irg8E+kqa20tnGHD6i0Fi93a0lFUfedk2hwb2nViGq6PpiGnia8WFwQ4oD5x tIMhnIR2yQiIKM7nQLWA55GGNQno7KSzToMgB5YuEzzquisW5QRvvjdfhAPy yvH/xrtDUdUmvnteohwYjz3wbnKZH9KwEpQbW8iBlMHXC6caj6ALOb/+holz YNLex1jgwlO8sLVNp16CAy/xqlejcm+wkNV8JQEpDgysnPDZJRiD302rpSrS OJA85B+ZePEjnvBIs1xB58D5qEwXU5NkPL7zSsoiBgc67X+fP22QhlvNvN8N EF4v/CY+EKXjZ8JRez8yOXD066rHresycbasdJA1iwN8/u1bgyWycZDMq0c0 NgeurlSsSLybgzePvtv/nvCVsA+aG2ZzsVjM0sJNHA5UPvuZLXYtDysauS78 j/CxIumgzYP5+Nd/+csYMhww3HpwPNykEP9qeiJxmbBJlu0mjcoiXLZYrCuZ sLzw+td8u0vwmcCW8FHCQZc/P+xILsXLs9ERuiwHpO4LnC9TKMefz/GLqBBW fqTvmx5cgWN+OJRuJJyluDvZQKASn9nlEq1M+PRNU9j0pRJfXe0WTfvf57v1 4nzsqvCSf3aNI2T+IpvSz7sUqrHA7jq9/63fuLN3q2lzNd4inSL8v/2F3J2e qn9Qg8NT36xgEjZ+y66J3FWLXyukvksk5zt9kh2Jx2sxxy04bjthNevu/Stj 63COo/WWZBKfDSKvUkuN63FfR//ppYQNJUerE0UbsPeC3WquJL7x01IhJekN uG75zvxCEv/I99v4mNaNGKWy1wgSnqaeS/uzmzD+/dJ+I8mXShFuWlXQhONK jKfMSb6b0d+mpCUt2PJokpmFNAeSJo0MQ4tbsAJtcuYYqY/96qYTftda8Zv9 cqslSf2UG1W+9chrw/uE13TVL+LAqqRCVedL7bjqj/PqQDEOzK783W8p1YHX +/+XWkvq9Q4LRQqt7cQfwz+sMxfmALWLr+X0rU48tlItuEuIAz4ZH3+u/N6J 2w9r3E+dx4E99jfxpG0XfvQ1f34GuT85Ck0t52K6cfSNsfBecr9W79xv7Pez G7stL3Di+0P6X70DSO3swQ4ePgekx8l9DbzotaWyBz8z9vEW/sUGl5hmwUp2 L94UcOLizzE2GE9e35Nt1ovNzWkf35D7zTTb5vmc14uv6hw8aEXuv29jQK3n pj6sJ/NPSn6QDaohzwNSbvRhuacf3K/0sCGhylR2hr8fN8u62d5rYoN8j61Z ocgAXvk75dWveja8/Zt/rVlvALPRsvHDtWxweBxrtubeADbYefLxjwqynleS 81XBQfxJNsUs6Rsb3Hbq8Zx/D+K6UzscirPZMKD9kbtBdQir/PbJrc9kgzdn awPTaggb3Bd9U5vGhnTRlp8m9UPY8vH+q2fjyfltKt/ExA3j0NlD51Vj2cB3 4x8zoG0Y36zcnf0zig2hWQraDyVGsIqApJZ5OBvOLu7XHLIfwWZqqqmLnpP+ r/qkfsfrEcxrzlj7MYQNKWZu+G3FCJZ9/vpb50M2hJ2Ysf+iOIpL2o+oXQ5g g/Nk7y4zo1EsZLBhz897pN+dzXVmu4/ilW7Nv/u92NCZKXAjrWoUO1rzxN0d 2CA00WPhd4mLRR4imTp7NowslfryNJCLTxReZyiQ98W/R0c6LomLH5TM3flk yYaa3cc0u8a5eLHwH8OfZ8nnh8RaBJg8rHhRNU35DBtuuT6XXL2Zh8fZrwQC j7HhiKnz5mv2PPxv5w/NL4fZIG1/dEOYPw8/Ofour92ADfu+qHdkxvDwaNFW EzkdNtSvXVn4r5mHle+ZF2zaTfLtYHdI9hcP/5QLU9JDbEg9Y6qqJkrhWbdD j89vZUOfUk+7wWYKPxS6pJa8kQ0SKkHH5+lS+OrxTcNz69iQf6b1frUxhV/S VTv2qrABW6n/+WpN4fNLuZv9FdmgwP9lBXahsOk9Du07ec+FfGaCW+5ROMXn 8nMJeTbcOLKnSzKUwtedi8GPw4brvycv5H2ksIx4SEwegw2HRQWHtDIpXH2W cWBWig2TB84U1xdSOPa+3rFN4mzQqXXM8KqisMWVPYMXRdlwuu2Cq3YzhYdS 5RXDhUh9tPIXLOmm8OYEoR1VAmxI1k83Fx+isKKO/N55/1hgdzJjCZ2isMC/ aNtN0yxYZNRbvu43heO+1zRZTLLgMpWz7+wUhSuWDL1/8osF/afCnGKnKVz7 XmVRHsWC2ysstgvOUfjt7YGlv0ZYsLylyvP6PxKfPgvR5YMsOPpGV5vob3xi x48fhr0sYNj0ub8gPH9+07R7JwtAwW3TQTL+cK7VgcRWFrQFh9iwZig8NdK/ sKORBWrLbmwj+hurN74wkahjQYguO3GQ7A8nlFpAFQtUFi3n/SD7v3bsg97V chYcFpviSA1TONLCc/3bYhYscEk8vbeHwppitppN+SxQ6JUYedRCYd1FL0PF c1ngm//o769qCgdFKVtoZ5H5Bk1KbYop/NVVpeBmOgv2Pd0bOZNFYfuw6J60 VKIHn32viPxEYfHDT7p+JRH9KbH8jXkMhV9v6+7dkEjONyvusP0ZhTUkbaWv xrPAvGhhrKI/iV+mYGByDAuCbddFrb9J4co76sJar1kgcOJ0kr8JhaWeyRjc J/pTTjLiU9c+Ck+f8XNsDGWB1yfXU4e2kfr4m/nX9RELDJxT870kKRzYKfum OoAFn7wb47WneXiP1450FT+iN6eEPRT6eLj3eF/tiBcLnuz47KmZysO29mjJ IXcyX9mU0I2XPOz4b+piuisLztjmrKm5zcND6rynYQ6EL2poDh3g4b8Z4lji CsnnAO1r9AYe1jQ+dt3vMtHvdkkjd+k8fC3z68oH54n+V7mYl9TAxak1SaYs oscrKCMlvs9c3PnaM/WtKQsc6BH4WggXx9HztKpPsKBsdcW2qiNcPCa8KMB2 P/lcMVTAM3cUp7bLJrbpsEBXAeh1oaN4PF2EabSH5Junk65mO4plrDNPHd/J gnfd2+9JMkex8KqKExnEPxhG/7X0ODmCve+VbrZWYcEVcy/a/jUjuH3/gchl xG84vnVPVp4cxh+6bStjlpP4fNcP3fxwGEs5WRasYLJA/JWo+Mu0IfzDJcNN hsaCUmXPvbruQ9hOs3xGRpIFNctPF7P2DuHPpu/GtouyIMyu4oJy1SAuXb0m 6dccExwUFLBJ2wD20rjyTWOGCTPh0oVnwwfwqY1Pcx/+IX6vz1Dv+ZkBbO2Q wTj5mwm09Azj5NZ+vPiBdrHjMBOW1SbZZHzvw1r3SgVlBpnwvU64KcKvD5ec L9Eo6SP+Ljrz7fc9fdj353zOwS7i/zzWlAum9WJ1XuTMCuLnMhTiuTS7Xpxw wOO4YBsTXidO/rmyqheH35Af4RL/57V0X+Tqxz149BDvzHg9E46+uL3ZW7cH j8cKZYvUMSH3at5L9dlurO9o9dWY+Mcwr042tujGwwytkLASJryXSp9vp9KF HRcXOi8sJv6xL9y6u7UT4yUhS+4XMuFG1ZBnnn8nHtQc5iQTfxq6iKuA6zqw tuv7V6e/kfPm3v23Q60Dv9DfvI+RywSjeV8XvA9oxwYNXRcSMRNujf+sddVq w6N5jiJBWUzYqWZb1B/WijkbElffJv6XP11a59SPFnzePbDRK4MJDxPUZ9t1 WvBRj2frH31lQqfgqVfXXzbj8Oy63QnpTCg+Wz2k9LMJv24tVGj+wgSLiLTX c9pN2NTF5s2Zz0xgrX16b8lIA3aKPTUvN40JR7aPZzB0G3B35b/7aoSTd92k n4mqxzJl6nofiB+vUCo7PfOvDhvtua+7g/AWsZuXxk/W4ZWGYiE1KUyY5pvP MEipxdKSjlo3CH/Pv7dloUQtZh9kG6kQjt5e+GHDhRpMX9XbPJrMBImvnRcK squxSsTZrnTCJyy0dCvYhG2Trz4lHLzaScPAvgp33XoW5k44vFR46/7CSmye e8nMibBs6cm1JYsr8flqTpULYau1fBteD1Tg0Hfrxv0Jc502Dn8LKsc9p6rq 3hPe3GZ2V2RnGa6s+uraTPjwv8Virv0luP/uHopB9nfOYrvv8sBiLLbfeJsp YS0+u0WiW4vw/AUeZ1IJv7wvl7yjvQD33q6/IEvO3/1xPCzHOx/HbZY+84Dw b+bnrrdKebhC2GOPBInfiq0dST+/5+I5tfnLwwnfWHFie5JDDq4SkplRJ/F/ L7f5LY+djaNKahr6CDctzjWyuJGJvYKav4STfEV2veUTz07HSxbbRluSfCIJ r288wc947JPFG3WS71OrYtmy+1PwGXHlhMWkHnQLkz1iApOw6La87+KkXjwv j/AfiknEYrrWp2RJfam26fYnJ0fhKFWb4i3ZTOhgdQhVO4Rj3UIlI7McJtQs Ou511P0x/nBd/VsbqdcXu+Jl9lw4h2I/rY/dkE/qS+/iZ78C4q/61sY/LmDC 6pCNsYuNQ5ED+88CL3Ifnp3Xfa8sH4PS6XKm4qVMcHSQZ/o9e4/GJMYqYsuY cIUTVecr8hEJ8BfxFlQyoTW0md/NIxVtieuutm1gwmzC811DSdnoRPCSp5ea mBBlzpJ2EM9FqQL+R5xamCDVtXrP9Yvf0GHvkbcp5L6rbdsim7W4AC1ttR5r Jv3i37x7kRtulaIARs73vSOk/pzOuZ2rLUP1+Q/ss7kkvhKSFRlrKpAG3b26 9ScTWq4XD7VfqERinZnzv8wyYWKk7cQP0Rq054+F9W0+FpQL1lfWJtSgi/sO fTk5jwVuN29sVjpci8ZKRPrWibBgSGfOhB1Sh8rerF1yjcGC6YfOO704jcig J9slks2CpoLFbMfPjajx8JlTnbIs2G0V5ZVyrAm57T9m5076b/XcoY2LHjWj 33rTGofWk/cEtZ95MdOKmFpyrN6NLEh43/XDPbgNjTbe+OO1lQX1EuV/Ata2 o9cH3YN6NVkgZYp02ac60NV5f1ZsNmBBQ3Z6QlpdJ3q0+dryaVsWvHJe+ihP vAcFrwgu077GApG29wOBR3rQEwNtnefXWSB0Pinze0gPuhx99Oh5DxbknA3e /nZJLyqLeGDkEsSCLjlWwFWFPjQw+EaQE8KC+17Bne8t+5Bm8pPynOcsiPai 5+i/7UPr92WhDW9ZYCVwnS91eT+6qrOA6/2ZBT5CfMdmGQNI3PPf0yuZLNiV 9qBS7dAA0tSfuG9F9EaM5cYZfH8A7Q2oH7EtY8G97NnK5rkBJDpV4jNI9JCR iYZVX+sgEspv9rZdSPTtau0jE07DyCgJ8o2J/itiDr4ejxtGupLhTQdYbCjT 8jsh3T6M5H6t7T64gg2MBVp7XmqNIH7tI0vSdrBB/6aQbensCDqzWuN9rxYb htQHtvoqjSIX2cIKji4bGjemfjh6bBSd/cJZ+8yIDXveWvfLxY+i2JZH2Tyi z58+OhOzWY+LcmW3WRkRPR9S9njC0JaLnr+jHcl2IX5GJHrz1SAumjx71yDO hw0lt0pxTgMX7d0Yv0DxARscKyYyuVNcZH1rhXH8EzZoNu6SluXwUFgpnZn7 hg2z7is9HI/xUJDqqzVHiX+RyrB9+PoaD1l/jlDgJrAhc4dRb1EgD+kvOKeg nMGGgOngiEX5POQR0vO9Mpfo7TUndBXbeYjZYvXBpZgNO24+jNWY4CFzjp1p M/Fjb95k2h5cQaHYuJCawDY2NP/7clR/G4U4ctLFur1sGDui+wfpU2hb7jlp wRE2iAj0JK4xpVBm/Lhn3g82+PQ1NApfoRC/AnP47hQbzKIPtLZ6UmiTxl85 /X8kP990ld8+otA7SxvlduJ/VW0Ov5BMoJCCxO+4uP/9PuXcYFlSOoW4QZt3 3iD+f1eQzHmdArKfyLlPevIc8KRuC1ZUUmhZh1iXrCIHOo6kHNrbTCHD4xJP KVUOONtv+5vYTaFR2diovM0c+OwSlCY6TKFjeZfbn2mQ+e/v3X9sjELjf0bp V3dzgPmpwT1onEJ9AnGcffs48DyzRBH/oVCv/vKs5Yc4MJ0Qs7x1hkJ3p8pr po9zwID6e/h/33fubyGvUneGAwXKx2L7/1Ho9JcHoQmWHCgbNpSpJRzq4DPs Y8OBKzW+7z6Sn4/4ffOX2TUOqMW+MXUn822aP+C93YUDEuN7Du4k69VY7rCX 8uTAnL38k5HfFFpu+ufuoA8HPkoPH/ajKCSyJ/pZ1gMOFDYafeEMUSiSv9Lt cTAHLmlz5sK6KNQUK/7v/AsOnA/gmS1solDqlOCvbZEcKHa5p2T7nULag+eV ROI4sGLes/e5eRQSXf/DqeEDB24+KtIS+ULOY8wzWZfGgaKFm64o/O/7b+Y1 6t3J5ABf+26d468pJJOzm930jQOGMcnLXwVR6EhtfYRSCQfqxYUuzt4m+wWd vBuVZHzt9btXHShk1WZyvKCeA+EfhXhz5yjE/jCx83gPOY/uwnumQKGDdpd1 ng9xgHdJLG/TWgrZhdirtlIc0G7efmIFh/x83RS/0QwHlJmveg14PNTkHJnF YsjAgYUPbX4EkPoec/ikKSsD6/3l5SNJ/fsKaZqflZeBqyty7l87wUNuV2XO hK2VgeP8SgnXlvLQQl/poe/aMoBWvswSjuSitXxdBZX7ZcBAv96/0JOLDJ5M 7So7JAO7HO3E35ty0UjYhF/SaRlgi5mtGGZzkVbuTPA2RxlQLQtJO+45iqJ6 q1+LusqAytsS1lnjUWSvs2VbvYcMlC/clBG6fhQ1e6/xMfaXgd7dQQ9CWkdQ 7CYkuihSBvqOm9WMK42gj/IprTGxMiD5342oxzPDyIk1tHlHggzwnz5YcbF8 GG3IDJnd90UGqha9eptnM4zWCQ84LvwuA35V7r9ORQyhdLsYSataGZAVc/3Z c3kISWquVk9vkoHpxPzviduGkMOu3py9vWT+q/KHOGWDyMeg8fL4lAwMRuiX mw4PoMgSVdOHy2ThYI7ze1WhfoTa/Of1KcgCkql6oo/70CeHUz9UlGXhQYDt vzfX+5AG77Xs082ycMTlQspsXy9yvnu6r1hPFk4xMiJzv/SgrWJRYikGsuAM ltb9Nj2oOe6YbdARWTgGa2WPL+1Bz2O+mK84TeYve3pZyasbTS0uT3tmJwvu 6ouCB1EX4p0zPk53kIUAqwWa37id6L2o4C53Z1nYInG5jv95J/rg8sdP0VMW XLqcPC8PdKBgqVUiBY9kwXJLxJtYjTYk87xctjCYrCc4wN4b2IqS36x6/zmM 7Ifv5p7WzhbkcT1hyOaNLOR/iOha6NmM7u7kv8r6IAupPvf1lVIbkHOJhvCz T7IQUrxoB+JvQMq9166KpcnC1hJM89hfjwaqR52zM2Vh/fj+L6/aatGWmNCL 50pkoWDcpk3iTxUSrliXZl4uC/77/+NpaFYhHbP9RocqZYGmYidc6lWJaPWK e2fqZKGk1T91H70C6TeIxvl0yoKukG2ovEIR6k5dJsXXIwuLBw7fF44pQBXf Pl206pMF6Wx27BLFfLSlc6hUYFgWTl5rfCChmIteXziXv2VUFlw74/iFYrKR 2tsFD415sjDesqw9n7y1kvV67pd+yoJ5/ZoQCa3PqNnmY+jJ37Lg+f3+0gb1 FKRg0WCzbUIWEsVPUc0bk1Bgb+Hm7D+yoG+2Xk5cNxadSDy60npaFoLNWO4V WyKQU4hijsCsLBz6UcUt1wtFoZofRf3mZGHKD/p27vNF//9f7OUg4t8D+cVS Exr/B/q5Jkc= "]]}, Annotation[#, "Charting`Private`Tag$21862#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJw0mnc41t//x41CEhIRMpJ7toQoco5KUyVJmkaFJKIyGiQzlEpmEjIzMjNz 7E1W9t7zfpsZGd/zuX7Xr3/qcd3u9/uc83q9nuf5dCVpYK55j4WJiYnBzsT0 39//94cE//9fd5lvx0ViLl1Jt4tNdQZUYuW4FjMJanw5G3Aj1QfUsAbIFrGQ 4MtgW07RlAiw4HvX3YWVBAebwat0sVjQvbCl4uIGErzW9jOq+EQikDpttP53 Iwluq7c5KpaQBppzLsw0spHgaSEegUH9DGAl5liWyU6CZtNaDxf5s4FfwDZB /00k+Gmi2Pu6ch4gr7n9i9xCgt3AZmJvYDFQWJ4qy+YmwfHJrU17p0qA/Du2 e808JBh6eGefk1oZaKLv/7eLjwRV/ilKbWVUgEvKygc3C5KgkqipQZlwLbie dGiTthAJbnj3jTuooBbcYsl6G7WDBHfMPdSZu18HFqx3etwWJcF+epCbeHo9 4OZYyBXZRYJdx2M9287+AZu2yjz4LEWCzvoDKucZf8Drchc/SWkS/KK4+lLs QxN4fOWItiqFBDOVhSbLG5uBe41mTPU+Eqx/y/K94HIbSKg+5/PqAAm6tqfk Rk23AeuHa6WHD5LghJKbTcm7djBfZNybK0+Cd2fSa4JLOoDFpiNLfEdJUJl7 avHonm6w7rRXZkGFBId/mrA+LuwG8sqTJr2QBPO38Il27+kBh/rYc0tPkGDi ZDajIL8HnGcE1Lap4/1OsN9LGuwFA4PG7ltvk2Bwq7WlDv8AELuRnOegR4K1 15T8zt0aAMJ+PcqLBiS46+jmN+8iBsCpgbvlC0YkmFc8xb8sOwhCHbNsgCUJ es/oT+w+PQRcMq9K9zwhwVTqrNlljyEgP/rEz8WaBHu0Nftyq4dA3hEZt4EX JKhjaRJ1XGMYuHPyp/W5kuBRxh6b0nMjIPv00+gf7iQo8DJJIsRtBGxctm50 eEuCWnLGjuFFI2D0kL2nvDcJ7slw1qccGQXtXGUPW4JJ8IXLh1eDwmPAJjZa qDoU90MOUTagMQYCVljuloTj+kjl6DK5jIFk41XPku8k6CB0S9N5cgwcDbOf X/5Jghbb/ed9ksZB3558S74sEsy+VSh9qmccxGhpMfb+IsF3AiW72bknQK11 guejQhJkjiIbxxtOgI2cqs5+JST4Z6dD/PsPE2B/4y9yQTkJiu3JL3yRPQF0 nWP5d9Xi/T2yzrvPNQlyH43JXm0gQROlnDEj2Unwmi8p0quJBP9ZBj28f20S xJfv38/ZSYKybCYGFmGT4FSSpZ7UGAkukqv2P6YwwPWio0mPJknwB/cyp8kp Bmhj9v2WN0WChTHRY9fvMcBbAUk+4wUSrPI/kEoKZoBPKul6aJkEYyy+Jq9n MMDVgrB5oTUS9Amv6KqpZwAzHwPf+g1kWNAlqq7OSgCz0pXHBznI0PxC+uji DgI8i7FV+rSZDPkEWc389xOg49CHPwvcZJiuMbqTdoIA8RHjtFt8ZOiZYXEq /ioBqg/s2l0kQIZZqWWqkiYEuNGHYvbsIEPpTWoPnZ8TIOWH8AqzBBmO/1hh E/1MgJ6Z9zZyUmSYV2EucC+aAG35RatGJDJ8Yzd7GaUSAGqb2QRRyfCp8rV7 tDwC8CSo/KnbQ4Y1yXazERUEOLGzh4njAP6+tsYPmUYC/Or+O6wiS4ZNGZUa 1R0EOBoraW11iAwVwpn9bAYI8FV1OTDhMBk+4RA6LTtOgD2s2+GwMhkuxJ+T WZ0igIAD22UJSIaM1GlS0zwB2Hiv5107ToYpXTYbcpcI0HQ96In3STKMDjWJ S13B75/Xvll9Bj+P3ZQja40AVYytd9nPk2HsFZVNNesEcLynZaOqQYaVr1Dk FOZloQjn55fJ8PP9sW5JzLtX3W3StMmwcaApS3+VAMrVb48S18hQ7m3micRl AnwLPpRPuUWGbbr9H7YsECD9Me+Uvh4ZbpTK/2U7QwC/muifgXfI8JBf29jc BAFajr9nbjAkw0TLumP2QwSQ2HLjF6cJGZqR9f4KdRMg+nNok+pDXK/HOkcL mggQTGM+YvOIDOVzQrWfVxNA95JoY/xjMtwpq+B2opAAb30+f+izIkO/Emlx sQwCLK3s1d3+jAx1O96Yc8QRQPvrG+qZl2Qo0OzZyPqVANkKpp3PXpGhl6FB Iu8HAhj/HkptcyHDl7NPbfQsCSD9XjqZw50MP+TKqofrE2Dn+GF1+bdkeGk4 596/iwTwEQ/hdPcmw/6ijS6DVALoW05wJPuSoT6dL85WgAA1jzbotASQYXj7 M20pJgI0qvB/EQ8hw+d/hAszcT8v000fwm9kGKw20B6VxQCJIpeO60aSoY3c blJCKANcdNuV5htHhqz1j0+xPWQAH1OO72MZZPjF4fyGf4uTwMLb7etSNhki 7xKU1zoJCuPY2dkQGb7lPnU+InMSKKV7928vJsPyneXxNVaT4NvG8x3b68hw f/qu0NyhCZB4NdaEp5EM7ayet/nmTYAz+851bGjG60tv3OcbMAEe3A+QGuog w8O/C0u5z0yA6/L1uq9GyNC4HFhvCh4H8KpU+cVx3C/6+XziluPg4csHSSIM MrzBf/7HQ7Vx0Ot+OC96lgw/saozZ4+OgcH2JWnfNTJccZhvOUIdA9NWDn9O MVOgcqmw9NGFUWAvbvJmnpUCz3jp73UsGgXeuaTCE5soUKWi/FDPzVEgtPfk UOI2CrSIPJrM7jwCchrZJVS3U+DWpxvBpfMjIC2pcqxKiALVPvP7j/GPgJej K/+adlLgfpApuC1sGOQpxb9PIVPghOpp5fupQyD6sTuv4xEKlPsJKDFZAyBJ zE+qRBm/T9MyItNmAKyLFy6xAgp8qp6eKn9oAAxF/M0zP06BM50p221+9ANG QPxLNnUKdF2y+37jcx/o2un1QOwCBVaoPLu5ptUHQsZfFR7QoEBWSqeUKHcf 2FPM4nZCiwLVn2qt1dr1AsVc2zPkmxR4NrlyTed6DyiCuaZbb1PgnwCW21t4 e8CLR7ti53XxeZx+9TbQvRswGc9oxd2hwLnYcd2pm13AXLfAqM6EAvVWIvpM F9pBb47o41lrCuwe2TLzkr0Z7HzbdD7IFu8nWeZvkk4TyKePhx99jp9veOMy OeYPOLW+L/q+HQXu0/F0njzVCOK+esgYOlGg58Ye3rcv60DryVKRemcKDOH/ /fdReS1wa9105pArBWbV2YQX89eC+7zNWsNvKHB17nZf8uVqIPPLPmD8HQWW r0YtRgeVgpKQbSw73lOg5mKzZu2eErBhpMVJ5QMFLl8zf3Ekpwjk1biUW3jj 89A6a8jRmg/guK6T/ScKJO/fWe5kmAdiQs+dc/ahQN33p+zHhn6B64+kZ2z8 KHDNYF9JqWAGiCrZVW3oT4GKPPk/5velgS23Ln1XD6DAGmuXLjO1ZDCvcuEu 02cKPMB2fki9NxpU0M+r1GAe/lUrs3fzN6CT0sX/KYgCFTo3czQZBwKxL5xp 7MEU+Io+Jmd80xjYOS6+TMO8Yr/yoeekA4rikzh24ysFRvrrDUppfkIFmSm/ 3oVQ4Be53nivpggU9cnXSjSUAsWFfZYuxsWinA8he8Mwy+jKbv+Yl4g86exB PmEUeMm7MyrE+ydSYFnVZv1GgUOW02bbXmQiFQ11wfuY6yV7y+Lu5CAGm2l3 CeafhMfk5bMI5QoIJouGU2BJtQX3omA+WtdU/2iC+Upu90U59wKkZXDBMREz 8ePq3fp/hajF/5sbA3MNh9FysWkx2t4tELk7Ate79EwJS2cJSnif3K2JOc/4 8usX6mWo5FrFYVvMT4OvEqTscqTEN53hh7mujO/PPKUSefmu6idgXlf8yNLp U4XCgjcd+YU5TTboQi1zDdr/0eJkEea9yYL+haa/EdeNRs9CzN2Mw3euPKhF SvLbtmVj1gllH8wRr0PpLy51f8dsfOPihY8NdUjSdm7hI+YDi+Uhv13qkTT5 253HmBcHVPvNDjcgtK5GVcc8IFgiaTLegM7+YtPYiTmoteNhdlAj0hPT6B7C +7XU+9l18/wf5B9Z3RWNWUVJ98Pp1T+I99YD7TuYN7vPRNvENaGar4vxIph3 PbG9f+ZiMzqkeMWpGp/3Xr9ns6bTzejlC7ceG8wfRcQ+dn1sQZ4D5eU7MQO1 nz4Bsq3oeuOrUzm4nndP9l0OaGhFjLsn9LUwN4wlklst21A/s5KbBa6/lLyZ P9uPdsRW6hbxF/fL1aNd7OPnOlAJScj+KeZLPQoHV4c7EHX44Bs93F/eTT3B /ju70JLB+coq3H8l9k4DQuld6NTe0omDmKsVVsdTL3Yjq4+TMxO4f6UNXU8J gh70wdFnDGLujHyZxOzeg9z7Pg6/w/2+O6VezqKxBwmdM9+xIxDr143MoSaj XmQiEG9wBc8Ln+ZadVliL/qpsNrqgeeJ4yOeiaVedKjD/OWwLwXavxHTc3Dr QyL85xAX5vo8qUGd331o4WHM9T14PseoId/CBfrR8y0yldfxPAd4REW9D+lH Y/2w9akXBX77djPx9Y8B9CO+l26O9aF50Lm8cHoAn2fioTtvsX5/yQf3ZQfR PRVKlJIHBfYN5Ee3pg6iIBO2mz9csJ6DE/KiiUPoyOr7ZnusR/DGzp5zk0Po gEjh43NYr9ITA/bUUYdR71VhtUYHCtx28lP0n5BhNCxwpDH+BdZP18bDvi4j aKQzokMH65+mYEHHsdwR1E1TsV7H+nj7vGyYwvwIKrpyOBhg/fQ/+1pxVm8U HY8F195aUKD8FyYV1/1jaFP1Zv/tjyjQo4D6/Iz+GLrqXND32YwCPzsKJJ36 OIYuaPG0Bz6gwJbohJsz02Po4uWjgqb3KPCyzWP1tqhxJBzW8SAN63etVP3V qaZxpLiyNW1ZnwJNzM1Nt22cQNfz/tnaYv23aJU0f3Z7As3o3JVIwfeDe/aS RvabCXRlsJx39DoFet1OlGJNnUBV/rdIZ69SoC3tbE/oxkk0u37M+ukVCjx4 qJ35755J5Hrr4/0vlymQdytyPHd5EnnIkjz6L2K92rrBej5oEnXEqcifO437 QUkqbtduBhLuyWG9fZICk+pMduseZ6CyiDqy2Qk8P3+hvbc+A31aSahygbg+ Nw+XdgcykDdL1HMvFQrUsj+fN5/GQKnTHzt88P2ptzqQsv6bgXpU3bYGKWL9 ca5gm2AiUOa6Pn/QITw/OpLZVYIEyi2tIQXKUWBiuAh/8F4CeSQZ6PkexP3x VuOy7jEC3Z3Nb3l/AM//yJdCHm0CDW0LiXqzD/eTyb7MBGMC7RVBA6/2UKDB a/sPSs8IZBKzedMDCgVSigW9RAMJFPd8Tfw2CZ9fFjnYPJpAd2jZGzR24/nR 9r6TkEYgge3wN9xFgaHGBQ9a8gl0UsXH74AErv+Eh/pkFYGQeeVTcTGsL7GH IyaaCORo+c9hiygF/nXxEGvqJtAbBbXG5R0UWGWRZRIzTCAa22+nYUEK7BV8 rmbIINC9mKLYBgF8f8owPeGaI9BAkLY+wv7llPNK0edFAk0czvz1fSvWO59w Xv4VAvEPSLX68FCgyL8fik/XCDQvX1v5agvW40fXKWidQDl7l+IfbP6v3+42 TmNOu9bmp4390frSNqUtmCs2/AhVZcd+qlv27tZVAm25k9S/ZyMF8qvy668t Eehs7g4rIeyvrvq/UW+cJ1Bo2E6LDdh/oa7xs95TBDq+mZiYwv4s+5KAu9IY gU55ZTN3rZDhuT491eo+AsW+iy2tXCbDgUvRSafbCPRMt1c7axHnnRVV6YRa Ah18blMa85cMv19cI1aLCXQ9zkkmcI4MHxK7zRWzCGSkvDXeY4YMm10tNt2O J1CPpISm3RQZBqrz7jf/SqDWfTGKltg/spECr5m+x/sBATZGE2TY6cHLpf0K 94tJHfX2GM4/W1rr95gTqDD8NtAYIkNNgZrVb2cI9NGdcuTKABleqAw7GCVP oGMzbHM3+rD/jP7W/U0C10v3zJpZF15/W9VDz1kGAiTa8+fY3yozH6+wbWeg 1meCvO5tZFj37InPnQIGaonWaotvIsPd38Or9r9lINtbn5QKsV+W2Upf3GbB QIMDuVzt9Tif2D7cuniZgbijm6/w/SZDh29LI4XbGWg01qA7tBTnFRtPFtf3 k8hdtUa0GvvxNoa0gqvpJMoqb3/6r5AMVeIOjHqdmkRTcgM1+nk438Y7xKDl CXRu29fFgFzs12snjo7WT6DY588+/Mkhw59Zqzckvk8g68FWg6uZZDi37WxA zpUJRP99qOhLOhn+PnnPbjdtAnVm3x0aTsP5yqrG5uvqOBKre/fLNZkMyyaA V2PoOGoLNu5biMXrd+Xeadg9hop7LK1ufyfDyXaqxoe4MfSCJdC4PBrnY0Wt XR02Y+jTyImUuAgy7Du5YtXMPYYElUYmv38lQw5ZGRXfA6Nor02S/aFg/PNS mh+JvyPIOD6NtTSIDEc31QxZ5YygAJ5X1AWch3i0t58SVBtBqtyHG30+kWHP nokbTerDqLVcoPcszlNrChJLTVzDqMx96P7Gj2To/Pl8kkDVEDLtGjvg4UWG e55m/Ltyegipfjb10n6H1xN8qO/GxiFEhL78Tsb5LGvnZs/o/EHEndum1Y7z W5xnvIC4Ir5PVmZYct/gPPPC9Nn5mQG0t1EmNtKNDEuzj8ZVxg4g3y2+0u44 /yU82p+fJzqAZKYHtT+/xvWTC5r5/bcPzdzczY8ccN59NX/9d2IfusvdaTiC 86OhrP1fNZM+NPz518I5ezK0NObrCGnvRZvvrZ11scP18ScdeePdiz6njN0q wfnzearB7NTZXqS9RBu/+oIMZT1Plp3M6EHfzpyyjXlOhjkddwUOm/WgP/Ar gwmz4HtbiRSpHiTjkJmab0uGqZvvzL4V7kYHHccE6Zh1PP2pFa+7UPd2OddA GzLc3HSNhzzWiZSvbIr3sCbD4ylWd7V+diD576FPtmBGcw0he0U6UIjxAxMf nJc3T9uTDtu3I/3TL3ylMFvaTpk872tDHW9ymDKekuG7OzdHF0+0If6coURN zEk5gbt+RrYiQSfXhNknZMjXyPwlnb0VVby1+XEa84URnTcBpc2I/mU5bwXn c85/J3c5kppRw1Nt5XTMf5e3ny10akIZHAcoNphts6JCbvf9QSrSK+4As4Lu u4pr4A+aPsP0YAvmn4ZzjzI/N6JvVpo1vZZkaPbmqerrhQbUtd6SlYP52MvV yQzNBpR+5+yhYMye/hF7DOLr0Zr43pMumE9of0x/zV6Pyt80E08wD+TUqovr 1yHTSHNFE8zp0bIJylm1KH/j+G5DzPuWD4R289Wivi/cWcaYyy6/7NzRVIOO RputWGBuctYt+ehcjfhfmU05YP7ntitIVq4K3XgNA/3/W0/Llg1sfRVoAzG4 mvbf++ouxmzzKkdxlfvE2zCD2Z/Khkpl6GdpJvNGvL+ocZMn7MMlqEJyLvoQ ZmvXiM3MH4tRwbsdQuaP/8vnDwpuKhchpl1ymgmYlYgTt3YPFaB9CqLX5zBv kfkbru+Vj0xu2RxUxefvMqxgKKaYhwaP/+r8hDm8p6uvLO8X6ovae5vAHLil Ru45bzY6cKItTQPX0yd+8yMj3QzEXhA69F+9Bwme06HxaUg39sAMGfdDSYzp U+V/yej7bea2L5i515XT1E8nokZH7ePBuJ8STvcOHyqIQE12jSUU3H9P/p5a ZbkeggJPudKyMOfsJpUn9Pmg9hGtT9O4X08E2UQ4K+xHe8N5Z5Nx/0ePl0o1 OUYA2sAGcWc8H48MODJ26cWCJvOS27p4fjISclvzvyQCpbTqbXvwvPlm7Ym4 af0TFC08dhbD83iqRzOQ/04mKPkZzboDz6saitk2cz4HcB9zEiE54fvh7VXf m7z5gO+Z/g9FZ9zvrqevKjoVgE6FIycu43n/8+/mrycLhYA7RssgBOtBaJ+4 d2d7CZifMPwXgPXkQtdJ622fq8CzY0d3T2C9+caY1fDnqAE6U+y0k+/J0Dwo M0n46W9wgd8kbSvWry6nWpfH0nVg4oaiCBvWu5bfr1J2zzWA29l3XvoG4udp V2YfjGwE1lqfXPdhfVSutOX2uvoHCA58ffL0Pz31CUfCGU3AxPRi6a1IMgy5 5MVoMW8F2csGDjSsxxJG/bkpIm1A5fX24LUYMryp49YVX9IGZL8ONefEk6Fw UabA6I4OgK5R6e+x/gdf/HevI7UL3HBfbvXF90N/j7M937VusMlF2jcc3x/p pw1rj6x0gyfqV9j//CJDXlUjocivPWDsSMBTtxI8D5c/a02294LwFv3DJWVk aAUF7JypfeD1S/5IzkoyXI08ds3Bqg8c4Ys/HoXvv4uaxO8A7n7Aufxm475W MjRiZfvCpjAAhN1ngu9O4vs/MO9GjOEQCJs5tLeVwPM0I/lsLHwIxF79/lMT +wPJGZF8h74hEOfE4aS1QIZ7zTb7xt4YBp+CuOw/YL8SKZDDn602AoxClG7v 2UCB+d/PcL+wGwGpwUUllWwUOMdjreH8cwSUSxgsCnLh/Jo+tctk9yiwGl2S H9hOgR2fuvQ0FkbB5XqhzFDs33TcPdpItDGgeU353B3s76SsyQKHb44BE+et t2YkcZ7r/DXHmTsG6NnMT1T2UmBjmVimss042GxFjxfG/nQkgdWsPHwc+Orc f7yM/SupbbTSpXYcbHQWuVuE/W8b7aPxO+kJYBL98Z899tNfJT6UJBRPAOFq rUKrUzjPXn1yJHh8Aoxu8vZ6dBb71+OLham8k6CY5SlhqoHzYeD7Yk2dSbD/ Q5uuOfbz9/4+393ybBJUDMB3T7QpMONbseGroElQ+TW+0wXnBTC977t85yRw 16xr89alwOnWhWK4Mgkumclc+GZAgeKd9ssmwgzQH8V3sdwY+2nOB/QdWgwg eeBl5v6n2G9P/vEqzmGALyf33r9gg/NRSjEpuZEB+jYdXTHD+YlzA6d9+jgD pE6NOqThvNUnnlS6SZAAfQWiF9txHlufkn58hU6AjPT2VBY3nH+6RLXTVQhg 2Re6dgXnvyTHScdsAwKUs3XnOHzAfrXjW97NxwSQPClQlvAJ59kXX4T4HAnQ K3hyS6cfBX54y7G9/QMBbPLu23LhPKu2sn4m/SsBtveYLynjPHwn7Z16ZBwB YpjhM7P/ft+SkpwTlUGAHbSskRCc77836sLsQgKkG6XLNEZRYP+r10491QSI yDkvtvgd+21jZ6nxJgL0COlmiCZQYEFKHuTtJkBV9+9J1SQKLDSwC704RIA/ /K/ijFKx/7Z8tTVmggBCXef63qZTIOMqyx3RGQLsYud6mZpFgcans8xi/hKg 1tHXpP0XPs8rbds0lglwcDbXnyX/v/y6VZF3lQC+u67OU4soUD3To3R0jQAf 3+83u1RKgc+GZlM71gnAPyU4bVOB80iN5dIIZqfY7gch1TiPbkj8xI2520i7 qrSWAncU1nmex89rclVnIhoocKHwBSMCv68nwXteoBmfV29DleACAc6fWA9Q bsP99NZa9Rter+rfu+0GnRT4eoez6elJAsQpf4ly68H1rPHB9xEBJDocJ+L7 KbC9+ZdLDz6PAONFv/ohCrzwz72poZkApLIuv7+jOD9SWIN7a3B908TbdkxS oEBz2E7OYgLsOxajrjxFgZUyN4LOZxHgwjXzzluzFOgp8t4oLgHXW9X0md1f CryxLtBACiOA8s7QrcFLOK892X/41ycCcH7pGGpdx/mpW8UOWBMg1JiL+S8L FSYIl8vsMSJA8LPSal42KhR8uunNIW28HkcfhWNcVCgWzs4XKYO//0s0SYeH Cotmr5zjEiMALBLyfchHhcyTjxU+biLAFa+6Gx+FqNBGuvHFeicDbEi7tSNM hAqf3NzDO1LCABfur/37IUaFj7WsK2YSGKB3IHaseDcVzsqOmFq8YABDttmG ajJ+Pr9o/pA+A0TcKwpqoFEh230tfoeTDHCgQtyt5QAVrr8eaSBvYQBP3fWh YmUqfHaYp0Hr/SQ4H2E1mQWoMLjDjmeT+SR4vs/gXPwxKhzu8ZEcVZ8EKZH9 FW9OU6HpXr/wA2yToPAfP6eEFhVKLRi9XjKbAA2HD6yualOh1ph7MOXUBJAz e1zUco0KR/QFBj3EJsBLqQdeTrpUaH+C2322Yhz4b999M8WECiO5tgQbC48D 4NcrnvyQCnMU0nYYjYyBjkjHj3GPqLDApxI4pI0B91+5hz5ZUeH7PGNNnvNj wGPLrTt7XlNhSg0jvNBiFHDv83Jmc6bChnKKZq3iKJCmSqN2V/x9XplFtvUR MGqStd/6LRVK/qZ2L7mNgGW+QL5H/lQoeuqE5V7vYbDTpH1Z4jMV8q1f3pJ/ eRisTRg9rPpChRW1F9PebRsG0337Evi+UeG1i95pPe+HgNx20/rr8VR4Mc4m NOj1ILjXEzVUmUeFJu/CCyxO9AMc1xd3FuL6skvIpyz1gRQPavD9Yiqs7qGG XU7oA2xVFWaT5VRYzuJtni3QB14KVaVE1OP6rc7ymXX2AOUO6ZmCRlx/aSlz xtseME6VutXaRIWKd0Qu9R3tAfolYW+m26hQ8zXv+9uK3cCns3i1uo8KkxcO 1GpGdID+8gy9lAEqlOU8aL5rrR0gXWe/D0NU2LLc5rhBux0sv8nRURzD6w2D ettZ28CxoXfi+6apUIT1XBn35WZwRdxboHWGCktd2RFPRBPYUNbu82KOCkfn BN9q/P0DbiRtF4hfwP0Y39IT7dsIhpX2K6WsUmHgAeutOr/rgHf+G8NN61R4 k4/XgIlSB14VwV4dJhps3zY5TX1VC8o+iCT1s9Dg8WRmQ8rtGvCCUaIUzU6D B4v36n/mKQdOFQz9Mg4a9Mh8Ec+bVQoGB2TSejfRYPjxnPimOyXA/VnYn/XN NGgxb6/xIq0QqFo9iB3locHcI1Qv1/AcoC56bqieFz9fYMw0eioTSJt+UUzb SoNMvO7hm5TTgUmhp+i9bTQ4s3OrSGdtEhAmdsUe5KfBOykKxQy5BGAnJXZu CXOC3VnKidJoILrpfrbFdhrczFmb3t/wGXC+O+cuJUiDVmL2fXLz70FgdYZR DeYIoRFuKR0b8Ozi2/M8O2hQSm5egOuSF3L6JakdgZmx6S7/addApK38+aGc MA3a7zPl+ZYchlhWKiuPitBgicSYR9u7eFQYe5Y/A/PbU2p3el8moTnlo+Z0 UbyeE7fUGmVTEeMhe5cf5v4ZlUGZ0Z9oWRIarGKu+HcEDn3JRMFXklZv7KTB 4K9OOp2XctDVrTrJKZjLDYvlWTciNHf97usNYjTopN0yE9qeh+5LH350ATPr q3O5anIFiAZM7T7893nECucdz0K0DZT8qMbMNvJ2jOgvQm3mx9hZxWkw73GV Zd+REsSexe0mg3kGLf068KEUWXp6yF/D/CeBf7x2qAzpFJ7b9gyzjfsusUyl CjT+ll/6E+Z37davur0q0SvNTrMozPLCzKpH+quQ0offcymYjeQ9PiH5GqRZ fDI7E3Pd5Oaf91x/o7YTtSUZmDlZnj7ealqLyOJ00aT/1vM5LP3vtjqUsXQq Lwwz1ybx37ey61DW+OmMt5h588UGVQ3qkaiOwyZLzGNiwZRgjgYkV/I08yJm 9gWnqocJDWglo72ahHmRp4I97nIjGnIKUF/A+7/y0ldAa7ERgd0lSvmYt7cb y+sH/UFKnDGhTpi97ivG1oAm5DaX6aSKWZvDH/n1NaE32SHjC/j833K3onSn ZrRHUr4zCrMf0741KqkFaQfb6V3CnCNZXTda0oKyfiXdm8D1tDkVynb9SSuS U3rMsMcMryQfn5RoQ5TDjzdwYX6yPJDwpaoNabwOS3qP+8V2qObpPet29Fj2 IBM3ZjfN0WoVyQ5EGHgvO+J+WztZOCdV0YGgVtXO67gfzya41ywLdSHJkYKb WUI02FxXSOrN7UJmXaWPt2HmePTTP+dON7IMHNFJxP2/YHVOSexKD+oQ5Qdz AjR4ikNkZCyiByl+N90rg3k5KpqH/LcHtX7Xu+KL5+un39R036dexJZBROfy 0eB5/vSzt/p7Ucyuj4o9eB5PJL++rizTh8ZMHY7x4Hk988mDX6yyD6X98GsR xfO8jXvORUSwHwlLX+6T4qZBQm8QPjboR2Xb8t3FuGiQ2XZCh7zQj/IiWU/x YT0okZSMs4MDiPMrZ/I61ouMA6dlSG8GUEjeQF0p1pdEqaiVG0KD6BU3+yw3 Kw3G9t3aKb5vCG09RuqqY6bBLoX4m6kWQ4iQNVt8h/Uq31GyxCV1CM0EvFpb wPr2eG/HljaFYZQdmaLgukiFXuoNUStyI+imRrrDTqyHwS+LVI9ajiCNqQHX hHkqtOb2D49JGEFTAjl8+VhPgwO4Ald3jyKvyQ0Hv09QodHEUPJ19jH07Ufu A6FxKnypkFmbf3QMOSZzLzuMUiG4ZLRL7fEYYssvunMK67dZ1V9SQPsYOmWq YPQN6/tQ4j4NQ+5xNKSkw/MP67+QBHfgaTiOhq8afP3Sje83wW8NaqHjaLXS JXGkE+txzl3bW7XjaOp8Tcb+DircnsoS57g2jn6sFLAkt1DhlsWAl/NXJ1Dn qOPvN3VUuHpphVNtfQIpBJm+RL+pcF9fC7bUk+hmdeDEdDUVHrb4IRhzbhJx X17QP19Bhc68GysUP02ie0trH6zKqFC73mIjd/okYrq72hRUQoU81aURYy2T KMYlbK6ngArlHpES03YwkHr74MIavj+Bm/BKqCIDNZVdvSeMqDDNvOfRB20G mrOebTyTjf3KTf3Zp14M9KvVkOV2Jr6/FiSk739noB/fA6fM06lQQaSy9EYR AxUHfzd8m0KFRCGDVXmegaSKDIUDkqiwudNuA4WLQLyM0KGwH1T4nV3uBO8u AuV+2SSZFIvru2YWV3+WQK5+PtlpMVRoSZm1j71FoCTO26UZUZhVw0demhOI /+eCRxb2AzYK2Xu3vCfQydD3FpmhVNjokLlUFkwg6flZyfSvVNjxQuzIizgC CZ0MSUnBfsL3+rkXpEwCnXbdefQH9hs+l85qlxYRSOTCSmNMAN7ftnrD278J ZCbw58M3PyrsWj59ZbyFQJ6vTrkH+VBhyFRp3cNeAvV+WWr85I39FsdOn8ER ArlQ/dw8P1DhTEO1niZBIK/ftdmOXlToYrZjPWWOQIfMbjg/w/5n/OjyMc4l Ag1eJf498qDCpw/IHFdWCLTL59QhozdU+HrbdtlPawTSJUmeu4X90zh9ObF0 nUB5akcuXcb+6oRkqTWBuTH6ku4ZR3y+tAMumzGfKZD2BA5UuHYlul9klUBR rE8Y8vZ4/ScNQiSWCbRFfDFoz0sqbEq6+GfHXwKtn36QIPWcCi+5S4SzTxNI /ZnjYRFb3H+jqgpjYwTiSp7R2mZNhdIxHfn5/QTKUTAU5HpKhZtzGuzftRPI rdPZb+NjKnwlV5CmUU+gomOz4+vYLwZzLCVylOHz2n6G/s+MCv+5vyj9mUOg 2OvCpgumVMj0mVnnRiKB8iOni+aw//TzHCv/G0ag6Aca6rPGuH9Kj79984lA NIUEoVlDPL+iecL8zgSyPMbT9teACsNeCITx3SGQz6fyf8t6eD4um2e4ahBo 7jORzYT9rffHgbq/ygR6zn3r0dYbVFgp/SSimI9ASvLEe1HshwUCPfNIKwzU LOAQTb1KhTH0pBCnAQY6/vMN/9nLVHj5kNXvw8kM9Og9KcXuEvZrDSMhhgEM ZLxDQjPtIhU6iWwvT7VnoF7+d80Udfz5gwaejDMMxFvN3XvvLBXuilRON9vL QDfzWGUisF8/UsheeoaXgaggcZSmRoUcpqesHjVMIosQ4onFcSo8qONY+ytl EklMJnlkqWK90PzGIes9iby+s4VoqeD5juyu9L84ic4Khx79rkCF8tucNjzM nUBK70jrbIeosIzS78bvP4GCw1PrDeWwPoie+Df+aAJVPfef3i9DhdFcqVL7 JSaQejP5zyjOI5q+DmLkp+OoPliOoUfF71u1czI7PY78Io8EtuP8MpM0bEAI j6Mqmd+j7TjfWKKWrLBfY+j7YQdBTnGsL6uSpvNLo8hYwNL2604q7DEJYNlX OorcT1ePKIpS4efQlg2x3qMo40MHzWYH1h+fi3ttaKMo5I1FA5Ufz+NlI503 F0fQBT9vxV6cv5qP51vwCI4gBnFQ7MtWKtT5cQYMdQ6jX1wCYbtwXtu1Gvjc 8/4weuGuym7IifPALMueMZshlHF088SxTdiPf71utVtpCEk1yufs5qBClZqV fzkrg2iTj8ulhY34vH7wNPHYDaIey9z9IxuokGx8pqj66CA6MGBL72LFbK8m Ob0ygK5MsMe1MlPhvZBSD3PbAWT4tOB0NxMVqnUoadccGkAWZb8PjuH8SYmU 3RQ424/eh3Pt5F2jQH7SSK39g36UzfPV6csyBZ4nMd/L1upDR/lYPX/h/BoU yJ30g70PcQSwHR5YpMBZJ5/ITVm9SBdeyFBbwPlbsHl+UbQXnQ+RDX+F86+v Jvd77+oe1EdeNi6Yp0AzeQ+t4Jc9aFJ/PP76HAVec/kuLZbRjT7Z9qkl4fxs 27h/eI6/G3mkaw5xY14ZzPTPf9SFjkx+e9g9jfN7Z2OFpnQn2phmbqKJuXTj c71ddh0ozvXN5yqcxwN8p3nW/rSjfXythU0EBY6o26lOvW5Diee4fhtipt4Z 2sHX0oqUR1wPrTEoMC9dP0N7Tyv6VhHP+gVzieJSW6F9C6p3DAHHMR81GDup W9+Mwjccn53C+b+s5WnZvt3NqP6SIjkS8/2y+IOKT5sQ05H+fgPMjRwndB2K /6DFLYYyZMwrHDr7eAX+IPYbYYKzExTI7XTCZexOI3KJUgwuwWzH9PDy9uQG 5CvjVhWK+b7IZreA9Xq08iMhxglzUNg/kWfq9QgKuCmbY+576cGV61+HGFoJ HvqYu++fuPlgoBaJ0G2/3MAs6pLJ57a/FgkMrVrfwtxgHmUjN4f97kEeSSPM PaVKjRfdqpH/iHKwDWY+pl13zESqkG5Xw9wHzA/WkE5QfAWyzuikpmAuOOg6 NahSjvqRxLEOzFa9Hg+v/i5Fqxnix7bg/WXsERVevV2CWnJ27DuJeUOP9qn+ ySI0xs/J6Yp5jalAffuLQjQtFN36G7MDrdc1bFMBovAYhUjg85VKqbzxyTcP 5XBb6dti5jztrD+llovcB5B4G+bTm94Op97KRnuWxzqP4fpJLl/b4/UkA6mC a8EpmL0jTYX93dPQHeUD++Jx/W8C8Zey93+g8uKNzIdwf3gy+dS7fYhBGzcs dpRgPn9m9Axr5jdEnhNMZcL9ZZAgFKjL9R6pHfVMjMF8NqR5cL+BBcq+/T3j v/7suuthkvLwJSDano834v7tWPIxPloQDLgHLggE4/62+XHbmHQkAlRSN58x x/1/prDByIYvFigkvCmn4nmp1CT57dBLAdn9X9bWVnA/Pn/qd3IjAk57L9z6 u0qBpptuZOp15oGOa1kJc3j+ik/oGYQoFABOV35xNjy/MSc28dmNFQGT6sju 53j+d/RNOAecrgAmx23sv7Phz7ceuHIxuBKoFdxb6GbHehLEvE9htgpwZFnd 1sX6Ejn79MzTwN/gb4aDyw+sPxuDma9XmtWD1PXv9/ixPh3L2yw8INAALFu8 5u2xfjX+q3c2y2kAgumSvA8EqDBvA+tqEfsfcK4hwuG9CPYb+eXR077NwI3w A3xYb3O/qY9LeXeA4v132LqxHr8q/Bsgsr8TvJ+S4kzeQ4UHAlUjDld0Atoo b4TJASoM1+YvblrtAhUvr5CkFalwA7OFJFd8D+CVrWvYdQTvR353n8FCD7ju nGpJUqbCAPtTokqqveC6us8NAKnwDFvrPaOGXvBO1zDxJ76PeJ/dY3ky3Qfi Xq3l9eH7CsY+pX5W6AfqgbdM+c9TYcGFP0yyL/tB5MziXTd8/xntr4qOYxsA cea6XknXqXBScZ78nm8QMFn4NKw+xPrPpzdozDUMmh3F7FPw/b983VU35fww oM8515hhf1Dovl4t824YXC4y3frXhgpXdork5HONgAMazylqTlSYqpnTOr0+ AjZkHJqXxn7nTFxFwdcjoyD832LdZncq/KkgUfToySiI/KFqNoT9FHX+zL4n g6MALJ3e/Af7tw2f6qUrc8ZAvU/7wY5gKrS17Ja8OTUG1t3cK4exH/TKNjjK LDUONjHKVjdHU+E5HqnJV87j4KDGPVGXVPz9KJVkMpgAwaFvnRKwf00s95uj PZgA7noH0tqy8HlFeOnL+06AJ71MO1TyqfB85dOea6MT4MfLcMd9Nfg+r16+ muU4CQQ47pZbYr/O2NAf8DtqEsR6p5GyGqlQvaFPprdiEhzMtqm+1E6FxRub Qua2MMCBu7dHQ7uwP7hks2duLwOcTkf5c71UaCgUbj2uzgCt5rXnwkaw//bZ ueOXKwM0K8n9XsH5JC3a0NTnGwPo8NslXyNwv75TtdXPZQAxi2NKwn/xeT+8 KlY3xQDbOSuTXi5RoerGuRVLDgJseHKV1r9ChVKlc5IbxQlQ1FFbkILzF2Qm ZBZOE4B2AaSI4Xw28y80/spNAngJ/DzpwUmDDWmKH0LNCPDQSuPe0hYaPLrZ XrnNngD3D4guGOP8KB33XWjdiwBMl4QHWvlp8P4JPX+erwQI3gj51XF+dbuU obA5ngDSZtbmCOdh/4jjL6YzCVBvHtIpi/P9eT+e+fxiAli5fTgZs4sGp7pi jryoJQBPmNBHcRIN0iV2E+JtBAgc+hflS6XBlxKCuXF9BDj8admcey8Ngu8R N3eNEcCjrrrO5QD+eVH7N6+mCKD6mpq2LkuDxyN6uUrnCdAi8ovZVoEGmfYG ZcwvEcDpmdzXmSM0+HuYx5hrlQC3xNVUb6rgvBygJr9hnQBrGdUsJar4PHyq 5ycx/00uqNqvRoMVyzOh5ZizZYTcAk7T4Ic7I0f81ggg86dgJ6s6DXp3lVZo rxBg1/MMK9OLNFjn9/EuB35fNvP08z+aNOijeGB33BwBRjYZbVfRpsH5fw/3 HSMIEJ0ptD/yGg3K2KwmVowQQN6O48eWWzTIs/Nxn1ovAXhrjto/0cOfG51g SW0hwNBYsVvbHRq0LSvWEfhNgCPfUlOBEQ36qlEUTIoI0LVNeuKbCQ0WlVkt JGcQYFOIxK77FjR4Z/xgsmQwAZ6c3DJb/oQGLye0e57G9VtTgk+oNjhvX+ve dA/Xl+t74p4BOxos15TicsD9EKgQfQi8psETe7vSHc4Q4FnODV9/ZxoM0urW fCaP33eIaVXNkwYflH1g1eYkgEacSHOAFw0OZek7H5llgOveZ+LHP9LgZrWY mh3tDBAXPTznFkCD63ZFjMooBrAScnKJiqTBnF8WJdvlGaD4iFDTSAwNOubl RY8KMIBJfYUFOZ4GpzMtg3PnJwHvCWmFoBQaPJahzfk4eRJw3ZQJ08+jwX72 i6HSEpPAyDFk2b2QBndUMYdSliaAHsfkXGIJDVJGzQQV6iaAKX31+UwVDVoH rqY+t5sAa0J+n8600uAjVeE3FdXjQHhnVfaVDhp8zrux4+LXcZBwNr33VjcN ss+Hck2Yj4OLbxzb9AdpcPGq7QVz7nFQu//+rUPTuL8UB6dr4Bg43t2hLTGH 1z9jGaC4eQzYPbyUunEBP38GWJQ0joJjQ7EaBSs0aGHSP3Tl3ij48X1uCzMH HZZFODCsX4yAukSWzk+cdOgtuah++sQIOFZN0HdvocMUj5MPDDePgKoijq3y fHSYta/q8Ue/YaBszPFUTJQOOb6phrdEDQEz8dVcTzE63HpIsFrNZAhw0d6L /JWgw5DD/he59wyB7vz3LZnSdEjJ1HLPiB8ER7ZtWWPdT4fUXre/4TEDoOIT p80ZGTpk6hMcFzcaAPaRj0LeyNLhcONl5o27B4CVvWz1kgIdVp3JPSsQ1A94 sx5p+UM6dJS4d9zZuQ/MX3jxrkiDDs02jzgYgR4wrcST+UOTDi/DEJbRkW5w gXg7/EmLDs9VTAQJaXaDYU8H+nkdOjQoL1sql+wCNQy9q0906dAk/Y/g1M92 kHsSRO/Tp0N6RbOzjHA70Dr+L73PgA79ity6Y1+0Ae2jA3MKhnR4xbPF/BZo BdGybvy+pni9myLHZHOawKSlpMdOMzqsT/3+OGdHE1hGG1yDzemQlYWICLP6 AyJndec9LenQy2KmIHBfIwgW7N8oYkOHWyqrVn/51QFu5n9rD23pUCxAuiZ9 qhYk+MVfzHpGhypcYL/8mVrQxxI5oPKSDr/a1uR/nq4GvqIregsO+DyuNVev RJSBxcb5C3sc6ZDTZkDITq4U0LhyVK850eHPg9MbFQqKweFKGenPLnSoJ3wk 36G9ACizanAnutLh9N5nQXuM8kHiDaHJHDc6nM+qv/d6AIGKGHv7XHc6/CVN qUrZkgXuxGTsTfGgQ5FDvx4xJNLB2Obakq+edDh54LCevmwquLKnOknvHR1W y+h5fo+LA2EKz5nkvegwrfxK9taaSGB701+W+T0dxuokMKUyQoD5peTjDh/o MFpOPrg+0wn0mUWJy3+kQzkbmyUCaiPzMyudPZitQlP8/p5xRxKBGSwSn+jw w1fnv56aYahq/LRJCuYs4+exeTLRKCzK/aeKDx26FoRaS/EmIL0TVixHfXH9 CZamPwOpqJlhszERc2+Y17h8fTpKsu2aFfajQzUdtUtluVmosY259iXm3sd2 pY+//0JumY5BLZhzkvd7eJ3NQ9VXz96k+9Nhg5yOqw7KRxdsHfisMEva3VBz ky1Ea6cCCzIwx9m5KvBFFaF7h849msV8Pzf/z+iOEuTe7SVOCqDDd+9nv7B4 liK/gehGDczyAlb8GqtlaEeZyKfHmHVZ7YqKH1aglZJkg3eYveVd4dXOSkT/ 8UItFHPzEtq1eK4aDaVUqcZhlhN/siUoswYVgSO3fmC26cy+IrKtFlkUhXz5 jpnecLqls6wW8buJbwrG/KJ5xpTHrg7ZPNoR+Qaz55H9CzEH69FApdzzh5hb nnnoRg3VoyTBG15nMOd09XozBzagwKKM0Z2Y9/S8dU1Wb0RVizkfxvD+rhqH yKauNaKMizu8fvy337ZtfkyJf9BXv/xRU8zm4+s/P+g1oTHP8ZhdmJ+eqA7W 521Gat7cLbV+/9XHWM8ENSNX0/4X1pjX3K35Ix+2IIPJO6HbMe9Vc2vjFmlF XT8qLiTg+nn5n2oNLm1FyYUf36lg5qlJUtF43IYkXz6eOI3rH6MhJ8JU1o56 w/LFCnF/FKv48c8+6kB5D9o3H8J8680X2ymhTrQ28EGVzZsOXwVMDsze60IP wPWQO7jf9oGiHwzObvSt7sRQJu7P7tUM886EbsSV/kL7Eu7fm2Kit/Jse5CL 6YzVV9zf3HrpZsVFPcj0VPv7Ydz/ZbZXTqvz9KKfF4623XuL9ei+g3dTWC/S AAViQXhePD87JvwZ70XXQZ1LFZ6nvo0fB87L9SHw1HNSBM/b/rxx8dDCPrRT J4JF6Q0drvrfY1hz9qOIfxLGWng+Nz8xNkEa/SiWaVbTCs8z15Am3b+9H714 sGPR+jXun2i7jYpjA2i/p0y3CdaHf5YTV2/sGUQZr8/b6LzC5/Nz5mz3w0G0 Im80J2WHz1tp0YCZGEQh4e9cX2L90fcY87cdHUI5nEIWp7A+6WQkbXlIGkZ/ j0AbLms6JNxbVZMNhlG0+0Yhtyd4P+p/mmitw2i45YHMKax3/7IWboX/GkHL 24jA8Yd0+PtAhtb83Ahqetfu64H1MmT8ioU7fRTdTup5nXufDoUGdH4+8x1F r8pOdk7fwevx1uo9dWcMvXCtd3+C9ZftxzPNd5/G0JnWwVOzerien44lcRWP oe8DNjKDt+iwS8TnTazUOJLQMn8XdJUOD+rfOXCueRz53nB0ZNbG/be36hGN ZQItt0Rw3cH3wWuVrq5DeybQR8Wr4qKX6FBgUEGn/uUE6j+qVvn4It7fgNLq 7YgJFLqydrHsPL6fuJ+w8ldNIPAuiGp8lg4Lf9nEzWyfRMK6X0JTTuP771mG iLDSJOLqDFNcOYn16KaU873bkyi4bZjT+TjWh7pLpLthkyjmCa+CtTIdRvzz 2TcozkBSrm5ffx6hQ6ca12uvlBnob6BQzawiHZ4w+1cCdRhof8PvAiN5Oizw 8FTf95aBNDiLY4Px/XiFp2jwWiQDWZs+DGnA96fV0ZzCqFwG8qjlm1XYh+8P 5vFPURMM9HH1whOjPXQ4Kn9DSYeFQC1x2ad8aPh8sjneUgQJNM6yb88EiQ4v 0Old0ioE+rvaoCeA72u+PK/CSxoEWpMc23dUCu93Wkjisz6BnnkId7uJ4/tw e7mGkwOBdsuSBuN20mHwMQEVqfcEUixyrPotQofGrM2NnV8IdFFeNWp6B9Y3 n5yklO8Eusn/xJVPiA61+8esw38SqJH1sP3B7XQ4Q2aq+5FPoBCFlJBL/HS4 cHP7wz+VBJqd3rxmjv3HDrtiFoE/BGpft4h5y0uHHZ+lL5p1Eihffkfad27c T6hWoHeAQCnjh2VLuXA/hgxIPBwnkL8t76F+7G/uUDeo8k0T6FhKx+817H+k f+ucr50nkMndXj5hdnx/ZnhLRS0R6FPVna3yG+mQ9ycjyneFQD3CsZ0XWbF+ bt5bHLyG1zu6/saEmQ6j2INM//v/8fzZsRTndRoUt9zmu4iZ7/Fi5ddV7LcL 5sFZzJWN+12y/tEg24ED5qmrBHq4Gnj/zxINbnhzZL/CPwJt73Fwm8J+zW5g +8f6BQK9z6fNb/5Lg8E7LyW6zBJIIrU1n4z9ndeutejLDALd3lbLdGKGBiO3 ZYceHiEQhUm9SG8K+2XZuBLFXgKFd7iK2TFo8FXk87OXWglkWJYpGTRBgyFs OoaOtQRKFN3WkzWG/WHhzLXfJQSqG0EP2kZo8Km23QP5HAKlmQ01LQ/RoOip uOG0RPy5/45PKv00+OWJ1GN2PwJtk7zEadBLgyUBh5Rb3QjkKn012gX7VbH4 Z/0ltgT6uqnqW0M7DW55RHZd0CHQMmOX9Ar2uzMcE4+UThHooI7gdlILDb6I /7jtixyBfrEdeWfXSIPGT+PDs7kI1KuwqhhfT4OxcuEptgsMJFzoEthZS4O7 eZ/lXO3F89L5oex4NQ0eefvmmFUyA4lEiuaQsd9m05U4oHGWgQJPEsugCPtt Q9+oZDoD1f99MXC9gAb3dHmq8HMx0MSBTzwBuTSYbKjB0Vo+iVZ+lb7IyaHB SzIbzFWiJtGNSY6JviwatBSbvRnlOIl63s+SDqfj9w1PfXQ7PIlSaM923k+j QcP7WzVZt00iJbXSB//lA+Hbz11cxifQLZrS3S2JNMiyleYfGzCB7L7EbRHB +eLT0b/SfmPjKPyLOpdxFPbzog9EX+SMI+VjYRyZETSoPPNi4snbccSht3LW KAznkz29BtF7xpGXv/euhc80OPnW5uYJvTFUVTCtZBiIz9cOBM3TxpDdY+up Vn+8f/JJ3rK5UWSc2G/12wfnMzm3umbnUfSeo5p1Huejsg8qi01fRhCNxMri 8Q6/L5Z7sFh/BP10YttPeovrURF9ZHD3CLKUFb5p6k6D9Uo68Ff0MErm3Dp8 GOev9PuPt26JGkLSwy9V/znS4N0JT/PMu0Mo3+3q5QKc1/6+c98dJTmEzk8I d+m/okHFywnOFwMG0cHbzmdHntPgTt00Cf5X2FD+UhdtfUaDZrGiGzcrDqAM 7wXJWlsaPLCBp+gK0Y/sz95krbOmQQ3CyHHqRj8SLCz412ZFg8wryERtaz/y JO7qjz+lwavnby4vFPeh6sXbseI4Xx57oCz6am8f2p4d//34YxrcdTws73pP L/q2Xfq8mSXOZ2fvyXz52It62nh/ND+iQa3+t4135nuQ/84M1+2YnY28VScj epBw84T8TXOcv202TY1c6UF75YaPrTykwSn/taeOxt1IlyrzXh+z5tqbg4q1 XUi7gbxUZUqDJs2nrTkUutBEsNixnw/wftZ26m5h6UQVZxNk5TDbv6LNnzXs QKlHN93NwHlZzZl/Ka28HWWYnghruE+DpCsPn5DetSH+MtU8E8wmwZ955IlW 5CRz4igHZrmwPl3Hi63IwntAIs4Y91eW5sbtP1pQsIGnpTbmDxkPIqa3tKAD Rk8Ps2OGVstj/yvpzMOp+t42LiIllDklqZScfc6JhBRrRYWSRKlQSdQ3kSHz UEiZExEaEIoiU+awMpMh8zzP0zlbSinTu37X++fnOmfvtdaznuG+XS5ELTrQ bp8PbsXYr++S//34RU074g5lVXPDnDV6lXJnXzu6ziP9HGL+ICMYHuHVhhY3 RN3nwqztXeK5r78V7RuMmO69he+3/n2W6JFWJCyuspqFeaeS94LT8xaUeMo2 6znmPYXWW04xmlHc+yk+Z8xf3XPbnpxqRnayUuJmmMVoWdtgTBNSvezRfwlz oWxalsOfRmTdxad/HrPWl3wv+rlGlJDQ4P8/nrTlr+rX+o6IDGvPy5hFXZPt HP7Vo96eRyq3MA/Z3uihJ9Yh0wrjShfMSRdqGwT0ahF/JlXsBeaQi++l6Ks1 iO9u/6k8zJ09QdW+SdVIVEJOfQjzJ83M5xTdKhSlUySxFZ83OzrYTmKpAl1K bOtSx3xkPt7ALr4cBc28s32M+Xi1pBLtTBlyGt1D1vwvXmoFXFfmS9CdE3y6 gjje+gqUutXIr+hMGEv0bcw2MkqLug+KUeKuM21fMdsm+4HKmi/oUYAZjy++ T3uvY5X613KQEGDw/8YsH9gv9zrxM8oqgpvv4vzY/RlMnptLR9dMvbvv4Pwp 3OZu9I4lEZ1WfZb5E7PdYuGesOC3yEw9xtMb51/NOSOLdccikcG5So4vOD+f cVtKnom5iVqZRkXG96RhwMrG4LpBD7B15uddbpzfRa9O3nC88BwwWyfSXHH+ i41LWJ8NSgDHufadULaRhoe2NU2xr34AnIr7G9hx/UzHFX9csUwDLIdXipNx feUttw97S2aDhgdCe/xw/XH997lmvCcXhFS6Olri+ux9t6UmIqQA5LC7T53G 9WxTrpX/4h8CXwtNMi7jfqCQM5l817gCWDXwd3q74fW/iUU9bK0EIjpNm/Pd pWHX8dtpderVoH3dzadHcD9x/vqrfYBSCzbWHDJ9ifsR77S32Em7RtAd4GPF 4YPPf7Qq55F0E9jJlXfVxRf3W+GmemKwCbwR+13lHCANLcoaSt5ptoBbatMb 20OkofHR79w+Au1gwGCTqcdzaUhf9kCWFe3ALivVVBb3z1jgI/bUvgPszzSQ /4T7a+uRSMbNlk7QxZ0itBKD+5FWZEeRdw94wGLWtJyG6+Wpq6i/0SA4ajHF 2JGJ47f8M+bup0FQDRc5TmTh/R/MHf2yMgjG6XFL7/MwuxNlb14PAZH13m7F JdJw5axO2PaWYXB+2GyzIJ5ff+UTMveLj4DSuDjCFs+34FyzU0HmI4D1UtkI qMXz0F81xGBtBOze4OCzvw3riSu9Orm7xoDUrYjf6R3S8LQ5yzON22OAZfyV K+zG82+rgJn4pzFQfI/7iQ2e1yY2pvph8uPg25771duwHjDNP3nbAE4AKdld xfdZKPCYW+6CGXUKFBUZLWhg/VOfdDj28K0pwBco/3c3BwU+m1cUOBg9BXoF c8TGuLDfnVHijOaaBvO72ZtjhLGep+i4EL3ToMva/HaUKPb/poEvd/HMADk7 q0MRWC/ajxa/kQEzIEspViIG68sAt6XR+OgZoCYgRu+nY7/BYXoyWncWjIYu 6/6RpcCPwkIi2u6zQHR3Eo+APAUyhdzLeBJnweaAt0uXsJ5O7deXLfozC76b VLA9BBTIYH+kk7STASpjTc5/UMX+kYexHH2CAewdve5s0MT62qGe+2MQA3ib rG08qkWBOdbbuQvTGeBo/swrG6z/PV6bN7Y2M8BoxrzKxEWsN29flRUSYIKc jq9S89iPCHQ47/jizwQG22yXlW5RoKFV7pexd0wQy7FJ8An2M0mXfwnwfmUC DpPdRbutsX/Mtw42+MEE8gvBu+zuU6By1DCfKycJJOaQdZUDBR6UrhSI2EkC uQj/B/fd8fPvtuQUq5Ngk1QIbx32a9JfVpeqDUhANz4kt8+bAjUIJ+46CxJY Jqxv9/ShwNZwTb0qdxLkdQX092P/2LI2plIQRIJuiRMKytiP7vS/ezrhNQkc I9/UvMZ+VqUxcdH7Iwmst6w+WMF+2GT9jjbDXBIkNpXA69if65ew2EmVkTjf ji2WvMLrP9e0na4nQfXm/KeSMRSYJZ9k/7aDBPK8bgy/OApMDg4mzg6SQH+q dIX5jgKlLsprMyZIwHOhIunCBwpMt4t66ckkwY2F7I6CFOzfKQ+6N/4iQYt4 2X2JdAq0br8/8HiRBEshwrd8P1OgomPbo4UlEtDkeyLIHArc9OPbx8urJIDD h+b1C7C//acJ09ZIcE341LXiIgrUqhA68hfzZMnhCskSCiy/Wh4qj/nK331b gsopcLkoS+/2CgmIrypSv6pwvCJFAgL+kSC7LP63QS0F6nYzdeJ/k+DH9oem JQ0UqNDPVpn6gwS2llEds00UyL4DDYjNkuDB2OVG4TYKrOTc1hU/RoIP8irH VDsp8KjQtSHYTwKKSAOnRQ+un/6HtIU2ErTWhewJ76fApkj+la91JJj4IOxS NESB+Td0niWUkiA4Bz3jmqTA+9pINiuZBLpJOwiZGRzfSYepwWgSmOpl5l9k UmBhTt/nfSEk0L6kbfLqF/aDT7W2r9niz1nrLxf+oUBxGBgWaoLzRchhsecf 9tuU0S54ngSXN8dOC60j4FLJuRqSQoJd7hMisusJ+LF88tEPYRKouk4kntlA wI6Z15QtbCQIn9sR68xNQHZN9PF9OxOM5juOBW0h4MkD3pXiiAniC9rVYvkJ OHOc83LeeyZ4dNJzPdpGwLq10OTT95ngreoNtdodBEx+TR07eZkJOq5bXWgT J6Dex4RHN48xwRmz6ffDkgQUW2HZu5GVCbKi+iQHZQjYNldbJviIASSjT/B0 yeH3FcjWHL3BAAPSmirfFQho5BsKAlQYQGlGXeazMgHtQ1JcPv6eBZ9W7QMv aRIwu2/w6oarsyDY6VW3ohYBrQXCfobLzYJfQeXTQucIuF61N0ifaxZc3s62 peYCAftVGf62OTNg1rE4mc2YgJwsbzYoss2AgZnpUzUmBCzn2fnXqXUavPG4 uzfAjIA3pD78W0iYBt5zj/9ju0vA2hs6MR/UpoHGWUHzcnsC9n1MKtrpNAUW 7C8auvoTsMhG1iKweAKY/Tx4QC6IgJsi9mhrPJwA7Z8Ou00EE3Dsb90NJTAB un7VWSiHE/BlhWdRTeE4AA+VYxNiCChtxSrQkjoGTvzYX0yPI+DlhxclHtwZ A6tK+r1ZCQTMs2nTsNkzBkYUq7tTPhDQ6tEv3SPho0Ci64mc7mcCakvZvX5u PQL0ytISk7PxeR9SI0slR8DaSaH41VwCrvXtkDjbPQzytBP+PSskYH2nEcvD 48PAdfJyhlkF3r/w6v5oziFgVl4uXt5GwCbH1+mKi70gdt/oaloHAff4r9x+ oNML5C0LYsO6CCg79+5HY2IP4Lt8h02jj4CbTR7v+6zXDWTcYmX1RwkYfmiL /ea3HcDrczj/hnECxmiVDl+ebwfZxJ276RMEbByNPDao2g4Mhh5em50mIMtt VfXcoVaQovzEifMHARM/PxSiCjeDnpUyObd5AvLPveL/Y9IEfr6UJSZ/EnCg NbyIktoIDg5kf076TUDzrROo+3ED4BYMfFy7hJ/X8Pj0t64anDuX48yyQsBR z6tiT42qAPM07wPqKgElzeWmrsxUgKLp1vdWLFR4zL5sXw1HGYguMxAIW0+F 5S/bWSssCgDfu34hZ3YqdNhaTKn7nAvMTA1ELnFQYdkrlR8S/7IAq0HO1tUN VHgqqK9DcFMa2Hy4k6OKkwrlKod+BD3/ANZp2S/4bqTCAyWrb0/tSADCkeNf /myiwpUr1i1Kl0NB8sa3oQlcVGhlNsEwf+0OtBXjjU9vpsLthVHbx89boNZT T4c9uKmQZ9/KjdMWUSjhAWvEVh4qpOtOX6XR4tBp8Ta1V5gNG+dc0t4lojAx 0i+Klwrr0ux+KGlmILtPtyR5tlAhk2aWncWWhcC/10WumFsZj9Iii3KQxy3q hWHMpp71Ts0O+ci2fGL6+FYqTJNVTDtLL0SmGo2PXmIuD9D6vTBejFKdxSVm MY/29rv2NHxFG3erVsjzUaHdIIts8YFSZHG0y9YFc1+x3V8R7zJ0szefyMVc rrAjc6ivHLXtZizMYg7ZsxPyKFQiPbH0pu38VDgpKhsYFlyFOjPvl6lhtlye eWQ+UY04/XobTDEram0QfaLyDc1Nlv55gFnKKvNUX1gtUoyTVQ3F/F9R14Zb 03VoZNY8Mxrzs9u2N4RAA3qk2a+VgDn4YMXV0dDviHFdVigec59rL8eIbSNy 6QX8rzCn+j4t79zehHLP8GkGYl6f4+yoXd6EPv2aKHTALAj6ZIFFM4rOkLEz wPzrQQ/3e/4WpF0VaqeA2Sotes+DghbUXDBYxo05zNf9ealxKxqV3PNfHz7v UIm45z2ONlTp9/z2e8z/bOME3JPbUOquN9X/Yf6pW+gyda4dZX/qDdmLWa5t aDT1ZzsyPrPrWxeO99DuO37VLzpQpuJtJ1/MWeSneJkjnWi785xeM74/No9G OODaheR2Sz6zxHyhquSC6I5uJHrpuDErZm9aP0vol270W39/rwjOD17+WM+9 iz2obv5m5EucPzO3uATlw3sR/3HLjUKYZWpti21k+pCtdQvxD+cjX/RLgYu3 +9Gvme0/TDDvVt2f+ZNlAL2p3vC0AuevLS1Q/WPUAJrUe+PohPO78XVY6T7T QXRY3X3HC1wf+f4hXouBQ4hYFvncjOvn8Qtdd9fWIfS6LT1lI2aDgsKjD7YP Iw7l7B+3cP0JBF7cvJQ4jA72LJwPYsPxSt9B2DCGkYlUt0oqKxWGqnRLX5cd QbHHJqYGcP1mhopselUwgnZ/FCueWyPgv9gaobGVEbTOnu/MMq53QRrDIAaO IqcjvwvZcD9wZlvmvlo+ip7WbtRsW8TzEhm9rykfQyZn/KWL/hCQI6Gz6wbb ONIJ37A3FvcXQvVHgeHxcdSveCLk0i8CKkl5Pbf8Mo42Dd4uDCIJKGBjvtSV OIG4DjqWn2Pifhyq1n1uaAJFl4VqcTMIaPba9O820Um0NdaC3xX3u8ucb14l +E2iHwPsLHvGCJjzdnbxtvEUYr6dDSgdIeCz40+PXwibQik0ds5rw7if1paH +FZNoYOD27j8Bgh4xp4/qIwyjTI5KD3puB+nHBScN5yZRoobpJ/IdGK219G/ sW0G2Q3WRaa2E7D7C3tr/KkZ9Lnns2x0C56XonpcPdEzKNPOgXmhnoAePwAx d3IW/Q4/E1BQi+eHxp/FL5aziMMjhVvsGwFblzXPfQmbRa95v7J1VRKwcE/c MZ3BWbR1O0ukLJ4ffPG8WSPrGYivaUzXr4yAh/r+2L+XYiDR928f0L5ivcF7 oTvbkoHMBD5scS8moESEcCBLMAPx9uVy1eB51D/NmuiQxkBhJ3d6XMkn4Pd9 952GGAyktHLu2LVMAkZMka5RxkzUPyZkcD+dgE6mb99ed2eigRfq3E9SCTib vxK2J4qJjE7cCUz4iPVBfxV8W89EQrp13ulJBPTT+nzsyjgTqTW73i14T0D1 J3pBXKv4eTnzq9V43p7b9ZnPSJpETrqJ4XWxBDQJoTYuqpCos4ci9D2agKVX Bn4G6pJo17fXC99fE1B853KHsBmJrg2nnP7+koCdue4DkQ4kMlzYTtRHEjD1 1gEHXh8Sze3MSa95QUCuvLAtri9INCrYtlociufpVeo5eiaJ5iulfuc+I+B1 Q8TpWEwi1ma12bSnBJzgH57LqCGR3P29i+8DCVgw45o00EIi6feNB99gvZHc a9C11ksigZsXP4X6EvDEOQV5vjESufZUePs8IeDhDzkuQrMk6shRanD1xvri meXdzfMkWtZuirXyIuDK4FDbz98kMpr9yH/Tg4BShoHP6v6RaC/rrLL+AwLe Z+l2ebFCIk3zL/KabgRskKK6n18jkc3b44LHXHD+ne73XcHcx5o0R3MioKL9 sciXmFXXiwxKOGD95x2UKrVKovc2Bf8E7HB+rOPpTFwi0YkPOZc4bQm4rnDu gMgiiaw7ZHiWrQgIt10rdf5JojhZ7cNzljg/tt6vrmOQyFdBenQU6y/mKLDY OkEiMDYg030H6ymfynH1ARJl/X10uPE2zofCRWfrdhIRNEmOKqzf2seyrQPq SMRuV1tQfBPHM6h6Z1QJiVJkHM1zb2C9EzMyGJVNoqaHu4iM6wT00Y/Z8TSJ RNO3coRSrhIQDNlDh5c4Xjt2Hk8yJCD9CyrTDSBRppps6bsrBNyfn7ZvryuJ +veVpidcIuBirfb89B0SnV56tufdRQL+dHTMS7xEoiK93LmP5wn4Q+dbIvtB Ej3eqOuUjvWpj0/YriRREhWHpffnnsX3pyN2SG09fv75i7d1WN8uFCTvvdXK RN2+w9Ld6gT8xbM+iixgIuU+59mpk/j+5zKb7GKZiIfztM0WVXyeyVfbHP5j Ig+WDOP9EMerZz3br9NMlCFZPAhVCLj9Np+ZDcFEEybK065KBBTl3PTu3iwD dZgOeAocwno8SPdOiDEDrY/WdbiB9fnqaJFZpjIDDTefPppBJ+Bek8HmpW24 Hk9ru14hcH/VfLp7c+MsqtvnntqA9b26YNw4lJ1F+zs8WeX2Yn09Jh1YxjmL uAUaP73eTcALH5t8HPtnUIHCzBkn7A86a1/fcvKZQRSN+bsG2E98HDA/t65x GqVmlcJeYaz/reU3ysZOo6/TzowbQgQ84EG4RltNo/+KRzY7Yz+yk4yQPLh5 Gu1LlNnaif1Ll9H1ndePTaEd+r56LpsJ6JIauhTOMYUaW7QndnER8PiSl5FA 4yQajUhQduUk4IdOsd8M40lkejRG4RYbAXVW5cuPu0wgBWO3SIKVgAbHK9qG VCYQu/q1wj8suJ+ctPJvZ51ALBetH71epUBjw0d15b7jaJEly0sC+y8jHSPt 8cAxVDX9zJr3LwUKXQqeM9IaQ9Nqqv6sixS44WPfM3muMVQ8V267uECB6gZG 50V9RtFvA5W7e+cp8I3xjFWX4wjqvPuFS/kHBdqL/fZ4g+cbn7q+guEc9u+R Zza3zg4jxXPBRknYH95KTIuJvT6MminbLToYFHhk/H2eksgwcngWI7sZs4fK a8tzjUPISzCWxwf7y5cry3/mVIZQxnieYv00Bd7j5VrxXBjE+cimtg1zXZby SnjyINp8xF+8DPvT/BQjh3NCg6jGaSO7BOafS1aO8+ED6NSw8g/vCQocuT57 4OpqP4ptu8l6fRz7XbHnXn51fch5YeNszRj2p9qlBXqSfYjDx13wGOYnISP3 Jdx7kSLFzy97lAKt+gSvL7b0IL3LebrymAtONh/uP9CDfFf1XYtHKHC9WUF+ 54NuVEez4dbGrPXgVhajuQv93bwh/NEwBUr08Ro+cOpEnG6X3xzAbG12+iv7 tw6kcaFRrgP77f7eqzxItANZGMmbBmL2Di8+lG7ejh6EbpHTxOw0/l5yIL8N rQzFpXBjtn86MnCesw1p9TLbugYp0L8vxpRHvxXp3v+c+wmzcaJMoWh8C7qe Y3HFD7PGurFfbmQzuhCiV2qBGXyr2n30aDMSeHr17yXMimz21w2fNCGlyGPs ZzDr/BmoGWlsREJl12ZPYg44JP6kW7QRLW1lZmlgHkm65xJQ3YC6VBtN9TDH nKs9csmgHu199X7dLczOZ9pS987UIp7c+mcemInHSadYXL8hQcOrwvGYDRWe OfzeWING1aVe1mPmX/fqC39kFfLbUijGgs/3J4v20lSyErH/NH6vhHlm8tWb hYxyJPt5m6I75mLNjEstymWI1Sm+vQpzUo628aaaErQr2f6xKI7vXqnFC4l6 X9Fod4m6Pea12sZ0yy9F6EP0/V2dmK/tUt8b0FCAPN0P8qnh+7q7zGf0dTAX aXRcEs/B7Pnje+6++Swk0Mh6Wgbft0/ctugO1kzErbI+LAvzpMX1P52SqSgq anIV4HzRpBx6vHIiCcl1Uo5Z4fz6e35jIjtrFHpirraFH+df0cYM9n3O/ohD KY0TYX7p9ojSY34JRdAYt+hTFEhV6VzsFXgBvKYd62xmKVBW9Wv7vHoGCF4K y9PH9VHG9mP7XYUsUK6dXqqG60lP/aay3L5ccOe7m5Q8rrcC378ueuuKQKf6 +TnXXxQ4vPMExeNiOegJl/F+i+v3+XPmxI6aCqBbLrXz+28KFHw9Mrl8tAqw OirpqeL6Dz32xv+C+DdwQbFfyRf3ixYd9sT1Pd/BvPfR521rFNj91iw5LqIR 9L1mqTqwjoA7bmZ/Onm8CbjkTSeP437kUTqYthbaDDguCTdkbMR64/ikex69 DdBf/jE7jPvZe7WWEZO2NvBB1fAjwv1uZHXa6D+XdmB8wF5skpeAPOre/Dal HaCwyn3EB/fPf6/3P5zX7AZ0+VvCUISAMzrEaeZUN+AkLhau4v6b3mpcvdOv B7w8O6wQLEbAa9PPRbkqesHBbpt1y7ifh1AktgfLDoDMxNnYZTkCyjx5YCQ5 NwSivcWjhBUIKBQsfSRHcRiY1FneVjyC9UVlhU2RxzCAc7euBCgT8JZzmMs+ 3hHAdzdM2/4U9t+7/aykJEcBy9u4rCINAr4VjQuTuTMKwm96hXKdwf19eDYg NmUUvJSxfZSL5+UVjkMsSTJjQHX/xSZtPH/zev3v7ZMbByeGLz4twfP5u2+l 3f7742DIItDgyDUCsjXYjD/IGAe6JbemFPD8XzZ/mH2AmAAbK+T0rbC+CM9+ Wnps2yTYOsf7tgDroQI0Nt3ROAWOaehX3nlMwCBDIwNLtmnwaw/72A6sr4y1 2WZOHp4GZ2tdm58GEdB8b2J9wYtpYJBUXRqD9Z4one9KkM4MqGLbsdHyFdZD 96IsBd1nQF1Bbb0y1o+7kD6jLWkG6AlXhk7FEzD6gYfy0soMEEq01/wvDZ8/ ruZbdvQsYK9PKzmH9W6fZcuXgfJZ4Jk7Iq+UjeOxuK9OcXoWUPQ624S/YP0+ +pvfTpYBrhyQ69+E9XSsIhu4cJEBAlhKYllKsN7h9bW+7sgAoW2VW35hvW5X eGXLzzwGWA459vpHDQGnZnzinDsZILCs782POgJ+bln12v+HAXZxtBYvNmN9 /2Mhf0GGCbIsFEMlsN/QjJA5cPINE5Q0yE4fxH5kxZRBIbOZQF+an6qK/cvo vk2HC+qZgGd/JWE+Q0AF/eJP6f+YoHRCuNID+6GQ6aH2bl4STA5rs0X9wHqK zdd5z14SPAWjEg3Ybw3mpo9ynyaBlbvJwPQ/nF9NU1Gphv/7/WiOv5zYv00q iMbdtSBB5bYqI6l1VDhxt+DRCTcSFDx9tqiB/SLN/EutYgAJ9gmqF5hjv3lt zo9bI4oEOgaVwUHYj64+2zpi854EKiq3qe3YDzeXPW7iLyZBL2V70xL26+8r elUCqklg+aAI7BbG/j66cnJ7Mwl+zW24rSlKhdyVjX4V3SSoWJcmZyNGhazi QiM+wyTQdTR5EbWLChXKYaHJFF5/rN65dA8VOsQEjFwkSfDvYFTdzD4q1Gop o974RYIR4TtugtJUGPdL08F7kQSvPg84ACoVpgrwx6AlvJ+11x/uHMTrvfrw jG8Vr3cdsIYdokKxOaqS+xoJLu4xvVcsj9//Rz9kDfPY5qSeySNUGG9gGxqF Oak9UYFfmQoZ8abwDH6eyGOxVoZUeOvAhwSBZRL0z+jY3lajQo7q898X8Pqb B0KK2k5R4d7m4J5AvL+lGfprtdNUeGjbQwYf3v/r6qLf6WepcCxi4pDvJAk2 Pm/OFjtPxf07eXx2kATuUZtK/S5Q4ZuNlaeOd5JAfDfn+oVLVNjLVI9+3ECC t7J2ptcNqdBISx8WlJEg+tJabfU1zLT9fgO5JEB3TfbImFBhVMxq38JHEgRe u64XaUaFhzUon1Zek4BjqeTE6n9UeBWx3vsTRIL2T8aDJhZUyAzuix1xJ4HU GTHeSisqFJrj+16K84PeOpa//z4V8hG//MMN8H1Tw/aPO1Oht0q5hMghzHVR haruVLiYvEm7Rgznk9uszRsPKnw4FPvRegPOR4ubw1o+VJjJs/9vQgcTSD/Z b/3WnwoXrpk8OlTMBClTzmU/g6gwwNfh3pd4Jth2rc04JIwKhQcvLRbcZYLP QUIPeiPwfR7yt5fTZoJdZZc2SL6iQq7sc1uS6Uzw1k+BPfUt3r92TMFzkgGS vMXU36RS4To9tyc2N3H9VbgYNWVQoeafjEvzygxQGsBFZ82mwthwFSNnYQbw 5r2Yc+ULFV6SV5OOqZoFKWr1K31VVHiwktZqtWMWyAycTVn4RoX66jFr6uQM GNhGsd7YQIWvzNT9ZEpmgPkpq/G9rVToz/t3TMVkBnAujV85MEiFwYb85VZR 08Dciv5QfIQKB13PJq2ZToPZW1dEt45TobHpBF8qfRr8UDAwG5+hQl6HiFjL 0inwlYv72KU/+H6e8agm902CzFe7x49z02D3h2jjtlncn8NLy/J5aVCo4PDn qLRxYDcSn0nw0aBprLhCts04EL338CmbMA0S/y1s/PtzDGz9IP79/i4aFFmt uTMxNwqWLp6vLN1Ng68CjTIjU0dBN5fG7c2SNFh+MVAw/e4ouDL4wT74AA2S wh//iIyOAJ6P2x31ZGlQNlkrc1PDMIi2VLnnIEeDZ3PdFPb6DAOlP+EZz+Vp ME85s/8zGAbTPYd+FCrRoH+w7Zhy2hAQaauh1Khi3lHFUPAdBIu3a3rQeRq0 biyPPq/eC1rvaTd76dFgx9G0pDMfe4DF+DkXcJEGH2V1tjtu7gFODy4Xv7tM g/S8a2tODV3gdHWjsuR1Gtwl5Hs1VrMD6BWojmcZ02CyzYjSp/ftIDtdar2K CY6H52LAVrZ2IFI0+PiYGQ1mlBU9/5nfCua/psxPmdNgCKf/4/hdzcD2o1DE CQsavJwODsw7NYHFO4KekZY0qLTpcU1xYyNQNA7dSljToJyG+57alQYwmdj6 dp09DWpky7KPJ9cAV5FmpqQDDV7nZzNxuFgNdlptuKbmiO/r7+ZP51crwanT MuF3nGlwqZ2yuEW7HHifvrblpjt+X3Z5XHh9EUgIj3118wEN7pevFHPrKwC6 d+eWDB/SYL96YofjbC44unRVVs4T7+f3xQFBzkwgwe25XsCLBptZPfU6DqSC dNfC+BnM4rvYL7qqJoHBby9PeHnToAQleW1hOBL8J+px4vhjGlxIOvvhzy5/ EP2ZlWcRc/ZkLNdipx7IGnRe0fKhwT/WPldY/3uBOJjMPTOY36B9MbM73qJH h1gFPX1pcGLvbx9V9kTU6r7NMMyPBrOmAuPT7mQg1689mVv9afBWQpHLdaMs 9C86r/sJ5kHrX7euaueiewdLW39iPsj5NjkYFKCz63XjLwfQ4MUv+5730ovQ IPdGzWzMLIH9CuG8X5Fm0PfqjYE0aLtXqiHtSQkS/d0qqY/ZJipdRWalFD1p Cb75EnPjy/mvm++XI4GPRY/bMetX84UenqxA/9pNnm0KokEdhXML0UZV6J/F Nx95zEbF9+SONVajcZ4n1gaYJTgPxrKofUNpVZbnHDCHWuY9G8iqRVsHYw74 Y94awHqrTrIe9WZ4rH+BmRKi5VsQ3oBanQrGojAXS6llabM2IrqEcks45qvu 16FcfiPK51dp8fvf52qaH32smlDwmsKsPeZqi9o8Vclm5Pl2eu//1u9UHlW4 3t2MtvsZeP9vfxFPlhbbn7agcz2NW7kwX3kn0hKv2ooa+XpaO/D5rhqIxKOF VrS5+HTba8yy5sNn9ia1oUGlw9sNMMtsjMmpvdKO5q1+pvJi1tky25y2qQOV PpKIKsLxTV7aGvGtoAOZh0QP38Qcn6LIImTeiXYZBoaxYl4iX/EFinQh43/a eVH4vohq1LWvsgtdHCPcMvB9d4N/XZk7e1Cm9JWDspgz/1zQicSlHOrn+iAZ 58cZpeu//e/3okbJp/y+OH/qLzS+8yjvQ5LeYdYzT2hwX2YVzeluP5p0K3yu jnll769xs60DSKRS33Aa5+tjYRDPQR1El891CstgJlVZeq4+GEROfFHfrB/R oE9hxvze74PI6kD0yR5cDyes3dGfe0Oous+E9RqunxLJrp6bicOo5ZjTOVtc X/uVz1zxnx9GKltvHvVww/2v3Q5uVR5BSl/L9vm54HoNvuMl3ziC6lPUVL1x fbokdrM3ioyil6dS5JydcPz/OJ74ajyKZDL8OnVwfQsZK3q+Yo6i/PjExEO4 /n07g1o95cbQ3qA13y12NEiLeBWU7TyGeM50ojwbGkxtur59ed04YnCr5Jbj /iIxcs+4auME4vvX/d35Lg2++1dxv1tzAgWKP3M5gPuR3fMk4wN+Eyhx56ca p9t4Pa9MJ1v2SdQdZHCw6wYNuilrMp1+TaLpT2IFprjfTZzMYMjQppDQP7Ub M9do0HubQofQ7SmUePKxzrQhDRZs6pk3ap9CmTWS+em4n4pYNL5N/DiN6lal DglfwPXmvCYU1DeNVCYljJ11aTCyWPLkM94ZJLTOd5fMORq8ITauMmU9gw5u E+55chbnGy2s/WjsDHK07H/ReQb3D2M39K5hBj0923jDWoMGoy4vW+dLzSIz 8kBUzikadPozqmp8YRaxJYrs/nsC97sbpU4iD2cRn4qly/3juD8UsTrnNs0i pcOOPgDPC47fI6b+dxlofbV4kLkiDc6Ib81/EcxAKSNf/EPxfAkcUef7mMlA 6mZrpV14HrWo6asMLTAQj7eb1N+D+PPzm3tYhZgoTC6iR5BOgw9cX23Zf5iJ XALPeapTaFDvutPh+9ZMxBLjFGOE5xuf9UWZqEAm+vbxgonVfho8na80UJTI RA6j22lP99BgO3Vv1Vo3E704IXPzpQS+bzur89t/MpHzU63wBHEazLl2nSa7 iUQPipM0P2+nwTHpkX7twyTSeHR4W/c2GuQlQi+xaZAonyJqv4bnccW13oDm KyTS3hRhtUeIBtFtpb9fzEn0Ofi36CkBGpRcl78HuZAovTzQ7zae5xw+y+E9 fiTqLsup99lCg856J4a2RJLoWKHprorNNOj4689/5Rkk4vap1RveRIO6m9in jheRaCrd//0qJ+7nZ6/VtFeRqLViL0V0Aw2qt9oXejWRKFNx9y85dtxP+v5z PdlNIrueLQLn2HB+9K6r3DlMItFLj978tw73d60CE54pEoXFb4n3XKNCK4PC nQIkiTwf6im8XMF6+sJoPf0Xidompiwyl6jQkiw5fWORRLeD7fS//aXCccMo h6QlEpnrv+AYxnrm0R7TI+yrJGou+Rn8d4EKd/c0eTqu4fjYyrJv/UWFF99q nMT6G6W8WXSSmqdCQYuxh68xs3rNroA5KoSSbnLn8PMHhj6/v8Skwr7wCAvh ZRIt2/98bDVLhbK7nBWx/kZiFtqpPtNUGKEhkjaJ92fcYSYbO0mFBPdu5g+8 fyVK5958rL90Ny9u2zpNIt1MGNk8SoUbXNKunhohkTiHQszsMBVKjvLOhPSQ KOGJttaGISr0rQj597OZRJrNgpm7B/D7Jo1qLWpI1K8sNKLSR4WnX5yKXy4m UZ5Wyw/DHqwHX35viP9Mog0Hvs05d2H9ybv7rUkiiXR22MxHduDzrfDYHXlJ op2cChvz26jQpJorSSqQRBP9XurdLVQYfo+ecNCdRJOqYt67GrE/unw1M9CI RJxnuRNPYv25Y0vc56HTOP/oFUoWdVTo9dnV8Lwizo+VaytF1VSo7ZRT4bUF 5+NckM5UJRV+9u5MPrnERLtLxK4KVWC9ucjpITnGRPPJttP2JVQYdjTPUyWH iRTyxIOTEH5f3SKH8xsmKni4LNdXhP3fvZIDLY+YyE7MsVarAPOdYypTZ5nI /ZrPgE8evs8J/i/vZZgohkg+WpGD9btV5swTAfx8/1U+9c9Y/xN3yjM7GKjn TldaANbjDeQFaZY8BrJuhD3NaVRoJxCH7kcw0MVNw7vupFBh3f4GxSY9BnLy fnIq9x3+XCqS1bN0FhmSQR3MeCrUkIQCbZGzyKVvPZd0HL5vpnqB7L1ZxJ3d /yk5mgo/DB/x2yI0i9bz3yb6sX/Qef/PzMNgBpWWj4kefkGFNiZe/GcOzCDy 3fvzz7DfsH/3MIvyZxpdtlGY1AvB8fmuFXn42TTi/CI7sjWACnliNvG8yZ1C TsrXVIL8qLCW4nlK4+EUUoy59YDblwpbdl+tET41hXrTLizueIz9l1XDf5Sm STT+XKDL+SHev6QkMuqbQMej827sfECFy9F8VTeiJ1DqtjM3qt2w3xvT0Xx1 bQIdVurfRHWhQv6CwitZveOIpypuVMmeCne1ZloUfh9DseVjrNx2VPi9jbMr zn8MmR0y2zlmi/3d+6J330+MoRPOXoGJ1nh9jwP17LmjSOzP+dUQ7OcKJZMZ /FajqGPf12Sve9j/pP35a7NvFH0vfLbggP2fl/jp+P3PR9BvKcc0l7u4Hl8/ OuytMYJcLrANeptTYalt+RullWH0vuBzXwr2j1FegyLIdBgt+MfWamF/mbK1 YL0VMYQKnt4sfGyK/eNYtPlw7yAyDj4TXHGTCp2bpjzLAweRnfjCZgPsTyO5 GZKobQDFKbd/T72Bz1v6ZO2o7ADSfi/6bhPmC2xfNqQE9aPEGeusjutU+GBh vtX1eB9yGC5Yr4lZWfZe9XhULwqM7Hhegv3vugI+dcMfPegzUrc4jvlZqtJK v3oPkoZnI6uvYv/Fbhjj+KYbnRuclriEueZG85T0fBfSYY7wMYyo0DQuN3b1 ZBc6qJyjQ8csTH3ht3OmAx1t/bRuCPttvSMLhYIaHchmcu1kFOYsVXeBawnt iPvWm72XMTdI111dXmtD0nEnE8Qwy292v7tg0Ib4pJ7UThlQ4RLLekHt7Fa0 0bcgthDz9wo/eS7eVhS4f7P0C8zvj1Sly/zXgjbx21o6YOb9Mvhf5ddmJNSU bn0V82XT4xoNIpgVDI6cwRy+3+GYtnUTsgb1dQBzdC2nwpmqRiQzdPjgUczb aw2o38Qa0aGpwP+UMd+mssjETjSgutYIl1OYGQ6HpstC69H8p0lzfcyH+4yf bFSuQ5OTfcqWmHXXxDa7jn9D99Xi/vhjvml6xHd3cA168o54nYb5OIsV9yaF auTFBuk9mN8E7Mg62l+J5o/fzeLG5x/OWIgq8a5AbaIb6eqYfwnlDb2TLke3 18M4H8x7FAYy57+XoofbWLd+x+y85/KRTLsS9B8b9wMxHP+UHYffMUW+It2x qRlbzF1ipRdMnYvQcU2G0XfM8UPvWHi+FqBgHoUWWXyfgNerjMmehxavZOq8 wWy4L0lk+5lsRPcR7ODB+aBRleWRGJyJ2HcM3/bB7Gk5s+58Yhri2Jv9KQjn E61PYzwrKwHpCueYbjemwgHhAY5mu2iUcFNQOh1zC/clr4sPn6POo2+GmDg/ X6smi5747yZovSLSGonzeVDzTp5/JfZX8y/aNHG+7484lCR2JRIoBS6zleB6 eHlLI4UikQiubnpK98H1Ym8nIeT/MgUsbnC6feEW7kfbEtp8N2YATxbTP2y4 vnoju9e5eeSA7Rdt7uTielxJfaU6lfkVpJzmrc3G9ZpgIsxnx1MKDNdVHvhi SYVbh/afcLxTBg6ULjR343qXVZTfXixWCbbcO+xkifvFGptfvMyDWlDpP3g7 HveT7w433W621oEZE3XFQQccX94tDYUHGsBOf3DnnjMV9jjWTPX/1wg45q55 9eJ+9Xum7/KPTS0gzk02+7gHFdaztze2prYAuXdJRp88qdDN3fmwtG4rcBrz no/wpsIp9VUjkYg2MN4oFJzvj/P/mZOy17ZOkGhjXHQ+EK9XKSZin9cJLA6k UeeCqFDtdoJXtn4XKJZMzgW4/zavnj/EHYJdR4J7tFQkrkfQf+31ci8I2PWU az6KClNThn48DO8DDrOFbiWvqLCdt/5vELUfNCYCTdsYHI/rQEPEcADkey6H iCZSYcfXgtTctkFQ/fJIiHsuFcY4iYeU84yAbyGnx+PyqXBjX8pEsN4IOJ0Y F1//hQo5bmUWfY8YAfItH6UPfaXCkhvhR97tHAW3zqtLK9dQ4dAO4SBbyTFg 96vRK7CWCgO8wgdTzMaAuMG38cF6XM9eAiVa78aAiORATGQzrj9WR5ac3eMg P/6Rg2ovFfpwsOivCE4An68Pa/P6qVA192mj7PkJIL5vqeIQ1huJZoeWUcAE iD81Y6+A9Yrf15XG7tUJwO42pmaH9dAFo2O3x3onwSMTS9VcrOf09p/U++0w DaSvxA6nYP1XLTQZu/BxGuzl/D77nosG6477X+brnwZP/wr9SNxKg4Ibjp94 c3wGeMQdCO4Ro0Etd457tSszII1/p/78LhqcUppQ8JWeBUVBNyc278V+9VBO +kX9WZDeGyh0Vhr7r3fm4zuSZ0ErQ8P4D9bnL0KuJR7WZIAh7teHpLGej6h7 /lvnHgM0tPodMFbGfmbj+8O2oQywfFBtf5saDX57UItKOhggPqqNTUCdBu0b fhcxFhngMApJuXiaBlU6Vfm2b2OCOrNNXEM62C8+3Othr88EmhHfw6Sxf9la eO9Z7H0mOGzUFOpwiQaLjl4YrQ5mgvePMkIFsR8KWgqP465ggq+1P27/h/0T OnBZQ6qfCQIYhy4XmdLgUfdnScd+M0FGYC7dEvuxt2+L7p3bQ4ILbbVTVfew 313Lv6ilSILNPH6me21pcE5P4y/QIsGOIRk/L+z/NrKOpB24ToL+tn9wGPtF n7GOTk4bEnjwcdmrYb9p/P5sb68nCUR3uvO8f4jvp0yD8i6EBK2yOYJW2P/S LHRfb0klQegGl4tt//t5ys3JuswCEjjUvIw+hv2/aqjoLfVK/P3za10Jz2jQ k3zE3tBIgmdWT+a4w2hwQC/7/KluEiQlb6h1jMB+y1rxX9owCX5zX9AdfkmD eS6huZumSUAZlrc6G43fH3DqjP4cCf65OWzKf4vv43PHw9AFEtiua9ss+Y4G XxV9k0J/Me/bej0kiQaXUhN39y6TQG15fGolmQa1yX+6//t756cyt7wwT6PB Sop+0vgaCVKN1LU6MnF+TeuItmLWKlBbUMuhQZsW3w8Z+Pvn/xU7p+dj/5j0 9vpD/D5Rr/ulO4qwP1o4cU4ZrzedKZbn+5UGV60lwmZ+kSAkzU3tVxkNZvBN 6/qTJFi/W+/s9SoarOq8kL9tigTNLP8V13yjwbsnt61GDZHA4oLPw0MNNHgr iGnM1UUCw2Uv59dNNFjj4id97zsJdtsdCl/fRoN72F6mlJaTgD3S6cvdThp0 D6k+vjGfBJWEY2pED64XLjkbyU8keLduNqG0H/vjfjX1S7EkCBqUCJwdokGd xKzdMaEkkDa/e15wDPtDHo47K49IsDV2z/CxSfx8q+MTWzsSZN1LpdycocHo DA7m6k2cP5eXopN/4PNocPldh/i+cnPi63/RIPPu5nI5KgnyzigKM//Q4Mnu I5f3bCNBoPkyi/QqDVKEYka1mUxgUXh+IGATHZ7lembxI4gJ9jkVXInhpsOD gRIS8Tj/T7CJZ6RvoUPbPSUB9y8zgcoR7rQ6ITq8tE469b44E3Cc8Ps1sZsO wd43xZzxDCDkYX1zUpIOtbXaA6s8GWD/aTeJcSk6VLW34km5zgC/tVxPdtHo UGSz8Z5pEQbYdWP19GslOqTVReRe8pwFurZ3dB4r0yHx7pvwjSuzIG/P9h13 IR3Wc8kVRh6cBZalYWXEKTocVQt9GtE7Ay68FH/85Dwdjl0yblmQngGdzwyY ehfocMsn54Tny9PgS8Cvl2KX6HDd1XMNd+qnQWR/7YN3RnTYxB3zrtxiGoh4 /yx4fJsO/Zse/jSMmwJ9uXq+h8zpcPtm1/kRyynAGcMv1mdBh0tpFd/TFKeA ksS88R5b/H5bifPb6ibBif2zOS5udDgZp1V/fXoC6JpF0DWe0eG5EqcUGsc4 iL1X6TkfiuMj2hSmhcaAQcEnpxfhdPg06N7aW8cxsNOxkbv2JR3qufyXvTI2 Co6Vpc6PJtChoWBhfGn+CNjBofvEIJEOnaCZ+bjFCLC8SFGo+UCH+pC6/ZL4 CGhoMcoIScXvr3thKe01DJafjhvW59LhQyXu8EkwBP5kpFA2FdBh0O0NKmWM QaD/mPUtKKRDeV7LtnWvBsHlIreTYV/p0GXIwdNyYgB843y+fqSaDs3k494m HesDQfXjQSPf8HrsEyKngntBtw6/fm8d3g+L+4newR7w9WiHXU4jHVakxw1x eXaDsmiWfK5OOszxCdCSzukAx8x2rq/vosOIGu6jYF0HEJo/cuRJDx0qfEP8 Hmfagd0dh2OD/TjfFs7kx/S1gld6dVkyY3RYuWDRx/u3CayfiDDMGKfDwDOf mMdUmsDedMmPUpN0yE9YcdZ6NYJNdwX2rE7T4bfewJzTAg3g/V32NrU5OtTg uBcpIVkNbAyfcXr8oEOxCd0AzsRKMDHUlfV5ng75vook7ZSqANvnfpmtW6BD g/udT3mlSoFOVobJ9t906Dr4cR1H4lcQ1cxWTfyhw4WeXf0Vp4sB50wCOvyX Dk3aD0TwHs8DljmXtaj/6NDze4B4h1I24Mu8K79jiQ7TeAzJ7kOZQGN+RHRw mQ61jA/u4NFIAikd0nzZK3QYbiz8sEE+Dnw5E2bsuUqH5380Meo1I4FWzGX2 k2t0uOgPx5RP+4L//y/2B2Hc2lMJsa2/j/0fUW7xbA== "]]}, Annotation[#, "Charting`Private`Tag$21889#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJw02nc81W3cB3DSEEJGKmWkNEk551Cp61KUpEiIplFatqwKLURGJSVJhCiS yqYue2fvvfc5v6zIfL7387ye+5/7fr/czvmN6/pen0+vJI0tta8uYWNjY61g Y/vv3//3Dw3//399Z9utdwZcMJfsEpPghl46LEh+Bmu9U39zPiEA9T8oXWfM TsPOIU5cG35Eonsn9qrmgHvr0f1ksRj0Z3Z579YlNGzQlBSVpxKPBCJ+uM6C BascD4rFJaJbl7Y63eSgYbW1fMK9RinogJ9yTwvYYlTHfFooHZWWenKXLqXh lyN5/ueUMpGQa65z9XIabkeOIzJBeUjU2bHn4goaHmaurpP5k4/WH3v0fRgc tm9j12PVQjQc8Np59UoaPjSrKLWaVYy2i4m9ceOm4QMbzIwL11egL/pvl+7k oeGlvuG8wdkVSJa9Nb8avG7CXH/iRiWaTfdV3c1Lw907g5+IJ1ehFY/vtq9a TcNtR2K8m9Rr0eMngYm/wW5GPYdOsmpR1pWckmcCNPxOcd5Z7HkdStuxMUZC iIZTldYyi2rqkeq1TzWmIjRc5bPkc/aZJlTfF6mO19KwR/OPX1GjTSiDsdi9 YR0Njxx44pjv24zuGCdYta+n4StjyWUh+S0odem7e55iNKzE+2f64K52dD/7 VeBdcRruT7rJYZvTjkRD7BOtJGg4a5XAhvZdHUh0lKPdZBMNxzPTWdlZHWjr lMZ1c2m435EVV7/1dqIxG1oe524aDml0sNEX6kF+MgYdWI6GKwwOvD5xsQf5 nLASu7eHhjcd5Pb0jexBm22+98zK03Bm3h+hGfleVKF8MUN8Hw37jxmNbFbr QzktMQJW+2k4Yfu4xZmnfSjodtqJnAM03KGn3fXrdx8yfLdWxeYQDevb3Iw6 otWPVJd5nRs9QsMHWbscC04MoEsR+2vOqtKwsPM3idAnA4hj/sBQ5lEa1qFd fxSRO4Ds3qL8oOM0vCvFzWjb/kFksbyHYaZJw/fcn9/vXT+EMnR1vPu0YD1k UIU9WkPopAv7XhNteD9SGZfZ3IeQQYLLURNdGn6w9qK2G3MIiVeSO87nadh6 TeBkwLdhZP3KcN/KizScfjFny7GOYaSzY8fUq0s07Cucv3kF7wgaOHD2aIoR DbNHbb3+xXQEcbiFZp8woeHajQ++PHs+gkSG2gQ7r9Cw2K6snHvpI+hrti7X 6utwf1YOmTd4mOiy4uSbmBs0fPNAxtA1eSZS9tSvPnaLhmdtgs1vGDBRXc9r ETcLGpZfftPY+gMThevvi19tR8PTW0t3225jIZmuEP0Uexr+yjvDdfMYCzHZ Sk4bOtJwzqfooXNXWSjfi39lwl0aLg2US5AOYSH19+fjLzvT8Cfr998XU1ho p1HlHR5XGg6IKG4rq2KhZPU9J248pOHstg0aGhwUSjZZ2LfuMQ1bnkoenF5H oZ81GRuL3WhYQITDInA3hSzeFg7d9aDhZK3BjTtUKFRXZRcg60nD3inWx76c pZDp2tUCXV40nJZQqCx5k0Kyo+06r7xpeMtKVXO3uxRqPLtqge0ZvJ+vc8s3 vKWQlZOaUtBzWE/FlsJXoynENOxakPenYU+X8TMkgUISOxWUyl7SsJ2SwdUd mRRacfb90PVXNFz23WU8sphCH3it2JYGwu/raX3dU0OhNstZ2/dvaLgupUTr dwuF3tc+O3DgLQ0rRLC/duyhULmE88n6YBq+zblWTX6YQq/YuUNtQ2h46suJ PfN/KOSFH23nD6VhVsKodN0khTg4ZTpiw2j4R5vj0l//KHRL5lTa8XAajg67 GZswB99/Z2dcXwR83gozzrQFuP8pzu+PPtJwjO6hlWWLFMreuyNDIpqGS+6T j3/Azt5V2T8/0fDbG0PtkuAXLqoZ52JouKanLs1onkIhffkhU7E0TPNJVYmf oZC25lvDl3E03HS5+/mqKQq17OOcloun4WVSWT+dxiikcU3n/O9vNMx43TQ0 MUKhEcnC+zd+wH63qTzs2kehZ+5fLi1LhHm61fDv2nYK1fzWGg5Ngvdlq38w u45CmgFsG5VSaJieEaZ39zeFvm7jHapLpeGN8gpPVHIoVFD8W806nYZf528R F0uB6194tZv7Jw1fbvG05IylUEx57suIX7Bf671rON7D8xdNsjiYScN+psbx /M8plHDN9px5DpwP43aOhjYUEiwUMFiaR8PPf8lrRBhRyHdyw8egfBo+3Z9x dVaTQiV8WsvyimDe5i5z791OIbl99ksNSmjYaKdArJMwha4pLtk1UkrDEc13 9KTYKHRT3KuMr4KG79auz0mF9TwvnMQIrYR5ptrTHJXGQg0+0WG7q2nYkbZZ Oi6MhbapPD93oo6GOapsjy03h/3BWKpr1wLz+sHJpbPTTJR6PLd8rpWGiX8+ yWxkIuO6RxyP2mnYh/fYychUJgppLrJ+2kXDRRuLvpTZM1HVQ2mLpwM0vDt5 U9ivvhHUEKObuGKIhl3s7za9yhxBm19vsXg4DNeXXCP76s0ISkwoXW3LouF9 5TkFvMdH0Jf1g7vxBA1fL0IOK0OGUWjM856oSVgvRlkC4jbDKPlXYsOqKRo+ L3Tyq7nqMLLK22BY8w/OQw4N9vTBITTOnBM4sUjDcw8mG/ZvH0KO6ZlD4Wx0 rFSwfsvBqUGUyZeYO8NOx8f9jGQe5Q4i9cv+Rh+W0vGh4iJGx4VB5L1GyrZh JR1bfzz4fYUbzN8hjmcS3HS82m4ZOn1yADU3XLUz5aFj1bdCgUNCA+jX7QXn YV463o1SRQQ/9KOOd3qFjYJ0PKKspnQjoQ/V7FN9oryRjmlJaNuntB6k71ey 2kQMvk/bJjLVsQct+nXOPRCnYzuN5AQ6oweNa9/tSJak47HWH2scv3ajqdK6 QxzSdOzxz+Xz+bddiPItoPNtpePiQ3cuLOh0oQq7TKO12+iYY1ur1AbeLvTK mF1l0w461rDTWahw6UQb2jMiBGXpWP17yYL+uQ5kLHE5iXM3Hde+WXJpFX8H OqT4vHYGfFztvk+QVztiozntqNtDxxMxw5f/XGhDybs7f1yn07HhXGSX2VQz sr7km/rvAB23D6wac15Rj/yODkuXKcH9fN/z95t+HeoMsKsKOQifb3r+zNZP tSjcVaSGhuhYVt/bjXmsBtWV562VP0zH3ss6+H2cK5F5ePeqQXCoUPlfq6IK lDvyePPbI3ScVukYkSdUgWhPbn0eV6Hj+YlLXd/P/EaBbaTU7hgdF81HTUcH FyCTipUPeNToWHu6XrtiVz5actvs8HvwjIHlvf0ZucjwWk5PynF4HjrqppyN WSh0cnc2Uqfjrbs3Fj02zUQ1FZGR2eDLz465DvX9RDIpAk4ZJ+h4wVg2v0Ak BemYPDeV16BjRb6sr5OyicgjbpvuR3CZg3ubhep3dEd86977J+lYbvnJPo3O aNQbIC3eD+7/WbFHhjscxRpYcqmfomOFVm7OuutByO+UWxOHJh3f3zlEu37h OiLKc7/Ogedc5553HH1AdFbyh30Bfww07JXSfkk6WxovHdOi43e0zi9+dZFE R/3EAV+w+PqAf5qxMaRNrWJNJXjPZfk1LzLjSX4AR5n6aTo+7d8aFeqfREQf uMQ8APfZjFoI3ksl4ts+Pk0AV0l2FsaaZBAHjiTLbnAS9ZR5Rp2Qdi9uA15t Os7/bc07LZJF7m+XPk4H6/5q16R5ZZMde6KU9cHU17NXqmZziFnpaRUHcBnn tZk8szzylOI68wIsW3A8f0lrPjmr1mj5CZx5/czDexqFpHtXb3AG2C7kLCWd XkTEPB1bSsCVhQK1k9tKyLGSBbl68KLiiyWtAaXkdPnSd23gRPngUxXsZUSk SFGqCyzzXSQwx6ycuMvczO8Et7P2mejeqiDvgjw9W8H6YSt6MyDMXPgVbVkL vn5e89SL6kryTGnmbhFYbrootNy9irzwr/yWCp7uUe622FdNOhY/CH0E94jk S94criaRlziifcHBjS3m6cE1RI4v2tIWbGOY1HbhZC3RqDa11AEfOnD5udp8 LXkSR4/ZA+b2Got2jK0j/ZpzdavAm2473TiuWU9Eg3dk98Hzlnl9Z9xstJ4c OqRilQF+ISr2ou1FAzk61tPjC0aqSQFv5BuJzM1MqUvgK0e7zrypbiQOez/I 7QBXD8VvbbRpIqP3N+amwPuXolsELv/aTB6Z5GrfBZ892LZi+EQLMRH0JvvB pzsU9s73t5CXtm9U4mF9+dd1hARubCPO3z5eNQXnuz7uWZvcRsJfmdivA/9W mB9O0GwnB4rsnexh/W4x9TgmgjpIYZa6nQS49aPzN3avDqJqXWRbAOt9848q mnVNB/GOTPbmAY+dT+2ru9ZJEr30vn2G/SKgvfC7ML6TNL9dGFEFc77YhhX+ dRJRVvIvW9hvrp5ihg+edBFer8jLy8FVmVK9+uVdZDZJR+YV7M+h7aHhEcLd 5Kd74NUvsJ/fPI2KehbaTSatQ0fSYB6Eh1+If/i1h9TX/QlQANf3uhXljPaQ ozb6b78dhfn9LgvdkO8l8uIvq9+p0nFXT1Z0Y0IvOUXniDsL80YVqdA3xPeR dy6FwwTmET6/seMEs48E+nSmbgEnx7/ZVbm9n/zZ6bNpCNOx4NGX0bWh/WSC a+OQ3iGYnx41+165D5AJlrZFLMw/bZHslsO/Boil8Pv0RZiPl07Kf1CYHCBd nzeUv4f5Gaj+UHHccJCE1b6PzVekY/o7tkMeu4fI475lGtzgp9nb7x43GiKx h41GTyrQ8dtHwt+OvRgiWz97mP+GedwQHXdhbHSIRH8K4U7aS8dnHG01mqKG yarTrMQmmN8VUlVn/9QNkw0LT87Ny9HxTUtLM8FlI0SmYz5DCea9daOk5Z1L I8Rp195nBnA+eKX/00r3HCGfx648uS1Dx36X4qU4EkaIaamsYOROOnbaod4R toxJZlzD0tPgfNnLaGb/u4tJcmWLEsq20zH/avLoxBkmyVvnnzcK59O71Usd JoOZxELvfdCWzbAeDkjFbtrMIqus2th3S9Hxt8qbmy8fYZGeqgFBhU2wf/5i V38jFlF3OWt6RALez4V9Be1B4AfVP4/B+ajjejJzMpFFmhyPs9Th/DSc7/mx WM4ifyRyOU9tgPnjVrx8hI0iLYtyXKdEYf/oS6aXilCk3eSa4Mn1dBwfISoU IkORPP09cifWwfrw0Tpz+TBFvv8zNFNbC/t/4F0Onx5FxldWVKuIwHq6KZsa d50ir30u2+A1dGz80PX5gTsUSaxxe0wXouNteSJ+G4IoUndwkW83nPdeaVtD LKMpsjfg4pJtArB/9PxN4hIpws0dek1iNR2HXc++1ZBFEan3xSfW8sP7H3mq wSyF60vuTePjg/kSsy9ypI4ih1PnM5dDnvjr/lSsrh2u9+2mm/OQN0qt025+ 6qeI8KNr2eOQRzpF7qqasuD6dbpqB7ng/NzDdptngiI2p2Li2yG/HHOby307 TZG/wS2Xajlh3gVE8AvNUYRr7PlI8Qo6Fp39qmi3QJGZ9QNXM5fDPLY6t40s UqTt1Vxd4rL/1tuVmlFw0y7miRjIR4v/BA+sAl99WF8RygF5ql3+yup5inh8 a7B+tYSOhZSFjBb+UWRLO88Bb8hXZwM9NWomKXK60lfxIeQv0jas7v+HImFu DvaOkM/STwt7HRiiSERBK5vlAg2f6DJU/t1FEd2C2u6r8zTcczr6m1oTRX5+ tdp5cQ76zpzylrgKirw5mNGtM0vDnzUXqPk8isjoZa89OUPD5tRmS8U0itBC ntSpQh6s97BeeekLRf7w829H0zQcpMG/2/I9Rcxe62zYB/lxuXSQgdkzivS+ 18iQ/0vDrU/5efTuU+Ry4oDQbsibU6saq3ZZUsRY+6v4tnEa1hYumw8/TpHj qkLvdozR8KmSD3uj6BSRdOKYkRmF/Bkd3h4uQZHcr5tdFSi4/qZSc+9xFhEX DPh5EPKtEvuRYqdmFjH/yc2pyqThyju3A0yyWcRMZwdTD/Lw5s8Rpbt9WOSn bPE7I8jLe1bvnBa0ZhFbm8vu5oPQT5zMV0+fYZEVNcM7PPuhr4f/G8hZwyIT ut+oim7oK47eSzyewf6TuObbB3m8ibVFwcOMSVp7mGnznTR8KFZu0O8Ykziu t+mX64B+++XBJzIzQiI9Nec0IM/vrhg5OFg1Auv5Z+HNNhpOSps/L/F5hKSP mX2LgT4wIaj+JkN3hARcE+0qa6bh8qNXXTbvGCGsi3vHx5ugX9mXOb6fHyZ+ 1wvajjTScOEI8qsJGybmmrTR2Vq4fg/ejabtQ8TYat+B3WBm83at57FD5BD7 yYQrNdCPFXU2tTgOEfXbHwzqqmi46+icfT3vEPHeOGFfW07DnPJ7Dr2SGyQi GQ1IFJwmpf2C+jtAEuqaHpiU0fDgyrI++4wBUroi8+Us9CE+vTXHRFQHiITH hiH1Yhru2DVyvk6jn4z0eFlFQp9aUJD4V8fTT66ojicsAbu9PflNuLSPMCzt AvMKaHiXXcqsrlofCT2ZdGwnuCuE0XV+WR+ZqjhU6w/9LG0jt3d0Vi9Zcdn8 szn0t1jvL8LiinCeuDixt+dCn7lndufkWA9ZMxSoewZckH4wtiSmh5QsLxFQ hf4XZ7U7K3NDDwmctok5mQXvjxY8Vv63izjJCni1Q1+k3Z88Vx7fRfZ6WMjf BpvKu/5VvdlFJn63zUYSGra5LtAS2txJ3Pe6bjkCngiU3u/p30nKDCZlu6F/ 3k0wHv+j3kli7gVM7gTLex8tPJrSQSojwjNqoK9mtFwR3mfRQW6FajrcB4s8 c5L4IdVB3mReaOrIoOEEbpNxn/Xt5I3y5NMAsL534Pbih23EkjvoyEkwd50B 39ahVhLy+XFdHvThIz/sr+gktZD1tVpp7mAyUR0qI9pCtBLoiepg7lFX6X2u zWTP5kMlq8E2Tn9u3u1qIiyVS2wtaTTsa3JhcFqliXBdstX/BP6WEbQp6WMj 4c4+Uu8EFqhhf5e8opH0Hs04uxl8akDf801BPQk45Wy4AP2ca/bopkfS9WRw /86QZvDfmTXqOY/ryIWla4UywE5pUaGXumrJewGXvPdghcu+xQaolkxvvp/o Dk4ynbBKfVtDTh/Y3m8FtvC0U344VU0oV7OLl8CHneeZKdrVpGXPFlFNsHdg 5C7jL1Vk0W+N1BGwit6L5Icrqkhv7rDDfnBPRoWGuFElYVQrbKCDk6Pl45TS KkjHQzsBebDsjFxYu0AFGT214iINXHjGuXVdXRkR01FYUATXuV3Of+H2m3Bh hWkMnn2yKVieVkpklSVOavx3PQ2rli7vKiYPp8YWzv33fZWanwT9ikjd1dd8 5mA0nqRkeqCQNHe33H8Ijhq+eXtFfz7p5b+j8xbs4BHJzf4ijxgV8Hgnp/7X z29lX1DKJWyr12+vBx+gVC5u7ssmr0V5ZWbAq/b8jTDyyyKJskpvJOD5u/cr mIopZpLxsDYLdXBER1tXYeZPMlq95qsDOGhVGe0ufzpZu4l5Lhoc8IXb6trl FLK0U8v2v/fdS/GphX1JJPG6a/8JwnrI/2RmpzT7neh+ZWOeAvMuKiVqqMWT IeUYyXJwnFpnPyM7ktxCN02EYP3d/ntsfsm5UPI7/IjwRXDGZumiuK4AYnF7 R/E0WCXYMdJNYTdZo/3EyQDWf/RwgVTdo0gkbPPQLxtsZcyZsskwBg0rmHzd DfsnJe5XY9a7eBTS1LdyDey3V2m7Ii84JKGu2dTDfuBjHdpBQiapyOR8zQMe 2K+q5JPg2MkMtEIye5VgNpwPPmdfXeDPQit/xp8NBnN7qJ1VfJyNKNGNH7bD fq+dvfDz9lQO8tDZsUcL5kFYl7h/a3M+umv/Y74U5smptqMOgm9L0cEwMQF7 mDfhrHGtQM4ytGuaQ1iqkIYtg1O/rbcrR1u5EpuewLxqe1zhbrulEv2VCV71 COZdQ/n9H5snqtHX1m+HTvyGz9MrSd/7sQYp7Sg+IgLzUanEidfvbC3iHtNM S/tvngZEkPUpdYieFNUtW03Doaf9WA2WjeiS8zcsDPNY4lr3rx+iTUhcmVtz EXxB/0nbl/wm9EZz/FZbHQ2vz00VHlzXgtpjXwoXwvwP0Zy92pLQhmRV581K 4Hzo7nBzFTBoR8tyBE5UwfmRrGZasX+uHe3/+PnREJwv/MrX1n5834Hs3pXu V4HzS/bMWx1mcyfSHonfYNJDw/ZY2MVtexfKOsR1xq2Xhuc/HjZ4YN+FNnrW hVXD+aepTZW/4e1Gy+Zzl7weoeFrHMvfLVfoQatUnTS/w3leH5R5/pNpHzrt 9PbVCJz3dWOSd4Yi+lDdTt3z2yEfSI6JZj3o6kN6h5ce/gx5QsaC+1XM+X6k fsqdFEJe+SicIZSuOoBoFRt3r4F8k/X5OO89lwF0TtO4+yrknwk+By23pAF0 hX/PHDfkp8rkP5tubh5E6RNz620gn7W8bDPUmhpE2294t1RAftP3etokvWMI fdoVErkH8p2Uw1bhfReGUGL2E9l/kAerW39OcP0aQq9a2fa/h7xZUyiWquQ4 jJanB+itgnw6EMdhURQxjE7EJuxzhvwq3TRY4l4xjB5mr9prDPm3aceL675b RhBdp2geQZ5+L/E8Py5vBPmYfjZKh7zdc/b2/pDhETTxuOiY4hbIr0emcxL4 mcj4QZoDYxv0w6Bnedr6TBSoxvyaDHn+6t+7mxvuMNFVG4lj+yH/p4Tnmd4P ZqK+8jqLI9AX0KjsZ3orE6l+us4sgj4x2jiVh+eYaHvy2qjT0D/EW11nbq5n obEznlFXaJCnuW7tXKfDQvyBv1pe74e8zaz1y8tgoVPhr2hb/+tHP/Kkv9ew 0OhjMZdk6E9cS7lck4dZ6Nz0RGYT9K0u8W8FK0UoZG3kG2UOfWzxzxZb3Z0U amk2P8euAv2nbYNe8iEK7RvVWtwB/e/bI+ajdGMKXX1k2ZapBnm1JTzzgi2F +MO5rpyFPrnl3ru1Ao8o9Ic73J0FffO5D+ea5ucUUupIUHKH/qo6t3g8+T2F uP8k3xODPmyS6KvxMZZCNWwSB5P/+/OWH98zolIotEr44m0t6Pefay7j9BwK Nf9oXjt0ho677z983PGbQmfapPnu6ULevu4mNVxHISvv3Rd4z9Jx9o9MzN9O oT6q/2+oPh3nGLuEafZR6CYXrpM/B/nb5v7qTyMU4qG2jOafp2PW2SUmG8Yo 9JzD/dC5i3R8XS3N4tNfCg0on0hkXoLnqdskqDVDoTdOlzUeGP7XX1cr8s9T 6MTzmBkhYzrWSH1aMLhAoeOFIsnRJnR8p288oWWRQlzTTx2VrkIfKbP5N/Df n8/XUvQKU+ijS+Nf8oL/yO/sM7lOx+tyKr1PwucNH5G+P3WDjqdy7rEi4fus 6otmvG7B8+qsLhWZopD0h0UNMXNYTz4OyuFwvZJ3v5t/s6Djh+vczNSYFNIL KTujYgXvsywAziN4Hyzlv3XWdNxc/9O9A56HBm3uxA1bOj4161VXXU8hwSvU idnb0B+3cYR0llEotYmP6W1Px8L1HzZy5VFIJExHWsyRjkv2nA8+mUahqNhk VpwTHXuLPrsWG0ehZxKMg+guHZ9fFK6W/kChEN8KzvJ70Ndu79738yWF3E5Z jI+4Qn9qP+SCHCh0mubOdvcBHcetL9qz6xqFNH92m3I+omMRu5WeDD0K+WcV i0q607FYxAqBj3vg9y/56sd60HHuuO4JHjEKSRjzlDA86ZidaavwYiWFYgoG ZI5707Hjlpp7i60s9LApjqfSh45vX9jFP5DPQlG0xfmzfnRsq+NQPBbHQlZj upPGL+h4XH7AzPoeC8k/+jfY5w+fL7Qhq8+Ihar3GpfdCKDj5Td0hB4cZaG1 vXwqZoGwHx4OVG9dxUL5X13HjUPg/e7jq9Z5xkQftdPtW9/TcUiLC99KSyY6 JPItUi+Mjvs7AiQHNZjoXLV1r0oEHZvJvI6QW85Enc5cy/g/w3yauvbwn8UI GtwQuOASA/17yCtk27ERtD55n/FILMwjI+Hep2Ij6NfzxGPZX+nYVYXXa7x4 GGlwC8QZJML85FkVcn39MAot+cPXmETHGQqJ664NDCGLauXjeimw/gNK0IPE IZR36bKoejodP8u8rs13Euwet2dNFh3/KGNF5FgPohWvCw4/yob5WLRNu0Jx EL14+aKdmQO/z79nevniALpNb32dnk/HkuXb2/89GUDOK0+uVCyl4w3HVGxk /PsRb6K587PfdCyweGZV1pl+5Pr3B6OvjI6LKzQTfQX7kaO1yFnPSjo20PRP 7HjWh9ZzM258qaNjzVjHsOCHvWjvnzPjVzvo+KZvRLa1SjdK7t0/59sJ73eF BP3Hvy7UlCdUntAFfb9j+4czcV2Iw/Rq8t8eOi5a4m+ZLtyFDvH0NWoPwvub HxewaO1AYiwBJ6MheP9bpCxZPh3o78vncWbDdKxoInq662AHkjOpzHVk0rH2 Q/5nlxTbUQmra8F0lI6/T8lVaEe2oNErF+INxuhYnmuv5aaFZtT+NbtEbZyO G2aaHi3Va0bzKpd2bZiE6/2ADddwNCFJ2wK+19MwfzhOFPKeqUcxfkVeZv/o uMBjBeGLrENLepjqh2boeHBCxEfrby2K03/qVTcL6/FLQ0f0qxo08e71u8YF Og6Sc1itX16JijpUfjxepOMLAvzGbNsqETYOtdrFxsDNgszR7fcrUE+hT4M1 OwMf+c5uuu1SGTrk0L2xhoOB9+bJGL3lK0KHr07JXVnKwE9T733hTytAtmOB TX/AEUcyvtSZ5CPVg5VDi8sY2HrSVeteYg6STE+snVjBwL/2b/fziMhA0r5b bG9wwucLD5lF/0lFgkmngpvAbPxeESuVklGi0VHf7ysZeGzjatHWim/Ix+G5 7jouBjb5oZDHosUhstov8h44zkV9m0pBNPJ9nNCqyM3A3FwVyd3Vb9Gygi15 z8H2Yq5dtMln6Ldpi3w/OHLtAK+UviP6GZX/0YOHgaVok8I8p/1Idht/TBWY tfKKkJpHENkZ8puxfhUDu8qa8YV//0DYF3p7Q8D5EkNPm3y/kC7dLVwtYJ9j qiadzt/InZCQZGFeuB6Vi6o18glkKomDOgHuHjvUu2cwiczzS3xzARfP7sd9 71JJ+eeGhS/gkPeP9VtPZ5AYzl2NjeAi0zw6xzJC7sjsVV7Cx8CP9RrGwpoz SeKLDYpbwRz3T/xSpWWTAHEGUfvv55FzXCbeOcRLvLveFLx8wGeI6s4lTIWw Rw/AmbalNl3788nSiytyA8Fj5N9PuecFZF9+XlAsuDZOaLiir5DEdkau/Al2 9NoklnqgmPw96iVQDPZtdrjf7ldC8CeL5GowfT278v7uUhJSeG2mEXyN/vQl oZeRT8bhrS3gSiZ30lWPcmK+6brJf+ZaYme72qyCvPQT9m3473refkj+K1hJ WuakDCvBPCvFyy+mV5JWu80t+WD+LLFeZeMqwhubuTQVPCQWsi2Es5qs705r iQKvmHpcah5XTVxamKb+4Gm+4hWxZ2qIbbbGx7tgXedXwjrTNURCoPudIXhN 83W6UXAtEXOr0ToM9ruhGFOG6ojKzIVsCbAeZyB53VVH8i5WTM7C8/fhbSTJ j+vJq2dBrGrwazbZhe3SDWSnJoqPBmdI/q4czG8grW0Ne+3BjsfClp+73UiC 3u2bQmCs+/0IU6KJvAzet2Q5+PZMT9y70iayTblSvxDWi1Nfmd1Vh2aStm4d mwf4ifbg70OSLcTh2/F5ZfDC0ZwJqeIWIrGjj/cLrEf1OK+ymbVtZPVtI9mL 4PrKHOnOX21EgepOXQnmtEoKzDBpJ/tO3t6lD+t7yv7EATHdDmLB6yU+A/vj GKfowFBkB9mgm/QqEDwTFc239W8HMdON31EC+yvp9Z/RrpedhKPFQecy+KRQ svrF7k6is/r4hj+wH1W+PzyntKeL2CXhsBXg4y+fComVdJHm+hNmvrCfBXkn 3EVFuonPi+2jq8GUYS+2Ne4mPZ6GqnzLGZjdaUR/61Q3Max+IOUJ8yBfUjLW BfcQN81ljYswL1Lk1PZIe/YQLcOxgW6YL/FSUXPn1/YS7PHIyQPmT0zXxY3i sn2EU1KQGoD51Kbw5UKCdR+ZXqdw7xg465FkvntCH/mngRdnYb7ZyrSsalLo JxerG98emaNjP43qqDnaAJGNbs70hXkY4pyrfNBmgGxzHDtSD/PSgTcw4lPc AJnmuuRpCPM05A1P0PzmQVJov2Sd7l86vjbS9/3ciiFSebad7g3z2FkhtSLr 4BBRNlgxnzkB+fn0tU2qtkPkkWHXNymY3xalf6XfNA+RzUlvf5yG+d4XL6tl yjtMxjfGejjD/F8rwRukhsE7v5WXUXC+iYRXq4YNk8WrR/QnWDCPM644XawY JtPS11pEwGsSlsQ+Whgm+i5G7AYjdLxq+o3z5NkRQk1k9ecO0PH86Tku1cUR Inoq6Vd7Px3LdjVApGaSONOTf6f76Hif9VeRTyeYxOPTbLx0Lx278S8rVnzJ JD/uLaodgPNNr8p6GW8yk7B9d7l1qpuO+X4XRA41MInukdN3rOB8pFlJxyeu Y5GPzLG7rnB+oifr58IUWeRWT8xen3Y6TrTssHquxyIz6U5DEa2QVy4Yjdv5 sUibmTz71xY4v6Ykttz4zCL6uienk5vpWEG0pOB8LosYa+r+yG+kYyqHxaE0 ySICxvI+pQ10XN/qsnQbD0U4p7RsK+shj6+gqfBvokh72eNnDbXwfhcsYqvU KZJbUtzaVEPHNtvGXWMuUkR/2VeTlmqwcsSAsyVFuJpnVVshDzgqpMusekaR cK3ClJYK6GMPUv8VhlDkxcy/Z83l0O/uie2/F0sRHqmKxkbIE6/OnbgnnUqR iBzfkHrIGwGn1fUKcimyaqvLUA3kkTuCVaaXyimS7DVUWFlCx20zarrDDRQ5 mimlWlYM+fNPQaV5J0VGy+7dLC6CvMW5MaB3gCI5L0+o5BdC/q3+bahNUaTg 2kBrVgEdu1usW/wxQRHR5C+Hf0L+GT44c5jrH0XGY6acU/Lo2O7WVk7dOYo8 L5Z6+yMX8rfgGvmXCxSR838WGQf5aXjnTHzBIkU6Nr2L/gT5SkWywIEC36yJ /hoB+YvaIefODd7cKZD/PpOOF3Sju0XnKVLDvn8qiMD1HzUOlZihiDvfvVOv ftFx3TfN2nV/KXI/gl7//Cfkfy+JiBWjFJH+mRXskwHrb1BZYWiIIssNnD57 Qt7b8qklK6ubIm2iP7jd0+iYO6Pa1bcZ3g8ru+RhKh3fp2UnalVRxDjs36Qr 5MUQzn/xnIXwvJ5GBDgn0/Gs172CpAyK6MmsSroL+ZLtLbv++XgK5oWj8R3I n6+9h4r+foDrpW/76JQA66fgiI/nS4oEiJ71dvoB+3dD5nohN4rsC1thfvcb HX+4J/xBwIQiJ4p7nJ3jYX+csUzx0KLIzO+pi/ch3/q/6Kn8q0SRgx6yKU++ QN/YcjsyT4AiIUEOar6Qh4WDvDOl51hkxAvXvIS8/Gnnt9DHPSyyqVmFK/IT 9FOGffm+7yyiqOZvQKIhr1UPhJq+YZEEHv5PTVF0/Fh0TVGCK4tYcRXcEvoI P79VzZdynEWemHr82RtJx5s+KiVbyLCIbMeDQG3I6/tzVhQc52eRl+INtwM+ 0DGn2TF7q2omUaxwSEuBfL9X/1HFzx9M8uxvg2prKMwL7XBOeX8mOabLobUD +sC+j+0lgZpMssWnQqz2LfQ9wcdLzX+NkI3H/F05wIXbup8IBY4QTe1zN+SD YD5sUJkdthohfQdLp19D34jmSZDaLTFCPg77D92GPqL96oHYVrthckNzvUP8 S/i+eZfHFmrD5MSZjb+Z0F/GvvUbU+uHSV9g/4Q59Bsb0pD24ecQqQ3O5HaD /uM2L2k2+W+QJHClZpT70nHHzTdLZAsGiWqE6e0N4LdhDUtj/AdJi5qFcAb0 Kb0ATRnHHYOkIjdlUMgL9uOZa/qemgMkquR4sBX0r/ojWdZ8IgNkymGdX9kT Otb/ehz1tfaTy+5cp59DX9s0H3TX+0Y/OZQXyiHvBn1gfMmuIcc+0hKyzD7s MeTx9+fsNx/oI6uH1l8SAB8qm5vNmOslj9VzomcfwvP6ylfH59JLrPa1i9wG b71+PPf3wV6ydixDmIL+uNVVVXJ0rofs/MtRN3Kfjq+GFjy1dOohP/YbRViC VVsO6JUxeohiz7V1k9A/t32UXxk03k3UtN15OcFC0gMVrre6SauHZvYpZzo+ Kc1+NV2ni4h7sue3QX8NDuL99nVFF3ms8WiDDXj8ccDHlWmdZLfE1pYP0HdP i9RPTm/oJNIV67Qx+JU27zP/3x1kVNCZ1nkHzhv6U50Q5w4yFT+pJwM2cP+8 RSylnRQrjX5ogP7sVLO7f0KoneSf327rAZ7rTQ3Msmoj7/5WJlHQt7taa4q1 t7SSR00K9E/ggmV3DTe5tJC6nNyTpuA3r0b5FmqbiYjniNGwA/RFDRflPw+b SMMW92s/wNtN+tYJNDQSsYkjoq7gzGSjFL1djUS7t+7BKXC+4r+mHNcGMqhc 8V4SfNB46Ojlqnqi/TDMaRr6f2GDXaHs5noyuC1YsBp8o/DLXkW7OsL2btT6 G7iGU+Xyg7xaMrf8R6A/eI5TX5ZfuJY8kql86gTmfaziPmRSQ3LObNA0Abuw mZ9Z872alKxV6dP67/NEuZ+8WawiC2frdQ6Dgz/Mit7RqCKhXCohCuAu56c8 vwIricOO+jw5cPsNlQu3eiqIb0BGmQx4g3uqwJPdFYRrfCFdFlxtGeVImygj 2994PJMHdxQcqNF88pto3BbTVAILsG0ysRAtJXLUjRk18K0Foh/8pZgotbBe GoCz93r86T1UREYv80tagO07n5qfLS+APMsX5g5O2bVh/fylfGLWxiMSDl7a oXesm5lL7LiWueWAF9iyNdbcyyFOPDUj/eAHOzo9PqzMJi895LX44flK/Sg5 //JVJrm0Ij1eCcyl5mb0R/UXUR1r5zMHq6306U+4mE7WOE9ahIElZwx2+d1O IWHvd5U3gv0/mq0P9Eoke8XWvtaD938BiTvL3/hKersesr0Fe7MFVD15/oks WXLPoht88vjgcY7UcCI4w33uPqwv47i1QZd5npEPYkcbasDqofW9u42tyaXd uhf+W59tV57e/GHujByYP+2GwC3/Aq4fzA5BK2yiuDRhfTt+vXRden8k6n3p FpEMPp5Tfc1RIAZtqM/teQn7o0Rb+vU6wx+odfSUq6sLrMe7dq+PLiMoe02U 7CzYbOX5VMPWTMTadfHsHdh/eSqGxqEK2cjtiBffI9ivn1RWCrgM5aJE02rq J+z3dV0jbm/UilGiZAbSfQQ/Xy2nqxlSgjZ1fp+lwMXB7LIK46Vo6cUDX3fD fPk4bnfcLqgc3W3BOfUwf5aFsJ8rsahCTa61e71gPh3O5F7fI1yN9o0UzCCY XzWzVW4WGdXIu5n/SSLMt8ylHPO5K2rRx8EqXOgD+zmrKHr0VT3KnSoR94R5 +ytcY1jKvwV1vd7zyBLm8f2cv29Ed7citenVywxe0bFckHLkvuJWFHD7iTYd 5neEnlBe3Xwb6v21w18gGNYLu7Ukz5cO9OTNwI3V7+B+6Ju7jKc60JfD5/YJ hsB+dj224YByJ5L5WPxFHM6T48sbr16r7kQFu+X1z8N5xH/n6pLbo11ID7sa WsN5hWPstr9V6EbSv2UZXnCeZZ+qZZN37kZnnO7tzYXz79ru0ujY5T2oLvlr gT6cp0zFya3PBHrR/ZTiwQU4zzsEDHuv8/SjEWU/YgDn/8w5j8s/TvajNTOH ryVDPsjxWvy9x7cf7TBO4rwL+WJuo2hGFs8AWht98OUmyDMJ2hmNo4sDaMmF tzMvIO8cjy3Ofr9/EFU5zw0sg3yUpCCRa3V7EFXXSyiMQ57aPnlc9nbvIAq9 F+E2BPlt6cuqLSUZQ2iw2HydBeQ9J5t2yQt/htB9lbzecciDfunGB9mlhtFS h56FZZAnT/BJMe+7DaN10Xt5jzTB70cd+r4VjaDyiqOH6yG/xhe9nthxawSp ygWeM4e8yx/pZ0R/NYLSrO7zvId8fLLErsNgcAQ1HKpSFoE8zvl75mzaIybi Xvr9SirkddbS7jflUUxUV3RO8OIQHWtUd+3pLGaiNxcz+qKZsF6X1YVOrGKh tXu/TmhBP9h/2nHXhAwLRTS3G878oWPTtREOwxosNKIwsOU09I/EgI3rfnqA NwZdW4B+khhtahYQzkK7uFBj7BSsV19lJ6NfLOSnGLZxFfSfHPOzYpV/WIjb rbfhF/Qj5WUTczacFFqStjPAGvqTVMGE5DJxChlbXO9shP6F2ak9U2oUEo56 b+AH/WxsNuyL7gUKFXKdD1eFPledqPg8zIJCjAPR3+eg7x3kdlVqcqUQfa3v 3QToi1tiP69d9KPQ/W2rxsygf95QMQzke0+h8iUSXNLQX5+cTlHg/kIhgeT0 5Hbov4GRR+6NplJoUKGC9Qb6+cnXfJNZeRQ6kKsWrrOagf+0fdp/r4JCnKd5 ivgEGXinxGZKvIlCJ8fnz5QIMbCzhMiv2C4KbVCfV/BYw8Doc+SFTUMUyh/o u35kLfz/G1w97/+hkETWy6bFdQx8JLKTp2CSQiM+bfczRBmYTSY4ZfIfhQ4f DNJ02sjA5f1813nmKfTV74OErDj05Teq9KWLFHJtMWXvloDnEfB7kgm+a2DU 93oTAxfPjIUVgdvW8uRqbGbg5yYD+18vUCjwZqcvuzQD+7cVFOvNUej5wQsH krYycOXrF1c44fta70//vLmdgQMU5TbHTlBo4rE8t/hOBp6cNZc9TFGo5oK3 SPUuBt7jOB9fPECh9ehxvbssA/NttO1S7YTn0R+C9svBz6+pLElooJDtpLEK cw8DOxXm6QuXU+jd6XNN7+UZ+JXqNoWbuRSiPAX+nqYzcG6h/dT3FAot0+J/ nqDIwCbDe79LhlBof7j7vyv7GfhMXLO3Gry/xY0SaUJK0LcN2ldehfe7XFd/ jQ1i4CJtKZ4HsB5+i+q8FVdmYBWZtuQHxyl0sE3mROlhBg7Wade+Q6eQpej9 hU1HGfhW4XMOPS4KbavzGS49xsB9aUZu+8dZ6EtRRJ3dcQbmVv1Utq6ZhfRq bO/kajDwoksuqySKhQ7wHM45c4aBM35a56+hs5DJRp5bEzoM/CgzM3pQmIXo N3pT/PUYeDTVJuTXJBNxfnghWmbAwIdT9LhsvzPR8ri1lXKGDNy9QjNsiwQT JShrOecZMfC6Uvawbf9GkNxj+zv6Jgy8bdBCRKFyBCUFLBx0MmVgh6D5hLsu I8jV+0RxhBkDWymv9yz+PYx8ePtad1gw8F3+ZS2a74fR2cjmP3GWDLxiMoxn xHIYRecqM+NtGHj6rNMpS95hNPA6QfatI6wvxd7RMjyEPlha7OS/A9c/ZvNG kXsIkaRtTQ/vwuePIev8mkEkOa67zciFga1vdvfpXh1E+roz7myPGbgw8gHL 4d4AuqH/wELdDdaT5LSGmsoACuubEn7hzsA/nh69Zco9gEyNHz9Z78nAabKl ti9e9yMx2uP9fL4MzBmuHNEQ1YeS/VwuH/Vj4NUMkd+qN/vQcuHCVXefMXDo vkBN3l196I+h2kjLC3geqTpeKV960TvP5YsPXjPw9s4nfyM+9aCr6ssyIgLh frpEhsWv9SB0RrEi9w0D99ecYV+2uQelkzd9c28ZuPT4L3Xh4G7EeVFxh0Yo 3K/E1SNubl3oztZDx4yjGdiCe+DBNdSBpt95tJz9BOsNhy4ZHGhHUVP5tuqf GfhE8UjwWu12dDs/M0A6loGNiwr/FUm2oWsO8TvTvjLwzeRakT9JzehyuLjO 63jY38X1bnvWN6PPYfPnrb8x8OvcJ+0x95pQjJjNjOgPBtb1brC8iBpRzToV rhNJcL0rPw7JZ9Qh+9RnebzJDFyV8Nk2Y10dmr/88Eg5mGMJFfnBvhZV//t6 52gqA/tZj2UHydag8qejD1dlMPCqktL5n68rkcd958UksNibLWXJfypQfUnd 1os/GfgQD9pNP16BrNnP2Lz/xcDvncqy3o7+Rid4XeJnM+F5GNT/nossRPeG 7mx9lcXAXI49a11oBUh4eVvormyYN3tHlylk56Hg3sAXJ3MY2HD9/qwHzdko hH3bigbwqMyd4F3XslCDjLf9pVyYF2lVVx/2ENRbQ9DlPAb+uWVb6Y9Vaeib TsurRrAo46cVSyIZTS673q2Zz8BMuX2GRvIJaMerPn25Agb+vcfQ+3NsLKp8 e/B+EDixSDd9ddlHdFC29A1bIQPH6MexJbBCUcq2xrBMcDSNHlKV+hhZJ1f7 rS9iYJqj4z8K65GUzQsWVmD7sB+v/x73IvwnL7DzF8M8fO/211v7A+mz25xo AE67fjcmc080qTyjev492CM7zEGKP47IbTrwQKwE3j+1pK62J4GYOWQs0Qd3 fvAbplclk0YlyskHrKqverrwVxq5yWQb+PXfz21dCmw//yS5LcqnRsAZ33c/ 9VPPJH07t8QJl8J5RdP30CdZJCoDrzwAlnQ5r/pEPocsSp00ugCOdfFQEIjK JfJvt6Q4gW/8yqodXJdP8qgCPn+w77Pxd0u8C4iGjc7NaDBd2F5Ia76Q8PSs Kk4FX+Zwyc0zLyYuJgZ7CsD+dA98trWEvDr760MFuP4f2TR94jcZN+iTqAPT xG+vCk4tI13i7+LqwY6t6bqighVE0bjiVC14Z7VaQ2sh9I9cv6Xl4Hv1Y2Z8 LpVEKYWnOhfsvX/31Ke9VWTsatDPJHDDnaeXo/qqSMPTLwUR4Iy2Tn/2oGpy 0rhlwhe8q8PH47tGDTG916ZmBz57PVQ+YaGGtER5F5z9736bBF+zxdeSipKO 2wyw5fBi0nPDOmKXP6mzGmyn8jvEiL+efDi+wmzgf9/PdcObpJ6oJFn/Sgcv eDkIfTRvIN/+ftN6CpZRfdLEK9pIqLNXt54F+wUeawwpaCSNRsePiYP5yr4d 0rJtIs9+7bOPgPf/SYsmylbYTKwqDf2MwHmHXguNW7WQjkTmMlHwRc93Tn/W thLXsUKJR7C+7r9h9oxfbSNJ4jIVe8CyKPcri6udVF3fNN4C67N9PsWyNa6d uJ8/FLMNfEFsw8VMpw5yhOGUXg7rm9cw2SIvt4MkhZsX2oILnXTVNPg6yfko MeZ32B9nbjzwr/vQSaLFjfhOgb3fPoqrHe4kX95fP9IH+6lr2Yuek7QuEro/ /+8q8O7MYfGwnC7CG6v94B3sx/nAqywHrm5S7cxP2wHmvn39JtHqJnr3nbYf gP3L06e9M7C5m/xK5Jk7APv/crTLMsWhHiKSH2iZCPNh1mbk7PldveRClrTS LvCnpDH1dvNeshAkP7OawPM+MG3MTvUSLe2CnF8wf4yeDgU6DfaRS8u8U6TA +infVplL95O7GyWU3NMZmPJqVP5u3E908pbwqKTB/WjU1u1o7Ce2I4mB4TDv ZtOmLkb8HCDzng6/J2E+lsul6ExODJBbBeYlquDQYV1rr52D5Ku+lXJ7AgOv 7dFPuvNqkOAr4axpmLcL/jqdx0yGyK8jN1T3g5d/vaPt+3KIRIyMhTvBfM57 efgbT94Q0bXJCByLY+A20QDPGKlhwv9Z4VhZDAPvNTKRO1E/TEq+ZGWxgS1l Sq12LBkhziPa7nvgPHh4qK2NsWuEHA+O4fOF80O4V0G/ynmEjIZ86E2Ngvvr OTB/KXKEaLksbu35COcT720OodIRInGsTIgWycA5Px1jx9Ywic/XsgqDCDj/ 7qSIrj/AJO4Wpze4hMM8uiDldvUSk2gybd2yw2A+VJ6WvvKBSXT2P3l7IISB I2cDZHvFWeTFkVzN8+8Y+HGZh8F9JRa5e5Kn3ykY8o/FbD7WZ5HAwWudP4IY OPupt4asD4tsc+vSLYfzUZcvt9fgI4soJTEqBuH8tD+YkRP1i0WOXvf8Jwrn qxj78MuoERYpctmaJv+KgQfp5w/oL6GIWV1ruHoAPJ90Tp9tIhSxZxdZY+/P wKd27mzbcogisws34r3gvBbI9Ms5rUWRRX671yHP4X5H10q8NaLIT1Ufy1w4 71+vKdJ6/IAiL9b529RBHgg5LHxI6hlFNnQp9/X7MPB1jvqa1ncUiQ4KrZ72 hvkWkPHtx2eKyHKlHVkJ1usecohIosjQg2C07ink361slV+zKFLx1qBimxcD T11YY15bQpF/08sWFSB/rHPJWyJcSxHWYkrN0ScM3PJ2i6ZFK0U6grzP6XrA eiIVwp09FGmcDH5jAvnFO7RHwnyYIqVKnG+tId+YbF+qLDBKkTAD1jVXyD9b yvVPVkxShP7daqXPIzg/U/ylov5RRL3v25OghwzMn8SKejVHESufWlbUA5if 3DJ5IQtwvROLKon3GThqRbDZf38/3qtV92W2KwOL2wi+mgZ77pvrLYe8NZk9 idTBpkMiR1qdYf3KyVkmzFMkyeV3wtA9Bl7quX+3wixFuP9glWnIay49a15U TVGk0DBgZhk4ZOPpePdxivA3jXQIQr7z27QQfYZFka8rr7NtcmLgj4LpYfsG KCLEJm0sB3lQRT42X7GTItqsI3zIAebZx7vqpxspIt/Twn/KHp7Pcn3TRxUU 0fddaXXRDvJhzphBeT5Frk+0081vwzzWc7lFz6DIeQXbW862DLzhWGx/Yjz8 vJRH/b01A7+7LWW74jXc37Nty75ZMXD+G4ZS4xOK5LzYqZMDeVXsy53ufCd4 f0v7KgfNIc9YbfWY0qeIs8NzgQXIu2OcI1YHjlFkXSw3tyD43pcXgu9oFLnE sfEYugnrxe5LRDoPRf68dQnWuwH5gBbxw2mKRXyMjvy2uM7Am/nvZJztZJHn LLWeMMjT+308D9t/ZxHeM7xtgpC3l1+WkNNSZ5GT4Q7z4saQt01fRX3fySI3 7h6ykYF8vqvN+5AQD4vYry320LjMwN9NtTgbi5hkoc3k0KVLDHx6z1LLQ1FM Eme/1N76IgPbiI1fiHrEJFaFTv7B5+H7+v+8eLKPSQyEf/omnGNg0xurtTkE mSTkQzf9v36w/tJdd/fhESIbsPH7cn0GXrJ6R2DMmxFCTtW5+0C/eHnw75bX Q8Ok6pT08gToH9Mbbm24lzFMxCRPP27RZmClsXsjt32GyVI5l0j503De7uo0 jt41TNRKjz+fPQn5ysfxgorhEDHtnN4oD17lgoIndwwRknpg2gz6zfKtR/kL JwYJrcE6vV8d+hntSWW92yBRe9z3YAb6UeHzQ9N17waIsD/7A1WwUgxvb57R ADl/+JGIP/Spe8XR+3s3D5DUdatkGaqQXw/o45/R/cTA7cl4MPSv5Bu2q1dF 9ZEX479C56GfXRnxtky90kcMc2O2G4H/+nptjpLsI9L2qyg5zMCKZ+LcNN/0 knVfD2+ZOMjAGy8nSgjd7yGhl6R9zcAWMRuWcSv2kJaiWf4B6INyS/lydalu grfEPRg4wMBa1LVHf853k6dGnc7mYPY5clN1dTfJd/gePwl98uzJCzNTeV2Q P77W8oEP31LacF+mizxt1asN28fAm458yDzX0Um0n76QVgCvU7+6592LTmJl /qT+FvRTnW6fGpPJDlLK23KEG+x2zV+ZGdlBfG79XR+nAP3bceWfAd0OsibI VnKBwcB/AhfsHl1vJ/Ev1xbGg7UXPPcqVrSRmEH/e6bgm/VqDpwKbcRek0+y Gfqw3MLGy6uWtJKrW+rXBYFd7++YVDdtIU0hS/deAKu6Cf1LLGomFxibKgdp DCyta35b2reJcPVIGCaCb4a85aNTjSR77Qexx2Dah67LjzQbSepxG3498JI0 7WVrvjYQzT1H9+0EP0+5FTm6qoEE/kgL5gBj+5mh9Wb15HmOzqF26OsSjL9u r4rqyPLjDyR/gRN6Lu68IV1H5FYEHA8Ff9ojHPD6YS2Ze1Sa6gY+9TjrgXRb DRH8c8LOAvz398eE9ftqiDefuOs5sNj+x5OO/tVER2pf03GwVIYV/1FmFTld fdtTCZzpnFzrfrSK7F/30m8veKNswjr8vpJI7sLUTnDG3q8J9lMVJMVsZcw2 sEZ66sPdmhVEW/ta3n8esBEsaNMoJ6/0U/Au8Pq7MbftZ34TFlNZXB7caWPU vDuqlHw3ljM5CI7WKSkTOlNCuBpf8Z4AP9f9uG33QhHxpFtKXQA3NPsUPoku JD78QeFW4C/Hv/vv1Ib8Hd327Ak4McTvtuRsHomtHhoJB+8bCz93OzyX5E9q p2aDlQu37Jc9kUOUxp5P9fz3vI6kcRuMZRH6ppWfuOB56ynsLF0IzCTS6mzl 8mDrPfuntV1+EZ1nkTcNwTYxnii/KJ1k5+1dkQu2e6iUr3cpiTx9/3flLJjh 3UYLjvpBmi5JuNNhfWz6gQb+p6Qzj8bq+8K4IRKFTKEoSUIqivuW4Zw0qYQm KYSSSiQVJSlKZRalSAiJqERIwilkyDzP8zy875UpleG3v+v352fpnnPuuXs/ +3laVhmMfSSbVXWYqcBZEq6msWxxRE5Gt+kP8PWZLNmnAVEkJaYC60D9FRuY 2rJrhpD38mfvtwE/XmYndzDyLLG58eH0Fqhnn7klAaWdbshz6k/aQ+DssD2W N449QTeGJxq0oP6l+mWuHPJ7jV5xCUdHAG+VqBrimn+LFr0UHuCA/hmOzkmY s0tCbi/udNQBZ8zWd3vIpaHzyCdwN/Qf34VPxf0tn5FuT/bXdODWWMHi54GZ qOVezvVY6F+HfL0vz/4SZHE62fgd9D+VPph4yeIHYgwssdXRhv1/SoXerS1A S+MvPGwFbtp5Pql0XxEacVMpXAV64vxtsr5DqQR59EqoloEeCQx7SO25XomY P/Ko+7vg/TUK0+8rVqEArtZNWrtBb1dUlW3srELl/P96skDPbPPKv8fur0Gf ZKYWjehC/tWoWPZIpB7ZK3OpftsPfnvWjdj9qEc7Tp1QDQX9fIUeSfk7NiDh k8phRqCvtdtDmGdrGhGT28hn3gD0SC+kIdujBSG3lAvzJ6Bf/F0kvU07kXT6 pBM/zIOtsxORl953Iqs1tznXwrxw3vK59+tcJ5pYUeV61BTYdWNe+MsutJRD R7vDAvz9IcOnK2u60YZfqg95YX79UX+dIr+6B1kePiy2HeZbwOdze/1sepB7 YtevyHMwD711Ak8t9KBAzq95T2B+LjrZavh5TR8S+XTQpfGSOj5gw/ZY93wf Ypso01oD83jjcpFzq9/3IfPP3HkZMK/POFgZPVXvR32B23uXgh+w+rLn/Ck8 gEQkBDu2g7/RvP156pzyEGo//eHWa/A/ZfFqr9Ssh9CSvWG3l4NfejzOENkS MYRYvC3+4+Cv3o3s4IngG0bOgRxDFeDnxJUMb21sHUZ2jLRPeuAH06x8X6zh H0GSmZ9DS8AvOvbmhKugEXRKqvJxBfhLn9v/emMiRtBab/8VNPhXY26rPRFH RtHV/XfeuoDfTVghJq7vOoqWLT+2mDdMHbPEXPP440bRwx+Vc0rgpz+0G6lm /x5F55O73UkkzEuu+4bx0kx01jA5/hj4b2V+5mzEbib6qvE99T749d1OZcsS /JhIJ3nBQwr8ffqVlcuyPjJRROtUWQb4f7eXNpW11Uw0buwcOQF5ofW8maqY CAu1XLIQcYY8ItLgvOqrNwu9X7r9jtQndWxi//lrXywLGXI+4M2DPBNvPCki 8I2FOFUCTy/PgPz45UrAqV8sFPZ3n2DmF3WsFdot5MJDI8EZ84yzkKe2KBaI PJem0YuDe8iXHHg+VjA9Zx+NuJ4WLbaGvKb4df5f0SkaiX+UkBTOVce6G28u K7WlkfoRjpFvkP9qg/cfLXSlUevoHnt7yI81C33amX40YgpGh0lDHpX2vnTg 9UsaaZaWW5VDftWujJvxSKARg+cuuQN5+MyiVXUmn2lUM2jxajPkc6PvbNc3 5NHIXUl6trMM9n+y/+pwGY2sHpoWBlXA/FCPd4xqoFHY4pzp3VXg1wICNh7q pFHi9a47v6vV8Ybj6vrMARotTjhzLKFWHX+8HvrCnUWj5L/Nl8zqoZ6V7jQv maTRcEDXF8FG8KP11zoezNBovohva34T+Icbdfen/tFoRRiz5EaLOub99TPB eJ5Ga35JOCu1Qb79ux8nLdAoiU92c0c7zI8fYtv/AE92vugO6lTH+Wb5QerA 724Le+7tVsez2alHz8/RSMxitcjfHrivEHEfn780au467PK+D+Z5M8swZppG M34oxWIA9Kmds+DDLxp9SS+9ND2ojrlWkQ6pURqRqxsHfYbB//JINMX00ej4 ytXSMqPqWEPsdBduh/WXnl+UzoT+ab+7aaqORjb9RYEHaHVcFSI8960UzlfL l90+po6/WBo+fp1Lo30t5kVck+r4mj5RTU2kkcIx/mchU3C/g05DnRE0SlFo alX8Dfqf3vZpfSCN4pTkkw/9hTzor7dy4SqNVN2tN7b/g/yBfZ8GnYF64dOY tZuDvK3U24QP02gjt6GjDxuF/303KKaVaPQ459pSCQ4KJ+QP3v+1gkZR2RM1 sZwUbhh5qSTISaMDN/krs7gpzLWfJLypZ6Hx1q/je3kovEfBo2A1YaEjZiMy lUsoPLKTxzjjDQvlRuN7HUspXLoQlHjgGtR/1Meoc/wUTnyp3LfHmIVGk6iE YQEKH014ff+sJgu9UXU8+kuIwlJzbOuWcLBQcylLaEycwnVjJXmi95lIyGDt I1tJWC9TtVjDkonsg9dFDqyksKlnEPLRZqLwqZiQJmkKOwa+u5UwPYqMFnYU JK6jcFpbp9lis1Gkm3XIbtV6Cl8ReToRvG0U/d17xtFHnsKLdFr9jPhG0Ts/ dk8rRQq36zC9r6aPoGmNjjr2LRTmYQtfzOAcQWOOjjFWKhTO55f+c7N2GOl/ Uwv6oUphyw1v/069HkY6Mzqp7moULrE0jHy7axi9fsOr1r2Dwm0J8dnSN4fQ v8yE91p7KJztoGrrmzOAPjmHiLzYS2He57L6uncH0Ei9ZM7EPgr3/Sm13IEG kO0t6/SIAxR+8cM9uzirH70i0obVBhRWtOcQqfnQh6JnhDtWHKaw8d3jMncu 9qG7UkqXTx2hcIZDna6DbB+6usrKrv4Yhe3vTx7ZHtyLHtvuknx7ksL6G66/ fHKlByV0NdTUnYL3vasckivXg9hkfQ4vmFB4oW2VzKHmbmQqf8RV9zSFyxpN 2e7u7EZa1981ppyB86+Yl4/g6UKqZ7oFum0oXHXj5UfGTCsyFL660HCJwrLe c+fvGLaiMHUzw5+2FFYdi/1VGdeClrxLZX99mcJLzzxY/+loMxLXNpRQukrh 4K2CjkujGtD3pp9enNcoHKmX2208Xo9OPUtVawSu7A3R7NSpR+/H0GYnRwqz ndfZ97mrFtVL79L0uEnhuE93xZRXVCPWvKWktjOFhcfChH+fqUK3DkmITQJ3 1AZnK32oRCF088ljLhS2WT5Amh+Uo0e8Bbl9rvC8rtv7P6VFKF6+RdPtDoV7 3c2k/E0L0Y3YxUTsLoXlbLYNnRz5gU472tRQbhTWdMxbX8ydhyoslXkP3IN6 eFHP8cM2E3kdsffJAnZanqNU+ukzUlVV9lW6T+G8MO1fMn9TEbtyC88C8F6/ tgZR3iT0UNL2/lkPCm8r6Prl9+QtYn+TeSsfWOH7fNTeVa/RUr2JNpcHFJ47 eaVmh3EQqvcw3F8NbH9ugGnz0hXJvzy8Re4hhVdmha7sP2xLbGT3OXwD5l8/ Z3nANpQcQe4lPI8ovPnIsNmmTdEkNmA46hCwSeXYraTYOPLT/3d+KXBp0vVf O/Ynk0yjT0KLPSnM2nQuLZUzlax2LW/XAq5l3k8KyU4n+JOYogOwlXvZzWqn L2R797WpV8BJqoykQ5uziOq6wZ1lwPk+etNT/TmkIStAcBq4t7XdpaX8G1m0 POrMSi8KX+9kU81RyCXp4bbbtYDbcq7/EffII6os02cmwPnUqpSutnxyKXD6 lhNwoKw05qcKSAJ/46Af8KCkqu/TgEJi2/SlKwrYbnbkvs1AEfHYffl8CjBD b7HkQ+2f5Ob1LhcCvME+ZW/b0xKy6rCETDHwheymxdbDpeSqk9rJCuDH569a iqFykrvOfn01cMCWH2a9QRVkerOET9V/53Np5e65Wkm0WJFeZcAfPP3zG1dW kVY5r3UFwIvSnW/o51eRE3+vnf4KLIraVJFtNaloFN/xHnjyTsuyN8I1JO7s /swwYPukCNk7mTXkotlY10Pgp56uT3Itasl40PLUy8Bd31e7X+auIz35xVuP Av+9Gi3imlhHTjzWt9oGPHEk69aQQT1pMWLpCgFvq+vq/TBRTz7KCfaNwn13 rb3oVfSsgZx8uVUzHziVfh+jsr2R+GvOKFwE5nSrxB0uTUQyUKhIHfhY4fdj kquaiV/imi3swB6b2tmCvjYTl0Thy75QHwLCr9zXzbQQ6z8qev/Vz4g1n6h6 cCvxfpW+iA9YpeRqjoNKG9mecVHMFepPKOKFyPHz7eTvlN9NFeC1OvIpE2wd RL+Xs7Ab6vfqJt99CaEdZPJtuYYmcOXLp7nrrTrJixht/hLojy/egfdmfLuI 2B3fkxeBHzw74upS20XKbYzrFwGfyszSuLOym9yPaL65FfpNxPf40n9x3SSE +Te+wB3u6+OqjQ7MbqIiYrf6BHCQdrOiuWoPMYyYmLSH/k0JEucNy+why+v4 zWegv/++Khbrm+shbju85O4Ai25inorEvSRrlUu7O+iBM+fsMrP8XlLY5/Ha 5jbMS2L6pji/jyTL7QluBz3hft3YZMnZT+J/cgoZAm/U+ZVpsrOf2K+KLlK6 ReEdG+49sfvaT7jGtrYX3IDzOtj8a4obINwhGt3ywPpBu5oNugZIheX+Nw+d KHzupdUfCclBssQw3UsL9M6YJzzstdcgmaE53AJBL9OjRmfOWwyR34bTe7oc oH53+u889nSIGD3nWLQZOLgkP9CzcIiIj/k+yLen8EFHYb88pWFy8n6wXSPo 8bstouMmI8PkJadonvh/7GhoZCkxQnZcsdY7Afrd/JWrNmbvCGlmnpSouAjz UvIoX0vECDm5Q+NGgjWF3X6hjWN7Rsm/n7F72s7B/ND9PfPVbpRw4vqH/MC1 s/sNvj4dJeWLO91tz1I4SzZa07BzlHguY9MLhfkhFCOQ2rOISbwGr77Nt6Tw 1rbfjm82MMmyGkO0wgL8hsCx5jQ7JlH1PuapbU5hmecrfNkCmMST1fLACuZR +zBHnFMSk/xcK/DtnSmFK9Zfu9nFZJLweXnpzTDfng/RLqEWLEJf5Xu/3ZjC N62iosxdWeRKSQz3rhMUHv0y91Q2lEU2RW/be+Q4+IP2QhxVxiJ8CtY6xjAv vfQ+aZ7sZ5G1Q9lqZkcpvO/hUT++eXheMm2TFcxbgzWfhEwVaaL5tuaAtSGF zwQqV85o02SUKepzHuZz7smOCd8jNBE8V/73vD6FV0vPNqw4R5PNDkax5w9R uPGza0eIE00+/F32zFoP9MRawUngEU1uCpg0Wh2kMF/GU0GXZzQZ97a5a74f 5qmZssHmFJo4nxX5Z6JLYXMTwnMjhybsQzLTJ8AvDAh3jyUX0+TFdqHbR8FP ZI64xHfU0ET06IUQffAbia2nmhZaaeKdnGC0fzeFdxtQ6kJ9NMlhnsndtYvC am/Tb4mN0sTWRGpASwf8xWO7S0vHaXIn7kIltRPmT2dX3cQ0TTY51XmpYNBT E9/HpX9pIsQ+La2EKHyNrfnWszmarEszC1unTeHyDcquhxdoklH5ildaC+rv QLvnHPBl9mM3V2iCPjtqhrwAluFYOiaoAf7Pw+/Dhnma1DDMXHnBLwmx8zfG /aNJ9LEWpUXbKcyeNaYgPgPrjYgvnqcojCVO5zpP0OSwRJzkjDrUx/JrRaVM muSvFL06Dv6L1Ytslw/QJHKcFmduAz/1qKB/XwdNmme/Sw5uhXrImnG+Uk8T sedC93vAv9X3pV3xKaUJR+Y5sw7wdwN+RdKh32lSH6KR1gL+LzuypzM0jSaD SPBZ42YKPzKKXOUfTxPHrSZ89ZsojLocsdMLuC/+gDW1yjBvv5K8Iz40aZKR 6KreSGH5L0nr17nQxF7Y0rhaicIzJfrjwxdpEutaFFgNfnPixo2MuBM0aX9r crNuA4V/Gf6M49pCk9xFCpqN4E8fPXq6Jl6SJuYHjOkW8K+7DaW27loEz+8v MewHfzuVmbjOupZF7HY7iDJlYd7wLwqlM1kkgqU5PbkWvv9YStX1VyyyeFEs g0cG3mcwTMLpAotgN+OPwmvgvloWcU4eYJFGIfMra1aDnzgvdM5hI4tcT5ae 0pKisCQPb+zlUSaxTaGxtwT4cb8jFwMtmITDQOHrR/Dn873Z51K0mMThYmx4 4woKrzvTWf1Pgkmk5OKyN4qBvu73X7u0cpRYP9E+MQD+fp9odD9WHSVPRzC7 JDBPn6JvHs8o4eYdNNJfDvMooerRjfYR0hY2JZcF+aCx5KX1zUcjRGzdH7X3 kCcSOmwM2CuHyYlTlmtYfOD/r6gvUX01TCymsqa3ACu4bXSJsB8m2zocHmZB HpGmn8ttWTpMntSE8IxCfmkyNZc21xwi/Er5ClrAtz4E/QvmHiKDF+OuPeai 8M5/90xFKgfJ+MHqCK1FFH7bKDXNtBgkKeEVKz+xU9hwXj1/560BsmqLtp4Y 8KmdP+q6tAfIfdnN7S6Qp9L22HvXcwwQN8WMnfoL6tjC5H5pvmc/uc126rsg 5C9TQ1P9ft8+YuWom/FoVh2LnQgYM9XrI1MyMnvYgRcntD1W5+sj5jfPbJ+F PLfvlOlhyUe9xEU5Uk3ojzoOtxixb7rRQ0bT2h5EzKhjR6lpt3CYb16yiWHK wNohB5fWjnaTl3H7Nh2DfGgdlxT5yrybDAUvSx+ZVsfb+99k7BDvJhpFBhIP gd20X9oZVHaR77yGj/IgX76Ym/09pt1FTl4zfWkNfFmAb859qpPkerhHLQUu TdWaC07sJA9X/QiwhHz65Z2pk4FYJ7HK8rgnCDzxz/7GeHAHkf0VcTN3Qh33 mI8qmM23k8phFffNwFVST+55lbaR7L+LpnvHIZ/q52Ye/e/3w/NyeCOAHwb2 XJNxbSUvg/PzTwHbt4maz9S0EIWNpgorgTP3VKu1K7SQ3XcTtTp+qeNF5zK/ NN5pJtbPM7jjgPXuWKcyq5vI7Yf3f+4ElmkTMLlzs5Es0n5XLgJ85dyBb1w/ G8g6xQsvRiBvt7ea8RPJBqK+aaVqAbBHcM7Wjzb1BO3nefEa+Gb/G7mOL3Vk /srh+ofAjv49HYd56sj6y7+HbYG92yKt+I1qydsvTS1GwBZxKlmSMTVki0n6 u93Auux9k7fpapJQpGCpDox+Fq7V0KgmvIUfZpWAGZyO5iYPq4iUXsQ9OWDD 3x3FPZWVxMdy8/RaYJ+tqx82S1aSeZ4bp9YB98RfvuVTVE5sZS6kKABHGpRs P3GqjAQdqmHbCux8sO7DupES8qjFWhcDb3wQv5fN5Sfxfv/B5zCwCfXYaXpJ MRmXFSmzBhZmD/sqHFJIdvO087sB/07d9MJKroDcc95yNBx4ZDAsfCo5n4Q2 LX2ZA5yzP/lEjVYeYc86PNIDHJ+ub8Fb/J08rsvUWQb3u27DzLG4o9/IVWZn zA7ghZLKj3Zfs8nxiu2CtsCn1+xb51OeSb5pi3tFAV+aFTL91vmZvB5JFGgB dv9V8Xn9eCrhvcAeKw7f+1G0REQDRwpZvJrjwH/1MGhr/rtR7gMp1bu+EAm8 X2nrg7nd8URyVDSCgvr6c3hJHBdHKNmVJuPpBZy9JJlrvbM34Qw/4dEB/OL2 faUWmxNE77nTp+dQr8rajTOtIs/QzimNfgb0g6rOt/rxfcmo0PWAaSJwHuev lZeoVHRG3rhLBvrp6L6zWtvWf0ap57VFVkK/ZXr+uXWUPRuNxmyY0YJ+7Zbe reR2PB+xfornVgI/ecIaWFX8AymcEQk4/08di77sGZzVKETuGuEKUdDvQZrh 3sdW/0SKq+yldoNe1BhyxS1qqUDOueHFw8DNUecSo59Xosv6bj1PQV9WnU17 v2dnFdIynTo+AfrjltuZtBBUje4n8g00gl6t3jnomrG5Dq0o+5fyAvTsza6a njN1dehYlHKdOehdz/yw6YVb9ejj00z+ycWQF/d5CDvkNqD2npxfu0A//76U vzu+H/L5yk98a0BvRww3HmANNaNFzxRPLwB/rLUokvZqQWXrf4UV8lP49PAT Sb4frUicmcF2B/Q8UElmZYBqB2o66mR4RxLywcM7pnJjXcggN6DUZyWFxQIU t6czupFKf/rWl6vAXxT8cMh260Zrbn5690OawtbOT2+tF+hBXmoH4nbAPJNb 62W/Qa4XuRkebj4N8y5KMvqpysVeVKKys/iBHOh796jPq3e9qEz8y/cWmJcn ubeyxav0oagnCRfiYP5mtHpfXr+tH639pVjYCfO5wrPguvy1fnRFfe/7VTDP Ocsd+u8k96O3Fp8mw2D+z9rcTVPYOIA8zkgmfgZ/EZzmn6spMYh4Zh4ZmoEf yiR9ww2VQ0h6nVJPKvglPxPTU3acw+hv4L2r/OCvLPQ5R/aoDaM3fVoXC8GP 2ayLK8t8NoyUj1l1GYDfk9wsdNLPcAT1sPt7pIMfZFwOtRN1HUHWbX390uAf 1xAjZl38CErgO1s8CX4z4o6b1r+5EeRTk7kuFfxrVHTxz7SIUXS/v6FTHvxu m13N1478UfStxWFl+Cm4j5n1pYzhUfRMYXTYxwz8e++08HVVJnonImnPBX76 FYMTHTvORHvdLAzdwG8PCHheMb/BRMU2Z3lugV+/nnVScCKDieZ1pctnrCg8 NPIo2rmRiQq6WOU3wf9/qpm/J/+biQQ5bcxvQz7I+jX1ZUqFhU6pryp+DHlj /3MVhT3hLGRxXsJRHPLInBVTiU5jIaVgL7EoyC+963nVMstY6JHwWbE0yDeU Uc77j39ZqGuC7yyGPBQ43FXfLECj6w5x7qU3wU9xejrLrqNR4epxwQHIV52f P/YuO0CjDO1ke0dXqK+qodAPJv/9fvT924sgvw1SktGXbGnU43t201PIewOX Mu/vvk0js326t9dBXtxk87WE4UOjJ96yZmmQJ0+PeS3TDaXRBuWewr2QR+cf L+9xeEOj1ZGfxC5BHq7Oe1AlnEMjVrDf4Bzk7Tc/WrV9imhEkfbVgT7gtyIK BldW0+jWzP1P6/wovKyg0utHM4263U68yPCnMMdqsZ5H3TR6q6FSovcY3jcf Z50Zgv3H+zW7AinsFOnTc5ymkWuIXr/jEwrr1eQpW07S6JfPthzeYApHT+53 8pihUXmT/dfIZ5AXRIQjyT84z93y2m0hsF/Y28dC87Bf0mr2n6EUlhpT3uG6 QKPE5aqUeRis/9socAH4Knet3eRLCsecuhoUCnxspCbMK4LCzBgrfBCeFzNl y5B+Bf2n8Pa1yCyNaMcNXz5FQb4tOlwxBfs/pIvabWLA31UHtPjC+eanVpTL xEJ+k7jLFILz6/eedml8A377+cBWz0EaeewfavaPB/8andg/2kkjosfVtTuB wuFLCvbubKSR4PJF9/4mUriVtS/iQTmNDCV2pCS9Bz+nZ4Qz82hUkbhwzioJ eJO8V8dnGnWoJQeKJ1M4NHK+bSqBRnuTkhRKUyC/6Cq9n3tJo/tzFmvvplLY jHBc/u1HoxGjLVdU0sHfBrS96nGl0dNY/8U9n0F/xoQqcqE+VgyPtz75Anlj 46R38CkaRYr9FJ7IorCHdr6M+Fb4/v16p6NywK8n8uoXS9HorPZ0hv43Ct/t epVwZTGN9qWrOLzJo3AKv/yf1w0sJJonnGH4A/z46TP3t+awUP1kVtefAgr7 eDpd/hrDQkuTbD7q/qTwis4TM5mXWKh5Lx9ilcD33OrtuE2fhR53Jd4PKoP8 l2YgmLiZharywzgaKuH8+pGZT2gmOpbrH6PfAHno6O2HDmeZ6PEZrQ+DjdBv v5NPjGsxUdePByvcm6G/g7VNnVcwUe4jxZZ3bRQ+ob5LMbJwFNVH9c+zeii8 pWBTrf2qURRKr6+/1Udho32RC/voEUT7imYsGqBw2Ll9XirfR5BaDHVNaJjC 3gJ/+rTPjCAP14l3ImMUDjARzrcPHUZpn5+TgF/Qjy6H4heshpHTp41+PBOg f1YDQh82D6OZle9VJ6YoLOD0/JVd7hDqfMAdkfgPvs9jfp3EtkHUdGj5xCtu Bm5+G2FRN9qPog90dbUuZmCxTLVPoUn9KPPX4ZNiSxjY6tVqKs2hHy37jArd +Rh444WpJX8m+pBnbcDAdkEGFp8vvjgw1ovmEzactVzOwGG+pikhH3oRk+v1 1odCDJx/3Ff046VetHGsNrNQhIHpFQm/xXt70OI6v68KEgysmqiXwlvejSrU V1Makgx86PNtat2jbhT+72fj/pUMnKGV0v4JdaMpZujN01IM7B1wtU8rqQv5 DvcGW8kArypkUp6daPZTL7NjAwNfqcyPOLyvFdlQ8he/KzBwg0ZS/MGEFqQ+ IZ8dqcjA91Mb628sbUGaaGPHkY0MvDnj9MLN8iYkZzUYEbSZgdeIeZq92t+A FM1krp3awsCJDj073r+pR6eMRThWq8B9uM/4LOesR76nx3QiVBk4OS/7ycSX WuRsYfTnuhoDB/J4P4hZU422H/c5uFadgY0/IoXxm1VoNtUblwLv4H1QnFNZ iVZtKeYRYzDwNl1X2ZK5cjR5dLjSbQcD66apcvUnFiPtpRd/C2kwsLkw5xmn 40Uo4DNnUhRw85+l7w/PFyDZ2JCfqZoM/K9eaUZQPx/pyG32TNaG9dLyo4PL slH1gcoyFcTA8uoFUrfbMtFbtZm598Dt++Iabox+RhFzmyReYDjP9PEOUZ4U 9Pgh5uDdycDVHO5HGxQ+oEat9ipH4NVruI676MSjK+cOrd2pw8AySokLU90h aNsyHP0KeCr+0Nvfa7xRxUn2xbPAaYOv+GYaj6JTY1l33uxi4N9XHp3kuPCM cN74HTgFHE7WR46uiiK5Eu7eeDcDD6ybfqTDFUeGc3yVfwKnDvnGJF1MJtqd dk08exjY+nX2LXPTVOJqYGq3C7jzyqS1mf5nQolbDjsDb+GJSgxAmWQ9x9vD 74CPf13/pHVzNhl76PG6GZjNt50KFvhGXhec7120l4GvrttQnvTwO1nmMiyk BOwQ+lFbZS6X5A0VqhwCrnwx/m3ptXzCW9eucwnYqEgoSG3wB3G9pKL7ANiQ MpiKMC0krup9u8KATXMub9OsLCLXFu9ivAeW4dnyim3XT9LYky7/FTjILuNx R2oJ4RmrEPkBvNyHw7pUroywjDFHCbBSoJ5nZnA5sdFsGy8FztmwK1Wfo5KE PI4Y+gls5mqOt32pJK1LIofy//v5rv0Jj+yrSNHCyulM4CLbkgwduWryzdBR 6L/9G7V6KfPmauK/W1nnv/M9f/hvpt6/hsTbDXr+d/6TseI1MTq15IKX3fB/ 72d2SjyGTNUSbvNYG31gVZvug+vi68iV8BfLlIFVlkSml5ysJ38+Ozcs/u/9 BUerk3gbSNf3x6XtcL+J/5Y//5nZQNJ0DX4lA8e8Y7CJ2TSSx8p7D7gD/6PD hHzFm8gWV/lWPeCNRaRpfUETSbgqltMI37sZ/W1KkW4hJ4M3iocCp/w+ZhhS 3EKK87XIceCDO8ynva+1kkGhwiX5UD9lxypj3fLbiJDOgQxH4PUphZtuXmon 17Xbi2WB59ZN9p9b3kGWnk1UdoR6fLACxXArd5J38qM+4sC0DluL2Z1Oouml dy4D6vtRVvL4uopOkiFSEc2Efth9xZX8vtxFei+rsG+Gfvku19RyNq6b2Ehn yX+B/pLXOnjSe7ybRHomS2Fg8frreLlWD5HqtHyyWwv6NeDiPfXKHmJdLyOT C/15K66Zq1K8lxySNXqhCXzy943d3yx6SUjjbtsN0M9iFgz3MFYvaa2qqQmF /vds9Kt139ZHggru7uYB3vQ8zC/NuY88khs1bwW9+FBlvnKWvZ9Mc0eanAE9 kem5bFG4ZIAscWUOZIH+xP79ca15/wApENDNFgG+/iTeQsFrgBwLqLfK2gr7 3Uu5eZVrkDD3KoeMgr7d1trPujk5SKbq+c1UgQf2JDNVNg0Rvrmoj46ghx4S VIPY+SFSG62zYUqZgTN5W8ZN64dIU2+QaSPoqbhtZVRcwjCxvvs0lA+YzXlB zK9tmKyeFPyoCfobkiO357HACPFh2/04RJ6BLaX6tYeujJAQXx+7vPVQb5ue 1mu8GiFZ6vYHR+VAPyxuk9jyEVK4fnALYx0DhxrPXvmyYZSk/H6qZyLLwDd/ 9+pYHBsl944uDby9FvTOMvem+N1RsiRSPfvLGtCHbA7nz1WjJPzF17zVMC+4 p3usvC8xCUdvwF61VQw8snr5l2cBTFL/y2zPf/PFt2efUEIKk7xOudtlC/Oo ZpeRdtcUkyzW0X56Wxx+fnhpC4cYixx4UcL0XsHAd1zCBOXVWESrIO5bjCgD HzW/qXbtCou4GWQZfID5JnTluEqoL4ucO66Y/FmYgQ982dGRHcciGuPLVhTC fKxXXle40MwiB6NDVMpgfnpetz+8coJFNPe9OVAtwMDpp803qfLSBJnXvm5a xsB9ij3t+mo0ef39xVLmUgYW2Bh0glOXJq2ifpkLMI9/nG71qT5JE/kHJZ+X A5PzO/58taFJ8z6XZbK8DCzH/kWW3KKJ8ZmC/K0wz7kfzQa3eNGEadnSv4uH gZ2P7u4SDKGJ9GnVx2fAD9yY/H0hP5kmD/P6FBy4GPgIL9fQzmyaXDfec/Tu ItDzQ6eL6wtpMnwmSNSPk4H31Tpm3auiyclVy2+94AA9abvgsqeZJpl2PN5x 7FAfrewF0t008Uv8rp/KBvqul3mGf4gmPw97Vn1boLD9qSxpEZom38jblWXz 4KeP9ZZtnoT1J66rN81R2I7+fsByhiap+3Yo9c1SuN8k1Cn+H03UlA5y/gI/ c1/WajvXPE2GOv8Uzv6l8NqWKvcbCzQx3R56jwf4eJTuHvDfpF7/tqbIHwqL 2vbdfQnMvnN6fvUMhbHc7W0G8PzTsZM1Sr8hzwU/t10xS5P5zD+51DSFVdc4 M8B/EwF1+YZd4Kee64onDcL5Po6oShhOUnjjsrWsX3D+cFHbIFPwX0eWzkgs H6aJwsk1ehfHKbz4VpLZ3h6aCN4PM3ACvybXKzAS2EKTI7vk39wHP+f5I/Dv RDVN5IZ4TwbSsN6gaYltMU1oaR+HSBaFDzzbGzObA+/zZmjmPRP84IuK8phP NLkvcm4maxT8p8DaqDNxNNngz3AuHYH3m+O/vv0FnNcjzKMV/OOZIr74Db7w /ey/yzKHIE9f3vx6iytwFL+O4CDkI2OzFF9Tmni8eVizFvznKsHoT10HaEKe n5FS76fwvU8uJocZNIm4kzR/upfC+jfTf9wTpMm6mb3x18HPfvJoTNzzj0UC O/03+XSD35zhcZPrY5E/x7dPZXZS+KlGhrt2OousbA3YV9sB65XOcDuHs0gb uvOC1Q757/J3hZr7LJLp//XcevDLpy9qag8dYhHtpDx6Vyt8zwHhr29UWMTg WV34mRbw7/YpIw9FWMSM3uQV0wT+f+PF/JQGJmGmjjb8AD9eTh9TZMtgEsaF V3ZD4Nevi0STa8+ZRJHL4fG2egqXypczqo4yiabOrpiWavj5hhAO99xR8v53 waXfVRTWlcMidSGjJPvyPS5R4OesfZmql0fJo1N0/fEKCr/t3u4lKAb647VV jIb8YPjm7zm3UyPEsvuqnySww5l7wgcVRsjMkZoN/+UNx9i7qUq/h8m7jJWT b4vgfir0QtQeDxMPs9BfnpBX+CN5+cM/D5Es6c2RBfkULlFy36t7d4i8NNhK uIFr1poVr9g7RFgnFG/750L+si+/oFQ1SCb2e49mETi/nBwxbRsgawxatwgA z0YIFVpGDJAG39gtVpCfwvsM94edHiCSUvYPxLIpLJyZdTK1tZ88Onv4angm hdfUpthmVfQRw+6r7tzAFXU8TdHefSQlVDXgKuQztTfZsRW7+0i05s6Coxmw v5tCGdfnXuL/b8NCEeS5LLlEprB9L7kk3Hl8J/CrpN9/HNb3kguni25pQP67 t/pAjPyTHuLy9OuJ7DTox5f31Tx0e4hWAvsVHeDcq/nhO+a6ydG2pstGkB9D 73WKE6tucmtP5bk3kC/fLc9cZL+xi5gVqrTrAIv1Rdh0t3aSj4Wxhd2QR52r htzzfTtJZsAtbmXgkGVMOVLXQaqkR843fIT3zX24oKHaQeSP+h15AHyM8+vi d37tpNaR0TwC+fbO1Hity842ouFgdu81sJbq5aL+0Fayt3Sk2AKYPVNon8mv FtLcIZu+Bvjxhx1z7ftaiOir9Xq9HyB/cZlE3ghvJhuuTD1OBC62rB5SHG8i G347eDkBW0V/fjW/p4mESJvErwBeofzMS3qkgUgP17uNQd4+un0qS1S3gTAm F6JLgVN1XEVOv64n3J/0hd4BlyuWms0u1BHRqrXV/sDqS10vTZ2qI0tE8vqu A/9jWySqn1ZLuHabGZ4Grvjhpc4nUEsKhLlFDwK/2V74UeVCDXmw5Iu6BrDA 184LBd+qic8F44xNwMZWO3XLxYFXvn8pBxws76Spf6WKZERa968GjijhoQ4W gh8dkwyRAl5Zckr5p1QleXF9b6o08HllNpVXA+XEevigliww02nrcF5QGflj dF1NCVitzeLhEq1Scn2SFaEOfGRBaqlL/0+SKVPlsgf4rNV2z7UBxSTviFj5 CeCdbPbLeKki8p391XM74HCfVaka7QXkzyu15ofA3clTod89fhAbP4/nMcCT YhldsYr5ZBvHmqo8YFmqI2W8Ipd8W+ruOQDsLGu8PeX6d5Lqzk344f7frVKL ZYnDtBmfdNwO3CSVe8zKOZu8eu304TxwTFcsG/+3TKL7KOxiKDASuJfH4sog sxtPxpcDm6yPF195MI2E5HlfWgz1oFuY6hYXkEI4+H992gXsbjfCfjguiXAG NdcXAG9q0+1PTX1N3vKZpCyD+utY0cFdfT2CVCfzihoD1yw7ce/43SdkNLz8 ym/glzqJkrsvnEXDG5fa6EE9d+6/mOFd4I0MnEuGXwPLP98aL3UyBEntnXe3 gH54Ya37TkkmDm3iKnyeB+x4XUbM+8U7NMuZtVXxE+iRxOs6zyXJaCdbyj92 6K/WkGb2227pyD8hI7UF+m/uQ5jOUMo3ZBT7qO8U9OvrMyuErvPnovdsPU/b gJd3ye++cTEPiXbdusiE/lZlqK/MkSpAPJ8ls9RBLxY4vWJU7pSgs3vGPlX9 px9OZ2+frS1FTsmyq658hfsVECzPUihHAj8it33OonDLjeKh9guViPPm5p2X Qa+mR9qMf/HWoMPaoc1rvlG4jKu+svZDDXpx5NiHeuDbrs5qikdqUdZVnT8H Qf+G9s2bij+vQ9cu+BSagn7+e3xT655EI6phfGzfUAD7FUiJO2Y0ovSnDWIz wLvOv76XZtSEOoLqWiJBf6vnD29dFtiMXKu1DURKoR9R++mXs61or2Ah1x/g D++6ft0NbkMaTqdzOssoXC9Q9sdPuR0N1kSu+wL6v9wc6YqbdKA2PK/rV0Ph hm+ZHz7XdSKrspdFOTCfIm+uDszn70F9unLXqmB+LWl7NxBwtAfFHq2q6of5 xm2dkl3xvAeFXTweLAHz8btl8PZY6V70KV42OALma9eqFX5X5frQjlsXdhb0 UdjnXnDnu3N9SED53LUxmMdv7ol814vtQ75BtIEezPPzHDfY0tf2o7aqnRoy 4BcecbMZzYkOoF2d5Jwp+Amdz/6VqocHkOCTue5Q8Btx57bOEp8BdCRmKnMl +BWvb3OVzfMDiCNnXGYH+KFjpprn+1oHkU6yelQL+Lmj8nuOTjsNo+CNhg5G 4P+KxAZfTSUMIyGP80414A9Ld3obC7UPo8LbPjM14CdFF+/cHb5zBOGqp4VM fgbWc+W+XDI3ghqXCCg5g98d2jFAeSqOovaC5GvcQpBXt6Z/PG40iowv7/VZ D356d6xN/6rEUTTstO6jC/jzZ4Gn49T2M9EYd7mEKPj556VPpg0vM9H54XyR j9KQZ5a8UbsaxER3QqKeDMsw8M87JeR7AxNVlw6ze0NecCyfzmbOMNGLDt16 RcgX2o06QislWKhf9cGDKxsgL95d5+ZoxEKvS84fEIX8sjzr8uNX11hI8sOF /V+VGDhb41hvUQAL1Xw3LuaFPOT3Lzh62Q8W6uyb2ZoKeYkoGOtuaGehgmmJ d6dVGVjD9XG85jQLGRe0PE+H/BUVlX3ZQJZGCcN9k2cpyLsLX47rMWjE/Wi3 qtB2Bh47qvsH6dHIfyxk93fIe0s4epIUzGlE27iucYC8+KivoZHHgUbY60Gm DORNizeHWlvdabQsQHtxDeTTo3m6SrGBNLKRaPGmIP9usj3yUvADjYo5sxOG //v7lLODpSmZNPpqdcggAvK7TpCk9b4CGg3HL9ge0WVgd/o+V3kljYqoXTPc Bxi442ja4b3NNKqtu9/39SDkrSuMv0ndNPrHrajgcIiBM24FfeYdppGYQ9jn 9Qawvs/eg0ZjNHLV1njQagjf41PD3aApGn1xs3kYdISBw7J/biB/aLT9iWeS 7jEG/vchbm3rLI3W3pmYnD/OwPr03yP//Xvnsid5DqadYOACJaP4/gUanfgg ++bSSaivYUPJWuD1bVF/ZUwY2KHG820y/PkNrh2ajaaQH+OjzO/Cesu+b7f0 Pw35aGq3gRbs59jEb7rbgoHnr8g8HZmE9zuRI/PXkoGThYaPeNM04gh8+ybp LAMXNh77IjFEo4ts2zqszjHwpT0S86FdNFJPyCMS5xnY2o9lwddEo013vmuW X2Dg4lteipcraLQ8M/TAPRsGluV88S43H9bTy2pTs2Vg18CinUu+0OjsM42G EjvoF75tDnLvaVTN5nTE0h7ycfuufSde0WjvmODe6SsMbBiXujYyiEaiaWnx 3lchH/JzX5y7TyOeyuUO0tfh+dobD69ep9EpqiE42ZGBI5K5WfNnoX7euVbU 3YT30eXzMsfwvUxaqqxvMTDr0tL8bco0apV7yffbhYH3NG83lpWA/dTusIne ZWAlschefRYLqbfH03seMPAhvse2v/xYSFiz7V3FQwbe4isjEwP1H+0eYGzs ycBXZb/7XDNmociXD09Y+zDwCXbFD9dWsxBn9O6/1wIZGK0Lz+GJYSI+nKEy GQTfU6/et9CdiUTkcgSvPYV6c7Tnf2fORC5vsqNtn0MeXGohOyzORI+33JXT D4d6LX3++YT7KFL4si0+N4KBN8b+XGF5chS1Bi7zV3vFwGV827JCtowidcuf lmIxDNy7K8j/eesIUiwL0MmLh3x8wqJmSnEE2eoq/1ZIYGDB986vn8wOo/Y9 t8r8ExmY3cyg/GLZMLTYOXLkAwNXLYuMzbcdRktzndtyPzGwd9XdCZPoIcRq UciXSGPglUtdxnvshpBHhZf/5XSo16QfFUmMIRQu6Pxx+RdY/6rMYYnSQRQt 7GSilcPAg9F6ZebDA+htSsmKdUUMbPD95rtN3P3IkOrBzsVwP5JVT/VIH1Ju M9Is+cnA/n6XF6Ju9KEAjcGH58qgf29dSJvr60URliecr1YzsIloVkzulx7E z6mw630N9B8+Z9Nv24PSE4LDemsZ2AgrrzyxugcNXPzQqNsA65c+s1O8143u 7Jt439/CwHd3LAseRF1o1rhelKsN9Or8Yu08ZidK1HGvXN3OwOoCdnXsYZ3o 3emctQc6GfhWl5O73UAHOuex/55DLwOfU4+OitdsQwXWEwUOfbAf14D43oBW ZBe/ROlyP5yHzXV3a2cL6gy/tMNkkIF/fIzu4nNvRmcM3Fq5Rhk4/ZGPnmJ6 A4pQFbjXD/y8eJkGYm9AfH9erspjMjD1kwi7HaxHmds0pK/QUG9TB79EttWi cgXr5pBx6P8p2zaBP1Xo3kTJe+MJBvY9+J6lqV2FhBqFjotMMrDwRnueknuV 6IGa9/K7U6D3rb7pB0TKUU3avWGZGQbW5b4cIiNXhDKUdRd9A5YaOOLDE1eA Jsdsm0/+YWChb+Lx0ht+IP6bf1Pc/jLwqWuN/gIbctGGZuPkZf8Y2KUzgZ07 7hvSG2K3egY81bKm/ceBHOThWN3xYpaBz9QrPBfYmYHUTTa+EZsD/azwWd2w Iw0taVJb6Q+cxG9CN29NQev+OCy7Mg/zz2LLKn7deFR/SdSrGTjYYsXdcvVo 1C534CNeYODDv6qYZftD0BuDd/eigWe8cZ/WAU/0///FfjuOXvCXkVo+rfk/ Q6ti/w== "]]}, Annotation[#, "Charting`Private`Tag$21916#1"]& ]}, {}}, { LineBox[{{0, 0}, {27, 0}}], {Thickness[Large], LineBox[{{0, -2}, {0, 2}}], LineBox[{{27, -2}, {27, 2}}], {RGBColor[1, 0, 0], LineBox[{{0, 0}, {2, 0}}], LineBox[{{7, 0}, {11, 0}}], LineBox[{{16, 0}, {20, 0}}], LineBox[{{25, 0}, {27, 0}}]}}}, {RGBColor[0.5, 0, 0.5], PointSize[0.05], PointBox[{9.07117750439367, 3.552713678800501*^-15}]}, {RGBColor[0.5, 0, 0.5], PointSize[0.05], PointBox[{18.03427065026362, 0.01318101933216198}]}}, Axes->False, AxesLabel->{None, None}, AxesOrigin->{2., 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{0., 0.}, {0., 0.}}, ImageSize->{569., Automatic}, Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1.5, 28.5}, {-2.2222222222222223`, 2.2222222222222223`}}, PlotRangeClipping->True, PlotRangePadding->Automatic, Ticks->{Automatic, Automatic}]], "Input",ExpressionUUID-> "601a7598-0e1d-46cc-892e-61c359a7459f"] }], "Text", CellChangeTimes->{{3.92795694468899*^9, 3.927957079137395*^9}, { 3.927957128681226*^9, 3.927957171116055*^9}, {3.927957250325102*^9, 3.9279573432118063`*^9}, {3.9279574332104263`*^9, 3.927957616399798*^9}, { 3.927957780714871*^9, 3.9279577821422167`*^9}, {3.927958257231987*^9, 3.927958300859518*^9}, {3.928491816974203*^9, 3.928491822102729*^9}, { 3.9288235527917852`*^9, 3.928823597015477*^9}, {3.928824003901217*^9, 3.92882411304802*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"5fa89b76-6b67-4a80-a9e6-87b3dba91c38"], Cell[TextData[{ "1) Stellen Sie die gekoppelten Bewegungsgleichungen f\[UDoubleDot]r die \ Koordinaten der beiden Massen auf. Schreiben Sie diese Gleichungen in der \ folgenden Form: \n\t\t\t\t", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"-", FractionBox[ StyleBox["m", "TI"], StyleBox["k", "TI"]], SuperscriptBox[ OverscriptBox[ StyleBox["X", "TI"], "\[RightVector]"], "\[Prime]\[Prime]"], "\[LongEqual]", StyleBox["M", "TI"], OverscriptBox[ StyleBox["X", "TI"], "\[RightVector]"]}], TraditionalForm], "errors" -> {}, "input" -> "-\\frac{m}{k}\\vec X'' = M \\vec X", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "cb4450f5-de73-4e63-bb92-05fcc934179d"], " , wobei ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["M", "TI"], TraditionalForm], "errors" -> {}, "input" -> "M", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "5c2b805b-50ad-4404-9982-6bb0e353299e"], " eine ", Cell[BoxData[ FormBox[ RowBox[{ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"2", "\[Cross]", "2"}], TraditionalForm], "errors" -> {}, "input" -> "2 \\times 2", "state" -> "Boxes"|>, "TeXAssistantTemplate"], " "}], TraditionalForm]],ExpressionUUID-> "cd23f7bd-33b4-42c4-8701-2926b69e822b"], "Matrix ist und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["X", "TI"], "\[RightVector]"], "\[LongEqual]", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox[ StyleBox["x", "TI"], "1"], ",", SubscriptBox[ StyleBox["x", "TI"], "2"]}], ")"}], StyleBox["T", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> "\\vec X = (x_1,x_2)^{T}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "9a039cca-fa41-40b5-abaf-d35cd2dfdb03"], ".\nW\[ADoubleDot]hlen Sie einen passenden Ansatz f\[UDoubleDot]r ", Cell[BoxData[ FormBox[ RowBox[{ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ OverscriptBox[ StyleBox["X", "TI"], "\[RightVector]"], "(", StyleBox["t", "TI"], ")"}], TraditionalForm], "errors" -> {}, "input" -> "\\vec X(t)", "state" -> "Boxes"|>, "TeXAssistantTemplate"], " "}], TraditionalForm]],ExpressionUUID-> "454acdba-11a4-4922-a0bc-f7742b7ead9b"], " um das Gleichungssystem zu vereinfachen zu ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox["\[Lambda]", "2"], OverscriptBox[ StyleBox["X", "TI"], "\[RightVector]"], "\[LongEqual]", StyleBox["M", "TI"], OverscriptBox[ StyleBox["X", "TI"], "\[RightVector]"]}], TraditionalForm], "errors" -> {}, "input" -> "\\lambda^2\\vec X= M \\vec X", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "dbfa2b29-533d-4567-96fd-d0b5cf3e1da3"], " , wobei ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SuperscriptBox["\[Lambda]", "2"], "\[LongEqual]", FractionBox[ StyleBox["m", "TI"], StyleBox["k", "TI"]], SuperscriptBox["\[Omega]", "2"]}], TraditionalForm], "errors" -> {}, "input" -> "\\lambda ^2= \\frac{m}{k}\\omega^2", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "29e55105-9f30-4301-9466-62da051dc796"], ". " }], "Text", CellChangeTimes->{{3.92795694468899*^9, 3.927957079137395*^9}, { 3.927957128681226*^9, 3.927957171116055*^9}, {3.927957250325102*^9, 3.9279573432118063`*^9}, {3.9279574332104263`*^9, 3.927957616399798*^9}, 3.927957780714871*^9, {3.927958009867622*^9, 3.92795803664809*^9}, { 3.927958071531453*^9, 3.927958116798664*^9}, {3.927958360383216*^9, 3.927958377654649*^9}, {3.9282097736558027`*^9, 3.928209796527281*^9}, { 3.9282098750803432`*^9, 3.928209888919587*^9}, 3.928491907823122*^9, { 3.928761590820898*^9, 3.928761594888907*^9}, {3.928823496897501*^9, 3.928823497503899*^9}, {3.928824129915249*^9, 3.928824149514633*^9}, { 3.928824232045043*^9, 3.9288242480476027`*^9}, 3.928825195402281*^9}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"772c1354-3d67-4ef6-a719-f794254ae0ca"], Cell[TextData[{ "2) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["M", "TI"], TraditionalForm], "errors" -> {}, "input" -> "M", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "59b35067-69fa-4f9d-ad60-4c4f37f43ac7"], ". Zeigen Sie, dass die Eigenfrequenzen des Systems durch ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SubscriptBox["\[Omega]", "1"], "\[LongEqual]", SqrtBox[ FractionBox[ StyleBox["k", "TI"], StyleBox["m", "TI"]]]}], TraditionalForm], "errors" -> {}, "input" -> "\\omega_1=\\sqrt{\\frac{k}{m}}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "30a13789-01c2-4796-8b3c-3fe5b9f2b379"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SubscriptBox["\[Omega]", "2"], "\[LongEqual]", SqrtBox[ FractionBox[ RowBox[{"3", StyleBox["k", "TI"]}], StyleBox["m", "TI"]]]}], TraditionalForm], "errors" -> {}, "input" -> "\\omega_2=\\sqrt{\\frac{3k}{m}}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "6dbb0c65-98c1-44a1-88b5-b54cbd185312"], "gegeben sind. Bestimmen Sie daraus die L\[ODoubleDot]sungen f\[UDoubleDot]r \ die Koordinaten ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["x", "1"], " "}], TraditionalForm]],ExpressionUUID-> "95518cdf-e2ff-452b-bb71-45e40cf1c65d"], "und ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["x", "2"], " "}], TraditionalForm]],ExpressionUUID-> "c00f50a2-354b-4d10-9d8f-261d95e34f59"], " f\[UDoubleDot]r die folgenden unterschiedlichen Anfangsbedingungen: ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SubscriptBox[ StyleBox["X", "TI"], RowBox[{"0", ",", "1"}]], "\[LongEqual]", SuperscriptBox[ RowBox[{"(", RowBox[{"1", ",", "1"}], ")"}], StyleBox["T", "TI"]], ", ", SubscriptBox[ StyleBox["X", "TI"], RowBox[{"0", ",", "2"}]], "\[LongEqual]", SuperscriptBox[ RowBox[{"(", RowBox[{"1", ",", "-1"}], ")"}], StyleBox["T", "TI"]], " ", "und", " ", SubscriptBox[ StyleBox["X", "TI"], RowBox[{"0", ",", "3"}]], "\[LongEqual]", SuperscriptBox[ RowBox[{"(", RowBox[{"-1", ",", "0.3"}], ")"}], StyleBox["T", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> "X_{0,1}=(1,1)^T, \\quad X_{0,2}=(1,-1)^T \\quad \\text{und}\\quad \ X_{0,3}=(-1,0.3)^T", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "792b0479-5fe8-458b-b352-83088d1c5106"], ". In allen drei F\[ADoubleDot]llen soll das System bei ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["t", "TI"], "\[LongEqual]", "0"}], TraditionalForm], "errors" -> {}, "input" -> "t = 0", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "fcaab9db-48b0-4fa1-8cc6-4e3b985dd957"], " in Ruhe sein (", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ SubsuperscriptBox[ StyleBox["X", "TI"], RowBox[{"0", ",", StyleBox["i", "TI"]}], "\[Prime]"], "\[LongEqual]", SuperscriptBox[ RowBox[{"(", RowBox[{"0", ",", "0"}], ")"}], StyleBox["T", "TI"]]}], TraditionalForm], "errors" -> {}, "input" -> "X_{0,i}' = (0,0)^{T}", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "7cf1e290-edc0-4d1d-b5dc-8704a0306eef"], ")." }], "Text", CellChangeTimes->{{3.92795694468899*^9, 3.927957079137395*^9}, { 3.927957128681226*^9, 3.927957171116055*^9}, {3.927957250325102*^9, 3.9279573432118063`*^9}, {3.9279574332104263`*^9, 3.927957616399798*^9}, 3.927957780714871*^9, {3.927958009867622*^9, 3.92795803664809*^9}, { 3.927958071531453*^9, 3.927958116798664*^9}, {3.927958360383216*^9, 3.927958377654649*^9}, {3.9282097736558027`*^9, 3.928209796527281*^9}, { 3.9282098750803432`*^9, 3.928209888919587*^9}, {3.928491913323667*^9, 3.928491939625292*^9}, {3.928492863978744*^9, 3.928492934405027*^9}, { 3.928493127632173*^9, 3.928493135019416*^9}, {3.928493167352111*^9, 3.928493206700739*^9}, 3.928493259368524*^9, 3.928761603894218*^9, { 3.928824278153655*^9, 3.928824320580782*^9}, {3.928824361883381*^9, 3.928824388802946*^9}, 3.928824941889429*^9}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"4ec354d3-ffad-4d81-b943-7daa8932a4e8"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle: ", StyleBox["Eigenvalues[ ], Eigenvectors[ ], Normalize[ ]", FontWeight->"Bold"], " ,", StyleBox["Solve[ ]", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.928557088928891*^9, 3.9285571144924297`*^9}, { 3.9285571694735126`*^9, 3.928557203777869*^9}, {3.928761353032919*^9, 3.928761356441243*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"3bb7029f-aaf0-42ba-92da-87098a378180"], Cell[TextData[{ "3) Berechnen Sie zum Vergleich die drei L\[ODoubleDot]sungen direkt durch \ Verwendung von ", StyleBox["DSolve[ ].", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.92795694468899*^9, 3.927957079137395*^9}, { 3.927957128681226*^9, 3.927957171116055*^9}, {3.927957250325102*^9, 3.9279573432118063`*^9}, {3.9279574332104263`*^9, 3.927957616399798*^9}, 3.927957780714871*^9, {3.927958009867622*^9, 3.92795803664809*^9}, { 3.927958071531453*^9, 3.927958116798664*^9}, {3.927958360383216*^9, 3.927958377654649*^9}, {3.9282097736558027`*^9, 3.928209796527281*^9}, { 3.9282098750803432`*^9, 3.928209888919587*^9}, {3.928491913323667*^9, 3.928491939625292*^9}, {3.928492863978744*^9, 3.928492934405027*^9}, { 3.928493127632173*^9, 3.928493135019416*^9}, {3.928493167352111*^9, 3.928493206700739*^9}, 3.928493259368524*^9, 3.928761603894218*^9, { 3.928824278153655*^9, 3.928824320580782*^9}, {3.928824361883381*^9, 3.928824388802946*^9}, {3.928824941889429*^9, 3.928825063585733*^9}, { 3.928825214480442*^9, 3.928825215536227*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"1981a8d9-2334-4e94-aff3-379d362c9ea6"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " N\[UDoubleDot]tzliche Befehle: ", StyleBox["LogicalExpand[]", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.928557088928891*^9, 3.9285571144924297`*^9}, { 3.9285571694735126`*^9, 3.928557203777869*^9}, {3.928761353032919*^9, 3.928761356441243*^9}, {3.9288250743857517`*^9, 3.928825088632333*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"f6b1e104-f3be-4c44-b632-e2171fa919a0"], Cell[TextData[{ "4) Benutzen Sie Ihre L\[ODoubleDot]sungen f\[UDoubleDot]r ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ StyleBox["x", "TI"], "1"], TraditionalForm], "errors" -> {}, "input" -> "x_1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "75f5bff7-4fa8-4fb5-8922-8050afcbb1d1"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ SubscriptBox[ StyleBox["x", "TI"], "2"], TraditionalForm], "errors" -> {}, "input" -> "x_2", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "219a2773-6b03-4c87-93ca-08b7a2bb5c30"], ", um Animationen zu erstellen, die die Bewegungen der Massen darstellen. \ Nehmen Sie dabei ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["k", "TI"], "\[LongEqual]", "1.5"}], TraditionalForm], "errors" -> {}, "input" -> "k=1.5", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "ad88cb66-ca08-4191-903c-e20a4cac85cd"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["m", "TI"], "\[LongEqual]", "1"}], TraditionalForm], "errors" -> {}, "input" -> "m=1", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "74f5e7dc-4c5b-40e3-8039-457ddd1ab8d9"], " . " }], "Text", CellChangeTimes->{{3.92795694468899*^9, 3.927957079137395*^9}, { 3.927957128681226*^9, 3.927957171116055*^9}, {3.927957250325102*^9, 3.9279573432118063`*^9}, {3.9279574332104263`*^9, 3.927957616399798*^9}, 3.927957780714871*^9, {3.927958009867622*^9, 3.92795803664809*^9}, { 3.927958071531453*^9, 3.927958116798664*^9}, {3.927958360383216*^9, 3.927958377654649*^9}, {3.9282097736558027`*^9, 3.928209796527281*^9}, { 3.9282098750803432`*^9, 3.928209888919587*^9}, {3.928491913323667*^9, 3.928491920499875*^9}, {3.928556998792225*^9, 3.928557082231428*^9}, { 3.928570742928586*^9, 3.9285707704536552`*^9}, {3.928761502447064*^9, 3.9287615452730722`*^9}, 3.928761607649187*^9, {3.928825219199335*^9, 3.928825219386339*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"d61a09c2-a8a6-471a-8aa5-123a1a5058a7"], Cell[TextData[{ StyleBox["Hinweis:", FontWeight->"Bold"], " Sie k\[ODoubleDot]nnen sich am folgenden Beispiel orientieren:" }], "Text", CellChangeTimes->{{3.928557088928891*^9, 3.9285571144924297`*^9}, { 3.9285576290725822`*^9, 3.928557630234326*^9}, {3.928823679267942*^9, 3.92882368210351*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"0a847f39-9149-4363-86d3-a945baf8a579"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ "Beispiel", " ", "f\[UDoubleDot]r", " ", "1", "D", " ", "Oszillator"}], "*)"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ "L\[ODoubleDot]sung", " ", "f\[UDoubleDot]r", " ", "einen", " ", "einfachen", " ", "harmonischen", " ", "Oszillator", " ", "mit", " ", "Masse", " ", "m1", " ", "und", " ", "Federkonstante", " ", "k1"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"harmonicmotion", "[", "t_", "]"}], ":=", RowBox[{"A1", "*", RowBox[{"Cos", "[", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{"k1", "/", "m1"}], "]"}], "*", "t"}], "]"}]}]}], " ", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{"Optional", ":", " ", RowBox[{ "Wenn", " ", "man", " ", "die", " ", "Feder", " ", "mit", " ", "animieren", " ", "m\[ODoubleDot]chte"}]}], ",", " ", RowBox[{ "ist", " ", "es", " ", "n\[UDoubleDot]tzlich", " ", "eine", " ", "Funktion", " ", "zu", " ", "schreiben"}], ",", " ", RowBox[{"die", " ", "deren", " ", "Form", " ", RowBox[{"beschreibt", "."}]}]}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"spring", "[", "x_", "]"}], ":=", RowBox[{"Line", "[", RowBox[{"{", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"x", "+", "9.8"}], ")"}], "/", "150"}], " ", "i"}], "+", RowBox[{"0.1", " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"Cos", "[", RowBox[{ RowBox[{"\[Pi]", "/", "10"}], " ", RowBox[{"(", RowBox[{"i", "-", "1"}], ")"}]}], "]"}]}], ")"}]}]}], ")"}], "-", "10"}], ",", RowBox[{"0.2", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"\[Pi]", "/", "10"}], " ", RowBox[{"(", RowBox[{"i", "-", "1"}], ")"}]}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "150"}], "}"}]}], "]"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"In", " ", "Kombination", " ", "mit", " ", RowBox[{"Graphics", "[", "]"}]}], "*)"}], "\[IndentingNewLine]", RowBox[{"Graphics", "[", RowBox[{ RowBox[{"spring", "[", "0", "]"}], ",", RowBox[{"Axes", "->", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], "]"}], " ", RowBox[{"(*", RowBox[{"keine", " ", "Auslenkung", " ", "der", " ", "Feder"}], "*)"}], "\[IndentingNewLine]", RowBox[{"Graphics", "[", RowBox[{ RowBox[{"{", RowBox[{"Blue", ",", " ", RowBox[{"spring", "[", RowBox[{"-", "1"}], "]"}]}], "}"}], ",", RowBox[{"Axes", "->", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], "]"}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"Feder", " ", "komprimiert", " ", "um", " ", "\[Delta]x"}], "=", "1"}], "*)"}], "\[IndentingNewLine]", RowBox[{"Graphics", "[", RowBox[{ RowBox[{"{", RowBox[{"Purple", ",", " ", "Dashed", ",", " ", RowBox[{"spring", "[", "2", "]"}]}], "}"}], ",", RowBox[{"Axes", "->", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}]}], " ", "]"}], " ", RowBox[{"(*", " ", RowBox[{ RowBox[{"Ausgelenkt", " ", "mit", " ", "\[Delta]x"}], "=", "2"}], "*)"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Axes", "->", " ", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"True", ",", " ", "False"}], "}"}], " ", "zeichnet", " ", "die", " ", "x"}], "-", RowBox[{ "Achse", " ", "und", " ", "l\[ADoubleDot]sst", " ", "die", " ", "y"}], "-", RowBox[{"achse", " ", RowBox[{"weg", "."}]}]}]}], "*)"}]}]}]], "Input", CellChangeTimes->{{3.928557750282104*^9, 3.928557902112117*^9}, { 3.9285579511275673`*^9, 3.9285579765631847`*^9}, {3.92856840039112*^9, 3.928568467125991*^9}, {3.928568672837427*^9, 3.928568822432745*^9}, { 3.928569341179847*^9, 3.928569376166875*^9}, {3.928569434535133*^9, 3.9285696015136843`*^9}, {3.928569658560485*^9, 3.928569752096328*^9}, { 3.928569793781275*^9, 3.9285698843777027`*^9}, {3.92857001467026*^9, 3.928570107677952*^9}, {3.92857015053932*^9, 3.928570294901503*^9}, { 3.928570573919334*^9, 3.928570605030752*^9}, {3.9285707879757566`*^9, 3.92857096557675*^9}, {3.928571036107669*^9, 3.928571054168796*^9}, { 3.928761631648261*^9, 3.928761651414999*^9}, {3.9288252517745457`*^9, 3.92882529495479*^9}, {3.928851791381483*^9, 3.928851806060348*^9}},ExpressionUUID->"36d7e093-a26d-4f77-9fea-\ 583c59de2841"], Cell[BoxData[ GraphicsBox[LineBox[CompressedData[" 1:eJxFlX0w1Akcxpf1lnd2sbt2176ESq+SmspRRgmrOKnW3A6b9xpXR52pu1Lo Tpdulbz2tgrbi4iYdOm3RV6il1HhYkXn3EVeNrSluOPm9tmd+f31zPd5ns+z b1zxt4ERZBKJpDXzZM082jOP15St9EQ3X076/2WZzyey7/DljPX9ypuXS92D AyoKujP48qULePqraPfcjfo802wi+PKgbzZs+lRZ576xPMBXtIIvz1XEmHVs b3SPvZtwmqbDl+flzr6a3E/WZ3e2tvKgP8osPEe/xMP9YUfXlMD9PPjXKh5G 5Qp4yJccfJx6eT4P/QQdU1fKDaETp5hFBqmjXPU9EZ0iCI94xVX7E1Vl3/et bOCq8wnmDG1WJVfdjziaIe2YuKTRn9U0b2+UaO6L7ONvyQ5o/AdjbCkHQ7nI l9X7rkxbx0W/feFfb81kQXevZvyxqnOcA764kng7aiMH/FcPHukV5nCwzyyt VRQH+yl/bdj7dIVGXyR6udxaT3Nf29vscr7cDv5+/oOfncLskN+fNrlyPd0O /UI9Q5JEnWz0H2y+5kYuZoMvK39yvPYAG/zO4/4T0UFs7DP9IvGtwzI29ntU WaDoM9HokaYqRdpfLNybd3ud8fmNBf+zkVmBI8dYyLfmqPKMNrHQryxEr52r Bd19VaP9+dJSJvikQxt2cYOZ4KcdF4/c+GCLfULPyw7zM22xn6x82CxnmUbn bDbMtG9l4D4twSksO5EBf8ten3n2jgzkX2cKw9e8pqOfQ9ud69ukdPQvExnF ftlNB1/IYiG3xoMO/o/HbnDFDDr2qYvqsOKoaNhP4q1t2P2cBn2hNNgwuYSG +7Y9hfc9j9DgL/40cehvPxryu8qDG3TMaJrP33AE2bbBBv2nhamPZPtswBeV VJTNYNqA/zXzga3srjX2cVxmMINsjf3ivPzXZqisoPf3xsjZOVa499f/JV3y lRX82+OvBrGHqMjfW1otcSmkot9gNOP3LVHQif3K2KwJZyr4uPerBVV6VPDf o5v6h/RQsM/x2Y9zDQX7BXeGubbnanTl8irXH+IpuD9L1h1eu5ECf8cTW6/1 WlKQL/WqGpt6YYl+a448XEJNt0T/uqG+D9I1luBbRNGro7yxAH9hKddbetQC +wzVzr7BFtjPpaMk+niNOfRrCU3vbETmuKfmDVSn6ZjDf7UJVXtJpBny41Kc D4S0maKfWDVmmCk0Rf9EgzOpCqUJ+J4UO4+Lck3Ab7Cjc1zmZ4J9LjKWKObq mWA/166jDy8SxtDj0p3qB74zxn3dwiaX3Qxj+L9yiy2tvGmE/CdlTh7DK4zQ T3uez21GkSH6U7XSNriSDcHX79vcQ98yB/xtKdpvXTIMsE94yck57BZ97Df+ krFAX18f+hvTQGeetx7ub+3IbNE9owv/eufnQu57HeRPXlG2CsQ66DfMrNh5 rJ+M/jqLg7qf/kgGn/Cx0i/Angx+yaE8QX6HNvZZMENrc0ob+z3QWs8+7avR J8sH2IppLdxvCfw5XVSkBf/InfMNZG5ayBe2DeT03Ceh30nBHAsTZ5Lm908g +SqA/Q+h5ut5Q42n3Z4i1PzyoORk/9VfCPU+PYX5dZyySUK9H0lVoTtm/0mj R/Os58tUuE+aLvIZXfcB/rKyuVGOX8YJdb75hbBtSV1jhLrfx5S+RGXfe7VO cIod4lIo79X3xLM/w3x/EivV/oSHd4WfbdOoOp/Y0yxkUdaOqvsRHud0uqxE I9DNxcXdbk7DuA99zcr1bHoHfzm/IDnGYRD5kpHimX/gt+gX2sItnlL1o//F payeXbv7wDca4rBp8kIv+EMP671o8VZo9vnv+9uO/UINmrpEqmfQ5Rd03eJI 9Zr9coMebD5XCX+S/HMBzTgB+f8CgKZidg== "]], Axes->{True, False}]], "Output", CellChangeTimes->{{3.928571049063135*^9, 3.928571055245627*^9}, 3.9285719757570257`*^9, 3.9287612961121407`*^9, 3.928823689940508*^9}, CellLabel->"Out[4]=",ExpressionUUID->"a4e8800d-62ef-40ea-a4f2-bddc40b82cee"], Cell[BoxData[ GraphicsBox[ {RGBColor[0, 0, 1], LineBox[CompressedData[" 1:eJxFVGs0lGkAnsbkMg0GM8yMYYwpp21Lkuzo9rWKtli1xbK6KJd1p5SoUKTC prCnTdZukmIloajcvpFyS5NUUmedWjQtaZeUXIZZdXaeec95fz3nuX7feYXe 4Zv81CgUyozp+8v0pU7fb7I27R75SySh/H+4T9K8gutEEp69bKg07yqxc667 AT9bJLGaZ64h5tQSHA/TltoIkcR1m+O6sfI7hEe999ZwR5HkbFegbqdHE3Eo qHrvzxyRJOvsp9NMXNIzTL3Rbw5cFuMpCKg1B/+3ImEH/bQ59F8pXidXhZvD v2KpRbTVBnPk22eTGlKwGDhJskN+7eWDT2by1jda0qFP9vUUGgWPC5X+5Ke2 iweEynxk9dTXRfIuFa7TlCsXS4Xgy1oPzz1SJYT+wmIvdzJPCP/B/Aanr5KF yCfppi0tCgBOaNree7t1NfiExC8jT8GFPqFo67AteWuGfT61fUyaYT8XQYr/ aLoKT02RjhX4mYG/pvJ0idNyM+if0N7qKzc0g39lms3F7gEB8i1NpJ5sLxcg f6uj5M36JAH6xW2MWf3CW4D+Zj0ret1XC7DP+8nH0X0WAuzXwAnRPkhX4UGX FxQP95uCb1zeNzPprin0r0Tl+1AyTeFvGRzpPLjDFPmkL4fmPhcAJ7Yfj0tb 9sQE/aQyxtThBBP0d645bd79hQn2yZq1bvM8KR/79f8gPxIRwQceYHW04BGX D37nKQNDbqMx9P1tc2IPxBirvl8R39N3mTHyJZ3rt3elASd53gU5rR089GsN 9h3dUcpD//CpOWefpfOwjz23ZkFwJA/7sWxcb8s9VPjNBrZPpJ2KH9T2sFKL pdKfyDjFSZBx4R9zbNuMiKtc5OPLn3VtCQNOFOX+6FAj4qIfn/qhjPqQg/5Z nbFPfaI52KfPYtF0ZQ72E0f2it9LjIBXOIVucwswAt/i8kRLFtsI+uXfJVnL Wwzh/30jTVeWbIh8TyvbPz7ZBJwMiE1zc5ljiH68485XuhVs9K/l6rhsecnG Pumffud6Nvbz2bA8Ki5fhat3Txp9PK7i33xzK/wnbzb01xdH3VdbwoZ/y3mH iuFJFvIFG93O6KpmIf9Ejcv4yggW+gWZdPknCljo3zfsd+JVgwH2EX/+wAbY 71ha69tIXRVO83fTf1qhD/7ehp5DfF996NNCd72O5erDP2+6rX+nHvLN6ags cj+vh/w3MqPpbXv00C8w18bb10UP/RlLRqhdlnrY58WG1DNh+nrYryxo9nzK CBO46+Sr1ugOJvjqGrmztUuZqve12Svh6BEm/D//zs5M5LtlXbjWaxZwIqMs dHt8vC76RexOsWP8qYP+YabZCdJ5OtiHUUXt3b5HG/sVuAc6/FvFAH6JdvBk KZ0BfmL9mcDlfrOgn8csFSse0OEvm/hjqP1bOvLJuh3qy15oIT89oC7uQqIW +oUdtLNstdNC/+s51eE145rYx7OjP/NlnSb2ozC4t9WSVbjjomy1D+s0wS9c w7pmotBQvQ/Np8J08jTgLy35ctU/SzSQj5k9e6zumjryW/ataEo0VUc/nQLP C7r7Z6I/wy1k4GEjDfsUTrf1ZtKw35qTdlffeagBt1/mNHo9nwq++bj/I4JK hf6qtfG51NAZ8E+wPrClo5+CfIlcwwUVMRTkL/g9/e9LQgr6cXwNrM5dUZDK /jnF3GvxCxWkcp9B7r6ZTTVTpHI/8dF2dx3nKeBNDzqfD96fBD9ppMnOXjxJ KvXbKJISUYKcVPp3Sj9u7rk4QSrzeVzsu5tyflyJE2kE35cZNabkEx41bjyL +aNKfWKj0f6iwuYRpT+RtNEx/J7nB2U+oinZwHrgzTBwSY/tnV3J78A/vHPX gWMrh6AvmcjlMFiD8P8PfCpoPA== "]]}, Axes->{True, False}]], "Output", CellChangeTimes->{{3.928571049063135*^9, 3.928571055245627*^9}, 3.9285719757570257`*^9, 3.9287612961121407`*^9, 3.928823689970853*^9}, CellLabel->"Out[5]=",ExpressionUUID->"28291430-b293-4c19-b7a4-75e13e467fd7"], Cell[BoxData[ GraphicsBox[ {RGBColor[0.5, 0, 0.5], Dashing[{Small, Small}], LineBox[CompressedData[" 1:eJxFVXs0VHkcH2PCZMIww4wZYx6StDKya23hajQdtCUllDCL2Mgm1HEcMb0U YmfJhlpL0lm9LGVis3unvPLIKFpZKopBpUYUGbTTnr3fuef8/vqcz/Oe372c sP3b9mjjcDgt9flZffDq49ZwHVfXy5Ph/n8IK7xSlVd5MnOBYrLqYiUiKIu5 E36YJ+PbcnWdaX8hb1U5uq1ePJlf8EavjzWNiJXEfqWLCU9W+GSv4ePAe4hA NNLF7efKigo/P61IKP9cErGMC/iZxnVFKfu4wF9vETo45MwF/bTCI7wdRC74 CxcYpaefciCfyvKZVUstB8PRtbbmL5rOcjA+qhfoV/wwmYPpo1u9yakPRBzM H61Ut93tycHyoQa3RA5j9hp8R4UFeZSq4Vv1BnRMzbJBP2woN/NdLxv8aQR/ A7tqNuR7FqXMijgJOMIcNpb3BgAfaXNxorpasaH/Yum1WFG/JezjLKD/aRdj CfvFPz9OUs2xAB9Y2uwzlM0CvnM9aeCKNQv0q2/6huW2WIC/W0p6sFa8BeS7 fIe055A14KjN30eHEoaZ0K/JYSYg+zIT+vuZHjDLOsSEfYyPydpKhUzYr+ut YWotRYOH9mS4SgcZwJ+3X7whv8QA/eQNifz7EQzwV2TMfS2gMyBfvK+9Y1WD OeSf8EqsOxthDv08VX8Iwxbo0L+aN3/KU0KHfV43RD2msumwn3VE94oXlTTA JacpMa0CGvBfuwbN5PWbgX6UU8nh5BQz8J9a6EkatzaDfKEeQeKQflPIPxDw YD6o0FTT74Yw4WCoKfTXK0DXJKwyhX1aCIbqylTY78SBkMKSVirgFP/HgcX5 VOBXVX0rvxVEBf3VzXc31dCp4F+k77XdtpMC+VZ0H95SmESB/Bfa7/ak0SnQ byGF+J13tQn0jyr3vsgXmsA+pUKpurIx7DcwwvFojzAGXGgQnl41QwZ+CVph nCIhgz6j9k1BmAMZ/H9L45150G8E+ShNFec2Sowg/099lrQNW4w0/b46kxNM MYL+KY7M81KZIewzS7qNHw4xhP0SFTv3khcMAJdUbh4j5RsAvyPS6RHCMQD9 5h+5nWt/WQb+xeb2T6x0lkE+aUVBNz6IBPmvFnEH5ef1oV/EQuVsROdSzf3b sibNYZoI+1zNIbI6TIiwH1s+WB/pqAf4tGW4h+NOXeBfPqoMupepA/olCcnf 53csAf9addsEzhLIl5utjA3OJED+09KByEAdgqZfbNP2rFxt6D/sVPcw3VYb 9hEZBX5z8x4e9ns6/uHXoUg84HPVL1lPFrWA/2V0t75Rlpbm/eShBH1dLfDX U7d9vx8H+dx3xVAuZXxCsfw2Lml27ssWUaxfgVZRSHTcPIr1dy8rjtGun0Ox fWysNlc4q2ZRbD9auUoRu3YGcNlG3LRO+nvg25AYyx3Gp0Cf9ma1W/u+d+Dv ScKvOmk6iWL5lB5OudKutxiOdo0qDl6QTWB8VNaYsfKHyVeYPsofD1y+2/cl 5o/yfXpQctsYlg9l1/jsahGMAi7pY/nXXBgBfpz0DvFI9wvQF+2Kn9jXMAT+ 4v/u71PI5348X8f8YB/kH9QfiT56rBv6iT1KQvzZbdBfXJqZ7TpXC/vgxNH1 iXmnEGw/8fryenNLFMFwcZ7dh8Y19xGMz755RVpHeoRg+qIvdm/zXfwHwfy7 +k7Kf181iGD54q7vyNM79RyB/EvLK5kFwxgfldjh57dGKTB9lE10xIXrjiGw X9mtPddyxrF8qLurS/sM9RXgXbRYOVH6GvjKdW0MtxNvQB/XQWJWeCvB3/Pz 5yppEvLRCthkuvwd5OdLSbOpm6ahn0w52ew39h7603wm6m6fn4F9+J2f/5gf YT/PzRI3X5YK8JIrWQ61D+eB76yIw+XsXwR9d0Lw6NSrT+D/L2llY1s= "]]}, Axes->{True, False}]], "Output", CellChangeTimes->{{3.928571049063135*^9, 3.928571055245627*^9}, 3.9285719757570257`*^9, 3.9287612961121407`*^9, 3.928823689976472*^9}, CellLabel->"Out[6]=",ExpressionUUID->"a5eb6048-d703-42ea-b061-96796a6f9a3d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{" ", RowBox[{"(*", "Beispiel", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"A1", "=", "3"}], ";", " ", RowBox[{"k1", "=", "1"}], ";", " ", RowBox[{"m1", "=", "3"}], ";"}], " ", "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Graphics", "[", RowBox[{ RowBox[{"{", " ", RowBox[{"Black", ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "1"}], "}"}]}], "}"}], "]"}], ",", "Dashed", " ", ",", " ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "}"}], "]"}], ",", "Purple", ",", " ", RowBox[{"Dashing", "[", "None", "]"}], ",", RowBox[{"spring", "[", RowBox[{ RowBox[{"harmonicmotion", "[", "t", "]"}], "/.", RowBox[{"t", "->", "q"}]}], "]"}], ",", "Pink", ",", RowBox[{"PointSize", "[", "0.1", "]"}], ",", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"harmonicmotion", "[", "t", "]"}], "/.", RowBox[{"t", "->", "q"}]}], ",", "0"}], "}"}], "}"}], "]"}]}], "}"}], ",", RowBox[{"Axes", "->", RowBox[{"{", RowBox[{"True", ",", "False"}], "}"}]}], ",", " ", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "10"}], "}"}], ",", "Automatic"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"q", ",", "0", ",", "20"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.928557750282104*^9, 3.928557902112117*^9}, { 3.9285579511275673`*^9, 3.9285579765631847`*^9}, {3.92856840039112*^9, 3.928568467125991*^9}, {3.928568672837427*^9, 3.928568822432745*^9}, { 3.928569341179847*^9, 3.928569376166875*^9}, {3.928569434535133*^9, 3.9285696015136843`*^9}, {3.928569658560485*^9, 3.928569752096328*^9}, { 3.928569793781275*^9, 3.9285698843777027`*^9}, {3.92857001467026*^9, 3.928570032743538*^9}, {3.928570555592152*^9, 3.928570561345264*^9}, { 3.9285706260076437`*^9, 3.928570643801663*^9}, {3.928571093691655*^9, 3.928571128739366*^9}, {3.9285713444634657`*^9, 3.928571417209559*^9}, { 3.928825324767644*^9, 3.9288253366266193`*^9}}, CellLabel->"In[31]:=",ExpressionUUID->"6edaf132-f866-4c1d-9614-89e490532c4e"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`q$$ = 14.024848937988281`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`q$$], 0, 20}}, Typeset`size$$ = { 360., {15., 19.665389150943398`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`q$$ = 0}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Graphics[{Black, Line[{{-10, -1}, {-10, 1}}], Dashed, Line[{{0, -1}, {0, 1}}], Purple, Dashing[None], $CellContext`spring[ ReplaceAll[ $CellContext`harmonicmotion[$CellContext`t], $CellContext`t -> \ $CellContext`q$$]], Pink, PointSize[0.1], Point[{{ ReplaceAll[ $CellContext`harmonicmotion[$CellContext`t], $CellContext`t -> \ $CellContext`q$$], 0}}]}, Axes -> {True, False}, PlotRange -> {{-10, 10}, Automatic}], "Specifications" :> {{$CellContext`q$$, 0, 20, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{406., {50.15566037735849, 55.84433962264151}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.928557884579823*^9, 3.928557902598527*^9}, { 3.928557955245851*^9, 3.9285579778496847`*^9}, 3.9285672722851973`*^9, { 3.9285684372284937`*^9, 3.9285684676384974`*^9}, {3.928568690096772*^9, 3.928568730389543*^9}, {3.928568790157235*^9, 3.928568822966259*^9}, { 3.9285693418881397`*^9, 3.9285693767462063`*^9}, {3.928569445264091*^9, 3.928569537376432*^9}, 3.9285696019651012`*^9, {3.928569661951556*^9, 3.928569752390333*^9}, {3.928569795253318*^9, 3.928569807037949*^9}, { 3.92856984392802*^9, 3.928569884932494*^9}, 3.928570020789953*^9, 3.928570561947322*^9, {3.928570634957717*^9, 3.928570644198186*^9}, 3.928570682133298*^9, 3.928571010879868*^9, 3.928571094224835*^9, 3.9285711294284897`*^9, {3.928571351885201*^9, 3.928571386513215*^9}, { 3.928571417996415*^9, 3.928571439245509*^9}, 3.928571975790516*^9, 3.928761296149575*^9, 3.928823700075468*^9, 3.928825339216312*^9}, CellLabel->"Out[32]=",ExpressionUUID->"a264989e-caf4-4d17-a878-4f1abad832b5"] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{1256.6037735849056`, 687.3962264150942}, WindowMargins->{{0, Automatic}, {0, Automatic}}, FrontEndVersion->"13.3 for Linux x86 (64-bit) (July 24, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"bb9831ba-7e3b-43bc-920b-0f00317bd1f5" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 219, 3, 29, "Input",ExpressionUUID->"6805077d-0e9e-4f83-838c-9a36786591cf"], Cell[CellGroupData[{ Cell[802, 27, 353, 5, 69, "Chapter",ExpressionUUID->"2f1bea6a-2e0e-48cc-8174-5a7878587966"], Cell[CellGroupData[{ Cell[1180, 36, 290, 5, 54, "Subsection",ExpressionUUID->"805c29ce-b81e-4916-943e-1195a3e57ed4"], Cell[1473, 43, 128065, 2130, 181, "Text",ExpressionUUID->"5fa89b76-6b67-4a80-a9e6-87b3dba91c38"], Cell[129541, 2175, 4551, 110, 125, "Text",ExpressionUUID->"772c1354-3d67-4ef6-a719-f794254ae0ca"], Cell[134095, 2287, 4882, 119, 134, "Text",ExpressionUUID->"4ec354d3-ffad-4d81-b943-7daa8932a4e8"], Cell[138980, 2408, 507, 14, 51, "Text",ExpressionUUID->"3bb7029f-aaf0-42ba-92da-87098a378180"], Cell[139490, 2424, 1190, 20, 51, "Text",ExpressionUUID->"1981a8d9-2334-4e94-aff3-379d362c9ea6"], Cell[140683, 2446, 473, 11, 51, "Text",ExpressionUUID->"f6b1e104-f3be-4c44-b632-e2171fa919a0"], Cell[141159, 2459, 2325, 52, 53, "Text",ExpressionUUID->"d61a09c2-a8a6-471a-8aa5-123a1a5058a7"], Cell[143487, 2513, 403, 9, 51, "Text",ExpressionUUID->"0a847f39-9149-4363-86d3-a945baf8a579"], Cell[CellGroupData[{ Cell[143915, 2526, 5023, 128, 239, "Input",ExpressionUUID->"36d7e093-a26d-4f77-9fea-583c59de2841"], Cell[148941, 2656, 2242, 38, 45, "Output",ExpressionUUID->"a4e8800d-62ef-40ea-a4f2-bddc40b82cee"], Cell[151186, 2696, 2259, 39, 46, "Output",ExpressionUUID->"28291430-b293-4c19-b7a4-75e13e467fd7"], Cell[153448, 2737, 2316, 39, 44, "Output",ExpressionUUID->"a5eb6048-d703-42ea-b061-96796a6f9a3d"] }, Open ]], Cell[CellGroupData[{ Cell[155801, 2781, 2866, 70, 115, "Input",ExpressionUUID->"6edaf132-f866-4c1d-9614-89e490532c4e"], Cell[158670, 2853, 3341, 63, 125, "Output",ExpressionUUID->"a264989e-caf4-4d17-a878-4f1abad832b5"] }, Open ]] }, Open ]] }, Open ]] } ] *)