(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 239591, 4813] NotebookOptionsPosition[ 233837, 4721] NotebookOutlinePosition[ 234261, 4738] CellTagsIndexPosition[ 234218, 4735] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{"ClearAll", "[", "\"\\"", "]"}]], "Input", CellChangeTimes->{{3.92615667517485*^9, 3.926156686424818*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"c22a04d7-f3c4-4738-819c-f8ab099b7991"], Cell[CellGroupData[{ Cell["Einf\[UDoubleDot]hrung in die Computer Algebra - 2024 - \ \[CapitalUDoubleDot]bungsblatt 5", "Chapter", CellChangeTimes->{{3.9270239720010033`*^9, 3.927024011562078*^9}, { 3.927277035400279*^9, 3.927277036245101*^9}, {3.9289036792676163`*^9, 3.928903680025075*^9}, {3.929435678614498*^9, 3.929435679603327*^9}}, TextAlignment->Center,ExpressionUUID->"9549d516-5ace-4b64-ab57-b4c23eb0b6cc"], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["3. Mini-Projekt: ", FontWeight->"Bold"], "Datenanalyse mit Mathematica" }], "Subsection", CellChangeTimes->{{3.9291847280327587`*^9, 3.929184749818014*^9}, { 3.929429764978565*^9, 3.929429766840497*^9}, {3.9294356860923223`*^9, 3.929435690013843*^9}, {3.92944143298238*^9, 3.929441440929069*^9}, { 3.929785209193226*^9, 3.9297852214753647`*^9}},ExpressionUUID->"18d2d4ba-0053-4efa-8860-\ 76b67255daa6"], Cell[TextData[{ StyleBox["1. ", FontWeight->"Bold"], " Ein Experiment misst die Energie von Photonen im Bereich zwischen 0 und 10 \ GeV. Die Messungen werden in ein Histogram mit 10 Bins eingetragen. Dabei \ umfasst Bin ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["i", "TI"], TraditionalForm], "errors" -> {}, "input" -> "i", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "046fd57f-c64a-4d07-8411-07e9ac0c8600"], " den Bereich ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{"[", RowBox[{ StyleBox["i", "TI"], "-", "1", ",", StyleBox["i", "TI"], " "}], "]"}], TraditionalForm], "errors" -> {}, "input" -> "[i-1, i \\,]", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "657c7b7f-a458-4c1e-a749-e761cd3caf42"], " mit ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["i", "TI"], " ", "\[Epsilon] ", RowBox[{"{", RowBox[{"1", ",", "...", ",", "10"}], "}"}], "."}], TraditionalForm], "errors" -> {}, "input" -> "i \\, \\epsilon \\, \\{ 1, ..., 10\\}.", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "4f593d38-9449-4e96-9d6f-e8a3016e8218"], " Ein Modell sagt voraus, dass der Erwartungswert in Bin ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["i", "TI"], TraditionalForm], "errors" -> {}, "input" -> "i", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "6264857b-4d04-432f-9f5a-b11238eeb13f"], " gegeben ist durch \n", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["f", "TI"], RowBox[{"[", StyleBox["i", "TI"], "]"}], "\[LongEqual]", FractionBox[ StyleBox["a", "TI"], StyleBox["i", "TI"]], "+", StyleBox["b", "TI"]}], TraditionalForm], "errors" -> {}, "input" -> "f[i] = \\frac{a}{i} + b", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "c7664648-6190-4e29-a532-c51f96856fc5"], ", wobei ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["a", "TI"], TraditionalForm], "errors" -> {}, "input" -> "a", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "33a78573-bb7e-4628-9352-5b5e571e2e39"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["b", "TI"], TraditionalForm], "errors" -> {}, "input" -> "b", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "1342ec0a-d1a4-49d5-9cef-9fcecacd7260"], " unbekannte Parameter sind. Allerdings folgt die tats\[ADoubleDot]chliche \ Messung einer Poisson-Verteilung, d.h. die Anzahl beobachteter Ereignisse im \ Bin ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["i", "TI"], TraditionalForm], "errors" -> {}, "input" -> "i", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "11a52dd2-216e-4129-a29c-b1c9c5a34eb6"], " ist gegeben durch ", StyleBox["PoissonDistribution[f[i]]", FontWeight->"Bold"], ".\nSchreiben Sie ein Modul, dass f\[UDoubleDot]r gegebene Werte von ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["a", "TI"], TraditionalForm], "errors" -> {}, "input" -> "a", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "cb18443c-b556-4a78-9444-bb801f277441"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["b", "TI"], TraditionalForm], "errors" -> {}, "input" -> "b", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "8406e82e-a58a-47d3-b7bd-6f2648dadf8c"], " ein zuf\[ADoubleDot]lliges Messergebnis erzeugt, also eine Liste mit zehn \ Zahlen zur\[UDoubleDot]ckgibt, die der Anzahl beobachteter Photonen in den \ zehn Bins entspricht." }], "Text", CellChangeTimes->{{3.92941649792668*^9, 3.929416942970599*^9}, { 3.9294169868643007`*^9, 3.929417027391389*^9}, {3.929431076953311*^9, 3.929431079683454*^9}, {3.929436232838681*^9, 3.929436263791415*^9}, { 3.9294363066282454`*^9, 3.9294363351017647`*^9}, {3.9294364093890877`*^9, 3.9294364653145313`*^9}, {3.929436501720663*^9, 3.929436551918661*^9}, { 3.9294372030373173`*^9, 3.929437204224474*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"54edffc3-bd56-4e89-8141-c7a1de1ebefa"], Cell[TextData[{ StyleBox["Hinweis: ", FontWeight->"Bold"], "N\[UDoubleDot]tzliche Befehle: ", StyleBox["Module , RandomInteger, PoissonDistribution", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.929436888285372*^9, 3.929436930159102*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"f5c1b5f1-3502-49bc-b512-63b0809d18c0"], Cell[BoxData[ RowBox[{ RowBox[{"Zuf\[ADoubleDot]lligesErgebnis", "[", RowBox[{"a_", ",", "b_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"Erwartungswerte", ",", "Ergebnis"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Erwartungswerte", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"a", "/", "i"}], "+", "b"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "10"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Ergebnis", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"RandomInteger", "[", RowBox[{"PoissonDistribution", "[", RowBox[{"Erwartungswerte", "[", RowBox[{"[", "i", "]"}], "]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "10"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", "Ergebnis"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.92941703708714*^9, 3.929417176737534*^9}}, CellLabel->"In[2]:=",ExpressionUUID->"4c93623e-25d5-486e-9939-ff8b3b8007b3"], Cell[TextData[{ StyleBox["2.", FontWeight->"Bold"], " Erzeugen Sie 1000 zuf\[ADoubleDot]llige Messergebnisse f\[UDoubleDot]r ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["a", "TI"], "\[LongEqual]", "10"}], TraditionalForm], "errors" -> {}, "input" -> "a = 10", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "7b3e9846-d55f-4937-b4c0-79e86c05d46a"], ", ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["b", "TI"], "\[LongEqual]", "5"}], TraditionalForm], "errors" -> {}, "input" -> "b = 5", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "1fba29c2-8147-4890-b3b3-04fdea7a466c"], ". \[CapitalUDoubleDot]berpr\[UDoubleDot]fen Sie anschlie\[SZ]end explizit, \ dass der Mittelwert aller Ergebnisse im ersten Bin ungef\[ADoubleDot]hr durch \ ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["f", "TI"], RowBox[{"[", "1", "]"}], "\[LongEqual]", "15"}], TraditionalForm], "errors" -> {}, "input" -> "f[1] = 15", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "7413361e-a04d-4a9c-a713-8a7740c5b08b"], " gegeben ist, und dass die Standardabweichung ungef\[ADoubleDot]hr ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["Sqrt", FontSlant -> "Plain"], RowBox[{"[", RowBox[{ StyleBox["f", "TI"], RowBox[{"[", StyleBox["i", "TI"], "]"}]}], "]"}]}], TraditionalForm], "errors" -> {}, "input" -> "\\mathrm{Sqrt}[f[i]]", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "3ad029d3-892e-4085-8d2f-964c99b958aa"], " entspricht, wie f\[UDoubleDot]r eine Poisson-Verteilung erwartet." }], "Text", CellChangeTimes->{{3.929417202372984*^9, 3.929417298840626*^9}, { 3.929417368986246*^9, 3.92941737334651*^9}, {3.929436946361465*^9, 3.929436987439302*^9}, {3.929437075550206*^9, 3.9294371237854424`*^9}, { 3.92943720827324*^9, 3.929437208681849*^9}, {3.92978629979778*^9, 3.929786330088702*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"3fd45ab2-7931-431d-8e1b-0d7ac7a35f80"], Cell[TextData[{ StyleBox["Hinweis: ", FontWeight->"Bold"], "N\[UDoubleDot]tzliche Befehle: ", StyleBox["StandardDeviation", FontWeight->"Bold"] }], "Text", CellChangeTimes->{{3.929436888285372*^9, 3.929436930159102*^9}, { 3.9294371835309772`*^9, 3.929437195504073*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"eb0da4ee-8849-4b43-a0b3-c3aee26bfe73"], Cell[BoxData[ RowBox[{ RowBox[{"Ergebnisse", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Zuf\[ADoubleDot]lligesErgebnis", "[", RowBox[{"10", ",", "5"}], "]"}], ",", "1000"}], "]"}]}], ";"}]], "Input",\ CellChangeTimes->{{3.929417302966115*^9, 3.9294173219378977`*^9}, { 3.9294180656057653`*^9, 3.9294180663737783`*^9}, {3.929430140576713*^9, 3.9294301414813232`*^9}}, CellLabel->"In[3]:=",ExpressionUUID->"c33909b1-c2de-40a8-977e-09b420d898b6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{"Mean", "[", RowBox[{"Ergebnisse", "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.929417324101939*^9, 3.929417344791954*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"4503f0a6-8c68-4db0-a80e-ebbd926e5c87"], Cell[BoxData["15.065`"], "Output", CellChangeTimes->{{3.929417330572324*^9, 3.929417346385994*^9}, 3.9294180688720922`*^9, 3.929430144487156*^9, 3.929435887857626*^9, 3.929436069714106*^9, {3.929770737748097*^9, 3.929770741292056*^9}, { 3.929782993538105*^9, 3.929783014976465*^9}, 3.929788480855886*^9, 3.930301168186651*^9, 3.9303043325010223`*^9}, CellLabel->"Out[4]=",ExpressionUUID->"4575a744-f238-4331-b4af-9fe46cde9d37"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{"StandardDeviation", "[", RowBox[{"Ergebnisse", "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.92941737857835*^9, 3.92941738014712*^9}}, CellLabel->"In[5]:=",ExpressionUUID->"19b5f482-9040-4d96-9260-c5d1c3f57c11"], Cell[BoxData["3.985054034220321`"], "Output", CellChangeTimes->{ 3.9294173813121433`*^9, 3.929430145218933*^9, 3.9294358878695498`*^9, 3.9294360706993933`*^9, 3.929770744503231*^9, {3.9297829935666924`*^9, 3.929783014990003*^9}, 3.929788480868327*^9, 3.9303011681945763`*^9, 3.9303043325090103`*^9}, CellLabel->"Out[5]=",ExpressionUUID->"c1482471-1d79-4393-9bee-5dc02bb6f1c9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{"Sqrt", "[", "15", "]"}], "]"}]], "Input", CellChangeTimes->{{3.929417382881398*^9, 3.929417387684545*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"d23f1a61-b6eb-499b-99a0-d546b8a8a945"], Cell[BoxData["3.872983346207417`"], "Output", CellChangeTimes->{ 3.929417388317644*^9, 3.9294301460436974`*^9, 3.929435887882299*^9, 3.929436071727108*^9, 3.929770746844736*^9, {3.929782993578906*^9, 3.929783014999785*^9}, 3.929788480881114*^9, 3.9303011682038517`*^9, 3.9303043325195932`*^9}, CellLabel->"Out[6]=",ExpressionUUID->"78d72a8c-b4ae-4b8c-8f7d-e4222afa9dfa"] }, Open ]], Cell[TextData[{ StyleBox["3.", FontWeight->"Bold"], " Schreiben Sie eine Likelihood-Funktion, die f\[UDoubleDot]r gegebene Werte \ von ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["a", "TI"], TraditionalForm], "errors" -> {}, "input" -> "a", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "a4e3ad24-8499-4ce4-9259-edaa7401d01b"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["b", "TI"], TraditionalForm], "errors" -> {}, "input" -> "b", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "91e2e2fc-377f-45e1-9cac-4ffce63c816f"], " die Wahrscheinlichkeit eines Messergebnisses angibt. Sie \ k\[ODoubleDot]nnen sich dabei an folgendem Beispiel orientieren." }], "Text", CellChangeTimes->{{3.929417408782976*^9, 3.929417493606639*^9}, { 3.929437212040039*^9, 3.929437218957296*^9}, {3.9297761309299498`*^9, 3.929776131257639*^9}, {3.929786339169463*^9, 3.929786348186254*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"1fb0a751-8e02-441a-900c-0446819f7e74"], Cell[TextData[{ StyleBox["Beispiel:", FontWeight->"Bold"], " Likelihood f\[UDoubleDot]r die Parameter einer Normalverteilung basierend \ auf zehn Datenpunkten" }], "Text", CellChangeTimes->{{3.929436888285372*^9, 3.929436930159102*^9}, { 3.9294371835309772`*^9, 3.929437195504073*^9}, {3.929771307000428*^9, 3.929771317529364*^9}, 3.930300944927554*^9}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"b48ff0a7-bd6c-40be-8596-87eda5282919"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Datenpunkte", "=", RowBox[{"RandomReal", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"4", ",", "2"}], "]"}], ",", "10"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"NormalPDF", "[", RowBox[{"\[Mu]_", ",", "\[Sigma]_", ",", "x_"}], "]"}], ":=", RowBox[{"PDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"\[Mu]", ",", "\[Sigma]"}], "]"}], ",", "x"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"LikelihoodFunk", "[", RowBox[{"\[Mu]_", ",", "\[Sigma]_"}], "]"}], ":=", RowBox[{"Product", "[", RowBox[{ RowBox[{"NormalPDF", "[", RowBox[{"\[Mu]", ",", "\[Sigma]", ",", RowBox[{"Datenpunkte", "[", RowBox[{"[", "i", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", RowBox[{"Length", "[", "Datenpunkte", "]"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"ContourPlot", "[", RowBox[{ RowBox[{"Log", "[", RowBox[{"LikelihoodFunk", "[", RowBox[{"\[Mu]", ",", "\[Sigma]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"\[Mu]", ",", "0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Sigma]", ",", "0", ",", "5"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.93030100101716*^9, 3.930301026843142*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"3efb7260-eb85-47f0-970f-dc56cbcba546"], Cell[BoxData[ RowBox[{"{", RowBox[{ "3.2256119083624597`", ",", "1.5655763982047413`", ",", "2.232670053379543`", ",", "5.743179607513314`", ",", "4.60655364481763`", ",", "5.933367348487052`", ",", "2.401307180502816`", ",", "3.5876365393836434`", ",", "5.08568988527465`", ",", "3.4743668273701225`"}], "}"}]], "Output", CellChangeTimes->{3.930301168213212*^9, 3.930304332544622*^9}, CellLabel->"Out[7]=",ExpressionUUID->"7141fa81-5d09-4d88-acaf-7d373ca8c422"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJx0XXVcVUu0PnTXoTvt7r4z5jWuYnsN7FbsTuxO7A68diN2C4LXAunu7m4e z82auWvOe/xzfh+z9+TqWTPbcfrikbOUZTLZeiOZ7H9/Gw066jLoqC596h7l 4x4VSn5DFyOGpd/Sht/UhnIlClj6VWcY15cq1JdKZL//TIT3zRhe9L8/PpbC 8zKZVE+B0I8C1j/A0D9crs4w9A8/b8Qw9A+/b8Yw9A/XZ8Nw9P8Wu9sL9clk 4jxiXCqMA+a3VJjfUmF+S4X5LRXmt1SY31JhfktZ/wFD/3H9jgy7/P6Hk9Ae 0FE1wXRQTXA71Wx8uFydYRgfft6IYRgfft+MYRgfrs+GYRgfrt+RYRgfbs9F wECPSgKdK1FxHcVfTI8wD7rCc0YMY3qE980YxvQI9dkwjOkR6ndkGMaL23MR MPypCnypKtCBqvCeKhsvYBgvft6IYRgvft+MYRgvrs+GYRgvrt+RYRgvbs9F wMCv6v+PnCsl4jricv6L+VWdjRfPi4nwnhnDmF/VKeZXdYr5VZ2NFzDmV3U2 XoxlMqkdLUEOawlyQ0ugOy2hn1psvPh5I4ZhvPh9M4ZhvLg+G4ZhvLh+R4Zh vLg9FwGLek/UW6VE5EtxHbGc0hX42EigcxPhfTNhniyFemwYxvJKl40XMJZX umy8GMtkUj0GbLwYlzKM5YaBQGcGQr8M2HgBw3jx+2YMw3hxfTYMw3hx/Y4M w3hxey4CBvnM7Q6MSwW9r6TAl+I64ueNBLllIrxvJtC9pVCfjTBv9kK9jgxj +WzExotx/X9+/0POxotxKcNY7ssFOSEX6Eou9EPOxovfN2MYxovrs2EYxovr d2QYxovbcxEw/HE7EuNSwY7jelSUuyKfiusq/mJ9ZCLoIxNBH5kI+siEjRfP o5PQjouAQY8lELDLpfeymd0LWPqtZhjeB4zlZDarT3qumNUHGOoDDPUBxnK1 mNUn/b+C1QcY6gMM9QHGeqCCYLlRwegYl5syDO1L/69j7QOG9gFD+7hczjDU D/h3dYMsGMbroUzxeihTvB7KbD1xuZxhaA8wtAcYj09N8DvUKB6fGsX9V6O4 /2p08O9/WDMM9UvPabL6AUP9gKF+wFA/YKgfMNQv/V+H1Q8Y3gcM7wOW5s+O YUy/+ux9wPA+YHgfMJ5PQ2E+DNnzgKVfB4Xy3zDKiJUDhnKpX8asHDC2YxIE PZwgyO0ERo+AYf5EPwS/Xy34neqsHOhRtIOgXLQLMb1mE0yvXJ7gfpUqyCv8 q8Teh/7i99VZOZaHBWy+RPkmlmN5JmcY6w8uv0S/XJSPop8nykvRTxDlp2hn ivJUtFOgXLTbsL3O5Z/of4vyWPTHRfks+ueivBb9dVF+Y/lrpCDPsfxMJaI8 hX5h+7Tu/4nzKAnyu1p4X52VY/pREuzZOkE/Kgt2Gu+vKI9FusRyvlpYd3VW P9Y/aoKdqyzYX7w9Ma4l+qOiPhD9NCiH9rE8NxDelyvoB5HPRP9Q1Bcgr+E5 sT1RP4j+i6gvsDxXZfoAz7c+a0/UF6K/AM9juWHI6odyeB/Ld/CvDAX9aSzQ hwl7XpT/WD8YMCz9OitgqA/Li1BBPoQKfkAqk9eivMfy3ECwY+QK64zjaQYM i3SA509V8C+UBf7k9Cj62djeMVKgbzEeAfQE7wPG8o/79yL9iP6+SH+ivyzS B/RTXAcxDiL6zdKvC1tvqGcQ0tcmDGN5lM3awfFMuYJc+N0N9zwS1SDXpP+X CHZjCeNbwPC89P8q9jxgqX+gp2QU1y8T7N5Cwa4sZHpK+n85k7OA4XnA2G7k 5bh/hqwc67FawS6vJZgOeTn0H/M9f176vxIrBwzjl9pVZeVSvdGsv1j/KjN9 A/2H+cF2PB8/lAMdAsZyr5Tg9gtZ/Xj9DQW9qybEv/UV2of5gHI8P4YMAz0D ltrxk/7v1UDvXs4UsBi3wvKM+/mYboyF9TdVkFeYb03YfGM5LBPiV3WC/a3E /A2xPkznYG/yeDZeZ1NWDvVhuWki6F8zwV4wpVi/W1JMJxaCHLNWiDdjOrRU 8OewHrVWiNeK/psYzxT9Oazf7RTioUBHOJ6iL/hnBuz9/zueCHRtTzEd2inE 3zBf27F1g/9j+QFyulbwX5QZvwP/Y/9HWaBTFcHPV6FQP7wvlZtTsT4sp4qZ fIH6pXlSZ/VBOdQHGOqD9Yb6pOc0GN9hOQ1+mJbgF2ix+uF9qZ9WClj61WZY ql+v4ddWAf9eV7kho2up3Qwh7pFN8DrkKcRlYN3heaALqA/GCe8Dhvexf1DI 9KGIYR5x/woV1g3qB/n7f6+DMisHjOWfvoK+hvehXGxP3NeB94HeRX0A72M+ 4fWL+wj4fQPGPzA/Ihb1H8hvkW/w+vPnQb5jOVPF+gcY+yEVgp9QwcYLz8N4 RXsCnodyzHc6TH/g9ZEJ9p+qIKdkQhxJxp6D93B7qoJdD3rbj+lF6A/QM/QH MPY3C9l4oBywSP8wH5hea4V4cC2rH8+fASuXfl0EfW8o9M9QIT8D+Bf0NX5e jdEj9jcKBf4vJNg/KGflgLGegv427C/9x16BfmF+SWb2AuYXE4ah/5j/LRg9 4f1RoC8zNp9Yj8kolGMM+rKO5UfgeIglex76A/oI6sPYmuktvN+jTKE+rN/k QjxALtgjMB519j7GdkzuY/2uRp/9rseaPQ/zjfnQVOA7sC+0WP3QP6gfMNSP n7ds+L8OKwcM8V3cvj3FcseOPQ/rjf0UwAasfuk9fVY/liv2DEP98DysF5Zj 1sL+ZMP4AwwZ/v14ZzmbP6wvTAR/y0LwN80Zv+D4uyrT9yC/gB9gvqF+sBeA /rGfY87sB1g/HEexFewLUzY/eP9On9V3tMHewPxhyPoL9gfQB8wntPe7Og8j IV5RIvBnCZMnIv8Cxu/LBDtcReAzHn8T5TTUC/WBfAT+BvmH+bucyVupPvBn gF9qmbyAcqgP+A/XryHQryrjd+g/llfa7Hl4H+gRr7clo2/AsD6InuvXE+oD +kb87GEkrHOdYP80yEdYV7mM0RPWhyYK/rRUriTwmxKjJzy/dkLcylawlx2w PyV3wPZxgCHrH/CjVG8x40/sh5iz9cb+XAXD2F+2EtbfTqBD2E9TZf2H9Yb+ Ax0DRnFEuQNbXxfUrhiHMMTjCjBkz8O6iXEOeB7WETDQC26P7zOL5VheVrD6 xLgg0D9gGforFvzFQoLlUTF7Hu+nWAr2KsSb61h+I14PKFdj+kGcf2ynOwj+ sIMQ9wd9Y8L8WwknC/5MsuB/JLP5wOVmDEvtJhCQTzAPgKE9wKA3JZzP6Fvq bzbB9kk2qx/kL9SPMdAv/N+BYXhfjG9i/8CRrY/UH2eGcfsgP9SYfIdykO84 jqIixP81BTpIFvzLaCGemcziazB/MC/g78J4AEM5PI/pMEPw1zIE/yxDiGdm sPaB3qF+wNiPK2RxBKmeIvY+yCt4HzDQF2Ds/9Sy5wFjeqxl6wPyGN7H9okq m18YH2Bsl0QL/lCyEI+NFuK50YJ/nizo52hBjiUL8adkth8K8w3yBcphvWCc sF6AsZ8B8dVqRl+A8Xqqs/qB/jAda1KxPbzPrsreBwz1Y38rWcgTSRDiF6mC v8nnD+rD8S+Ogb5R/Jnto4YqyCMsTwoU5BOmM1WhfnVm/2H+V1wXRN/MHtcS 6MdAgT7EfSYsD+RsfmD84n4gXk8D1n/QC7jckK0HtA9Yes5EYT0wvfH9K9AH gKFforzCcgvoJ5fxrfRbQH7/dIZ9tggCdgWU/37Nw0gBg7zB8YlkNn/YPzcW 5L0xW0+Q26CfYP4wvchYe1L9YOfy/A+oB/oH9QEGOgQ7BZXLTP4fez+b7bPA /EF9IH+B7iScyNYHy2dLwV+woli/WbH5AHsb1kl6z1bwF2yZXgT7HeYF7EPQ +4BBLgAGfwAwyFXAOA5kztYTMI6DW7Dx/a42B+LZZWy8OJ5lxexlGA+sH2CQ C7h/WkL/FfMUQP5gvuB5KDifJFqIf4n7+9FC/Cua0QvWX8ZC3N+C4vZSBX2T wPQ3jhNkCPKzkOknUZ/g502EcjPBvjNj9I3lBz+fheQo258rEOIRxcz+w/I/ VWE8gIFupd9SYb74+SqoH+9fFbP2sV9jr9AfHI92YFjiI34eC+vFcoLXrZzN Py4vVbCfxPNSuH17we60E/SXo0J/oVyaNyeF/uP4o4uC/SzqR6AbbG/w+API F+iv2D/A2L8BfevEyqF/UA79w/LdWdi302TtQ3ti/YDx+NVY/bg+Z1aO+6cm 9EeNPY/jB85CvqyLEI/keUoYpzL5D/oEx2mrGP1L8liM54OdLGfzAfpYqi+u QV+ZMgzyF/Qt8DPm/1AFfwH4H/sPYj48fx7/v1qw77SYPYD3WUR7gvuDWC77 MX8SMM7PDFXwP7FczCZYH2UTzN8FrBzzWYlgv5ey8eH4o2jn+zH/FTDO9wxV 8HfFecb7c9lCPmkBEelF6k+lMF4ZxbhO8K+A/7QkeskBrM/0K46bqwhxWRUh 30ZZ2D/LYPYd3k82VfBHoD4cr0kW9B/3M4FesL6oEvzYMsGfqiXYLqoR9vFr 2fPAX2ifxKPB7/MwYvYvYOC33+9PNMGYyY1y1h70D+/DVAj2MN8vAnkM64Pp CPJSs5j9Lr2XzrBYjulCjZUDPQB/4/3CfGYPS/9PabDf5Exfw/pi/rdk9aF4 MbNvQZ9oU8/f8tG+4Vebxa9BfmJ9xc/RAMbxOh6vwnzDz5mCvsXyAM4P8XgV lMP7OF/LTojnOjAM+gjbr84K9oBoz8P6A4b1x/FEJabvAEP9YjnoDygXMfKL Avj6SvOowdYX66uG+fMA/uD7V1i+meD9mHr/CPSb1E9RnjgyuQPrgeRQgAPr JzwPcgeeR3Kq/nnQM/A85iuO4XnoJ7wn/SqzcuADwCAHAANfAN1gftAX7HF9 Rq943yVX8D8K2XpI/eX+LdArlmc87gT0JGv4A3mN438qDAN94HxrFeY3wnwg +ZfD5T+2k/XYePA6KbF5AvkK8w0Y5CFgWBfQd/A+7M8AltZBhtth+RZKTJ4B BvkA8wLlLg18CvMPegTmHzDMfxTSs0VCPm0Rk+9QH4wXytH4/5MPhNvj9IH3 z8X94FoiyVErpt9wvoKMQjnoQ5C/0nzCfqAJtr8hvuHB5ZG4HyLGG7CdAnE3 VcHOVhHsbE5vQF84vqss7PtnCPHibLafAfOF5QDPnwf5hPtVKcQTKwne/4c4 Gccg/zC/cQzzB/QJ9CHuRwPdIv724BjZp501GtaxRIjHVjB7BI+Hn7vA+qMh DunhyPgayjEfOjI+w3mlGYzfpfqysL/zH/sS+A2eB37DOI/pT/wex0gfQLte xsJ+MsSDVIV4kCrF8rJYsKdLmH6D+cX6yYDNB+gDmEdEX7Av6sHz1wFDP0Af 4n5VMb8A5MGghv9jeVLNMM7XqWIY7A2l3+1aM37H9FrH6AXmD/QRrA/MO8L1 4xP1AZarVcxeBwzjgfkEvgWM9ik8HNn6yhr+sD6F/dgSbO+z+RX2/wP4fixg oG+kzxnfwr5CCosvA8b0ksL2dWB+4H08f5aMvmF9AON8jIZ4eIADwxJ9Owv2 VcM+AMiTgAY69FJhclSqP47RF2AsZxOZnQL8C3oKMKwfYKl9LVYf2PGAoRzq x/H0OKa/AYN8xs+b4v7lyJl8wftZuQ36S62BXxvsg7tgnzSMwwvykHKZfgR6 l8ohH1qN4v3wPGbvI7+r/nmJb/j9NjBv2J7i+QfSvJczLP3VMnsCr4eMjR/K gd6wP5co+JeJbD3E+QMM8lIsh/ql+THF7XuYMQzl2F+AuHcuo0/AMC+4vFYo NxfsY0shnmAu5KNaCfno0UzeQHt4/8eO2V/SOtgy/sL5MiWsPhxfKWQYy6fy Bvp1omh9PRwZv0rz6yTkX0cT0I/wHswn8BtgkKvAL7DegKEc1gf4G9cXqCCf pOfShbgW538ox+uSK8S50wX9lC7sx3GM5Uctex76Dxj6D1jqjwbDEn/5NLxX wMYHGPqHyr00mTyA96V6y4S8izJWDvpS6i+Xn9AfwCAvID6E5QeXj1AO72P+ 1mLrBXoPngd9DBjkvYihPZy3F8H4HclnlqeXIuxXJgr2YwrDqJzts6SwOAys L6w31ot1TL7B+krPi/v0iYI/FsfWE++TVQjysILRE5YvPJ8Cr4eawC+aChiv tzLF9YvyV0fQt1oK8hbR70QThkHfYfr2Y/QLegTmF+oX6QvJYQ+evyDVYyTQ 3/+nf6OFeF6c4L8mCvnK6ex5NF4XTl84nsjbg/WH/sH7gOF5mC9YT6ldY4E+ jBXsB6gf55Py/sP7oM/gebw/nyjYd3z/H9kPLjyf4HfxSLAz85m9AfY29l8j hP1ETr/i/jS2R+vY82Dnwnhwf+IE/ub703h9zRX2p7HcTxbsv2TBH4lm9Ir3 UTIEfVPE9As8D/F/mF88/9msf4DBHgF9BOsH8w/7xVAf2BPwPowPr6etgn0O /cT5FyVC/LqE2RewjoBBbkH9yH73cFSw9+F5nI/Bn8d5uI7Y3mD2Ft/HAoz7 V8vaA4ztH1mDX+fEynF/Qa67CPFdZ/b87+ZynHB8I8BB2L90EvxlR+a3QH1Q DvVBObyP9jm8nBmG57G9Dvu/cH6B60fAWF4ZsPZ+/2pBfC6WDPzff8zkGMol +omX6DfZhGEpXmOuYF8D/+J1zGX2FNCzJP+0GsbN7RfsXwcSiM9jPipl9QGW 6LpawT/HdmAggfgE5osq5m9JdFPJ+BzkIYqLeKmw+C6MF+QsjFf6f03DOIuF /bFaZi8hergL8dFwYX+vXPBneHxYaleJxRVwPhC3r8APlNrLYvFRoB/Yv8Hz bC3IGzvsv7s4CvLDAfP/IO7fo3hNAI8fov3OAH5fFuYvHt9AejJHo6GeIra+ sD6/68nRZf7x7+6/a9D3I5Uo0Ls070rsean9EOZfA5bWW5npP4hDQ/vAL4BB PyK9N7FBXnk0xOk66wr+O4/PSvXY4nhsZw3cX3cxPsLjAT4NdC2tOz9PhOxn FyMFexrZv148vwv0E44PifdvJwv6r5Tpc0yn6QJ9pwv7y+lMn+Nynu+B9xO5 fhbbB4z1LfeXAeP9yhKG0TgCHIT8P1sF/QYY7xdUMYzzHxyxPg1wUOAHeB70 A5QDRvu3EO/+j74CDM+L+hDWBfQfPI/1i4zpG3ge6kf6rv59wPC8qP+k51TZ /hyWiy6M3gGDfIL5AL8RywsDFt9C+3wBhkJ+gY6Qn6jOxofoke23BQr2nVyw T/SZff0bUlOmH6Xn4HxVMqN/qZ5EIX6QIOzfJTD9Jebb4/hUtYK9DPXjfIoE pm8A4/2hFOb/iRjqh/mF+rHdkcL8N9EekNrLEvyVbObPgL6U/h+N7QOWX88x 8DO2B3MZvwPGca9swX/PxfkP/9kfwHlYBkw+gr4X80VgfmA8UA5YzJ/H9pip YD8YCf6ZiYK/DesH/iNaz87mQjwjlc0HzsPNYvFkCUdh/VWPoVx6P1aad+uG /VIqnP8OkAn7TxmCf5sr9D9LiNdmM32H9SDfD5PahXwGPVaO8gyoA9PjgOF9 4EeQ96APpP4VM32G5bWlsD/Bz9fhfD6+Pyw9x+8fB4z9p4ZzKWch/8KAyTmQ F+CfYTvUAeuvAI7x/o0Mz6vCOZR8Rg/AT1COMIuvlwnnNWrZ+knjqWEY7CJZ wx/IGbDvwQ7F8f5oJp9w/EALxwPZfmock784fqavwJ/wPshXMf4M843G9Z94 Lo6jalAsfzXY+1AfltfKgnzk55nwPQA8Por343QU4jtY3vkI8tFHOJ/kx8qx fOXnlaA+/P9cgV74+SUsT/SFeJ2BQjwMxov3Z1ME+Z8snKNNZP4rHn8GGw/0 C+gcfqF/mP6zmP4GegD7H8k7yN+RVTB9ivZbOsM5E36+B9MLX5/fxUHAHznM HkHy+yzkfSUw+xb4+Xc19fY28CPIR5A3v8tpgz06kcs/4AvpeQs2HqnfVhT7 uw3fg6j3wwGDHsfyPELYj4sW4v3RBPN5KpOLaL3Z/QJxgvzn50mw/2Eh8DOP N+A8yiwWbxAxivdBfp8sg8lXTD/mzJ+A9mD+pfpshfPadkI8rYTFAYGesF1i yfwL0C/YjlE8DyL6I1AO/QGM86H4/p/4POgvnD9SwfwR0f+Acmlciv4Hyuvw 4OcnpPHz8xJQn9QP2Cfh8TGsz5SZf4HlqBoV4zUSX1Yz+wfkCawn3g8yY/YW pjse74X1G4T0Po9fAb3gfBa+fwjyCdMjv9delNc4H9VHOA/gJ8S3CoX+Fgpy vJiVY/2XIewfZAn3E2axcmS/RZkpzB/M7+/XtGB/O5mthxTnEfP56wR/pMEP GsnjXYBBHkvt8fOiv5uB/Id6/+p3va1MsL8VIGMY21UhBOQkYNA3KF5GDYXn wT5JE+Izmex9mA/Qf1je2eB4QGcbZk/h+0xSGBbpE+gHzQM7L5ogxDcKBX1f yN4H+oByvB+QLcjDQiZPMN3ZKuSbw/iAf5H8kvN4Cbbny9n7+Hwkj39I41LM NxDzz6V6aoV8NvBPnBUwyBvQv7DeUv/5ekI50Pfv31KOQX+J8RzEd6UN8/GO 49/NWfN7vMCOwfZUHrM3IH6M5MNEVVaPVK9MsMMhX7dGkA88Xgn8APFCaA/6 BfYP5AvCeIGffz+/yrihvE6wlyKYvBDjg1ge8nwY8I/wfNhhffyfe92jGtYV 2Ucu/Hw36APA+DxFIdvvwnySIMQRQI+UCXGYMjavmL5LhOdLGZb8Us7/0D7i Bw91Fp8GeoJ1A/0LGPgHxg38KY2Xf98NMLwPWNbwJ8bfpHo0hXidlrAfpcXi 10iesvuoUoT9YH7vulRfgx9Uby9IdgT/vg9g4BdspwcK+VYCXTM5VyvwFb8/ GMaP40lKzA6V2lfG58Hl/HseSG+cbeBvakiRveXB78cBDM+DHgP/D+gOzSvb n9Zi+gAwtnsLBP+d+/14Hnj+P2Bsp5cwegd/BzDMM8wPtldCFfbnRLmD73sr JPi8TAHB+cLc35ee5/E2wDAf2F9KFPz0bCG/p8HO2wP+WayQP8/vRUPzedeI 7U9K7/H77EAeSv+vEOIfFSxeJq072CUyJm8kuWnA9AnQEWCQD0An4J9J9hXH mM/490jx+dl8Zu8BlvoL9xcUsXg10kv1/g9a3xxzBX8GnTfzsmDyDeoDjPN7 8lj8GPdPWzjfJtzfFCBj6wHyTqqf8yvYYdJ8ivE1jvE5Z4hXa7P5h3n+Xb88 n9kfeP2dGUb991IRzmdpMvkLGOqT/q/BMOZzH4V4DNA/jofwOAjMF/wf5ADw gSSPlFj9OC7F42dSO8aMH7E85fcHifsRwI9SeZWgR6uZf473X6A9Tczf7Pxp voDzGD+D/YL3vXMFfQDxIOHeHLg3hekTfl8MlKP2tBruKTxbIviL4nmebME/ yCWILusxzh/PYxjbIalYXk9UZfEkWEfpF/hdm2GQX4BhPUEuS/TGz6uDfAUM 5Xg/n8s7sBfR83f5/TBgL0t8kMD8H+g39n9KBH+zhNlvIH8A4/7ycizPGvJk rRvyvTqXMXsT+AHiYaCvwP8BjM/3qgj3vUJ+gQ3jd8DSvAE9aAv3LRVivduK 6yMsf1MYn2F/vJTxj0+D3QIY+FEsx/lqpoL+MWX6DtYDMMh34COYXyiH/uLn uf0OfAD0Bv0AfYP1dSGTE1ieluC4Sg6PN4H8BQz+Avh7oD8B43J+fwfIIUmv 8PwqkNeAoRziUNAfeB/0xf/tT+YK+cx5zL8E/QL8AhjiDchemgn3cSYxfQzz 9vvnHY/H4POuRQp2McgZzE/RBPEfO4dYqkCHsL6i/Qf1Ad0g+cD0fomC3wTr jO/L4ffQwDqL9ic8h/Qbu38gmiB6YflZ/H5MfL+FD7NH0X4Vu+/CTyj3E+oP ZOcp8D5ypZDPVsXoHu8v6jN/CTDoJYgPgLwBeQ3ySKJPOZM/gEE/SfTOzzcj /+M/+UMIa3F6Awz0hvUfvz8T5A/QLx5vgxyul8e/8Ugez8P7xbFCfI+fT4B6 cL5DGfOfoX7A0njLmL0N/Pm7nHJ+w+cLkgX7mZ/PAbqG+BjIWchvA/2G7w/m 9w3BeoC9Cu+DfYrlunD/j4cjow+QX4CldeL+OswX4p/OcP6WY+AnoA+gN+k5 I0YPgJE+lPP7C1B8L4D7xyhuVurA8k6hHNYFMNAF2OnYvvNj9hbwE9AzyhfJ 4eXQXwkbYf+ajSedjR8w1AP0If1C3mUh2z+E+Bzmt0KcP5sjfC8hh5dj+czj cTgfrY7lT0K+CtAfYChH8U6tBvustETI/+J5MUBvYJcARnqF0bOOMF/8+8RA nxK9GOP7D/5zHwzGhSxeIP0aM/6Q5onfVwHvAwZ5KP0f/H8hH4ud58xnGPgX 9j2lfhcI+qWK6R0cny4R5HkC06s4zlkr2G+1gn9RSzDfgv2pxjCUw/s4z4TX B/oP6w0+3zh+DvZ8pbDfWsniG0BPv4uDeHwX5g/Hh/j3nKV1h7ghvx8T1gf4 HPQJYKAzoF8YH9A3YJCH4LdLcsZB4XsKGNszvYbynXN0cbyA5QnbMfkm9Ytj aVy2WB6yfDkZk8P4vL6akF+Wwegd+A/Tvx6bL3zfQzIrB4z7ze+/Bf7F+SPc HwG5BnJaep5/BwAwyGHgD5hf0Ls4H0lD0G/gF2oJ8WYtzL/gP3YuE+R0FqNv wGjfIyqL2QPQX+l9TSFfQpPFi0D+Al+DfML7q3Ih3iVn9jfwC45XcnkN7WP/ me/fwHpL41HC9BDA8/nRfL3j+elRDXQG8gzqQfLNQ4nlp+N55/ffSs/nsTg3 6DeQSzB/gEFOQ/9AX8F8AUZxeq8i5o8BHUj0wu9jAXoBDPoK9puiGvQeokdm b5YJ96nx864wD0AfML8ovzygIQ8U7MVSmZA/zO9DBb5G5RP5/gXQlcQvjvhc jQe/jwnmD/QMzuvg90hg/4Ln0cB4oT9g72A9oahfsL9sTNH8efH70KF/SP9N NBH0Dce4/gyW1wf741ifpTN/QKonA+dv/Od+V6BPvC+VK+Qf8fg+lg88vxj8 B6n9HILymzrrMn2A7JoAnj8F9ijOG+BYmi9zgd/5fcFQH8hdeB/w72aoA0Vx 585cngN9Qr4ZlrslLB4p1VPC4lmwPoCBHkA+wfwAf8D8wbxj/s5mWJIXPF4t vRfI/Gkcf+Xf78Z0os/4B+gN9BHIE8D4PIWKoG+UGX/hew25vwTyHfQ18Clg qA/0HqwH+CtIjsjzmZ6W+sftf8BSPQVCPKKQySfgbyyvTCiKL9TTL+J/dp66 hvEfwh7qbH8Jx8EqhDhaJVt/8Cewnubn0cBewfQmE+yiCsGeFdc7g/nTwP+w /iJG8lbO72+U+mOO89EGWQjxBHM2buA/6A/wt7Te3P6T6uH55KB/EF2x+3yU mH5D9noAt/fA/sP3Zycy+0x6P0mY7wwWb4X28PnJIuG+kkLGf7AuOH9Hmfl/ oNcBwziwf5TF5h/LU30mL5FeY+eTjbB95sH9aen/3N4A/kH++0QTYf00sP0M +S5nYZ/UielPGD/oLal/3N9E8oPZN3JmHyF5wOLZ/PseOP5Uy/SH9P9aZn+C fsPrn8noV3qff28UMPAvzB/UL40jS8hDKBT81SzGvyLG++sawn3Laow+cByb Y2gX2sPxV03BHubxo0EN64jts2qGQU5J7XH7EcoBo/G+4/IU7EfwY8B+BH0J GOlTGf/+l7Redoy/oT7AMB6wN2H+MC5k+gwwlu8agnzWYvIU5g8w8BPQoyRH uHzE+39ZQjwyg+WTAz1K7VkqfE8PMMhDoAegA7zeqoJ8ALuW388L/QH5APSK +SmLjQ/RN/u+YhWLp2L/yUToH5ynqBXOD+QK/My/9wnzJ/GzhXAfK99/l+ab f08BMPgnMB94nVUEf0dZwBpC/ERL8Bc1hfHJ8X7ZOzk+/15Pr0DfgIGeoT1x PqF9wDh+pU6nDHl6oO3zcOZPnC169M51YQbLh0tbHrfv0ossNl/r0odXWQ2A eKQL7b8j+7FeRjnxsRh6Zn2lIbW6XG8z7w0hGXuyZrTeYUmvNLl36LlJKvnr 1wCTocNCyB6nnCpZm2yyr87NZQONIve92u1RW8v9+ZlWJ1b6WEST9NH5T78/ M6VtO3a8Nys/jljsezPG55Ml1b//ykzZK5V0C9lmfdGWf2cB5LZKtmfHlPBU YjFXfewgX03BD9KinqvK38sn8vN70/cZrbp7I5jNv2XHDbcONIX5MKMmfz+l P+4mkG+Wp27r7jIT/CxLOvfC/jM7d6aSz911FgbeMqFuw/LanS6MJm2Ox8lS z2nRl6M3qZxaHkrmbDi/dcVFe9pBw7fS7H0+ORF3dL+GrzUtNo4wW2GYSb53 PbDT4M8KMtUt1KLj4SSybrLqaj1jZfqlKCCyy6FYMubL/mcOdapU66T+6fyw SDL6nvlY3emZRO3gWvXXF9KJ4Z/fNu/eDvs+0eTd+GL1bUfr5cHFrpvH/BnJ 4pXDTToUj1+STC44ZB/YHA12ZzLxGkbPqKnw7yRENdiBNw/e+zlSld9XMyn0 0+lM31DGv6rt7ft0MIxj9sqlATZHy2/Hk1v9bpT6LZbTnUdaNN6cF0amzNLJ Ngivt6NbTJy6+R0/b5vyOv5L31khzP612300fszlFLLGtsOZI9sSiZrjH2YT Z2eSPnfLak5N4vveZ9+ONDjiY0ufDf4zTfVZDtkeM23/tA+O9F+aerPtTH7f YugOjXkFl4pJa7Ote3VO6tAmk2c93G0UwuTDkNR5bh4OIeStkvto9Z8m9Pb6 vhMuTYwhZwZZR61sa0o7Pm7UZMSGWBIdRD1TH8noEmO3mO6940mjzvSF5e06 UicfOb9NWjyLz0cWmFzesS+YpJQH9/kaVo9Xrhn9cVswMZz9j4vspD5dHdLb xX1zMHmpFbTSqNSAdncaPFTlRTBxt+r31bCVISV7D/bqFRpMum3rLL/d3JbZ V9YzFlx3O8bv6+72eHnfj1cM6fe9t1dpdwghRe2v7Ixy0qOb/c62djkdTJpV KOd7LtSjk0emrXp9IJjtZ+Z+ar7h2+Nccr3x4dm5TUsaflNIbZt7Bi3tS8mL Xq2u936VTFqqZP+cFaxM+7SrCHl5JoY86uN9JCDTlGaNmrFgca94cn9K8tHm f9WQ4Burni6PTSAz+2TUWX0wo8dIjkvMngSyeULQ4kkty4h/dumz3OHJxGxP 3z9q3yvRCS76FeUacSx+cvyQvPGa78EsvjjG42B0t9gQJk/lf05crJwVw+zJ id2/nD41LJQohzQuGnaU39cE+uJV2stOM61imH2s3+mPTqr68eSS28LAI32M aJX8/IqlWSGkbFz69dI5RnRFK7tSJ+tQZp+O+fowcUJCHOlwb9bw1u78/jnw C2bfbvph0uVgcvLgpcMb3+hSf9NuDwIfBJPjuq5bAuP06O1vHyufewSTN8ov U5d8saAaJcazeoYmM32sHZu2V39ACovf3vcKj3ltyPMBtvtNlY1YE8L8mQ+N +s87X5hEBg5SOqE5ip8Xj2qwi0t+JpbZbIxn9vqp0CZNZAeDib+GU4im3Jwe qPzjQ21tAlm5oeyLfIA51fI9dH/BmERin3y785cafj8DxNPDd6V/KBydQUwT Tjzq+cGK7m8vN/o0M53Y+bn4TTa2oeq9om9dPJFJfFovWTjTyoHZyxC/OGO3 qVOT+ALSv0vf6ceHO9B/Dn9vZXG6gJTX6mUqf3egB+I2+f7YVEjiBu19tPeF A/079sS1hHGFpLv5Fzf/zqq0R/a8u02eRjH72f67lscNOH9cry8T99NPhVPC yI+bYz749dKgFpM/JQfODCcDwmYcsGmkSdOuLPlyYEEYyd89ZnnoVE3atk63 R6fuYfz+rMXH9xQdiCBD7jSecPKTnObs3DQjzj2cDC4McD+lbEwr6oIjvxtE kKQQl0BDok41vz0ZmvBXBLnRz8RVZqZOk71W7vDcEEEqm/qGz/xkTEsPv8xc /CSS+QvT38X37OAeSboNvH3sUKWMHlx8MzReO56Ye27pGDvQgMoPPTg73TOY LO0x7+hae33qm+M1KHVjMLPnfoVp2QyIDCZjjI9fv+tqSLvY+F4YlB/M9vu8 tbUXDemUSfxaD+tvfNSQjnmr4prkFML8h5IXLvv1R0ax/NCgvRZerfbkE7cB h51219u3J6b/ujdvYR5p5i53La/H+YvrxvStt5eGbu9gtdZEl46bMPVAq+Rg MuT4tRdpU3TpnB+Pru8ICCbn6r5dty02pO7HvbWvbQshRrtLxn26G4jzaaP8 yJIAefisyTlk4Q+1AfdrvpCJx1ePPWKWQ16fsRt6+LM5PfP8u1tS8ySSMMQi 6mQfC9rzfE/nbylJJEO5x6gTu3k+LvhbI/oHdVrbPJpMaHZo/6ZHTjQ+O83s 1IRSUv2nbbv96s4sXi+trzMtHj3EZd+yMnLym/q0I+2c6eWA5PUvupWR44Ou Fi+740xn/Dks+XKzcmK2a2Fw2j5n6lc29+261DLmDy1+/XfOjF6RpMsH20NG oRB/jCAths3WSnHzIRr3mq5sUp5D/BNGGl7t8Yy83T33VnVGDvk28lN+pFMB 6dF6/WSfiFQ2L29C/I8s7F6vnxuPPDdAJ5303lxVmWuXQcLuPj8R5pZLDB3y 8jq+TyNB4WubO07m+ZQQt9i652aPOROTyJppnx+eqK0kJWvzXvZ7lkiKAuva DuxURb7vdtetu5LI/KtTh/vfPmqfSLYuOjau8XiwK3m+5Z0t59KG3kwkx2T/ vv6QrkUdIvau+mkcSg5M8QiK/aVNP1wZHH3xFOhHbXrxwK/t5/xDyPLUaQMv NCsgBywvPJ0WmkrG3T6sZN+iiBhYLny2X51/5+qPHd/25vdJJVfWrvq4agl8 VyKF1FVfGLPPwYS2n3Zmde6BKJJMK/QmDTChBxM9Yl5mRDG9rj53wYpzHyCf 3Y4+I/+sL2ubS8bdmzL2lbsObb8ku+MNlxDmz8zYmeuVFpBIctt9Pz13Gb/f 4OGGGdXfdpvTgnVDfTs9S2T+zvdN58b0nJFEjqxrpHbdOIZ4TR70PqMfxJOi ya/Etb6Go7KYHXSqi5OW8YNM0mnxpUkRRrEsf2VslwNKZccNaJrSplOyy2A/ OlHviOyO+4xKyaXq0b/6OzjRf3qkLp1qXEJGXwxe1P4PJ/rH9dLQCcNLyI0h 7U+cjzGiLptcXuUGhJJOd+Q3XmTy+wvBn9HuFn5i9dIw5g8v1/nc4WhMOLl9 ++XDbq/ltPvnBarjpoSz+GrTFZ+6nK3l9wXn6ZsuK9MLY7h5s7OtU4PDmb5t u3RnYOnIcBI0QP11Vi6/z8dxicP6Eaf5+Zyd+YfvO7pxfeH7qN3x+a+53Q32 RaTW6ROVTfKZvXlq7s7gl9mpTL++7VzomuOZxuTVt8tVM4eqpTF7+2igbMHW TWnMvs7YdSvngSfHWl5aC0O6ZJBHuSW9r7ja43hNff22yg5N/lhXQGZrnxml fY9//wTkoVu7DbdD+xcwvCVyT86Q/YVk5Vo/q6hv/DzaiIJ1f6u6OzEM426R eLv/+pFlzB+y6+i9ROVlGVv/XK+6azM6cbyoNlh/gkEF8bLImrPmbhLr5+cV fWuG/svPOyZNSvyk1ZPft6OaOr0wK4TfpwP+2sSrI8fYd+XndVZbmBcYvOX3 6/Tr0rWnbLYSLZ0aVOAZyO/TgfUprVXfkdmfn+cxe+mVeHGcKi1ZObjD/Z/O gr/rQlfHfz+m2VWb7jzo4P8ylN8f/m7swahrEfz+8IxKu12T/9Klnzvq9/74 MYRYPE8euNHBiLb2ivb2fRFKRiToj7VIK2n4TSEngraZhe2T0RG5p0eU3Uwh W1bv++XxM5W8PDbcMMyxgBx63e6zsbsl3TvWqlr5SD6pCVj5rFUnG1rumbVk 4vx8Mkp5xYhTz9Wp9FtKxmvrtbB4a0cfmliNbbuphLhmfVqY/8uZTi29Fqad WEXS5moPywlMJveXavecniSj/bKe2x1/p04NA41rGpkrURI+JXnjUF164HPq lDMxKtRZVz/hbpQDjVybcdL6qTFtdbP3jy/LVahX8vW0JrrxROtYf9OgJBU6 8cX95Z2z48mZF9VDz/dVpWa2Le6OOx9PRmdETdv6OJ+0uTSoVzfHbBK6sHRm 9tWqht8sEn+tyy773ECitkun+9jpRWRpmwEan/vJqfSrTBd0VGr/52kH+le3 yO2N+xjSvWeun7QZqEU9DNXPm/xZb0/MefPg6TAD+rbQt8gzNZ4cizm189su AxrZ73vhzPx4sie3vNQvWE6fVu+pO2MVT04dzzo3aKucrpn6ds7hmQmk+oT9 0bmeptTfyG3RvwfiyfhF281bzDClo70D/n4/LIFc0y0n3xuZUpceVT4d+yXy /YupprFKTukMe9MjpZrePL4rX+J2ITcygai/sXtWeZDfXwT66WdQs4mbc/l5 gJxms/sv1eH3E9k5zkx5kZvA4gGzXSwC2z5NI+dMls0ldrqsvhWzsgMqnPh5 J6Bb5Q8erZtMSSUXg1b1v/fElFpFum9YsCyLycfs3XaOeo0KWP/jJt7W/WMK /15bj/Yrbt04VECMJrV3DJ8jp40i36onji4mX0ucXwad5N8vUyu1qDjxKF/x e2XzqyK69agmezseef21L+xz1hFrQ/X9GqZa9Pu9+aYdkpRpq+szR6bX/WDj hPbPxn8r6t8mjPVn4shlLS1fh5O++6c3mupqoHD/UGqXNf2sb4QwPCVZ/6+H 8bx86JnGfS7eDSduYVsjmsxTvG8odmL3R5NTU5k+OP3gnuWnGv793UkvKtxU U/l5g1++hSNnnswmsz31nJxyuZ1TU3c4b/oHNRrnE5016nYN0eiyz0EzTI22 8LDtP2JeLbmw/MIqn2ojmmW5rrHK7ijSekaXt85vjej8848STq2IIQ8HZ85d aq1O5zzztY8rLSeeCRPjgsKNaFxbz5XGBwrJi55aVYZRRtTmdudzyp6FxCho 7ewOU43pX10+XlpRWkke+baN6dXCmFaPG9P4pyvPr5k81fjgprlZZEH/xJav PynTuff1si8E5ZGmpdGfbvyoI/+mD7Ls87GQ+RfJ/uN76boXkS7NVvZpMd6Q LsxxJSlv89h8POkTe+nqi2zSp/2R+dlF/H4i19h4v+5frWjasNRQjde1ZGXB j0UxetZ0Z7nZYYezdWTv/nEfgxJs6ey+vhf2uKrRoRp6f+4ssqWH7k891nad GnUZ4Ltpi5kDfbl8pXJNkA49sabc/+ZYB7pim2lUSqAefX2ibOC1yQ60F812 cbbTp5r2LosXdtEV4p319L7V4vGqjHwysfn4AR/b8O/VttHp4TS7pwPddKns RGaxLn3/03fVU7mFYD9b0O6LGuvvnVtGfkSHvM7cakWtvdv0OBVSQ+7etlpf 85/vzz7vnHXj7lZb+meAybiRG1Wp+faBKaej7KmB7yBy3wfi7TLZyJq/7awi CknB2s2ya18/8XOZlwZ+6ZzM97fm6LTSVXbm9yd1sShe+/qEDduf2Jf9Y873 rz7MTte7dEv7qr49i9+uOJi51uVLLTkdtuGC+6QksmhIbobj7FqyaMHmgmMa KSQzZrzNrEZq1HpY+JZJi5PIOdc5mbO3G9OIUbsulsqTyPKnfvc3aBnTTd5a ey/WJpOzm5a+/uhsRvs97BDoW51EIuV9L6nNNKOva3Zcba+cRBzS3i6OdjGj N+4cnRVWm0RM/6rXHEGmNMTCTf1evX8/dnD//tuCYslf71ru1j+cS/7K6Rx1 YWxtw28uWT44sBf1qF9nzxnT98jzSWhhoHH3wxbUxHCxXdHKLJJz9qNdpo4F fb7gRmH7XTnkkWeHQTsSrKjfsO8upjuzyGf3pv6fdljTNlFbm27WyyK29s0/ +3W1pqGmG1qu7p1Ntq5qa3IryIr2fTa9PCMih9jaZk9K6RdLckw/FLfOKSZq GqaBhcvtaElBiJuVRRG5eL9rK+9QW/rh0sFrJ0cWkzODLRJ3X3agGg/HpDxt W0TWnVrYpP9cB7pnrepPP9Ni0mbUuO1b7R2o98HxkwK7lpDvMwN1G7UpIg/7 Hfjh8qqSRLRZ3qmHjyMtTzKda+RUQba3O9VtRZIj7fL14/T3JyqIxc/h6h7L nOnoVqfOuxtVkGvPdDOvODlTl3039BOHVxK/ic9fUrt6eZD8Z9ZSUxldtWzb HP2H2nSDt+W21K0q9F70mUX2fZxpwLHswVY9NOmtpVqPHQY60+l7/Ye3HKJJ G5temjXErYIM9DPTPDw+mdiEqTv9iqog96pcvctcksm4Ay+Hz/hVSTIeqibt skkhr4zNeg39qUb/Cck/n6cRRUhE3kHrI2r0YdCZwij7GBLifWeiXZUa1eh9 sFHa51jyedONuR16qtHAuRvH9/gaRfYvLu0eEaVEf/zl39LBM5HozDIoHb5K mf7oUnnFwD+JZL24WHK2iwo9mGR15drgFHLlUc789QEfyZq6vCNrdPJI+3S/ A/94/SCmno2qFvXNJxGa81W0zLPJwJdObj3WZpA4z+HXPItziKHPuFY+ahmk OHNwhz/mFZNpfkqXLR0yyTO16DMbTYpI44SjmuP/TSezd+Y4jVDOJBvGnI18 0SiXzLrs7uWTmEM2Pbz7rVQ7nzinDnCfc6Oi4TeDvPjH+K8l2RXE0XDCoQFb MsiyE/OXb6uXo7NmuU7ft6NePz+bn+zfuI4Minm8KmdxBjkxw/VI5BZlOtKw 3Z+1xzPIkGSt82mJytTx2ucNF0wziP2Rw3N0r2vQPd79LW4vSydfn7SddNPi Pbl2Pi3WpnMhCTZKLl3dNpsMf9k4InhtIbns+jm6XeM8skNjR+mwnAISsTcx IMzamDoUrFfal1tG5hv4FCXONKYjmjfutc2/hjyRv8mbNt2YDojOeLGufS3p pzdcWedTPDGLkX2f9EOJllV82JES6Ut+mrduGXZPlRasvHjR0PwTaflyydja r6pMjm39+fVyxJgYpofXHnWfHNQljtywvuq+cge/f0x/3fTVvT9rUNOLZc9e 7Y0kJal677KaatIHI69FzTKKJk98O6jXbdWkJz+ljY67FUUsqpcMXHNNg+pm FQ6pdIgjB5QzmvWapUMtd3tcPn8oilwcPlxp9VkduqpPb7Vo91iy+nz2LvU1 2jRq5SN7q/gIUvPB7eaGMm1apLP6WmFMFNmVP/NnGyNNmnGyywazw0lkyvzs PYv26tErhX3/UnkVSfYc85zwdq0+VSnr+2LI7Uhy+VqvCYff69GLj86+1Nhf 7+cu6udVcMCQJu+Njll2OIr0DJqb9v6BIW3ismD75Vux5LtNm78d6+3Mp2vO a5/vFEWuNv30V5S/Hn1xb/XsQYuSycAVHe5266hPD6XPnrB8bjL5XHFr38Bl xnTzxW3jmw2KIuvXhnU2GFIvTy/by4q3RhOryds1upfL6TzThd+Ltev7Qzoc ntLfmF5wTDJ2XBFN2p3ZGD52vQktUk0ZLc9NJhGTQheF2RYQMV/AdE9Anzf6 /P73CZ+9y90j+fcTtMxCwlop8e8nBJm4z53wJJ7ZaUPfzP6z70n+vQS9blWd 301IY/ZnB+OH2Y/r5XnEfhenfu1q2H4IlI+wbHkqUomfR80IPuQy5UIyyXz0 c8/XDfx+N9BLJg96285fzL+3sDRqwOhdjROYfeG3re/IzTHxrL/J2uUzp1Sn kPDiquvv1vH730BvW8p27pn0gOfvfnFdrfVgH6/PYOGzfmfepJGjJ9u3bB9p QmMzPy/3aJbB4nEpcxZl+OzLJx/Pv7TulhqmcL/b2hm9zl0t5/cA6niauf/r nUvGHLFwtY5SvN9t0bw3BzZvyWH26b1vFRp2P6JJk2nZEcuKtBi/gP05Ttfa LPp2DNs/sn3Qc0NVXhjDA3/mj+83h5/nj3RZ3edRSDTDfx3RvVo2I468/+ai MW8N/17D3Mneiy7vlQvzb0q9tt04tP9pIjl/068irI2pUF5vH3fVfmj5M5f0 232l2LMbP08L+0Enq73MJw/m+10TOpkvHbItnmxZXpuSoKP4PYawiFr7E2/j 2f5Dbpapnu92/v2F6dMc2vw9IJ6crlEb10GJ7x+y+/6te3t3nMbx7tX2w0/t TiTuxR2nBs1NYfMPdqbTjtvt+i3NIXkFtHPjUXI6scnsZjuCw0nh3+3bre4v p6c+H93zvEUkGZXXsk2OupxeXDdn7bwu4SQ1b0tu6e56+/tAWMTmgAI2v3Oa LD41V6mEHLTro21/W/E8b9P24cMyd1UwnK0UYrPmRB1JntbFcuRhDdq6eOL0 ZO9i8nFOq5F/7degP15Z0/BXxYw+uqUUlJm3VKEp709cqtTRZnli47Vk7Xp2 M2Lxm9/T6mFEjWMdDTf5FJDhkWp/9m9nRi2e/2iatKaQ/HF2/eSVZja0Le1h MPuSEjUcN9Vtkq8d3fotvaP/Ng26sluzha8j7GiL66rOLZ5o0FY78/sOtnKg /mknSxZn6bB8vh7NOyyOeaxDUzqoRF/aZU4nJOxbqLGthHhuULb5cIGfD/6Y PMfxsLUVy5dI2HzT/qWeLe0XkK56cDvs+9tS88JNu4fUqrA8FH/7iyOmjub7 m0cyTYa7fwhj+HvRWO8VSyPI6AGr24bdLBLOhRSTudcXnV/4NJUEXSjz/vBG 8XsYRusPdsrczu8nnhf5zubv0zFM3nzXtXugbcLzk98cyJ9unhDD/DurGWO/ HnSLI0Zd134qH6b4fYzcidM7b1obS66YfO94Vl24H6N+/c0r31rsXZxC1pqE bFlyUfH7GVev1Y4YOI/j2ZdcB6ePSWfj2N1s8cJPjzPJg8ybJpo/4kj6tNhj an0LSccx6RsTkovJm+U7k56rFhGnj+8z6i4K98VGmdEHpqaBTSNzyaveA3yU 9psy+oH4YKyKyudGFrlkWoTfso32/PsXEe1nljUZze/zS9CxuVtRzO/zg/6S os0XDO8XkD4dPw7+NsuaGr76UL1nYxGLR//xdYBPwiN+3/0q36Y+JSr8fLPO i3inF5v4OW6T9evPXqp/f8X5ndtGJPC8oVtf7HqsKeT3/0H/n3RL/+bftJi8 kpucvHJZ8b6/8T3MQ3d0LGH7dVOTj7/7+JnHN39VvMjW61xMrpbbxbfuZ8/e 795ib4cHl+1o5fYr6uuXl5ONA30SW4+0pSsGD76xUV5FOke1Tfp1zoGqDL41 bE5lOdmrYlK1pp5/fG7Y5gWpVBGdRHW3imuK3+P4+q7jgcCv/HuR3gmjkz9O LCPpiW16P1JOJC/Khxy+41FOLv3lO6fyBj+3u6Fn3acV122Yvzd91uT8Und7 hiG+OqSq24roJZXkfPLQc3NS+H2DusFX+6Wl8PPeS/tWWJnV96+izfpre535 9zoG/L1pAe1aSd5G/9F8o99/zoO37amde9mZuu+6XHVYu5bs639m7hkrZ7rh tMn7PGMet/q3dfHmh8/5+Uw9441KXT3qiJZrZc2VWfYsX/b5x/t9+8/n9xt6 nR3ucdvHgXpu/ho5RaZMfTyUlFTi+X2Hi5M+jmrRzJnO//fc5R5ByvTSzZ1j 2n/ToG1u9wyZbQnnEx2pY61OzxU1ynR2QbP8M2U8vzlHY9ekMapO1H2r2eE0 a8irN6RKdrHqh01DmT4bpBx9sOWSMIb/WvPK1rJ5BNFe4Xg9/60h/TLGTs11 Yj5pZz2n9tcXQ3ohoJ3K3/Pzyb7IeU/3buXni0F/Jt/ZF7mkXIW29A+8+2w3 P49yQM2zU7KOnIZouFrVmMaShSN8ExyHymmSemX3bS9jycaefTasMzKlNja5 ti1XxJG9MZdSWk0zp/Pv+VYt/JRMeh1vtW3oUnM6s637OqMNSSRg6/1x8cPN 6BLLfR2uqmWw+F2On29hWWUhGTbx84ATr6MYP11J2fnBx6qK7Iq3swiYm0+W 2awf7eJQyfQmrHtORjG9F5lNel78kZI0qIJg+VFBIoMefwuryCentj3eVRNT zfRvj67F+h16adGCaz98L1kUEpPLv5ocXqolnI9KILOX5O97tbuYdOrhMDVi 3ieF+xqnfIpr9+R1KXk59FKYW3w4O+fxYuDDv6+dUbyvcU3TZo/3zigim9tX W+95mUM6tBsYof6shGza2KJp3I5KkqJx41nXkBISpDn06tNwxfPwdQun3051 LSWnm7i8KhnzhaTbrg3oPomfJ2m6Ys31gU0qydIhtVWHU9SoypI/Dz5pzeet 5Nrt7DmbasmAFfYXUndoMvoD+9Mr5OFwwyXKtLTF4y7+p4xoYKKD8WZ1Ffos tM3IOxqK58tnfOzQ/4QvnDczpbfae3j2v5FJSs2/3j9lZorzw+v1V1bam5be 6fC9ZDP6tYd1+2ETUki/y5ELaqv5fZPrfm3x/pgSo3De3FRvSOFgo3o/s2PF nLjKMqIyYv6hxgvKyEy9VuXRb9TonYsjei9OqiZZ3Y8/CkpWo9/aD1A9W1pL briPHebqwb+/0ttKZr9wvBFdc/fprJ5bw8mzPmZnsurHe8NX9fymvHBS3Nl5 2eK5RvSb8/noKcsjSVjzySu2LDKijaZu6Hq7Io4kfr57vt0FI1pa6Z58uU08 ebmHkoLxJrT6xAm7X9PiSIXJFKOcPvx7LjusK0Z+na5OpwTNbr3tZxl5bHx3 5FZTdXpy0+pSA4MKlm90e3qvP9YeCGE4/tTp/fM/8++7PDfu29L1UDiJz1M6 e/mmKsX8oEqH67V3mbYpm/wdurLy0en/5NcHqCgVx2gq5Bsrnb/wtcfsQiZP rg240W5AXh4xNGh98XCYnCYkXH0fO7yU9HHYllb8Wk7NZ7lO0/ctIZoq7XcM SbamBRVnS+Z2KSetM29ebO7H83PvePgOnZNt3/Crze5/OfDPvXtnc/l9mVFl nq33ZGQzfCFl5vQpanlkSuNr3hnzbNj4QD8OGxQwUuNbPlk0dkLVdS/F+ynP nz64M3gZ3887/PnjeZ+2xaRZbe/t/vo83wryW5ZkzUivLC0hVnfqnjm9VMPf 16ivrzzVM7tkVTV73m/SJc1jltVMP/rNqPRWXV1NPnqc+X7U0FnhvsrtUVcH NmteQwoatzJZe8yaXqmx3nTbW0ZDFssmDQm2ZvuBkA9yedLOa+fbKdFftg7O 28Y5sHJo/8OxkS02jVNi+fDDY5cHXF8vozvOpK03PALj4/cFzCoOSj37QJWa RbTwaOVnSLN2lx+NnJZCHC/V6/h6/XDJ/6XLkjkpzP6UOTpsVJ5YSvSfeicG 5qqzfPAWT8uXTZ5tTDc83aatPqWK+Ku18N8/z5g+3/n92ZoR1cwendzNynvD dBW6v+Ni/TMD+P0BX8Z27Gtz06Hh15Buu3y3Q68HDvTK9eR8nURDGhvQO6Dd v/z7P83/vPurRaADDXk2smVwazn1OFK2+2oU/x7Q5T7fi5TrcfcVF9MeHzWm N9oHvnm6Sk7bbz9nU1eqRLWdcmy6fXCgq2uu7jVZa0SHhySZrYlwoLbqv8bO iJHTtoOsiwIiHeiaKNJzUp2crrP4+iQskt/P+cnC4G2bFfp0zA5Xt3E7conu FjPfc+oGtNeQt/e2Xswlj7oWvz9dqMHoSaJTDbqr06HtnR4Wk/mDcoOLy9SY fQL24/Y7fQY6LpJRL/nNlB4xsG8D52/8SOsX3g6/zvPzfrunL1jU1lqFepb1 27gX7pmpn88ZC2/1tvI2YvY6zJvuqZkxKo3SiOlp06Hfv8hpt8TrS83dlNg+ r99w5VeT/1Wi1x38/3B8DucWlWip68IHS4YZ007ta24uf19BturoHgyqn5du a9P60SgZ9Xt7PeOOhjLN0uyuX3o6nzwaMFa/5xolZm+DXB3y1qcq0TefxUOK f/hNaWKZT9yzzN0HdlJm+fDms0as/ndZLbENKxi6d2sROZC+cPyTI4r3ly63 XD3n4/si5i/teHLq/JKKQuK1I3n1j3DIuy8iY2K+tRgyRZPlax8f/m3bEhc5 7dvdZnalexFRifeaGu0qZ+v1u7ud6+311Ku/6G1+H8OPx/92vLszl/xaPKpX WIAVze13xXzVk1py1myun6Y7v2/hzHf35OFn7WnLIp9VK5O1aHTZykUnHtTL v5WzBoY116Z2Y97M3TDFjp62sB1WsF6dxjeP88rup0GdDkWQe//Uz1uJ59b3 thp00R+Nr2s/KGHyd+c/n/xnfVKhtls3uh37UkX+HpW0OlqrhExzm+j4tvsL Id4jkw31/Vn6LK2YtC5OXLXUXoOtZ+/V84vUdvDvh8N5iJadMhNXTdKg67qf U7n9jJ+Hu7Tnny4H+hQT8+SOm+NPpZILS27cLwusI5+edw+mM5NJtN0OLXUT GY1M/WOzhWMq8Ti272KJpTod9LLH7o1/p5BhZj6hof3VafC9we9atUghm50G au99k0jWv61zG2+bT3r7q19I9y8mB8mLV67W+SQwTtntj9WW9FSX6XNeH84h lvLp+9ZnWtBVi1Lu+n/MI506F/7ouM2GJh2Trz7zPZv41O0xSG9kQxMXPV7z rW8uGdOtWt/kvTWdvTtznW1YHikz2lKy8g9rmnd0Qf6X/Hr6vG3ptHqSPR1l dmPZZqdiMrDV/LPdn9jRJsYaHuVLSsizWX4/yzbXy/+X00NUBhWTuFtd906z caTXz9+v+uBQrx9OxLqNj3ag3jnmd5McSsi7yN5BgYccaJPYvVFKo0rJlz5m 8R6ZznTAT7ecMN1K8ubDP5c8TjrTlT+ts8L/riL2AzN80t4b0tAnn9zHnFeh nadZNQtOrtevY0Y9StytQre9GfG4zEyFXrA7PEXlWiy5N/Zm4wtPVejC3Ow9 Px/HkOX+/XbuyFOmdzzf7rCcH09meU8d2K+5GlUa5bfE+FIMMQ2fcCcxR5W+ DK7NzHCJJxtOR83c1UiVmt6XPZvdNIZ4HV9drrpVlT66uETd7UwsUb5WuXJ3 kjLtN7CN2xa3JHLSNUa2MlGZtr74QinzUwL5Fbd4mM1SFXr9bdy5romJ5N/F 3aw71Mu994u05w1/kEkumZ7aaPK8kHzztcv3q8kkA0Y9H1Kxs5AsODdkSR/L LPJP/Dpd2+uadHm38XottGOJ3y9Z589XtKjvnPkqZxKjSd1XrznnNmnSxb3d L1x5Hk8mvw0YvGWDNg06VmN7oH0ciTj64Ofyj1r0R+O1D259iiad59q3PDBT m/bd0NHOcFAcebbovc7yIE3qvcBAb0ZOItnwWn3TNVMtavPposOx14nk5kxl 1YM9DOmbyOy4Q86xZEq0wR+vXxjQdnFW96f7xZBg3fjN0cbG1FAj6umenrFk z/Ft3QvsjWnjsfqZnzbHk1K1u0ZDL8jpozZzD8wtjCaPtP81UdWVU/n+3rv/ 6ZVEzu8ldgGRJrRv35heg5YkkfCrTwfqxZnQwsdNnoz3TSBLbhW+utrYmJZ8 NPwYSzOZvZvoPzRml0seUR/Su+fLIDXqUDs8/cDbSjJ52c1vfQLVqPRbSSZU WzYae1KPHr5/udGMc7kkpVf3ge+e6NEu2/ct3nysXt8o3cg999KWvorQ3/xH FT+fHhe7bulbXx6/eP7OWLPrKTWqfC90m7wH/957qPlW8u9gW9qvqOvdf5R4 /pDn6zF7v40sIDkJzXaNO3FbuLfOj1yZSX+pZBcxeVN5+sL0pSllDG9u65/Q 2qSG3FKzNzuWWEN+DHvYPWZFItFN3LTxxsBaYjHH+PqlQYnEzajbrJiDMup4 rMqw2jWRRHTbOGBXcj12fViZsTmJTO+scmVYUR35afTCoPmter+ru33HR1Nl tPvwkhCyJpGcOfGkcQv/arJqqLNyYqdkov1hzOHtMTUkdc3HBT2GpJBNrz+f GN+5jkxY0WmZoVcqadTv/b0nS1XpUavr/9RoJJIu17y+mC5Uo55PfOYHN0kg d1ziG3foUm+Pu1jP03BPJD67Oua7L1KjtR0eLZM1TiAhQXtsu9qq0x5fJn07 ti2R7E/PfRbbSpvuuHMs7pQ8kai0LtEqi9em4RO2ffa/nUCGOitFbvGW05zK OLuVdxNIKm2yJFDVmFY63AmM7ZRI+tq7rfgebUx7mj5Y/ffDBGJ0cu3riBJj 2m9SasnssCQyxiGlh9ppOf0waYhbvlUyWZa+6MLVHab08t/NxvTfnkD27nd5 tNrSjA6+6XKtengCCU0YcmlKkim1Gr0re1KzRPJ4jb/vCC9Teq382NhjjZKI jUbXFU/OmNEnLR+NWt6kfvxz1h95/8GMKqVunu96PokMO387qm0vMzr+DfXU 3ZVALh6902nHLVOqs7hqbreiZGLywWCza/8I0nPyxRPvW+aQdGLZ5pRfKtGd ujz98blssuudntcbt1TSN159ZFzrPHKqj2Oryc2TyF+XD5u1OZ5Dulqv8Zy+ qt6vDkpZZJmcQ9wsLyXv0igin9sUkvd7c4hqjw6Hvdua09wr3W32tE0ndl/D zqzUsKB7flw61iwxjczteWLC7NvmdIr+9eOzR2aQMStPejq3NKe3m195uNQ1 i1xf3T/B9IQlDay+lL5tchpZ0uzahUlDLOn9Tk5Fc/ekk65RqpOuyizpgUVX a4Z6Z5CrzWPHhtZY0ModbQI63ssggzvmqF0daU4d1ZRuN+mcT+4vuHp61RQr ejDpROLTf/KIdk2vgk8fLKmRq1mft7oFxO1Z1Iru163ootijlxKb5ZORrpua PIwqIDtiWy4+NLGYRERFu8+dbk9dBw5wadOjgAycVPJyRZEdXfyn6W4zy0Ki E3XRNFrNlmYOehf8Z3EJcWh3ceitffa07do1QTsvlpJxC7eaK9fbDyXzm605 sb2Y0Plj763ZGU7quv/ztWd2BQnMjO673s+R/rU2ZGuXNmWkYGJgu9hljvSH t8q/tzeWk1eWS9ru3e5Ex7aYuWuevIxovK6YZdfTiba40OuhRcdyMuhXcMpX Jyeqovp+WWZ5Gdlee/yk2wpH2vPU10zrUVXkjuWcZRs+ONKq8nfy7a2rSf/A yxVn3jvRq01H/1QKqS/PmbymyYcI4rzl1jvvd8r0xZJ87bjEMqKqYjp6qUYK 6fO21bQFCeVk/4iRt2rU6u3aVsfW7i6vIotHxujc7Z1KalJnbuiuXU2aTG91 Q393MskYNnr41A1KVMvSt3vpiniy405dbxstZaozvm5bV3k8yV5y8PzkBco0 IsGmx+vQePIzc9igrZvU6br9Oote1utDn9YVujs2qNMW/a2/ZunFksqAPZ1s 5yjRO0p5jjduJpDxvbfVTo1UorGX+xyffiyR9B81rOnCrSp05fgZ95tUJZPt u0pyHf4JIXPbztHTfplHZjgmlDx7UUp0XoSsdqpOJYc3aZ0NH1RKBmQnjxjQ KIOU3XifPk9WQu6anb8YFpVGWvcd7D/RsJSctVPq3OVzFnluNmH2o7IC0qTQ MPjAvTRS2e77ya/NC8jrHnr2lx9kkLRHP9r3SUwlrxbsn/74eDaZt7z82NLH 6US545Rs7y25JNg8IXJMWmnDbyrJm7Zt/ulG5Q2/6WT4C9PHRq/KSfDBDUu7 hKYRo8Xpnt5bq8hEJb2YAdfTybzwlmNG6lWSR/NHXEhul0YedLcIvb5SRnu2 vLBLfXw6Gerxr+/5IBlt2SjedmpuFmn7NqWF5eQa8iGp9Zte19NIx6NrpqlN U6IH3LeljRqdRkKzjmw0nqZCrR5HzlVem05mHfzQ0pNqUKMz6VsOZ6eTZ6PX ZA25uZ9c0DY83qN3AemQvaft6KBQsu5D7tonjQqI9TGz2etW/CD3+1mYON8r IEMHhfp8rygjJjKngA+PC8jdjVV7W13UpORKP9uR6YXkVOfNNqq7Nel+ubFm f+0iUuzVrDak+yMS++Lr7H7uZUSvU8pCvZA0sj/OzSvEsoxMmhTl0lPnIomp izo35Wc12++XvWx+IepXPDGIvDJpQ6gKO++z6cC4wgh9DdrHf6u8ckoM6Xpz QZ7Pbg3avMsv9UV/xhHrsTPfjW+jSSeWTLhWnR9PjutMPjV/uy4tnXEnLU0e Rpp5/nI9oqFLb/YP1RqqHkG2nDVtNrGrLj1y9GLnI82jyL+rGn1e/LcOfVUX ey/pVhj59sXmY+fnOvSD66sLda0iyKj9dg9lO3Spl0Wv6UraCSTN2dp0XQdd ahu7aPqOevq9r1t4sshfi75o7z/lu3MYCT0U3+27nTYdR7amdV0fTvp0/2dp 1wRtGvYt2CQkPYzMqjneqXSyNh343lQttiCCxOWlNPq7sQY9faJbkzkvEsjU asthgfu16Nn7l1eP35VKHi4b+ne3C7o01dh/R2udMNJ7heWVB1p6tJlV+R2d 5+GkWb81L6IP6VG5W+XXyrPhZO/Vjbn/yvTowbjk6l7hkcTGSe6wdKEB9Xk3 yGt7fCiZse2fFho1+vRUj/KVLS+EE7L7z0+vS/Xpo4MVn2f6RJKBg2I2jXDX p2FHhz96fDicjDCV2ayqMqQrxvxPWdcdT/X3/+0977X3aEhaIg16ncwUIYnK SEaFSGmrSAgVES2VKJUyk5lZJFJG9ubaXNfe/Hy/n8899/Ht99d9vJw7jvM+ 53Ver+drPJeljVbVw2DnoIHNLz4U2xf1mPleA8hNkb9vEeNH/Se7xXSgGVhE hux6bvEhjku/5vpv14EHup1ft2JPX80KbvPwbICzTI6hGxv40Ei6X6PjcCvw 2CmZSrvxoutSteG8HbVw/XN1vdMAL9px6vxHjV/10JEYvCrFkg8FvSk7E2ZX B+HvWY3kFPkQuY5TjDBTDw6fE0G9hhfRGQWGbZ1ohI4himlGEhG9DKrY0vur DVL356dnvyAi38FgR+fINrgn5bWr+ygR2cTtfR3c0g66lTOiGyuJaDy37FA9 Wyso8ipoGh3gRypXy6uuqPSA/HbbF3Jn+VHSOuEX1Qc7QXhnh8qEPz8qOc5t cvncin0wXTY3bSyADrkdUjl3qhMGBj+et3sjgI4aG2w559QBCxemvOxtBBCf wpqFM7c6Ib7y3QNPRgFkkGmZyT3WBRf8NH1pefHdGAfPK7zDoN02CMeGObQM 3MZwvUMMJbTPTI8aV6HVn1l1pyjfaOvC/vYr4aVsB+4uSHBMKH2vTofrMeID RLc2hzDiuAoVl5jve8BFZ0+TMw6+Xy27jpYfIVI6seP2hy4oW0sgf2im8aNS x6Nq60hSum1gnuge8Ow8Az6/FI9hVY1FWt4+FVfN0BL7YqJHk/eK9qzSI/Rh vPzqRu/DpK0kWNT6MbSfYw6vDx63NZisfNmP8QYd0YnYezu6scym5fvxxMp8 qfFYZ8HtuxP0W2DT60v0Za7Mf/HhMaOJB/lJuiv219g0U7gmO42flYqvdz1P fk6y7MJyzJN9ZP1Trfj/N/Hgt5a72Y/1GYlna5if1cp+cEFPH+Qy4u/D/LZd v199Tm3F8XmDz9VV08ad4NySnaNvwI7fHxVeKak2S0RqwuHwYKoHzu4vWLtZ VABdeNZuthH1wobnDOwdTgIo0/GjvjlnH3yQsI0edhZE12q5n4V29mB/gK9F yG/3wiiM0lU6JKmU/tU/bAK8E3Oy3x0awPNxEJJUpSy2wULA3tbj2zn+Wi8O 5ERu7XAHmmx9NsA1qqcBy8pRzuYyqs0QICXQkLWDVk/zD87Bj/KYr9+gHKjD si9R0Y+3oR7jYcEnv0g9PdoEtYH0lt2cND5Ak/HHZlYRBDwfKh4kvs70VZ5g I5YzR/T4/HmasXyppTs6J7QV56corL+VU2nYjvMvmMP1xhSv0vJF/KKO2G4q 7oOvqiNizv40fmvq53em6u66bt0B7E0nWuWPCuLnRcVlpHmJD8kD3dAm9DEk 7De172o3xoumle+lWx1qhV+BV5/pWhLweaTO93uww9k7E+14PWqsnrzu6OuE 3w6TLL+iafyz1PG5RjaPnYUtuF7P6aivj38sLT/Ghu3DiU0ZrVBqPMvfG0L8 q56WiL6Q/Ju+Pu2EbcVn5sO1ifj7RypNRqMNBPH8qP0LTLnDN7+X7sTy5KIg K9ulNixXLxZyhVXQ8nFSLOSnbqzpghsSLCoDp2l8udTxhQpXZbU7rRDXoFbk wEurJzYbK++VtKb1F6bWE6+de7kjpKYdy5fvLFw7OkvL3zkkNr9Rd6kL1joO bG9XpPGPUPXmUAJd2cf6EVCZDw9d2EHE/ZOozy/7FkPH4BIFXmawyLKV82H8 0+3KxKnkjfxo6ett9kN8o7DbZKTGhZ7W/5V6vltTU7qsM5vgYH8YU0scB96/ 1PPWlzmRlrW/D24JtGWNMlH54Pqw/hI6ztVrqNeL9blhC7d2fDAJy3RDLfUT e2j92PTjmikXpNpB/NCDZAdHVrxe7/ct/4rdwI9l6nljPCZfJDvdjGWZC+Nb 4j404vyTP2SjRX/HdlzfZ5IxHe1b2INlJnqT99OEfpyv8TWL/Pt86gDY12/T OkUSxvHDnFdacfrGJFCw05VKNxiEo98ltB/Id0HkRqG3P0IHV57DkS/csd1g GGJD/y5lHC4flrHqbKkF203DLe0r96AKs+fwI3Fan3NqnHbdqIP87vv94Cuy fesxp1E4abYx96LeKMxwmmhw8wnjfHwzph6pJUmhv+JRQsiijVzs9XYIKvv5 smvyhPE49f8byaEcK1UYAsm+Cy9QoBAKslHwW6wdhjPGb9b92iaEkvaEx25v GgJH/1fzuz0FkeroF7ZbrLT8l10sO8195yhwsWhHeY2BGJ7PP+sril6YeGls NB7C61dVpRouK0QGCeYH+pqVIvj913j5XGaFJVEk87qsLaIUiD38S8jlvQTS vfTR3mCKAk5KPlI+2RJoe60Z1xa1Ydj9mEl6tEkSfSvc4O/RTIHQXpFXFDEJ 5GYmbKxFHIPBUJb2URcxlLu0qwq5TcJy0mqj/FtiSO5DS+GPR5M4fyW4/mvr vfPU+LUUKrUQPWZ8fBwuvg8gp7hIo+h8clh16izkCFbtzTGWRb02qzMKFKeg nW62YYuGLLLMMtG6cWICJLlYvizSySIHP7PBvNPUft+yKJU43rUqiJa/MkQn yn3eexZkOizHzwRMglz4dFAT9yxs2NAVZiM0BXXaRTEfPsyALY+ro3SmFBJ/ +oDn8vwiXH2VWBG/JIVE744WvQ5egq+uVWz322XQ7rrG1Uej/zOeceAipwza yiLrb3ltxa/aHR5rslcOffXwk1ibRY1brELSeyTXCO9fgLwOx1vvkuRRgwZ7 t8XmJVjPtpFj5qQc2iUwfF3lCj0SCD50p8FaFjmxRHm7BzGi62SGCcqQPDL6 LGWbtI8eoTwRz+Q+eeTt/Yv1+UYmVOpwzdf+rRxyVmGf3JbMgjSO8JZUdcmj CYXHLaoj7DhfhCD7LivArgnfD3dDhVu82LrBYOMQ+3NWAtqQ0qupztUKte5M RUp3CSiCkV5W6WszOHjkjR8MISASX90hZus2qPxwqiRjnh+1PBlhcIxph/nY HLo18gTklQ/hX1b05faKHRpj7QJILk+EU82zHYa319Q9HRJAjiabhRrutcN5 6TSZ/WLCqCT2LO9MWzfcK5RdTPQVRkdMRUXZ3/fAV0eLkunzgujgBj8n94ke aLvbuce3VRAd9+mqfjXeC1fj2nVOKc5An++jT1odw6BXv6tzVd8M7DfgTlo+ PgyrJlRrSdfmYZi5+yG3JgXqyqr3V/Yngc0L68AD/hNQ8JGB2GVYCU/Mjp/4 sm4Kqm2+MH/9/BsirIdtSwyncD7ww0DTz/LhE2DA4M1XcHgB8xeI8Z3s3ylP 6wP9jz6fh8OJ5LQRl0kI1Rhwk+qgQKnUpFrw2QUg3layYyEzozf9CaYnh2eh KEONWWW5D6J+MLm9m1qGFrEPWgFtPaBWUH1664qdvUc0Uf+0Ny/6daCtZM3U it3MtelexB4+JH24ILmtmhENbWeis9EloPAEor7Qij328NbPy810K8+v4GWu gnsvzocgJ5Tz+xPIcEy736b6JLXOiwyl5qr9g+KLYOpvcqJSewJ27htUnMX9 OGn9/3pOKcnJDdKjly18bfX5/MiNvOmCQFIdmDifTVIp50d7S6x3EnUaoDhZ nE0nZMU/m8+YDreqw/0501KIp8hlMyA8e/kTUY6I42Mqbsvqa7sIOH7932Ud JqDbzgNqrJz06PSSodIlDW5sz/2jv7iRLnvsE5dXNViu9XCQ4W+gje/LPHeR KbYex+vKo9XohN43Qvze/r6fwsyo2CUALvQMwnJkaZt+LxNiKHZCLluGcH/A +eePtr6/xIH5Xej7/bU1GigQZ2I9Ev9D4q9+pOLoRMDWV/pXyDATWvB7+Kn4 X/pXCtkVequG+U7Aoll6qconKfS/+0UWBY3YRPh+mYThL+e9yhhl8Tg1np+n 5/Vyk+wEqD5cxZy/XeavfF15xH42tvJ6zBwIb9CT9vaRx/2eRtiak8fLxJHX htXaIoL0yIM9+HGYHRGPv3fvRLkvZbBe+O+ff8ggmbdrO9cV8aMrTAWUNn42 1Nt2yTq7ZBxmNJVZTypXwaEzzOFunxlRsGfU1QnWP/CmmmuN5UVGdNT34dPp Mi7kvvv0yJE5MnCExAbI03GjsnsKpalNZBC9u1tAt4mAOHNM+RjV6NG3Dam7 PVf0y+GDixVRNfTI1zS0YweJC6lpNxXGhdWAeFK17uYpLlT/jDkgMrgGmpw+ NNzey42a/ez/kOtrgad6q3Xra240mhm3qde1Bu6KF08FzHGj/qbxB+FFtSD4 lW9uz8p4/PgX4ZmV8ZB+A/o/K/sj98jPucSVz1OIXiUuD2j9UP95/mLobHxK 9upPS+BznJjk5iCFfo6pzdIHsiBWl02FlRe5UNTCW6GSbSPg3fnMwrmZGffb Cobv5YIvJHHftP8+39eSiLVbPOtRERNi0fp2tu8UK3rrNGGZU0yP6kyEJM1S +P4f30av6+/A+s9ksHH9GDqny437JVLjRXHLP+MnFhqx/b9r/EqVBwtNHuWV kWM0boYM8T+a6uN82B7UOTB5ZdibiAaLFUX2zVD5tInIJ6phe7R6D/js4yh/ /0IIVdzVfss7TgJZI+Y5zX0r9stVi/E47R7YMhJwS/GOCPrf/GVRJOqt8KZv H03eNq/rNdHUi+XVmVeXa1L6YWg34e4Gqy5wX2wTzUwZpeXJrd95K76qD9KU 6sa21k1j+7QEIt+6e9Nhf4hqf5LvBJTXutDygwPOL0pstRqA0Zkfp6JW5k+1 38L8v0kvuonj/ANq/kxw5iOKGCuN7zbfedTaNX0UAmX6cxvPTME9uSfvbh4b w/O7FcGhrKA4BsUddvaMD6axP8sQOZ8S1iaEnGLyWFOnxyFh1ozX5Z4kGnpx WTGLfQwMardr3pyRQEndKd/Cto5DyFE5zgPbJJBSS5vyVPoEFG8WL7ixThzl bSYXP6ycggF2ff6yTeI4X4k6P1MHzxivtTQ+3dRJ5tbEiimwaFV8ZvFnZX8l +3p9UZ4GZ0G2B6PPJFCnZtnDwJhZILf+BLUtMsit3Hq1S/k07FCil6xcsbdS KcEDsWmzoDG+g3iXRQp9PCG1tNl3AWY/vV0c5pbC+UlUe2z+ulrJpalFeJSw wcf3uCzOV/s2/0YqlE0WeasmCzevmQMOBfPYlOsyyPX20MyRgwugzO/uZB0m 87/5Tivzd9p39FK44SIEnSa4qB6UQ1VH0owU0+dgee7QA5M2WUQn8DEr89YC mE9cLLzULYs//4+/KocY8nZ8O3N7EZovRBYwa8miEIX7s33jSyB5YXtu4BZ5 NMNS45FEWQD+n1ZPXZPl0JoPwCQ7ugR6LMIfvrDIobW28ccnyulw/9AD7w9n k8Rp/RQuah94G8m4DDxznKo/VvSpSe8LRv1EOsx3Kl1idV+nhQ6JKc09/l4i h9R8CncZrGZA1ubiifIB8ujU02PF9F6M+P2WEVkdEYmMCFUrT6p/SIJ1tzR/ 2yUxI+YKMutvLxo/ITVeG31qKVKRtRb3i3L/FW5svHKfUuXPXDbOX0QbcP8o t5+8/t8darGMzLzdVBrqsLwrMuKsmm8DFFVxKvAYsuD7191/RmrVGRa0tM7m bdNrOsRmsL3evLUUxJUHrCrzxuFO92Hy2dW0fuDU+1Sh6VSCfmwLlmW/3Z9v am8Hv4PtlktEQdRD3/r8+LU2KLCSs/A2FUS1QLqaLN0OJbdvxKjJCaLsmPOG 9aR2XO/1IrA5lhd1YXyRlO80s3ZPB5YJ/mH3Lrt0wvhsZDLdDD3GB6j5REw1 76KjNGiy8sEv6hxb2uFtrO/dO2/mMB5Itc9Ib711taJ6sH3X6caS7WFAgoDm 2PWqQYsY/+u1K+PWFlvA+qg1n8Nizo35r3oeFoQCXhWMvW7HMs+2mp2lnp2w 53VooEoD61/9EFhR7Lb9EqqWHbBa9xNBSokJ7b/ruFrdggRqVWHdcZuYkevr tWVmNj0Y33tRQlI870UC852BhwpvMWJ9eFBoS/2IESc68lTjpOG1DlAh+m2d lOZASkvq63ey94CrSqKBXygHokuh5JildwOlnXB8OE8AVUUt8rvpjwAhPe9o jEYdKP9w1Nb2GwHfC5LuacqtcFJi+fa3VxScfy0vq7rlS+gIzPY833r6yhRI bt5skcI5Avqfp8r090zAmaU7lNDqIawv70a7OI18I8NvPadf+VPT2N70G47V 94+h8R5Q7RjRJDqpQekh+KUpXdIwvwzCNVr8LjLDYMF2uPihOAtSYlpvV8pN h/sV8xpYt3xZsQeosucOpqPOP2qxPMTCOd/5oB7Xf6n36BdHlTeCSU+TaVow ARkENWju5yDBz6zXD4kZBPRb4Ex8snQ/nD8QNf5sXAC9eaX60rmvG9Q974Z/ MhdENwduC3Nb0Pifigs1LXhW0/opZOz5Nvb4JgnjGS/kAuiaB7pg/6ZuikkI ET9/6n3r4jhwkfKhDctDqQXPP+t1wEd2XfuLXgL4/VR8TVhlfdrw1U4sF5ZK 8JSQ26H8oOeZo1LCKNbZc7XhRCfe50+Eq9Kfs4+AZd9VT4VdfZD/2K8iw3EA QkNCstZmDkCTywO3jDeDsPbnG8JsDD+KU+9meF3bCMJd+pmJn/iR02ato2UT jVDWq662tIGAPC/7yRYtNkC146zYrCQBGb2Ovb+trAnUk0LkrgXzI+Yy4R1y PC2w+QTbgQOqROTHWX1Keg0dMolXeH+VmYj7Y1PPh0bjDb9y+wGw2sNQ5qEs gB4deGYsYTkMG1MdHHKsV/zFnlqdgrFhaHoWLs8YSkR0LsfbfrkO4vWaz9Dl fBQ9CIz315xN0pXBdpOnqxrTH0MZZPL5Mxq4w43zYZerY159ereit8KjeTe7 yeB91DXJ8V5zpwyKjvbZoN7J9Y/+RzJoMb/Sd5mfG1WrK6i8/C2C86FfiwT0 1R0VRYy2hMudrnMYf7kz1sPnZzcPr39168dEi2L7mmr/CNh2MMsfnYVH6bPy vaukUZ18jv7EAzZcX0J33+LJZUt2NLMnvU/WiFq/w47iLpo2fFi5T0Etuu2n IS9qKeirj1yZv9vox1Nvs3iQQFiFD7CJIUMDTd4lmT6Qcnq83zNYDDnycMUX beqHerPmgAYtMXTTZuGTsfUA9I+UaHr2iqKd0/oVRb8H4YjcaZar96WR1mnx lyKOo+Cp/MmnSUEGlcTwvFtWGwOv5nV1J9qlUXqqP9s7sXGs37belCnZL0fj lXaYSs5ldBqDT8c7PC2ujICSxXbpw60r9pEI19t3K8+/zs/snsOJaXBIyJ0p cyaiMsvro4/qFqAjdiL7jCER7U4RurPKYRkyW6eOsX7Ngf60NUG9G5ixHd1b WbAxQa8V569LFYzJlhxphl/XbpK5PViRQKxzOFmjAbrH5Db/LmZFLioe8JVU D74ft3l928GKBgxXLw+LNIHw71dkmefsiPBy0ydzzTp4rb7WiVueHbX1iRa9 UWyAq2mbu3OM2NGhz1cYqicbYUtOnkbjCza0peKzvbZyPQwncrMdGmBDss+G 760/3gB2Fp/d3WK4UPn51gQdhg54f3fPA+Z2LrTN3Khu548WkK+QCFRs5EbB ytZWvfXtwPPwtLrfRl70TIdtt+0NEjzZsXdXRC8B3SrqdG3vbYBCt5x3L7II aLvADsbnRk3wheuElMYtetQ3cTXOLJsEp9TC7W4bMCC0r0OFZNQDQwabnfSU GRAVZ6bef9dU3S5kH6HJChrBoZfDOuFPXCtB2WERJDUYLb8FDIBsW12iVwyN l4rqB+1NetGVJTMACrkl9T0EVtQV1ag15krC99dqW5NtWuQuGLtE/NiX9/95 wronTjvW5PbAw+9BM+N8jH/xlzIhEtMGp5DSLngVdf2HfjwnSpRIoXPj7wZm q27DY0pcCOqPxDeVkTBeH2Mdb2m4dgTELz5b3mRHrcclw+K1bkU5zmjI7vw2 xLs0Am/u+Cstfs+HGdOb6NhXCrye/2LSaROD45xU/sbMxt05VmQK/FAT0BRS K/2LD70ZnnCZ+f6pJQPnqfxK8YxheGyx7pry6mGo0Vif+yGVAidPeBhXLNL4 l+VYI5z2PxiBD49C1Y/lLOH7Lt61+aeVOg+qY2SyyPdpARlFPUVLRV4k4KnU /+llC6grT6V4r+VBVRu2d92vacf31VGXG0YWA+04PuP4R3LB/WoXXg+dzHun rx7thtA6ZYWv+QJ4fan3U/mIEoX4swt2Bz7x9HfgQ4XaF74Z6XRAx8BN35Pc vbB07loNUWQUrr1htHt6ZACs+/MfO0ZQQOMzvZ7Yq795o0fA5PL8nn2vhsB/ V/2VzGsDf/EnD0HWFkUBR7lBUHrNkkAIGMLxY2q8S2j81aO0nkZov/BuVc4f Wnwt/9uXwxnaBHRn6USzrXwz/NaZOq9ykYB4pyLGvB41QqaobP8hJSLS2fmE 9PXWDKgl5OsYHGZFZPHIhcwttHrluvifp1weD0DYcg7372tEXM/yKumqefAc Eb30e1vM+W4I28PLi6r3Mp93gKpf4OTny3wo/vej5PvGHRC31r4uLZkPDfhm qOjf6sD+pcylqrp3w+PAe+luI/NuIXwf5J6TOhdNlsR9hw7Gvw+IPUbjiykn ZqinFYugmYV6kYzsGbBpKn5rNC6KtPTPJR0XXYDuwg8LB25LI4fflw20otgR 48xxO6O70rgvlK3fkAuPGQsq+1C7UHa5EdwSFw+qxrEgRmPx8JPlTSBgITcy P8yM63Wp+rm4cfqyclwjlj9Z7g4IMaON35y1UUq/0wo1r9jevX3Jij9PPd99 U6zfb8fQ5G0MdN9Td9D4NqWfzR6/8qURUsuYmfk+Mf3Vj4sJzf9Sz7Oq64GM heuOBgws/7s/Q7mQRL1gcQVzB8ip1GvYHCTi36fe7wFX0tc8TWnCcmZFnPqO Gy3A4b+XaLKXiL+PktBjveeFCAJth9tzft2QXfCBRdRSBBFnjbufBffAnvBs epdUEZRT+CNHMr4b1kQnaEfyiyBWe3cvg8VuiEpR9eZrF0bF3w21jV93w03V NY8sI4TR/i9BQ9JlPSDd88ebLCGCymcr9tQnkaDrzayRai8J7+/UQGvRRy0r fvfMjgqmFbtKOm7HqHXQLNanVL/p8Pu8ds+LA+C5y/Xi1m8saPZi85DjHWp8 SQxlJKm3bqkcwvK9drsJeD9Ai389qdzWfJ8CbNOBOaJyIshyOGrs7blR+Bi9 Uy+uQeKvemZJ5KHv3Ht0LwXLPKzfFimJo+DzeU5hD0EK71+MMx6rffquiMbH UN90V2IufwqcellTCj6IIvY+q0tbhSZgsDbos5aLGMYfqfZNOXfV0cDBMTi9 cfL6oSwJPN4WFrp6qPRfvlPMYyWOkoKCnCfFJuDoq8tZea8k8Th1vqfUnmaf Ch2HXVH2dwdtZPA4tZ6fxfPByUNCk1iW3quTH2k9jj+/Oafx/cblOTy+mC5/ /kjvHETc4zMXcJT9X/6Y//AFvvY/leVM5XOQQzzTHldfGc+DqwfXJqZbcvj9 Cb7WF+dHZXG9DhU/+FDN+PKuyxyON9F15GirflnG/NQXx7MbVR8vQ5L02WRJ Tll0eOO8qXIRA1qruyc0REcW1z9R5yM2pDaao8CAvhbWHfnOJv8X/6UcMr8u FnDMjgEVssfGv86h8UEn3viKlLJW9JC3el61zop9JbiZ4pzNjL78fF4mt24B 86Xbq0mkRbuRsJwlnhReIteF91vy7Y5NZIFumDxDmt9SLIzPm7f51PLDQiF0 v9gttGJ3L4iUXxyia68Hvs86QU1VY/j+LFD8wZLvPQYTjOQ4965ZiHP/YduW O4T978k2AdPZkUHQ4r9G+HpnFlTi/cT9uGk8SaJv/BLJIaPwqslCupRrHt/P yPzT4U9/isB4qJ6PoWwK3+f7HGv3Vx+YhgIFPov6lX1gK8Cm5JI4jvPUz1xh PNzBOAHf+4gHiTsncD3QyUGLV5azBIwXUvd/zdc7odlP+sFi5MbIzb2C6Pqs u2T6/gF4wNBrTI4UxPcL9b69W9DuvfljP0Ty1+Sa9Qjh9SLwhI48Wk2rV/1n fwghnx8vMz02dmF5H/vVNbs/kYDVJl7DdJUweja6Ol9mHwlepWvmNbYKIZXg ikyG493A4rZhnvsrM/LYRzrVf2Uegj79Mu4vYEbs7lf37PKfh20cfBF0s8w4 P+B03Jmd2R78yFXMtStMtQ7YngpkWxvyo4vPt7VeOlsPZ4W/3aOs50fD0hHL h82bge5QI9fIJn60ut8+qIC/EcfrWY6c2/bbsRPLKee5XYsE2sHq+b7rQmn8 qFJiznS7QTvIz4QeYV4lgHKT6zs9H7bDco/p0i4tAXT6EsvJsq/tsLEfdegv 0CEBZHWF/k87FGQeHusj8iKDKzcJ2zxq4Fh49sRXPl7E7FfytOx8DYwt5Unm ZPOg2La0qZ7vtWC3SXRzJDMPWpd0cWrhWy0whPQ9jTvCgzhQtHOcYw2YFkUu FCXzoP2C58eEV95P7a/ddqjk8OmaGiwz3Ej6LCZRh+X1s4c4FDvq4fiqP8VF B/hQQwMPoburBo7qqryM28qH+G6XddhW1MAdBttqAS0mVHzuudUj215wUT7S NTvAjO5X3btumzyAv4+kybHuWAqt/0xAHEyf8yfh+tVOZkPGg8GzsLrwEWFh WBzja5f7/F4p9gvi/UPNH/A2eBYyFNIHejZF17tZhTD+w5vV9OZzRy22b6nn 71nZw++QS8Hxvz8H01+km1Kgk0N/psGhHZ8n6nhNioX0aa4xOFm7d13r3k6M b7stMzSsFR0HekKs6ppkChRV5ytofh396/fGYPCt1UxuCwXnm7z8eZIYdYwC vInWoed+jOPfY+6dExg4LY79Roy//1ngtHs6iOWfpi73t4QOA599Ytidh2Io h8yT+kZ7DMfb3t2b+JbBNw7cq7JVZf+I4fuMqv8PLW3StzWdgqXmBA3JICm8 vlT9aphT4c98dRzLv5meujwfm4DYUMmmbbnSGH+n3h8qdbVaLW7TOB73SV1f avnkDFxYCvI/bieDv99ms2fJG0tJfF/YMaYOdK+W+YtvVw7d9Voc1tRYgJKj 1S9NXlD79S6BrgCDTk21LMZn//leeZRHKvHMNqVDo+VrxPyPyf+/cYWDu1c3 sDEiHYYL4m/PyOP7xDXQlBP8+NC6yo9qSsK1MDfb1LUmjQ/NipzT8tKi4cW7 H//WbXHoBmnbFN72W3zoN/cxDoJoN9zIP95o7UzE+PvS4TvKbI0yOE5beqKj OaZOBln6K7qVRBGQzievrTZNMqgtnH+0fxsR2wHV/VE8dF9GQPTy+eCY4kXg +pL53aSLel8vQgpn0y4WxQlQ3PI4UmDrv7y+r8ch80JfEHkPDzo/WCHc4kMG 8QS2pz93sOLvpfKDsYSO6kR6TMJkwNU7EwZErP82m+l63liRRUROJTp5LOP4 kd/JPl22ogYst9Xkvr0f1AQV5BYdkV6W/82fWtHPOu995ALfU/FYEnhsrfQ6 +IiWf5O2QeNYmvkg2HdV8m1jEMX3iZektQwLnRiW7Z6s+S53WgrdtqnLMjhI AcUTRhlHOaTQVLlvfTPvKJhbRY8Wykr91d9GCrWleSTzPqJgWeHxsqloxSgM 5Xq89X5Ch75f6Ly1nXUMXh80Z+L4Sof7U1D1jcyHnJfZT8aA8PqGAf89CXxe 3vus4ft5XhrLykHTiW79JKCsD+F783MarnLPuhwspfbtnYbQpQgFUt4U0A2v KbPZRes7QdGvXDypMAMnhMpkf+RM4/dT8a2r64cMrq7YS5RSw4+Rv1nQRzvn X1cVaXz2/Qk+Sqk+S1B8O//Q5WUZfB6o9lhMYlTWweAl0GGPtZC3k8Pjib6d HmzhEugpl+afgGAGHK+vTVzjxxbIgJKP3NC32yaB+zlQ3Kq9B6PlsPymfO/R QPNA7BftCzEO2BohjxYZ393MkWDH8RthzY2KRXvY0YejBvdtJLlQX6bwkdjq Gpx/d/4qxV83hhFlZMR/La6UwTyTqg2PEu5VySDeEOZAbURApmYX9FhrZZCd iKOboy8BLVynJLesqQAic/nqM0CG8JyMr1nXK6Ga443UPiEycHFtTs4zGoas s2tjrDYtAWJmqy+/145xFs2SM2z309rgmvwV6UdMDMh6QFk7+kkLeHcnLRvr MaDAthIS/QMqnyEfIl85sD34sQxS4zrvLavBh/qT1LO+F/673iv3+neb99v2 f5VBZd9eHmvw5cfxKKfcX+jIrg4Y+JzyzSyCDZ0MSRCvuECN77KjiKiOzdxL PWDyvvFRhf8Ivj8ExpI1P5nRcEJqPMdUm32Tu/sQhGxX1Xz6eQH0YvlmWR+M 4HgM2aU3/NCHEeBdP+18wK4TlGNT2RKNJoC0fio/Zajrr/pvEoieNLb3WxgH EAD33d/rIH591tjmoEkcv9B1u3Ziw6tJOPL1g631jUqg9iso+e0rVf5pBMyl fOhfqi3CIemcIukbI5C01Pxzt+EiiN1Ha9NZxmBriHLG6/B5+DkqJ1vyahT+ l6+MHb14dkRcPaAR4x1227Y9vs9DwnKH6ViwYkYfUK7cMj3gQPgrnr1iHypZ L7T+6IIfAS++3ugW+itftR/2Nb901O2i8dnu1PolRLnSAg/9IoolLAXQ6MhD q92n2uDDnuUKBz8B9K0vaZJ9oAV+GPfNpoTQ+LtNNKxOTaXwI+9fdaaWSmMg 5dG3KmpFPx5Wv7yXlDgLxI0S6y8bErF/42vFVcBEIKK+63Efa1/TIRZmyzs/ hYiI9T+vEXRIpWEefRKgw/qD+nyjdqvGrNk2BncX06pc03iR7b1QstsDEljw CIfL1vGiLlbxUx1PSWD14d6GrTv40MIGr3SeKhIEG3M9P7ePD32Q7Ot4006C XNmZPFcGGSTSYUHQ0+ZE40v7rl5ZkMZ91/JS5Ud5pAXR27Z9musPUYB/rJDF cqMgzp89to5raqRPBJ2ZurL9dP4YBNm1jxIbhNHAdpCoN5zC/BAdgl1O229O gc1H91v+l0XQrMBMsvXANOyzrNOOPELF/6fhuf7j/OUEDhT531cKbNG0P+Ik w/EXHw4H+pnRV3KpjYL1g6lkkoiCMQVYU0Uuus5x4Pm5eipJ612mnk9e/H+R DB4pp5h0w9oESpLsJAe2Bx+Z8dvqinKiCxp6nNLm3dB5930E6QYn0vrSd8+e SIHSj2eSor7IIaOFvT1lt6eBrShJgGtBDrUNqsf/5p0ByrtVr8oS5JC65Zlr ldqzQP742Pe0njzu67Npt3224Iwcur7zjX3QdVZ0//iN0OjFEXC5UnlG7EEf oEEKwU9uFBxUfNR+p/bj/fm5hDdqbgcND3y4dfBqwy4KRBxsj7+rM4jtvxrB 3XfrsocxzkzFF087t/GGmC7Cpz/+8VXHijCORMXRrjbF5OSfpOWXd17Z3ZhU 14jlRxLieXHXm/H3tTm9ZwxL6sPyTJjiod/uA0AOeSMUkkeH17PyXjL3k/uL mC/FcVbsUfWaOaxXqP7qjRgTLrbILiyr3X+34fYECVyMdXRmzRcwHiRZvqUi u5gVn+/ZOufo8WABVMmttOHlMzLWRxfVP0XPnBuG3iOHOwzkqjCeGrZlYX2v 5hiWVTdq7zwawIh0iVNGzl5kHA++nhIfsffjMBRoNjWr/KTy75KhoLyx1Hme AeefUe1ATbWnctO9ZMj7s6bKchW1fxYDxt0WRC01VBwZ0AETEy+B97xo2jv2 wfwUGVRsVzNWbODD30e9RwJ/i7g/3k2Tq+6nHDrBQ+sXT/dp5yCnzCjIS9YN IAMm5OSD5koVh+G+7FJV8gF69M/rKDCpTxQkDbCjtjHb5yctRmHb2r4p/2gC Sp8r2LbDcBLiHiGD+15U/3wCTsKArro6lZ91FqQOtMRBMCsev1XwmVDZyI/1 0Yt1Zu/r5vnQtMqJEs/vHRBm6HDfgsyH9LeF7ziR2QGMASTp4zdp/NzLRvb7 yqSEUcg3/rXZfhMgar5mI0lFGAmT6oZ+ZE1gfETVIuPu8rNJ2Jjbn6dQKoz7 3/xjL4ig73SFs3uPzAC6WpJ9TlEEHStstqsUmYYbFtubnXeJoXbmRbm2qQWM 97VNFYx6BS/Cz9OrO3LNxTB/6NlDHRoioxLYnhfIUWH++EwCEf/7yoBSbxg1 xVZKIMaRoKZidkaUn37UzF6a4y++AA5kZtt2VSaRJqsMm35cs6Me+28wGNqT seLPKqTSSZzWEUAvBU/Nn9FsgVqmT/ITwgJoU0hNjmBCK84fJ1lJ7ns0RYK1 76+kFD4QweeJS49xYIwygPUC9bVrXGJwPfMAthcLbgWeqNQeBApnQms47zQ+ P1nrREwPvKdHBzleeJvmD+D8EBRcG3vbbRDyT5DpUszpMf7yINOXwdaBAdvX VLvo2Qhbyb2LK/64fOOqyDpBFHY288GN3FHsT0uXfdsVYzkGN8I3253rFfxf /k06UUT0Ha4SmBsBiTS9DyO+Ioh/TfhYisgY6B0geaTbi+D3F1X3z7i2S+Lz 8UWv3cZnoA9ib1bf5xEah9ip40MxzwfxOlPnKbuDnUuHPAYOV8o38Nd2YtyL qnfamIbXX2GYwf4i/eEDWrKl//atW7FHIzK537aemwXpUl0T5dPSyDwkeyTv 4jKwvZi1l2WRwf7hg0rNhDWHVz4fy1Uy302NE8ih0dpLRMIVFlRTFeF+2V0O x+U7DUfaDyrI4XgGFd984vgscSGUGRWtHf6VmEnjm6bO77L2YeYuW1b0nFno SI8RJ3KOErwkubEWygo8lG7HciKmXHTvOyvN3+Rx+z4keooCg78+3PwTxody /EZDr8lSYM3GW0z7bISR5Oeq1zrWXRDkEeMsnUfl7ybh+7rb6Jw8+2ESbCm5 67w2Whi9y/LJ09jYDRy5l/Zqtwkjna66/aU7SBDtLjjoz1KN8T7qvcOvbivr /5AMK+ZWGWldO87npurDF4SbmX0Ck9BFlIBPRQNwsv26xt5TU3D4imxQTknf X/32+qGYXu9LyuspfP/9/qMsLz07CQmhy6p9lYPY3vy+Z4vRsWMUeMbjYS3O PolxlN3B66X83k2A+vYF+1DGUTyfgrkC+ss9ZIzTU/fZH1++zTlGk2C1r+qF P8zCptWnf399SeuzGWGs9XTXjmnwF7V3PzA3i39/T9Oa+mN7WkE79NzhTtVZ SMtWTR0jNuI6R+r//5L+5AXO07MYH7ItSbsVlzoDwHaWnVTbhvmPX7hGGOiv zYU8nYCwn4ILsPO893myRzzmR6His5t6gpVGjBZwfeDaG2KufGHz4NktxT16 vBDb0wOePmfO/qmCzQ9nX6bEzOH7ssqWLzZCeg4OXF5853LiD+avb9h/zJnF pxyo+Mo/860ErZxz13Xq5+CuBEEqPmIMj1PPYWTl17N9a+dhzkD3fPv3f3nf 6Wj2xrGhjXkbmJjQDg/uod3HeVFCqxGb9iwj8vOrbvgwzo8mbAP1/OMYsJ/n tmnTcYIFA5o4fkvMKeXf+qdhBpSeoOET8ZoT/XAf71zMY0SmT1Rk0zO4UH9d Av2PIUbE49cno71i779+UWYeW/9vvSe7MPoY3nMhUIiEn8fnrk1CGTlDIP/l WxX/D2aMJ/2Tr8yMBIiPb5bJz2P/4Fi/l7GSYxvmE+cvHy+f6G2FPr9PJNEL LNie1bDiTygJZ0FbbrzJI8hOQ9z2x/YFQSxIRMCoKlJzGnZWpfFP7GdB0aS0 H4WyM9As9YzDPpcXpZevnst4XANawd9fHKzhRU9tT3K7vaiBLL3vDqdEqPnG JIjj775vXybwl/0giO4/z83q2UkBB/pIj5A60b/sZzEU1JtoZvN9BMvG5EN5 bit+mOHWmUtfasVR6k/WO1rr6JEoHYcKsEj867/So+V0sT+XbGUQY0ipOZ8G Pcr2qX3s+k4G+/vkrc68/cmy6MH59gPspkzo6KWBreKtsjjPhIqn7Y8MKP1u yIb2m53TP3eXis+xI73ExW31/SyosVr3x4LyFOQuleWab+VHrA8orAPmjNiP 1vJPPfRDghHZW7mOzn78Fx9c0XudfZurStJk0JPDXAHbCPxIUfa2uGuZDDrg JITSW/iRM7uPZJivDJo/9tjG7Tkvqtt3MLEqSAaZOh17dbSPF3WmBcnty5JB s8sdGS4rvzsfxZHxVYwXFa4v1u15QwYx7SX3DcM1MGMyfw/tZESC1m8bnffU A3U/FsbPQuovfhRw5kSoKU8v7DzEwmfnRkBPR19o87pPwGoXceMIOgL6vPaH TfXSGK73HGC6ZzETNgZ9pR235Oep+3sMgo/dUfITJeB+av/sXwK6eYQ90UB4 HJ7YXRGxMRFH97pFuAYQNf9LHHXt035/nbQMmj/S0qvUxHE9JP1/108c7X+i KmIaTIdOHE86mDHHgl68NIrXY56C7EPuqiyMrOgRZxtfDmUSCD5ld7ZzyiFd EXE3TYkpkJXcY1j2oxNey787veMIPZKIGjzRZ0jA/PbUvK94Znbuwdp24LXe qVD9gB2ZU6zdHdJGIeZgRtaroxOQz0Tcr0SaBVshZ/rA1YOwfiCG4E9YhqdP 5O1e5jJj+4yh6/RlmxZqntISNLSrCGsdJeJ6gFVnFIZfHGZD/7yO/3teeVGg Pu+oXsSKf2EcVmVcKoY/P3zeKnVEWAbjLobyeunPd/17nw9zoY9f6gQ/60ui npPunm7LjIiw43cOuyQLXj/q5x7uF6iMmab6S9zIxuBdm/dNEhyw+lC/r4kL HVRQPsUYSoLZQ0fMkpi5kcrLtit9fiQ4OqFy3reOHUmIBAb/3s6INmhKxo5Y 8qMR7oGFFKdReP2w89VMGTV+zIpszC6KuJxkQ7lJ12xX+zCgz6HsaySSmVBy ulp4qd8QGF4wp7gNsSH33H6BzBtj4GsZmptWQcD2slCsBMnoNPEv/ncetN7h dhL3XTJIWTWqdPxmRXPEvXyPNSbgmbv8wJPmHrBIr7Vt/g8P7u4WhqKPBFQ5 ua/12lN65Ne5yz45bkUvsPpO1YxTAOk+y4pfsQ+nP110F99DATJvWm65LgEt RdBbi7ePAxdD6taA99L/rh8Hmtgx+3OWwPov3/q/+SXsrEiX6UP+f/p4e3hp 3jD2Z8H5jD2863JZI1nQNdPo+3V9//ZnXNG/Zge271joGYYy6yYRvRX9W3c7 NLJr3zDod3I/HXSVQQ9vX6S4p/IggoBdz3OHf/kHj/GgnqHlgTYNLmS9tPcU 6RsJjH/Zy2uz8SCFkyn8civ3UU3o1NsLVixILr02UCGQDj8HD/nZP2YBfXCL 7Ywb0Z7qHy1h/ImO10S8X70B401RbGapJj6dkNEU9vJCoACq0I0LvzTZgu2a Myau3/9jz9exs9dpX5BE32VdS1RzyDC0nSyfFiaLNlSn7m+VWvGX4h6Ob7Di QV8K7vR9dqzB+R05E6cbo0prcD2K9qNhrrbCWojqXS16bS0/Wiqs2Lb2G41/ WUDJabgjqx3Hd9RE7Z0Hng1g2aCluKxx3RCOvyQad/FPtdH4u8LEGI6XZNVj ebzozrue441YPuTOO8rE2gxBNVZtGxeJ6PKkl3T+NVr/ew4bndE1Ps2grMkL tnV8KNMrzvjO6Vpsr3wUrF8b2kWGX3IW14+/EEYWT/oio39T+zPIo4dmE+KR P2ZwfweNEdUGNv8mbA9GHnHIXWfXD3d+uk1e754He5+WChXTLvgVwGHtzsqJ vu8/zzHgWAtFNUacT3rHwVNrfSHL1x4413Q4K4BeAD0402Qy79uM/U/92g2E qMwuOOn2RODJlXb4lG4Q+FN9COeLJbQK3W8Pr4c2UtJH15cEFL5YoJRo2AD/ B8yrMlw= "], {{ {LABColor[ 0.2711582030147396, 0.14169846589452695`, -0.40819586146512543`], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwtlXto1lUYx4+b8/Wc37v3fSWcXYnGaLxUds+SIiKIRLPrX4Po+k9GFmlg kBpbl2mEUShUbmliiSNnkaVmdBml5bCiMLSVQlaWc0ItJ6XV59v3wA7f531+ z+18n+c8O+vuB2+Z2xBCWMlp5GyMIfyLohc8nEJ4fEII06shrK6F0I08A/lz 5L2lEHaA+7Frwe8F8FvOaFMIu8E/KyHMwr61COEp5KPoO4l3Y9U2q/D9DrvT sNkLTku2H0a+Gpm/sLMcwrX4n0FhHWCZ8we1PYb+5OYQbh8XwkvEaS9c8zr0 N6AfQj5EgOGKbZYjf0XcjeTdCp5TsVwHuzjnIc+TX3Tep8HfkuMo3vPRcZaC lyTX8wpyL7lnwcPl4HPZtxN8Fp912AxQ19qya1ON35TN1UwMl5L35/EhHCy7 VuWaS5y2qnkQf7qn7lvBdwi5Dd+bk/uhvkwDI2cFcTr4viDbi6efouUnwa3o 69RzW+G+qp4ecDGxThBzlO/3cY5hUwJ3RHOyCmzm93H0n3Gne7DvIdeVyJOy bzc2fZyv4aEd3SmcLuRTwWuSa1ONP6huah5EfltxJ4ZwAbqpnEbk88GC8zC+ 5eQ507zNBOeQr049LyPXk2dGs1NK5uTC5PkTt39F90+9UE/mwOmjxLwD/KVs zsX92Zx+YraD64k/G/km4t9amCtx1pTc3wngKN9KyGPgxzXfdwDcTI4R6jkW 3W/1vbvZXCvOB8Tpy/GVZ3t+O3pDpcz5h+hDxXOleT+Y65wh/SRzNQ4cJncj viNgC/515EfA+zM/DcQ4kDncjH4s+e7iYFHhu2hmzy3cowf0BquufwicnGMq 9kO57+p/S57P5dzx/egZ2AZuqbgXC/Gdj882yv0I+ynZXn6adfXle2zPzDOz BN9n8pvS23oi2veK5LiK34p8erKNbOUjX83d7rxnxiP/g9xKzSfAH6Nn7AC4 IprDAXBRNM/7tNOi35f2zZboGfgSrNUc567kfaG82jH93O0L7DeAR6PlTWDM vdO7qWSuxNnEPJOazTeJOUDMZfDdx1mCzTy9UfwHifMWeF3edXvg5/rMlfbE 8eh5+xucrD2MfEh1Ii9AroLvRuddDH5Krj3oPyHPGs0l8qvgQr7di83r4pXf m9DPx+adzIm4OSnZRrbqsXq3MuZ+UE9XzG+vybOmO+gu64mzLHrOV0ef/2ce vKzm2dCMdBWO/x7y7MyP9tlI9B47Er3XpO+o+b1pVtuS95f22Ivga1Xzthb8 nd87kfuj61OdIvJIjllJ3tF6U2vAO8ueK+2w7ryfO6lnjHwNvK9fC+9x5Z0O XozdVegvAi/NO1+7X/+T1C/1bXs0J4PghuiYb0TPnGZvF/gfzqIA2A== "]], PolygonBox[CompressedData[" 1:eJwtlFlIlFEUxw8z1ni/GWecigjEyjayMIigIug1fAiTniJbTcKgNE1Ty9A0 xKCSICqSwNJqTGghAsEKLLTFnoJIhYQSSm0zGLTFsN/hzMOf73/Pds92v4z8 4q1FPhHJBUmg2hNpcCKvQFOKyDjnS/AUvqVRkbGwyCjnz+AA532gB94HCuAt qSLxGSKNM0Wuwfvxu4BuEvRERLYFRa7Dz4I87Dch+wkfBwc5l4N0fNo4l2Bb B58gXh/x2iJmo7a/wSF4LCQy7TObBnJbhM9mbGsDIoXc/4vzfWzjoB3/Fr5Z 2Mb8Infg2/G/SOGV2Me5a5AYQ8jfg/3Ez8UnB/sC7OuJVY3cj20td3yH/wFz 6VsA2RT8rzP+DCwjXsSz2HpHF7ovznLTHL/BG8E//KuQzcH2BTkPBqyHW7h7 d6rp1KYGvYBHfDKR+eCrwRLOG5NF1sD3kHM7MW+DFvJdgWwA2zTuy4TvQt+M 7ikYpvYh6v0I/wAK0R0Daz2bkc5qAn4ZPovvEXQj2H9ythO6G+si1gvtyVf4 UmSdAevXbHhd2HqtPa8P2wx0Fg/AXuIVgWn4SZCPfTY71wt/AirIr5n653u2 E7obWXx9ydaDU9iUp1ov9FwGf+Ns97R/7+C3nOWiM7yZmKnOVndSd7MTn1L8 T2PTQb1JnvnqDFbCi9Gn8Z0HyvA9EbFeak970XWH7G7NaZJzV9ju0x606lsI 2ewecr7K+a6zXdZ97U+8AX0L64l/XN8XOfiTLd+OFLNRW93xe/qOIrZfunPZ +LzmvIF4U9wZ5q4aZ1xlw4kea68HQIzcMqO2K7ozOZ69IX1Li+EVUZuBzkLf tL7theRzxdkb1bfq0xjkk84dAq/EZjk+fnAYPopsxNk/Qv8VedTsoXOgJGoz 0Nq0xlXIMjzrjfZogWf/FP23jIEf+D+mpm74ObADXRWyt852RndnJzgPfwnO 0K9WZ7lpjs/hR7UG4t7QXaGWWmez1pkHkTcF7a1qT+PU9x/GiLsZ "]], PolygonBox[CompressedData[" 1:eJwllG1MjmEUx089ovtWd0/mPaxIeZQxm2aN4RvTJ77lLY2t2ZSUFM0am5lF 88UobWZlEZKJsiXKW0KIDyV5y0uNbKL64O13dj78n/v6/8/Lda5zneuJSc9a kxksIstBCFgSLlI+SqTRESkDGyNFWtF++0Suw8+BNLQctHkEPIAfBIWuSEWE SNtokR/wx2ArfnvBYmxf4SnYYvH5ECbSDD8Futm8H/t3jy/8MNgQhD98u1/k wBiRKdhvoVcQN0C8D60Q/gX04bcCdLDeD3CVZfysor5PnOM42j2wEl4CHrJu AgHOs3YsedFGWF9DqwKbqHc9OMq6C0RRcxJ1hLJHO/wGuMy5E+BNYZanBO02 aITvJnYW+8eCFOrcxx7d1DxAnnp8XoICYpP9Zg/B75iembifrPPR/HyDQBZa Hr4vsP8BM9VG3CXytZNvCO0CaGCPDHzfse4Fydh6iN+B5uObALqIvU9sNpoD DwM70Xr1ixbO1wNFxH7jm4pvLL0MZe2CdfBMv93XJHiU1ge/Sy3D7PnGsT46 9MCjnkH8PqJ90nviDPGghr41ONZH7WcqftOJWUSuJLCHOgKe9fcZPrWaE5/N rp39L/wOSI+0e9L7isPWgq1Wa8G3k/VctDnaS3xy0erQYuDRIA+tDy04lPmF J4ICtNNo58m3EL4UWwAtg5xFxE5AK8UWjc8uUKl34do7SeO8pX6b2WloM0CZ 32ZVZ7Yc/KMXlfAqztYJvwIe0eez9K4ywtaDaMXghGvvRt/PE8dm+LPOFbgJ P+lYb/Phq4k9ROxzx+Zf30ELe3dQc7Vjc6PzU8yMt7K+qDNOv4/Ag/TOOedV tF+gmlzZnK2CdbxrOZrJtQW/Nq1X3wz3si3cfDWmzrE5rImwWdWZDQYB7Rmx uWiT4VNde8eJ5H9NPROZq7fEvgc9ns2vzvGIY+/kFflyiB1H3Hi9H2KHXeuN 9miBa7VLpN2d3uF84EPr1xnw7H+gW/PrO/ZsZnR2njo2h3FoZ6ixntyzNTf6 EN//7Uy4Sg== "]]}]}, {LABColor[ 0.40923368746723576`, 0.32050708620873325`, -0.0031137027496148106`], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJw1ln1o1WUUx5/NbOve39uVliQUaDUwrL+icg5SyTRNqwVRd8vcLCrLzenm NtuMaUhWFlRkpXKnqTgHRRCZVppzLteLhVBR5gy2XpxvA9dmzKLPl/P0x8P5 Puee93Oe87sTq2rKqvOdc4c4YziPZZzTfTF0VeDcCS5loXNfFji38zLnfuD+ KL9VjHXuc/izOO3wa1LOPZB2rhT+q/DqApNfAn+A0w/ug/cQMjfjaBU2ZkTO dSI/L3buM347iswB6EJ+i+GXYqficueynJP4ncO9CP7d0D/RvQt+hL0tiXNn 0R1Cdxf3HmLdA28Yv7+itw08Bh1+cml8NcO/BF4B76/AdP+GdzGwGsyF/1po 8XwLP0LnO/Ax8DAyLXnOtYEnE2czCm0Y/iCxmqg2jYHVpAG6ndMFXsrvRYnl UYPMMk47uo3Q49hvA+/FTouPrUE5cs8rxCd657EzDpkceS9CZzG+epAZQOZ7 +E3wHsTO7dTkR2xMjC33VvSe5bel8MuhK9E/je4hbJ4Cz4Z/Dtn7Q4uzB90O 7kfh50mPU4n9Z6BNyJ9B9xd+34D8NPDL0J34+JeYW9Ht5RzD75PIzwut7/38 ngus/upDf8rmqBaZW4ljLv2qAF8fW5yKt9HX53DaclOOp8DTY4s5Bj8Rm6+T 2NuN/XxkboL/CPLzsVmC7ZXgcvh18GemrL/qc5JYHVSP33w8V4PvHGvzIJ3q jOWrvDWPykX66p/6OITeHz73x+Ht8L1Wz3MpmxPNy9mUvaPlyLwNXgh/CnUI YpvtFLQ6tHdxAF/LPH6YmLuJswOZFmReKrA51BxsiYxOQ2ZDZLmrBrchfw3y n0Y2u5rhN9CtwjduXSW8K5DrReYw/JK0vbEQnAlNpgSZusT81UOn+3c6M7K9 oP1QlbJZ/D+Wa71uAXhFxmZP768jbbvjY+wM+HnT3ClP5ahcZ+F7HfzZ0Hs5 68FHkB9JLN+DxDvo36Z6uNHXcBK68738PdC3PH8HuNO/U/VBvVGPtsc2K5qZ 8ZG9N7279+Cf8z2aCr4jZflqP2lPKc4sspXgb/DVjsz7/o3orSgO+VVvXcaw YulK2wyvjm2Hyr785MjrI2oyCl0SWj21d/vArZqz0PqnPk5Cdy34Avw1kfVS Pd1Pfuu5j8B/Afqu7/sn4Bnoj1O/QtvL2kUhOIlsR+0HZ2PDB0Ori+qzBtkL foccR3YO90LiHIF3FfdtyBdBbwltJ7SQ36LA3ko9+DnfC/VkLfcXwfeBO0J7 v9pVo+DXsXMJOsh9IzgPmy4ynA99xe+WMn0rQuvRPvByThZ8JbwJoWHxjoS2 D7+CbsZfN37Pw/85sP28FbwutL2q/dqZmG4t/H+Qn6rvC36HY8v3InRBynS1 4ydE9i3TN+2LxHqq/d3gbe4NbPephmfAb8b2Zptjq7XqrHqXo1uL/Wxi3yhh 7R3VWjXX/lYciucp8K7Y5m03tDiy96V3rNnVDNcEVmP1XbNe7PfndbHlphzr kf/d70btiU34/hC/7yT2bXGFFmsubfmqZqN+PofS1lf1V3s04rc+ZL/G/mn/ lrWPu2LbJ93QTaHt0M2+z3q/6r12pXZmNrB+yFcvuMF/X/SdKfZvoRTZp4mh lRhuUB99fX6CNvlvq/53rE6brmyM+G+9ds9WdPeg25bYLlPdtJ/2+fc+Gdzr 63wisr2stzmI7I3IjCfuBXo76D+PnWrolLTVsA7Z/wDa6UiT "]], PolygonBox[CompressedData[" 1:eJwtlW1oVmUYx+9Nt2c+55w9zyOtUgiagTVbfqrUuS9CzPCFUgrKLZsG6Va6 xIkkmzashfaiEPlllsPINhf1JTKLgnSZU5MQjWJqwSytNjbKuSyJfv/+58P/ cF3nermv+3q7K1e3LF9fHEJ4CUwGA0kIT5WEsB8kcQinciEMlYZwBqWL2RDG 8yiVhVAErkQhHES/vSiEc5NC6IM+j/4wtt3wg9AJaMD+R+zHsV+EDqJwicMW Q/8a2fZb+Al8Hy63/0WZEO6H3wk/gb9/+X2ZeDrAT/jqQP4M8mZ8HsC2BZ2z +LsOPwL/AHwX/AB8P/xU+AXwuzlvF7hKXOPgAv7Og2XoLQdz8Znh/I/x/zb0 i5z/J7Y3OL8T+83wv8Nz5VCAXwpuKfF9fsN+D3gT3Mr/aeBo3voruOMR6DWF EJ4G36PzA5jHv6WcNR+d15X7rPNTz6eRuP5O45GOdN8n5tOlzu9s9C8TTx38 BXKyBf11ed+3GHk192yCXwtuh64EI+gPlztGxdqGvz7se9HvR/4FPk5Pdv7v w64J+by0/mugp4AV8KiGBdhPw9d3xa7BdOiHke8sdU+oN+RDvlRT9c5xsAP5 IP9OQN+FzZ2gDEwBRQXfb+X/CUYWuXa607vENhf/c9RjYAR8hs1tpT5zO7pb yt1/6umZnN+MjyYwyv8x0Bo5t+qRtzh/IT46sV3Fv3vRr0JegX0v8uc5b2vO uVG8A+jfDKZOcj9XQM/I+Xz1ZCV0S+xcaWa+gT+EzkDGOfqZfDXCPwm2Qb8A PoE+kcovwWfT/Gpmaojlj9jxqifGoJvz7n2dN4H+c+rRjOv9C/LHsZkNvQ77 mcoP/z4Fj/D/UXA4di/Xcsfd3Hd55N7rAEPwGxPL1fPbyddNiXtXPazeX5V1 74vPc3ZV4l5UzpX7bv4dyrjGD3H+XviPMvYxHd2h2LOSQ38ldbnBvzdKvAP6 Y8+cZk/12Epsm+BfyTjnyv0pdE6COuJYCM5BnwWLoZeABJsYtPGvHdRm3QvH iGev4km8G5RT5bY6ca+p5zRbG2P3smrSh58GztyQcQ174D/I+b7S/xB6fuTY tL/K4Xclzq1y2MbZveSkBxxA9h6ohr4bVIFZYG3B/aIZuwh/DYyDGfi9A9Qm zpXqr91wNHKtVLPXEudMudO8HVFu0/xqJ81C957IvaH5WYb+V5H7WTN/jLsd jLw7dWfdvT3dB5pX7WLNqHpfNl/nPQODaX23oduMTRPIgDIwlvUu0k66gv3J 9D1pw34fZ61O66F+Wc/dGwreD9o5n2O/oeBZUM7r886RcvUXttfBmaxzrZ75 B9/1Bfe6ev4x5K8mzo325RPIvoytrx5qxV9Xzr2gGJqlC1+T7hTtlopyv32K +TjyKOddp5mMNZuxZ1+8dqHeNPHqgVFkrQXnWzPZkvdOK0trrtrvz3t2tTPe gd5U8GxoRrryrrlqr52t3T0c++3TG7gD+yU5514z1oFed9a1l7856Pei3wM6 0X0Z1KTvi94QvW3agaPpG6C34Freb7lqvgffVyPPn/T19rRHnkX92wf/bMG8 dmadZiFybZWvRmSbY+9O7dAHyd9/0jgk/A== "]], PolygonBox[CompressedData[" 1:eJwt00lsTVEcx/HTGl5p330lMe00hpKItSkhRatKE8WmaUwL0odqdxaE1zRV NsSmCTYkqs9OIpGwMHdDrQgV7YbE0BZJRwvic3Pf4pv/7577+w/n3HMrjpxq aCkOIazBLPRlQhiaHcKcshCakUWuNIQHqRBulodQ6/1OXIhC6ET73BD+yevh W8GX48vyHcQh3OXtV+/wvBB6+fMo4U3hSTqEJk3LrVXIXYpq/k7+7eIvz330 dfo47wlUYb6cSu961cijSv4za5vN8srzayzhW4xrZrhvphvi00K/e/Rl+Vcw ImcYLdY6+FrF7/K/oZZ/Af/q2EtvovfSD717hH5zfTZfRLeiDWm+/MwQTtNl vGmkzFfkjFaKlVgVJd44J41b6i601oUp+lKU9I/nGMKZGSHUm/ETPYhddB0G +dbr/9cc9foukrs7newn3tfZOBdRfK58X/nfW19Hf6SP+ibHcFFOF9qtjanR IWbk1PD9oJt5sqiRW42BKKkxpu95z+cwrs+ofU+I2+RuRSPWmr1F7Tu8PbiN Aw6jW840XeLMd9Bv5b0rS+5WfMfqMsk33aLXfnX24bH3b/S4qt4fz9PIF+5X r1jE2x1f4ijpH8/RoPYeNPqubXo1iV/k5/ielyb7jvc/IX8cU4WZJjPJfYvv XXGh7m/+Uesj+JlJzmfYuwH1P+Bl4d95IS7DSXq5OMEzGX8retDPNsq7gd6I /1vwfMw= "]]}]}, {LABColor[ 0.5092984915820752, 0.41001554928195394`, 0.23864758028489125`], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxFlllsV1UQxi9YSr3/u7QqRDBhkWAQNBHUaEUqKloFNFqDSoCERQUKFPAJ F4QWIxJMwxI1QgMoKEtQX4wGQQKkEsBAooGoiGxSUNnRIhQw/j6/Y3y4mTlz ZubMzJn5zu06enJVTesoivbxXcX3UBZFjW2i6GHoe4UoegnhD0kUVcJ3gj+Q RlFFHkV1xVHUD3pXaRQNahtFy2Jsg8489HvBt4K/DN8z8EfgP8DuYFEUzWbd iP0uDv8R22fQ6YUsR/YkfA/4hehvJI6exDOJc6fx3Qb/KPtj0WvA13jpI++A /FbkU3KfMRV6A/LWyMdBn+M7xFkXOOsd9ragc57Yx/O1IO+GbV/O2oh+OfQw Ma6Abw19DJtu1GYHPk4VOV/FWo7tQWgLdHipc6pCd6lqgu10fH6eOZdybEs4 sy1fcStqlfvcrgXLRvBtZz039v7H6P/FWcOQl2H/e5HttdeQO8570e2P/zHs D0R2J+fuht9I3b5Fv6KNfa6Fry52zEsyn7cB/Wb0rrA/Ez8n4X9F7xL7S4np BWy/IYaa1PUfgKwis/9j8AuQ90M+BD7l+xvbFNlU/HwIvxP/7TPzkp2N7b8S nZbYdeyiGGLnlsKvYG8//r/Crhqb5ci3Ir+I/6PIeyJfqzvm3D2qT2I/o8j7 DtYx8kr0T/KNQP/u3HVUzdapL/h2kPtyaJa75n3xN7PgGm7DX+fcteqkHg/y XcinFewzw98SvkbqNgr5wtR1fpr989hMRac5d0+oN/5EvpD1Zny+DV0c+vAi eU8M+Z5G57rEvVZNjjehV4P+UOQjS31H3ZU3fBM6J7DtmLk/O2TuLfWY5uYY 6zXoTMffH/gpplcr0b+inOEHx65BSYnjO1twDKr9u+zl7K3MnZtyvC/1Xeoe JyfuD92j7nM78axF/zX2l7PuDL+J/bcyx9mE/uDM9ziW/VnhjvpAu2IzEf0b ofWJZ6EOeV3i+mheV+W+d93/ANbXYvsgdCjy+dgOg94f7mI7/iezfh95Te65 kk/Nt/pDfaK+Kwr9oDn7ibMOID8ce95lqxlen3tunmd/Qqnnpxb+fGZ868b+ XPzXoz8kN6Yo5k/wPSN3TVSbcQF/2qH7WebceyObE2p4Ivl/thWTcFB4OLbM OKuzhKlJbhwoQBcFTJ6E7bbUuNQOf/cU7CtG55fQD1XIVhWck/CpNvTz4NxY JtsnOPNAG8/U7az7I/+aeFbiv6HU8XdAtjv1fnVsrJEf+duT21ZzeS7021no 9bp35HniN0D4PxdZS5jl7vi7lLrO36knY9+jZqsMnUfI9xT6G7DdSTy72J+X ml8nrCoYi5qJ8XTiGgpLmgMGCgt7YL+YGNpCby74gfstMbbp3pX/As056yZ8 nwmzoLkcjnwvOvtiU82O6t4j+JmBn73hvsrwPwib9vgZCJ1XMA5shu+Ln1py Kc/dB6rnIuFk7Dl9JTH+asY166PZ647OmNR3rDP1Dr8YcPVZztqC/ib4ZYlx WfjcCvmn2BzXbCLvB1+KvAK6J3EOF4jh58Tv7375TpyLanM8Mb4J584l9tOA 7cnMd3Emsz/NgmKdRQwXWddnxjvlq7w/Stw/s6WvtwSdEmSvC6fg54T89Lap XzuGGVGvtYQ+0b+DcFB42A5Zb9Yd0XkK3VvCnV4NnRDeCGHMyMx3qpkWPgp/ Hk+NMYpZb5/OVgxHUs+Y7u57dNeHHlN/9QkYpXk9E+rwbz0y10dvy389sRXd N4JP5dcY3t3LwqSC++rV3D2nOr+Jzpe531+9w9cEbFQeVZlrOL9gbBZGDwp5 Kl/18qHEOLU7d7/K/1FoU8CvL6jh6swYvib3f4z+E5bAv5y43/Q+6G50R6sT Y730Zdcl9WxqRvUWasb1Bm4JeSm/KeGfSFhwNHGd9S7Vp35P9E+0OvTAA8j+ AaKWcYY= "]], PolygonBox[CompressedData[" 1:eJwtln2M0HMcx7/32O339L1SWbEed8nJQ2ND6STasWK5TUzaLEtc9HBsqcS6 ZjE0iUylq05pLfyH6kQ5RmJjNdZGz2nS06ZLJfN6974/Ptvn+fP9fr7vz+f3 6z9pesO00hDCSqgcWpGHcAxmP8rl8GkMYUJlCGfRlSH/nITwHbaJ6Aps87MQ NmJ7Crk/8ktFCGcqQjiK7ji274l5HHkgub+FH0t80SWEPdh3Y/8mNz+7LIRl aQj/Iv9U7hoX4JsS568mxwjkFvJXUetPdCeJfx35HLbDyEeQP0f+nVy16LbC jyLma2zt5LsD/k7poJ34/gAtgC6W+r7N8LfpTuSfSI5jyJvkR/wN5JtF/N7C Z9UdLuKbIC/HdgRdP+zzE99fNdcRe1/us5XoTNxvCvZW5BZ8IrGRHNdga6Rm X/hxiXu1F59HsR9IzE/Bfye5ZuKzBt+FxEzGXq8zYDvP+UeLh7qW+c0y+CL3 XZqR65C7IXeFhpF3OPQOuu3YmsnxJvwodO0VxsApzj8a38uQAzlmI/+C/Udq LSJmvGoVlnWnbvDT8VkL30rM5ci3RNdXT4fDd1S73i50R+lHXe631RvoLTbh U1kSQhd8NsO/ga5Pme+3CP5JdCsq/QZ6i23qCfxidA9ja4V2wO9D9xn2HoX7 qTP1hN+F/QB8KdSdfNWcIUKNXUOYCjVyvxuD7c8Kn9F30x3b4TeT40ryn0B3 FntJYawJc6fIMzz1bOj876k3ifEzAp/FnLUH1B2ahe05qE/02wvjwvrtubEq /IwU3hPX00xsp97J1LW2km8FsV+Qo2+lzzAN/7fRbevsbx22C/S7qiqEMdhb 4PtFn12Ye5BcDxXujXp0L7VqyXE1NAf9XOggun3lxtwMYmtyYz0ib1BvkQdA 7+K3TLsh8fl7Ue9+9DXETKv0G9br7JnzCc+rkf9IfVZhQlh8MTPWhLm7iN+a 2a47vYX9+Wisyn8p/MDo3KoxCP7p3L1QT1o5ywnOeDd8PfM6lPvX595NqjGY 2n+nxop6pF7pzfR22jHaNfeknn29YRtnuZb4IdBGan0IHYK/FftgchzMPZOa zdXET9fdo3lhbj/xDfj0xn8D8hzkT6ttU8x6atWkngXhYSq2obnnW++3Fv6f 6H0pzHfAr4zGgjBxmti5mXOrxtDUGBPWNPOa/Y7M7y9MCVu1hd9TO2wIfFnq XV+DPCn3HXXX6+Cv19vn7v9G4td16mTbTNwW6HDmfaedvID8f2Xut3aidmMv arxf4TsfRo6Zd4Uw2AT/Ue5drP3zMXxF7n2mnVAOPyF61nX/hsLfJJ33S+1U 4jPk/8rdg5nkP5c4n3p6BvvA1LtEmOkovFOFRWFSWK/KvJs1843wi1PXUs8f oXZD6rcWZhYRuxuagf9ezV9hTCufdvYe4ntk3iXy2R29kxSrHJ/A/5p5l2mn PYF9QPS3VPPZhv1Q5m9HT2Eg78QwWC5FvgJ5aWJZGD+O/1eZd4XeV7tqcuZv aR3+S/DfED27evP18Esyn0UYXoh9Xid+1MM8NeaEPe3UNfi/Wvg8euPX4BsS Y1f9+43YPPrbrDcblvobo29NH/L0zd0T9Ub/BC3YH0i9GzVfW7C1Rc+fzrwl egerf8JMb+qtIteYLsawsKweqVfS3UxvXi4828LcK/AfZN6lwp/+TVZlxsql /xlqj0/dG/VMvRsZ/a289P3Hv1fuXqvH6vUz+Del3uHa5S9Ez4Jmol33if42 6nuxp3MnajdqZ2h3NOfGn2Z6Afy43LtSO3NH4hnSLGkHaxfPS91/+d+Ueydr Nw+Cvwp6LPesqt+albG5saI3Os99TmeeJX3TRxP3P2d9VVY= "]], PolygonBox[CompressedData[" 1:eJwtkUtLglEQhgcrBfPzGEEXF0pFtQraSgaidCEswiCwZS2KArVa1KbrohZR YAVBBS2CFtZv0IKW3fYF9Qu6bnITPcNx8TDzzbwz5zvvaZnMpjIuEQlBDRT8 IsYtcuQVaXVE2uDBJzJVJRKjF4cEvMAzjBuRPfQ7tSI5ZrLgMPNXLeIjGjRn LA4Qi3yX4JJ9BehippneKLU35l6hEd05tSbiNYTZXSLm0MxDHnrp7xMf0T9V 0PyQf7lBf0Ass/8XhtA1oE8SP9C8Q4T+BroosZN6B0SpF9H1cNYXdbdH5MfY O+pdw2hC4CE/QeclHvPtIg8SF7jLIowwMwxJYz1bp3ZB/4rz1io91czViczC J3sG6dWhW+UfVmAJfTd7l/WuaDfpx4gGTQAS1Ovp9znWb/VdvVGP0vQz6NuN 9Vo9nyDPU0vrW3Femdldv30DfYt+8ltqca/1TL2bQXvKzLSx76Lvc0/9Dga8 1p9vetvsjzC75dh/1zuMkQeppRzrt/r+D9tSTwU= "]]}]}, {LABColor[0.5995940530257713, 0.398035393318765, 0.3369084686445838], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwtlnusz3UYx7/F73fy+97OcdhcKqzIrFb8UyukJCVMLJI2cjcct9YappPL ujC5rGU2Ruhmh5qRe2TDVCdaLpkKJZFCtdySXu+9P39893k+z+d53p/n81y/ LQaP6111cxRFl/nq8K3NoqgFxCesr+ZRtBp6bxxFR6CPF6JoHPxx0N9BD4N+ gW8WMu8h82UaRQcBO1mKos7wD9aNotokimbw1UB35HxlMYqOofsmOgvrGFP0 NOQvQL+Ibl++R7HlCPIT+O6Gv4Pzqsw6B+ENgj4EvxeyRwu2p11ke4VzGjve xKYq9iO4/0N0esD/gDVHtyGyI9Ct5mw1tj0H/we+acjsRO8c9Kdg7ELmKjLn kekOrz66y5CpYD0H72no4dyxqcx70bJXOItu8vtks94zHb/1Yj8T/LWpddew 1sT2weHcb5Zs/5Ltlv1vcL4aejf4c7l3aMFvl99H4c/J3H0SWyegswXdRP7h fCXyB+CPAfcE9I9g/Fo0rTidSOyzKs6rEsuPAqOGfT307wFnId8y+MM4H8y3 FHooMpvhH4beD+/7ku+pxLYN7Kfy7qXwfir5HuXFgMT+lF8nwt/Gvbfntn8R 9rfhLfelvvc23tshtYxku2T260UwurCvB38PdCvk/gPzEueDy+2Da5y/zD4C pyEYt4U7hnDegn0BfiP0flYeYv91cOvEzpdlYBYr/K5voOvD/xt+v9Q+lW/H gz8f/NPInEVmVciDv6APFBwbYY6usG45GFOQKYPfBox3c/tnFfRksNah+xa6 i2PHbDf8y3Wdx7Lps9S5qpydhvx6zl6DNzex7jzWhwL+XfCPlmz/M9zTNXYu tsx9JhnZ0jQ23RrercE/8pNiKV35oB8yo+E3z60vHNXiNuij8Lez7is5J3vB L2X2bTP1gJJrfwv0V4lp9YMRmWt1ZOY6V51+QVxWlrt+VrEuSPzGJuA3yhyj 48j2KNm/z8L7HNtegT4O/pLYPh+LfKuCY1GJ755Cbh/7HvJbqHHV+vTQi9ST KkJ8Fatr7C8oFshvUX/jjVtZGyNTBOfO1HbInpHwz5ecA33gd0BmDva/hP1T obshvwL+BrCagLMxc+2p7o4rbuwbw1+vXoLcE8gvZz2Wud4vKhbg78W2+fAn gdkZmcXQ10u2U/ZeCX3pcfTqhrwpsP6Z2+fy/R2p7f8oc9zUf/7hjsrYNVKZ On6Ko3qMepwwhV2bu06+Zn05dVyUgw04OwP/29z1oLrozHk1mN3B7Al/Xexe Pwm6NXQD+F3VP1Pfqxrdlbju+8auE8WiA/IXofeguxS6fW4/y9/CFf57YIxL nf+qoTNhpqiX6X1Hin7j5sz4umdW5l7xPnS32DNOs056jcusuztx7rSPzT9b dF8elru/qc99jEwB3jx0t/Pdjsy2zDEXrZ6/ouR1LDb25qyWswFgvI5uU3Qf AX9h7vgqzv9Cp9hwLbfsgqLvez92j9eM/T2x/XqHckv37cw8p/WWHerf4d5q zm8p97vKWGeFezuBd2/oserxD6O7E/o8dAXfIO7tGNsG2aO+07bcun8gOz53 P1dfl4/kq+XwH0tdX68krg3VyBHVfW4fNoTuGPp2de47dxS9nwH/BuspZDbn jt0m1mZ8A6Hz3POnUOaYvpNb97RqjrsvgzU7c87OKXpONA99vhRm5amie/KF 3DidSv6P0Wwez3ogt8z+MCflc73zKmc94V9hfT53XObH/tfQHJWM6l52alY1 yDxDNUsnJr4zT3wu32o+bQw9YUXuOpb9er967cAgo/mqOTsG368J+dYutu/k M81AzUz5Rfl9KdSR8l21oRr5hXVm8O2NxPNYc+cB+H1y+6o362+J60t1ph6h XtEydYwOFZ2j+r/QjNAd9UIP0XySjRUF52WfkOfDwWmaOmeUO0ugu8B/Cftn Qz+o/z3Wwannm2avek+X4Ie2sd87JfHcVU+YqX9I6PuRmR76nOyQDfoHVTwm hJ4tnyhPNuS2v5jYd8JU7W5NXC9Pxp7B8klb1v5hvtdw3j937mv2vhb63kLl cKiXt3PPEOW/4r4g5KRysxDsG8K6J7aN+o+eHf5F1eNVh/KP+oH6u3xcS3w6 pfbnw6nrSvgrM9+l2ab9/yxUpxE= "]], PolygonBox[CompressedData[" 1:eJwtlmmIllUUx2/pzOT7bK+NEy5lSiVhRdmXpHCUXCrRciHLDNRxL3fBpERj 0g+laDoEJilTjhno2AdT0XFEDRcMrKlGzYbSyCxb1IqUUbPfv//z4cA596z3 bPd2r5o1YubNIYStQFtgfRrCP21COFkawu6M8ySE4SUh/AbzSiGETXEI/6LQ nrN+8CYCPcDr4VfDGwTdAXoz9CLoZuga7L0FbIlCaMLGEfSPY38H9s9xtg98 PzqV+B7B2XLoC+hfQ/YZ9DvCuwh9Hbo0tq7k+yJ/X2S+5FvhvQ+cw/5FzhbB r0d/GHg7dJahvwH7ncEX3hTCB+DjkV+P7iBk1iP7LfRSYj0OPQ79JZH1T6HT iHzfxHeXjnRbsNmEv9XwX4S/KjJ+DJkR6E9DfipQwfltQAaeApWyBZwFbxec g9XQ64DD4IPRX4j8JOzX4mtNGfkthnAicy5Pwz8JPqzgWCcCR7G1DJ9X8nxd I76uyDRifyw27wS/xNnkNq7px8iPQf469Fn4TfDbQ9fCO4H+KWy3IPMadBnQ hXhGQp+DV4JOL+jaPN87gQPI7+dsEbL3A3ORncZZHfJjoQ9CzwDWkPuu+NuL r274fBn8B/Rbkf2Dsy7Y/ls9hq3y1PmVjQ7gDeg3g89UT8HvzVkjtkuA7vAe K5gOwK3Qrci8l/O7QW9HvlNe/x3EPgX5CsSPwh+SOkbF2oKPE/AbIt+/HfAg vHcj8xXPDPiV0ONKnd9i5hqoFk3AUGx/D704z8cTyEap4ykFOql3I8emM/HK sfkztr6Bngw9E5sPB9OzMveAemEaMrcrd8i0KB7obdi6M7E95UC5+CJzbRXT OvgfRu7vM8Q/Hd7VgnOvO7SH3pu517UDBmC7M/R2ZLtDD0Z3RmZbsrEJ+mTs XCknyk1//DcEz/8A8NfzeqsnvgOfUHTs8lkFvivzrtGMaVbviJxr5Vy992zm XlS9l8GrwN/5Ut/5pdQg/BfOOsB7PnXu1dNzobcAh/L5fgX92aln53FiHMXd xxPDq+SzJ/KXkb0ncW1UD/XOU5HvrhwsgDc582yrJyeBz0d/eZln7CD6+1LX WnfegP3yxL2oeqhXNZOaTe0s7a5Lme+mnv4TfE7mWjdjfzb48Mzzqp04EvwQ 9sbl/rV79kg+r5d290rsb8PWI8gMw/6YPF71+Gjwmth3eZSz4fDvzu9bxMZm 9KcXvdu043vA/wj+0BLH14y/qcicKnFPfqXdEHsXqOZz4C+JPbua4aXgQ1PP lvwfQP5C5t2tnVeJ/AuJe0X6o8HrEu8+7cBL+F8cm6835V7oysRvjfLdB/xY /p6oRntiz6RmUzlai/yK1PW/gfwbyB6LfRfdqRr+qMi1146twd7+1P5VvzrN RsG1UL/rbfis6LdlM/RhdL+M3Z/amQXwNyPXU2e7sfcTMCS/r3b9O/n9FXMN +ATOrrT1Dq0C/7TgXSpab1mWebdoRz6H7SORfWtequGdjj3L2hnaHVns3tdM dky9g9WP2kEH0F2Zuv+UjyX46pl4t2vetOvOxubpDVmObEXev/2BeZF3kvpT PTAFfAFnT5b4Tfg19huqWVPOj2J/PvyBOa1ZvJHb19k6ZNcW3Hvqwbu0XxP7 ks/yyDM7KH9vq2L3kHopYeaucf/LqXv1aWy0gu+L3QvKr/4a1YlnQTOxInaP y592zEPwGlO/Raq5ek89rd7uhP1bit6Bmq0S6Iv461cwrn7R23w1cyyasZGp /xj6a6imbRP/efRea2c1Z35TVJsf9UeALival3aYdrn+WPpr6U+lv1Uxr792 TB/lIvVfRzthIPhfseV3wa/DVn3sWdJMbo39pmrXasdp19XpjWljnY2pd5Zm SWeHwOdlfksUcz3+Ps8cq3pKf4XzsWutmtcS39XUuVcNfoe3sehY/v9j6K+S eNdo56yG3zvx26s/2E50v868u5XzM/AfSFwb1Ui90SuX15v9Seo/4YV8f+pv OCl2LbQDG7D1duq7K8ZV4Idjz55mcBPy/wGixYuf "]], PolygonBox[CompressedData[" 1:eJwtkD1LQnEUxh98SdC8wiUFbXJzzkG6USGSBb6QfQSnRNHVTamxpTUhsUma FfsIal/CvkLREi3+DvcOP87hec5z/i/59uCuH5LkQhS2h9IGHhJSA+E9Kf3E pW+4pj9Cq1KLcAJLR8oeSAvqLZkS/mPg2cwb3KAN8Rz6FPTY34U6mU+8GtWD U5impDX7XqlfzI7wd9Qr8lWIk5uhuY6/w3aV0Y/DwNw9dGAOdebGCf899q4C WgztLDjLzvyAHOetTMP3IEMmDRP6CvMv1D/8JnP/jv8X9id2H7vXM7sXEWkQ 5G1PC90j+0R/yVsu4Bx++WwXbw+uGSuL "]]}]}, {LABColor[0.6879598891218737, 0.3497981110562511, 0.4284032006664429], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJw1V2lslUUUnULfa/2WmQetrDUKIYJiDIgYQgTcghGD7EYWUQpUCEUEhBpL CGKRRQyKmAYFZRWN0KJQSlSUQthaAVlsi0VkS0hQUGkQsCye4xl/vMz97py5 c+cuZ+a1yZ008OVGxpgH0oxpjHFXbExbjOMDY+YmjKlIN6YME4XQXwUwJzRm BuQGYAqBOQG5K3CzMLZ0xmQljSmxxnwJ3GrIU6D7CzaeBGYE7CwF7jLsNMP8 Onx3TMjWq97m5siYglDY9ZAzU8ZMBOYI5mdA/yL0y2EzLV36efiugtwNcnvO AVOI8UdgemL/3RnwgRh8jwLmI8yvgC2D856H/WrIj+LzOZylfygbi6Bf6XSu Z6CbE8t+Ecb3MP+L33dIoLW0cT9wjaG7jrNPw/wZ/Jbi+yUrX/Os4lHn11JH uTPW98DabOhS2HMz5CWQjzntNTmhPTKBP+3lFbBTk9A5+8DuPshPYTwGPwZg fkQgPP2grdqE8NzraeCuQZcfKS47oYdoHscaLDEGNj6G/SPefjfgX8CYBX1x umqC9dAsQ/FkrTA3zMU4YKvg/wbMv+mE3wJbzY3Gci/zrHWQM9M08rsSNTEb a0rxvRc2siLF6CTGRBNjmmQak4Fxa1K26MN8J5uHgf8Ae2dC1xXycfhWAn0F 66mx5LEYtwJfQz+ccvhbUrngfKnH9EtoDeWl0D2P7wLI8xLau8zXH+uwO/as drLTGn7WQv6ducF4Br+/IXeKVAdnfS6GBcoRc3Uo1F7tUeP34lcO+Sh1mNuP eFQDuzFWnLbD3teQh8LOfGDuScnX9bHySJk+X3fyeUesPLwNH840ku5kUrk/ Asw5yE0j1Rd9Zr0ESfnMXISYawB2qFXtEM96eD1UPVyC/oBT/muA3edkfy/G HU428qDPh/wJ9J9i3Q7f81Pg23HPJ3dANxXnLMH+k3Gm5rHsc582XmYN9sLv MuQkbHaMFf9CYG4G4pcbPItVj7zmxB3kkOmhYsBYZCCOPwTii/JIa/7jJqyL UlpLGzOteG9lpDgydn2tsLTJPqmDnVoI+7HuCas++g77jsOaVdCXQD/Aae+1 kLdE2reMPvI80LeFflssPNflep/Jfyuw9lfI9ZDzrep1ohW3kmM3WnEZe3BP LK5jHbCXJ8Xi1d6haos11iGlOqfMvhgKzJ3ADMO4D4uOwod1rCWrWp1qVY9l Ht8JczmQv4A+20l+LNS5p/h+YTzKPX4s8O0xlxfLD/pzEnIP3++s6TzPjex1 no98R37bnBJvb8JYjbk6YCoZS6y3wHVn7zhx1HCrGmWtRpFqizVWgT0d5FvM Yyxu5b49oa/05y2Dvh++H4KdNyD/g7E+XTwewuYV1GcLzH+YlA/kgZ7kSfj2 hxO/srfZ1+WeIxivi7HkCxi7xLpTeLesSakG67H/7JRyNTaQ7ZUJnSGI1KOH MWZb6bOs+oM1zF5uhL37wqerVjncky7um2AVwwzYnuX9zwL2EPY4CMz2SHcO Y07eY72z7+n/z055Z/53AXcY+umwszhUfr+C/HmsuLFezvqzk8vIg+zHDphv GirmvZzyxHyVW+WJ+ToI/WCrWBYDO8jLDdQD3xqYIRgvRjpTsdVdwrNXAr8A v2HAfMN8WcXhiuco8kxnf9cU+3dL61A8Q75ZDJvXIS+AXBIpbhswjiKfIC/L EKd2oTAtsOdw/1bJpi5Q7Ac68QL5YaevhQ1JcVPLUDFn7fBt9P+75oKvh/vI A065YE4YF8anG+aLAtXfIuguhep9cgB54mF/Vz4LzClgXrG+L9PVawsDzfOu +N7pTt3pdCezHphr5r1FhuLDPPD+Jnc/iL0GA98Y+LmRzstzJ1PCJzCewvcs rDkdy5ce3p/dvk5YL2tDvRsmwM6fTrxAXhztdI+OcbrPeK99G4uHar3/vD/a +rcnY8NYMh9jnXovj+/KUL7x/UhuJWfmwd66UO+hiU59yz5hng6kZJ88zb6n n7yT5mCvUshFGPvFwjK3FT5ujN9MzJ2Avjfmb0/KJ/pT5GSf99VP/iyfxcIR fykQlzCnrKHSSO/MOYG4lb2zB7p0p9qrCrSGa68hVqvwC7Hfaite4PJHMOY6 cQS5cJTnCcZrVaw6Yb285c9VAHxeUncEfSBfk6vbxeol9hTfSpN975Nv2a83 EvJ1kL+zeHfxPRAlxVl3Y4/ZqId8xHWJFf59jMtjceatSHsyXozVWqu1azCO TMoW41/gxDd8525zujeKQvVQje+j8/7twrfkplA1TG4rzFDtsQZznOJDHs1N aW40xo7+HcX3FO8nnv0d3vW+f5nzu5J62zN2ofeNZ2ziZL8h0DuY93ya03+X en/334Qf/YG5YRUP8g9xqyK9bW/Duk1WnN/Fx4Z41iZ7iPvyfhqPuQ58z/Ps ofIx1Yk3mQ/ne433Os+5x79rq1LigGk+f31C5bsV1rXy/EPuZ0/TN9bWmkBn rrCqReY5h/9l8H0ddt7lWyJQ3siFo63+M4yx4lr2Gmt9YSQu5X/BfH9PBZ4D Rvr8JkJxFt84y7zNc8D/CwRW/VY= "]], PolygonBox[CompressedData[" 1:eJwtlnmI1VUUx3/jzHszvd/yZhzTcaMUScMIW4wgUyMiMsxSWzQrHXVMckkr jTTRGHMt0QSpcNdMaJzMcaMMR8FxSc2ltMw9sExsGUxzXPp8+b4/Lpxzv2e7 555z7m1TPrr3qEZBEGxmFbDKskFwjY3SdBA0h/4iDoJeqSAYmx8E88IgGJ4E wTH45eBrxWeCoC16DeCjoiCoQ34QeNPCIMgvDoKj8G/Bn2Y9h+w5+IF5QXAJ +d+gG/AxHvol8GvQC0LzxwimHH4C/ED4k6xlyI/B5hqwfPi7wT7AZyvoK8Q8 G/oUKw/8HmI6Cd0FmZeJ9SB7O+BXEH8En2Ethe4Q2770WyJ7mr0uYN1YKfgm rEtgryDTDNky+Ms5vg3856y98Iexvxq6NGtcMTWBLo0tKxul6C6Gf5yz/o38 DfJRF1l3F3uPwQ/A/yHoRfhfifxIbCyBnoCNhfBLEscespZBr0e/PdiD6EzF dhT5LnQHe9D9iTUf/lf4n6Fvgtfj7yp8Jf7eYTWQq47wo9G/mTGuGBXr76xC 7qsKG+eha4lhFXRn8BPw3+TOvwydLdC7Q8vqjirxdyq2belsAxtX7LtoAv8w /FecoYyzJMg8FPtOdD7dme6uEPm5yI4EL4JeC35r2vVZDT0dHxugN7EOIb8o Y3t78LGBs96FznR0N2KjI3Tr0Het++mEv63I7C+wTdnugExNvmv+TugLyEyD XoDMi8g2zdVDB/aGg3WHbw9dDT4VfFjkXPRnb2boGlQtLsb+CGJtlfOvmuuI /mV89gR7j365A+yz0LJH0B8EVh85/6rZlfDpyL2jmDdgrzfrLPZmgfeBXh67 V2R/IraOZ9xLn4APBb+Pvda5eN/HVmXs2lG+vkN2Y2RaOdTddEa+CFt17BWg Xx/avu5/KXxlZFuy+bzuTzWkQULMS6CLc7xw+d6rmVDgHB+AbxVb9jr4fPyd j8xfg5+b2KZ0ZaMx8vXEeKKRY7qI7PiM/esOhiI7OTImmUmRa0q19QCrF/rb ka8t8J3qbidzhirOWkD+u4INi323uuNp6O8Ijas/exDPHuL/BdlawnwT+Urw ofir1h1ia2doeg1rCnzrrOeJjtUKeh36O+RLPlX/xZ6t2quBvo6Pp9PuQfXi C6xH0D2D/wj8o8S5Uj6UW9W8al81fhG+IuP66we/GX5/1vNEM3pf1jErduVg ErbeSDwbnmGvP9hO9Wza8/hDbHcNc73KXgnYlNi51BvRDuwW+GbobgSfobcj 8WzWGW5A98Pm2ZTfAL0FB0PLqmfVu3Ws//Ltcxd0LTq3p11jquVFoWffOfU3 +D+J56lmbAuwOYlnmXw2kOTtyBxDdjf4Nuh5iWtJNVUNPoS9j9N+Y/qCHYzs v6SI3ioJgi8Tzxa9UZ8S+2tZz2LFoFiWJ5696knNxnaxZ4niaQ7eAvmKtPMz D9sjit3baokhGceoWNWz1+FXFrt3ZW8F9Fb0i/J8hlrow6Fnl3pmH3jjyLnQ fCgnlo3IHEm7RlWrFVn3us7XJ/Ebq3khmU1gf2Zd69rrpvuHH5PyjF2Hftti v32KYTbxfR17lmnG/wCfj3zftPtLvTgY+QmFrnHV+res7Sn3xBboIfg4mvIM PICtK7l5Jxv3429m7FypR2fp/ch6XukNCzlrf/ZuS7mn1dtVkWeR9vqBvRv7 bdEbNhH6qdCzabL+HLFzrtwPQKZcsy1j/ZbgfcFnhO4V9Yxm9+TY+qrBFciu j/0+6/w1mpW5eaL5qLdmfeJ5qTd4HXRDxr2inJSTm3tD+5LPNdh/NfFbpj/K sMQzXnepN34Vsj0T955q8snEM0KzQvnV36Q6V5+qsR6ha0D6yvFg6Dm5/4Dy obddPSx7qvnB5LYmMiYZ/R3Ghc6N5s1C/U0S/02Us0fRH5v1X286MquRHQ1e BHiBvaOqvaxp1VAV+JnYuded6G5S5KCs0H9G/R3zsratGmik/xF7S1O+c71V ryf+K8qHfI3K/Wck0wT+7axnof4046G/z7o3NeMOQI9E5njKM/PZjGewZrFm dl3oM+gsf7D3I1jLyLR0RqDbCf7f3P9Qf62KyLNEe2eRLyzxrND9aHY9kfht UI3s1ixJ3Bs639XEfzrh6k+9NeoB9YJykiY33TN+G9Qzf2X9Z9bfWefRX/B/ d6SfUg== "]], PolygonBox[{{3281, 3280, 4358, 2065, 4357}, {3249, 3248, 3728, 1532, 3730}, {3430, 1319, 2880, 3208, 3209}, {3513, 1369, 3514, 3280, 3281}, {3209, 3208, 2881, 1320, 3431}, {3413, 1307, 2866, 3248, 3249}}]}]}, {LABColor[0.771825166639129, 0.21700096072015726`, 0.5041177166124606], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJw1WGtwVdUVPuHecy/ec/bZ51IoPqJAGxw7UmTQ2ulDRe1MpWrjVAGnFbAI 2BYrFiVALXWcYFIlvsCCLVAV6wOGgTyBICJPeWogAawFSSC8mdIhtGM7tKHf 57f648xed+2111p7vfcdMG7yjx7tEQRBbUkQZLB+EAbB1QB6At7tguAFwLVR EEwC/kXAVfjqE9GsioNgdCEIJoP2AGjfSYPgvXwQvIu1BPQ3Ao5Atwg0T4L/ jaA5nAuCPsAPwJm9BreCtj/Wfnnx4srfB6DYYcg6iTULHTqgVDu+zdirhYwN WFdg7ZdKVjXkHMF+F+AzOHOyIB6jsf+9gu40FjpcB15Z6HUxEe16wGtA9zZ+ 9wH8VdBfi+827A3C+jlwO6Hjw1h3hYLBJhgMPs+A5legOQ/+p7KwoQ+Cm0zW GBDVAP42aL6Syma071bIugDalRnpWZ6T3HU4E4PuStDfj3OPh4Lnm67UeQhk LgY8AOdfx/o10A8DzTVYW8DrZsCXgs8hrLfkhbsae7U4OxBrFXyWA3w9+DRD 7vKM7vUoZOXBcxjOtoBmP+BRuMuhUHpwb2NW+tJWI0PRTMpIJmUV4eNm+02Y uGEG0zYXcaYE8FD6DHSrIaeqIFwtZJVh/8vQqRV7bcC34Uwv4EcAnwV+KfAv ecHPYX8W1m7sbekhX92Krxd4eYN5923gcSGU7QhzJT116TZ9MtCnEvit8Nff ce6sxcS74F8Ryv5PYJ2HdQ6+0dBhLvbmwob3A54M3POAayLBxM0DXAF4rFe8 kJ52vhfwwZxiaqD55WPQNsTKlW8CrouUaz9PxKMd9I8x3yLp8AR4toDPqznl 0UNe+y9gf4MX//VYk1R55LE+B/51uP/sWHm3z84OBZ+e+MpwPoeg3ZZTrvYP lcPUibjt+AZm5Av6gX5v8uLViLUrqxg+Ctt+GIlmFfD12K/Ftwy/ayC7HnTP x/I3bX8r1mORfP4i4Gfggx2gaQLNKcvfpBgE47zuOx+0b0Xy1wOwz/hYPmVO 12al778D5QZzZIjdO2d42v9zi3nGRcZi407Y6BzWn0LO4VRxcCyVnXaHslXq xGcueP8TPPMZ3WE69k/gW4jfx1kLcPZkqvi/2eKQdY61j7VuH769+IYEqmus bw2g3+rl63xR/l1gfvfGg3ldHeueD0OXpfDXkp7aP+tUT9rAby94dQK33+Ka sn7NOmzyCT+UUDjsirURdFtAX88agq8DcBvWz0D/Rlb2ov57LWZ+kMi/9PPl +IYD3wVcg1N8rMI6MpHdRiXK6cpQPma9ZY3+MNDaaXB5otp6T6I4IO1R8D4b q3awvtbj9xTQVHjZnnjanz2H8fcz4MYksu/YRLY5bTWBcs7kJWsBePVmXCbC dRodexvzjjVwj9mB9uj0ssPEWDlJmtD6AvHsBTzLXkmfkhdlz8TvRxLVzitw 9pKs6sc9gfzM3O4NuAD8Hw2/KCP4QcDNqXiuwL2XRKrRU6DLX8y/X/i5p+xI mRcLyr//QuZ2iyXGVCv2ZoTi/WksG3yGs0dT1bkD4F3iFNOv0g+pai9rMGsh c2EgzvQBr3HgOaio3rs+r5whD9KxL7SnuvfiSH2X+cs8Zh3kfX8P/G8g63ro M9OpZlAWe1+dU09h/2l06jFNWOstrhhfO2LVnuHQc08s+zU7+Z4xwPuPKKhv /RI0Zanw3aDtNvu8Bvo5kfrSMid7LzSbE15gvphttWM0aLaA3z8sxn4MPsfY FxPl/kLzmTe/M96YW1UWD+yZXWYf2mORyWKNY61rxLqroLlgllNvJJ6/KYcy GCNvxvJD5BRTcyxWO61esW6xn3NGYk2ZFirmeJe4KPjKWPMTaTYG0uu89bsK k0P6OYn6ZR3oV4JvCppur3xhrNHHw0P1DPaLPXnJo+2YozmbJcKifERf9bOZ jnc/l6hunMd62moma+ftBdn6+8AfSiXvYKo8G2C59if4bgJoJkGfE6nimXHd YfWWM8g4q2+9Yt21w2xCOV1WB+irpZanpdYLWN8bcpK1zGKz1mazM04w56lC UXe8HPzf8OqP56HXFV699O5IcwrrGGvlKZydBf5vJrIpbTvCiUeV+ZF9kvwp l/ej/owf9nv2/ZXg+TuvOt8KuCVR/rF3McaIZ+yx3lda7LFHEuaMswnyxmBv s1MunrP6Q98utT5CWzGGGBucW9kvl9v8y3pH+zPu5pnOhOdbvrCHdPx/Ps/o PuusHrJGUcf3ocdu/F6bKh45V5EH86zU7M8YYiyR52bzJ3OVtnoklL3o5w6b dffDFu9BVg1sc5/TfLcTcbTH6d0yPlH9o1zynuol9xPsnza/0D/zLQco1xWl w2rw/m6iuf0mq+WPm87sw/1tRmpNpecnoC/D54B/GjxXe/W+k079sMVmiW9F mndfxv7sVDnEd1Kl+Z6+41w2Nad4avPCM/aX2xzJGYbvLr6ZxhRUF1gfjoBf FGve2IFzd0Xiwdj0Rc2EnA3pK/qMecE4rbTZjjb4W061gH2GPmA89HWaCXuD X8HJ9rvB51mv98wlwP3V6+ynXu+FC/Zm+AhnmoCv9sot2pxxThtcx/dfRvV1 bV419lqn+5dylkyFX5Kq1jNmJxY0HzGeOSMtdqpHT4I+KqoGcV7gnEQ/PQt7 POhFv8n6T2NWMy37OXsr4/m+RD4aD9rBXvYf5OXXL/ybKvanGD39SrudsDiq t1mXPZU19VQqOYND1fWVTv2rOtK8Tt23eelHPSc62bvT4r480rvxO059i/2L fX6j13y2yWumHmoz/CDTuQZyK5xsO9WJB2OS71Lqc0Oouz/lBP+WvdfLDpw1 2Id/Euo9c9iJ9ofAv++EX8tYiDQzcHZYkyo3W53NBHn5ibrQj4xv4jg3kCdx ww1/GWMbdJdivSOSnZYleqOyHnDu5rxWZnHyMWS1c/7B/rpUvecDrpHevR8B zvLdiDPfiPSmYo7+IZENyIN26AGae0FTgnWF1WT2vVyqusH6wRo8yWoOfci+ TP1YL1Prg1y91SLa46pQ8+ktkeYb/q+wPtUctgHrBKe3yLSC4pG1+DGLf+rD s3ybUn/Wshsi4f6VKIcaLMZYX+usxhLXmFN9pu2oI9/Zs7xodoBHlRfNrkg5 2GD0zHPOGJxhZoNmDd+HVmf4HwFzn+sag0ttluVMMdNy6QjW0N4y/M/mbqs5 Xwe/GQXF6NPQZ5rXu3q611uFPYs9jfW72d7InB1p1ybQlxdkV9Yb/g/FeZhz ceDVr/tG6i+sMex9rcAfB59irHmFvrmI9ZVE9KVO/8vQ//xPiDFLnvRvb5tv v+T1/4G3t8Md+F0N/FOR+gBhzmY7gT8COI71riLMtxX773GDL4vVtzgvHLR5 pgPry7HysC943Obl73mJ8py5yv/YtljtZe/jzDjDfMT/nMrN71fZXJq3/QU2 izLOmVOM9X2p/NYGmX+O9A78hVdskg9rCmd63n26/e/EXsge152I5j/soZH+ c7nd7NNu79IHLJ7rwf9/WJXH1w== "]], PolygonBox[CompressedData[" 1:eJwtl3uQzmUUxx92913e3/u7rFG6UCpdlUzXqckoNRNNQ1ORlLtkIooQKmNc dtKqVC7NZorupmHXvSiXUlmExepKkohRg5pqRH2+vv543jnnd85zznnOc873 PO95fYbcPbh+CKGWVcx6OWLlQlhfEkLHJITX4EcXhfAL32rTEFoXQjgPxdms PfBfIa9CvhV+QxbCfPjn4Qex/yP4Zug3RDYSPi4L4Sz4HPxQ+Ah+JvqV2N4E 3xl/dbJPHDP51gf7W7HxY2kIH2KzFnoJ+tOhn0B/OPKJ8A8XOebu8OvgPyhy TAfjEGZEtiX79+o8+RBOh28B3xv5A6zm0FXEVI7vFfoGXwdfh24FNpfn7EO+ NiFvHXzGzdDfskahX0uMq4gvoPMHe8/hW1dkyyKffQvyT5CP4dtV8AvQqcDf N/BPwu9ldcPf38RYiu178Fkf3/VS07IZ0L0AG6chPwLfAvpl9HPwRex/BXo4 OleW+Hw34PtaVmf2n4Cfhrzy1H3+pDvG9hPot0K2CHtj8vYhX2v5dit8a/SL T9kP6E9PbGsC+0chW8AZ/tGx0VkIvZ49a+vbZzH6ZQXXzjb2dGfv9di/EN1r 4MdC9y1YXz76FRyj7P/HmgE9EXvHoL8kpvnIF3DmteSyrF4ILym3eftXDiYh 34v8d90F/M/Q96W+yyHwFeg3iXyWpqwu+L8CeQtkw4mxFXQV3+5BdiM2KlQr fOub832Ngp+PzdXIDrNnE/HNYzWHfgidM9E9Dv8z5+mknEP/iP5B9J9GZxd0 u8j2+rAaoz8us23FcCeyhvg/Br+GNYfz1MEPI56d6g/8j0GnA3QDVktkTWOf RzlSriazirHdWTWGrFDwXdfC3088O2L3jnqyKbKhfMtDH0LnW+Kpjd276tEz kT+IvX0lrlHV6nvEu5zzDCDed6Bnsv9PdOtxH5OUL3TqKRbs3Ya9EnReQHeg bEKfkTpXsWqUs/SKnT/V7Aj1Qt65UY6U+3nsWVXq+xugfkkd6wjVLPsbR/an HlYvS0e66uGP4derRtGfAH8A/mzkpcQ7WD2OrV8z18pRfByAnsi3hegvZm1k 7098uzC4pvZA92DNQv877ng/sfZLjS2P8a0v9KuJe+E69M9F93HZVO9jYxj6 I1JjnzBsKfanpu7VWvi98EmZbTdnTwp9F/Y2lJxsy5Dj53H4Geg2Q17Adte8 adWIauUSvt0M35Z1MfQRbOYauGbmIK/IXOtjuK/noLeSjzXY/ohvzxHLl6nP sgt+HfTKzNhVybflme9cd7+Cb3Oh389Mn8QnfK3OjIXKkXJ1fuZemifMIfYi 5bzYGHcN+uV550p3qNr5IHZv6wyXsvdEwVinmnsX/vbE2KQYjiNrA79S/YD7 NnljjLBmO6sH9LDE2KoaV60rBsWynxyXRMY8Yd/V6DyF721824WvW1iX4e87 5Jvq+9tX8ANVv+iOx8bb6H4RmxamClufRP5ezneku9qReXbtYf/X0JvVA8Ez bQt0aZlz3ZhvJdD9C56tP/BtDbZe153kjJnCzvLUtakZp1nXOzUWjWBNh/80 9d6/4FdC/8fKSu2zE2e5j5g2Kz/oFBWMCcKG3fAR/CPoz8r5PJr9PRPnUjNP s68mta5mtGb1ralngTBcWP5oYqxSjw2CHpq614QB1dirZS0pMsY9m7qH1cvK 2UjFTk4+D8bMndAT8PkFtmvQnwi9Qjks9czV7NUd6a7asVpmrlHVqnQ+zlwj qhVh8gnO3yj1W0UztC2+j7LW5ZzjN5BdF7s3xCv3aeZeHEJM3dk/pWC8Fj4J y5eiMxdb44lnWWrME/Z1YB1O/MZQfzeGr2T/m4mxSG+oOYlnnGadeuI3bG/M +7zl6LfHVnf2Vxd7xj0Y+02mt5kwoRN0/9hvF8kfgl4aG/sHEtOS2DNOs042 JheMCcKGnao/4r8lNXZr5raDfib2bFZPTEW/c+zZq/u9F/ozVo8Sv9n0dtsX ++x6U+lttTGzbfWMeqcGnWpkVazxqd9EehudnBnI9mfGXt35PuiesXtZM0Gz QZgp7JSNCewfGzk36vmbOP/oyPkWfjRB/9/Es1eY2wpZXebeE8Zth17KmS4q co43YLtp5FmqN5neZo0Kfgirx7fir0PiXOqO74BexLdtp+ZpN+FJbOxQf+7W XSS+a8Wvt0HHyDLV2Gz1bua3gHpyCfTlmWu3EXdwiP3988YCzTzNvimR55ne HFWZZ4BmwSLsTdKsyoxlehMtgt4eGcs/ZE1WfxXcO3rj6a13JHFtKmfK3YbI tjTzNPuapL77c/HZHlm/xLNbOemrt03kWaU3xoup38h6X3VRzWB/cWxaOavB d3lkWjrVsWNSbHpT10WuCdWGZrRmtTBJ2KQcL0a2rOBYdF/qDf1H0LwVhnVJ nDPlTpjyG/Qq9nyf8xtOb7lxsd8auvNO2J8WGStVw71SY6SwUntWp8YA9b5m pmZnt1P4KEx8C/5/udDW7g== "]], PolygonBox[{{3713, 3712, 3859, 1634, 3861}, {3827, 1609, 2842, 3712, 3713}}]}]}, {LABColor[0.8521273758836473, 0.10051794750391216`, 0.509909314774498], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNmgvYlWO6x1ff+tZa77fedXiXvs6EHY2iIgmbck1flGEcQphRGTIRldmj UnuqC6NIIYREmbnMOM1sMzE0OYQihoqSjNnszXao2FM5XVcOe/b/1/+ei+ta 7/U87/M+h/u5n/vwv+9n7XvepBETm3K53G/yuZx+uQf1LNZzJ22lXK7QnMsN Vr1LJZc7RuWGai43U22T9czT+77qM72Qy6V6n1pyOVHtFdVvKOZya/VtT409 WW2bNbZbzXN2UtuRSS53hJ5mvX+m9v4i4OF6Ltc3xi1pct/moGGk+lyuPmeo HK3nH6qPqnn9LXqW6v0U9T1Vzwkau1DlLUHr9GZ/O0nzTGB9PQ+oPrHZ7131 5LVus+apap5/UTleZU3PJfrWWc8d6n+Hyo5Rb99w/XvaS1Vjj1T9Ja37QJbL rdD+f5uZFtYdpf5T4JGeX6g+RGP+VfXjVA7TMxiaVU4Rj3po7XNV3ifeLNXT orm2qJwW9D+n+mo9z6vf1sTfOujZv2Ge9lD5hOj4u5516v+Nxj2T9/vp+n6a nu2q91L7Zsp2uVypJZe7i/nU7+Rmr8WZTVHfyXqeU/twaNTz6xizOea/V23X 5f3+teorVP9Y9b3auVyTc7/eeh+gso/207vZ9UVxXvBnbrPXYP4/liVvKm8X Hy7Q+mP1jBOPl4vGleozRs+agnmgX26GeN1P83ZVebb4uEDfd2jsF9GPPtWa 91hRubXg87hO7Sfr/eei+SSVHdQ2S0+rnq1a/2qV7UX3vur/YvO3svFCyEcn 0VRRvUfe8jYlzvdBtR2k+oHNlp+LQ+aYu0Os29DYg1X/Suv8WGuco+fPan8g 6rShj5TIKntm779R/z009ryQzwXa87na+4kqHy5b9g+RHr0unp2o7/frfbi+ vwzfNNfwuutr1fc61f+q+kbx7PG866+o/8MV73eZyiUVr/u0+h9edPvz6jNG cy7U+1LV56http5BoXM365mRc3lL8GRy1Gm/Q7QtSqwzXxU9fnDYDsZMUDlN 632psmPdc9/U7POAxwtDr48VbX+HT2V/49yf0D4WJ14DHRsq2W5rsS7tp7KH njsT07IwaDtL57UDXddzotrODr51Q6b03NPkM0QusI+9NUcvPUMSn+nM+Ib9 qGjsF+p/ub61097KeduJDmE3FsReVuWsx1v0fbSeuyrWhTMq5nNT0fJ2QNF2 45wm27HduqnnisTlaM0zVGe/Qf2WiVeZ2otF7+d80X6enqGqdxefNmqOnuq/ R8nn3EX1H2i9z/Xtd+LhgorlcWbVtvZXqu+jPteEXvJ+htpPz/sdnb1WzzA9 byGfea9xqWiYlFhWb6lYTnuJttEhv9ixKxPv4V69TxAv72tyHd6flff7srAD +8mmTVSf1xK3o1foV5vmOaLi+i1l83VByMnmxGcA/+8v2a+cono/9qv6u6Kn VXNOiz63iocPIdOZz42xyPnNmWX8yfK3fMdeQSt1+N9OfVo1tknlyerXUP0f mv+XepdZybVpzflqm6P+K3Mur4l6UbzehZ9Qx6syt32V2tZCD/x+XO3rVV+Z WZ7vTqxryDR+gvObou+T9YzR+Muijj59T+XD6tNTZXuNP0Blq8pJWmOk5r40 tf9AxvHx5ZLnxO8cL7q/ES8+qFtn2AP6ht98RO/dVF4eNEM736+PPqw/NWhY VzJN8Ip9Xxt7b8mbF+83uf87ielHXpFbZA8bhi0b2WR7QzvnsS76My/6O6pk md+Y2B5y1sMzjx+msovaP9LTOTH/dgYPsT3UsT/4q08T+yzsx46wIXdFHXvV JFk8U/MfqzkPafF+2Ecf0Ta6ZNyypezzGK0+LQ1jqXHi854l18EzyM6VIUuX pKb3xsxtV0U745nnGZU/yLzHP2vulU3uhwy2JT4LMAz7HhP8gVdjgp4nym5D lj9LvMdWndElLeYf9rYptb/8N/VZllhmOoctvizOERniG77soMR+Dl38tGiZ QB56V1weWLFfxY/iQ9G19nqmatypRdtJ/DL4aHrYtImic7nazlW5l+jYW23d Vc78DqbYGCV27KLE/gIb3hp2eF7I2Jw4l71DnxdJv3aK/vkF4yH2tnfY5A/C HkInuvhQ0F0TvZsS+4LZYVdov1ht4/UsbjKWOTBs0ZzQEeQ5V7Rth4Ylefs9 ePh2avzVKbNP6B54AB9xb8Ft04In2MmZgRvoc33BWGy1nqvrpvNlzTcisX3v GX52ZvRfUrA/g/5F4ROxR+j2oqiDVaG5pZ11lzq6iazTB0y7I8bSxndsAf2X 4vdLPscjUp/pPpkxz7KQH7DhjJLx3y7xZCb+SOU49duluffWuFFlxxL1zOss DtqWJNY97MndgYexdT9W/+7qX0UvEscOzJUGFsOHfZ5Y1vF17+q5tmBsOixs wsVa9zIt8hQYVfMNatgXHKXySdH3lJ5CO+ONycFPbMTdQQM8hJ6y6knDsUrn is8G+cSGQPuS79iQO2Mv4JC7gp+9moz5psfzQGC/w6J9BbFY0TJxo+buXzcW eKxs3zCjaH+MXD8bfh7/fzb06zm0bnu6sWY70RZ2G3+CDb0djNHiNcGfyMus ov3wtoKxMnvnfWbRvplY4plYa4jmv0rt31c5vOG44vCK4zQwxO3ic/fU58OZ gx/PKtq3zq8bG4ARXlef5arPrTseWYW9Zl+ZbSM28pWi10KvHhbt40v2YT/P vN9S3b4F/SeWYZ12sRZ+YUNim9i7Ybk8rey4BdkkRlmbWqfQLeQFTIydxG4x T5PqH5ZsL8CZvRLrPjZgRMH2DhsCZgW7Xq75bys5duEd2UB/0VMwOlj9EfV5 KXDmL/OOayn7qc+FGjdFz5C8MQXxFbaQ+fg2UON/JD5fqbZHNN9xJduI5/X+ drPLNYHfrow5T9VeTmmxDwAzjot5cho/gpgkte1fFpihb9009Kk73oa+RsW6 jh0H62IDqGMHPisZCz4b30dEH3RidewdnsN/+E6uYKr6tFd7X53LKrXfUDaN q4L+CwveN3MsjjwFMdHBdY/tV/deV0d/2i6POX9SdHz+Tzt2V+gjsRcxGDHR H7TeQeDKuv0oOQHmP1fvt6rPwtT4/5LwF/j524r2rX1LEdO2s8+lP7gFzA52 Xxx6jD4T1+E7L444An3Eb7LmIxG73VlxbLl/0bqBfxwdvoAzgQbmGBPtjIFe 5rk/fPSEqF8gvWjjDFV+UjU2Jj4eGvkH8hCPlm1PsCtDIqbFhrYGnewX24MN Iifw75n9xFSVqyUPPdQ+OzUuWxh7p+9vo/+9Rb9juybX3f5oaruAfVgtup5P nNdgrntSyypyfahk4NmIkYh394jzwpfiU2fmbC+wG5tS26aVEUfwfWn0wbcv D918tWi78rHq5xUsz+jFCYl9ySdq699ibMfaxIvID/4OfFkMv1AM+0p9ftG0 k48gbstH7PaSxv8lcb8hLbYt+At8/rawq+S38s3GhMSfrMGc95R8FpzJn7TH T1TmK9Z72tDZRwqOE4YHdl0R9urGuv3Xe6nXfjLofK/kGP/xwCPzc8ZLY4vW BfwmejMhb935YcP+4HTyA032I5zvypiznvcZfhKx4rbA2PgUzgxbTWy7Z8P6 drTmeSO17dxZtZ1j7/D/qsDDnB+8I5bGbjAOv/5VYBj8Lrq8tO7cy0DNs73q ePqbqnNGx0TsyF45d84f+4BtXB1rDot1nwnfiS+Df9h9eHh0zTI3K3WcMDuw H7pRCXo6Vu0T5mitkVXT2wk5rAYGVH1Vs/0lOTli5WtiXWScOnzDtn0dZwj/ tkWcMrtuPEqMuDuv0PwtZgYvEyMw/zexBv5nV9DJ2tBwP/g36tB1dsPzgPfB YscWjcduij3Cx9kRF1EfWzHOO7/is1waNOzGzmEfVoW/wfYii3ODv60N9xmj se/q2aTvv8jsG/ARGyMPSQ4Rn3Bj0XEU+d+5FfMTvm4PmYf32FVsKph/fOr6 CvG/X835xFHE91XnKG8qOyeB/8B3vKL28aqvV7msap2YW7a8E0Oif7v9f8F6 +lHV9Re1zrjEe2Nff1T76Wqfo/YXxMOLVJ+V93ja0R3kDkyAzcHGsC7y/mbV Me4T5GzqtkF3ps6dk8vGbiEbtCMno+qe5+rUcSrnMijk5vHv5GeQLXIy8K5P +KYXa/ZBf1F5uM7iQNUfL1tWugfmOTlznuikzFjy4MCTo8PHkK9h3tNDx8nr 3xhntDNi6cFhU9AzdAc7PKBoXR5at46gK6/X3L6pZrvDPQN+EDlYGf4deg8M vzkheAo/N9RM26s147i+sUfooh1eYGvxndil2zJjQ/IcYJ2Pgzbiq9aQW/w9 fv+hsm0C54MdJmc8P+w558KZELshtxuDd8+VveYrNee7WIscypORqyFnQ564 R+SKT4o8882i57AW+3faX9HY9Ylx9pPhU6Afuw6+/3XEoeBvcl/QhB6ig0em 7jtZvB2SOXezq24ZvTbsDGtAA/2wo4dEjDS96vq0qu0ceW3wxrlxBzFGZc/E fqp7zDc3ZAwMf3j4OGKFmcVv6ePs8b/YFGwL8dWZBesFZ7mzZnlALqal3sut NceGjGkjHq95bJrabw4KmwaOIl4iJnq6YJqhfVLJ9IDzoWVAxClgtIUhJ+S8 6Qt+YE8Di+b5GZnrm7XmC5Fbea3m2Ghb+LJCxTEj+SR4tjMw0lGJ71zw4fvp 21Ea0yNyLKcGxia3Ninya1XpYFfV99J8HcmjJMZFacP1rhXnqbD9YCdsPHXy ZmCQoyJORyeZE0xIHuLiyI+RRyWnQ84GPAou5Z7l3szj/q/icZcGPT+LOvMx D/kU7Co5FeoTIscyPuZfHP3oQx5gReQ6oLlr8GqCzuxBtd+U+X4P/uCPB6bO sx6tvQ7S96NLtrEPlI3HvkGW9a0bsT+2SmXvxD5jSOTwBwWGABN8WfX3gyIG w292CRqSuuNB4sKOcQbkNpmDuVgXbDawxTaDe7SOcRaToj+8faNm2UBGiM+I 044J3AR+AluujXZsB+XL0YfYEP5DP3do3KWR9+H+bXLUibPIz5InWZF57EOp fcXamJM5+sY8jOUOD98GVh0buY8/4FPJ3aRuuyDaie14J/Yk1qOdthkxJzJy a2o9+Yl4dkzqeGmPuvHXkSXjDvr2Cxq6xl1bF/JXdePlK8Snt/X+MbFf5nwh cojc4udpx76/qm/vkGuLPDR7J05ZW7UPXVe1zOBrsWH4GfaFPyNfBs/GZuYD OS9iSWwxdXwZ4y4MP41c/yzs8u/JUWue32WOvyfHWLAu7fgZ+HlC8GpsxALU 2R918heMOy3GEmMRaxGLwdefBs/xr/ivdeLJvpl5eE3ZNJ4WZ0cOhrsjcp3k Ytqizr0SdeJB7rTIFU3PbF/gCz6KPR4ROsWdDbmo72fGKGCVOXXn7LlXGxy+ bl74Wdq+LhrXvZc5H/q+yvfrbh8u3fovvf+v2v9b5Zuac6vqf8t893JR2IGe FecruQMHj3wVc27KHGO8nlm/W0LHwTfgmfFa5z/SiP019vc1x3TXgxHivhZ8 2lxx7rJWM+4B/8yrW844j09rxg7zQhfX1ywjD2XOoeKv8POfBJYCt/DfAs6n LXN+Ctz5RcSexITEg9i9iaHb5Pg3RG7k/MDAbWCxiu1+z4bxGjEm+KB33T59 DYnLonNVxEBgXzBw54ZlHKwMVlxcc6x4JvJccZxFvNUpcgPkH8CyYNrRKtfW LFfgOM4HTItOHRX2kBjrp6H70E2syP7P1LiLUvs1/Ntu/9BiH70hc250Y+b4 BB3CX5AzxYeBl8DD2Ez8L/q6f2J71aHheq+K8fmO4BV3a9wHINdv193evWL8 vj364D+3hw8FPw6N+1lyPvhN+PNpvK+J+OKUaMceYlvJufUKH4H971NxTMK9 AW29wndwB4VPAce1Lxmvz4qYYE3Jsdejmet/yrw+e6cP/mJo+J3OEZdh0y4J /lHPN3zn2sz/Lyr2W934b0jD+KlTw/dU3G9hFweG7JErLdZ9TzlS9UerxkmP qfwwcx5tS+b/ypBbJse8T813Lvsi7zXH/31rtgfDIo8AH9vCx5ET4iywsZSf RX1E2CHOm7vTXYG7+tf8H4tDVb5Td/++Wn9Q2XhrkNr/M/V5kKv7H9G3g/x6 Zrs7LuzSAXE/jh0jL3R+3EmBt8C65NQpwb7kniaGTII3bs+c212UWde5LwIv kpufGnaY2OSUyH3hl7vFnRo+/eXEmJ5YBDlGhrmrQ5+Pyxw/ro918f8vRX9i aPZCPuC0hud5rub/SYAdl1ecJ/i85DhgW+b61sx60TN82cTUuP2WzHlo8kjk ondjumbjOngDj8i3k3enjr4/ljpfNkW8P7zqPAN5DnLh5KKwUbOine/vp87F LKj7O2tx3/Sx1v5C9HyU2Z/0jv8qcH9F7oWYFBp6xxmBM7oGD4njGUu+hDG9 gk50B352ifwqeVtiQPzCxDg77Cj2lFwYvD0s8BXYHIyOvZtdtn28veZ7ZmIW fBhxD32JUx4MmSHftKDsvPbBmeclT0gMNKDF+UH+Q9E/7gu2Rt4JXsCHA2J/ 8JY4kXjtVxFDMY7YA9nZM/bOPfOm8HF3hH3GTsPX/nGOhcR3/fCBGJRYlPuJ 3XTFGXEPy30Ddw34THgEf5D3V0P2mKN9zDP9O//3uSdkGgy5KcZCTzn8Ke5l ZOZYp1B3vMe3L1We0fD8L9WMe7gfYb7jyx7H/xHg23NBJ3dk7cMeso+NsRfo 5p246brMuch5mXH6qhh7Yvzv6Ifcp6W+57gis63r0uIcBzrbGne+UyNvPC3i Y/oQY6GL6OTu/8clvmtB319Wv7f0fV3q+5YPg1fcoZGTJZ5JM59dmX3pOV71 QzPnMvnPE7EePKzF/0vAJG9F/pC8OJgcPEhsxZzcx3HPAw3l2Gv/yAPjEz4P v7A16EGXeKAPnSJPzv/xiCPOqfp/Y6Oq1gP04aCI0Sb+8/8u5JpLxivzUudW zqz7znv33bcObc/MfaaUveaW4MPw1HnbTnXHK6xLzEK5NWh4M3P/v6beU2vs 6w0wn9o3Z853Uid/Qw4SfE4e9PrM/5u5IbMt/SDW5S50RmAvYn54y/1y37hr 6JP5v4/Ehvdlltmjg+fXpMbaD2bGqoMCH+JXkYXRIfPoIXN2jL10CPuHviN7 3OHsF//jAnMdFrxFppAtZO/pzCX5NjAZ/V6oWcbwK/iR1TEnNoNyQMz/WtiB +yLfha0jB/VU5vhyeWodGhD2Z3z4oHuChndiP8jUfiFX/PeQe010CLmDV8Qz 6yMnOaZm+8deyNmAi48PGUYOS2F/0FfkcI+QBewR5/L/Rf9VtA== "]], PolygonBox[CompressedData[" 1:eJwtmHeQVfUVx++29+C9d9+7D5C2SgmC9CWUDTVEQEIzSCcz7qKEIELEFEEw ESY6QRFBMAKCojNRJFhCkyICC1INS5cmgQgBBDEBFJyhST7ffPPHmXvO75Tf +bVTbt3hj/cfmxsEQVFOEOTzvZ4JgkQ8CNLgPRNB0DUKgpZ5QTCyQhC0zgbB VMbyYkGQC8xH6ADQDf7HGNkK7zkgF1s58Guj++dkEPwOfv+CICjBdl3k3wNv ir32qSA4Bn869GXmPI18TeZoDK8J0A7+zxj7Bbz3gMeQHY+NRdieic3l0CvC IPgVeAFzLgcfw1gf6MH4sxJfMujXRTfJ4tLgu5F5lPl2MPYWstUZaw7+NFAR +sWMfV2DjUPQ/fChB7qj8KcNvg2B/xLzV2Z/9sCbDwyD35v5VjDft9ifgX53 7M2CnoF8JeTT2JsOfhibU+Gfgr+fuUOgFvgG9J/Q3kA/hmwZYx+ArwOGaS7o 9eA30T8PfwE2QuSHAaPBbzNWCj6LOcqYLwPdDtnZ6CxBtzc+bsCfh+HPhV+q MXi3obPgk5D/Hnw//ndmvnLG1ko3aXwn8BH068wRQz9iP/LYj1cYG5TnOeaA V8PGCPg3WM+slPdYe10ZCOAvhd4Vt897mWu55kR+CGO52l/sf4O9CTpD8EeQ XwjvTp0h+jnoVIR3Bvs58HIZqwKvAH8uQFfC3sPY2wn/AOt9ABvX8n0H+4Lf QuYC+D5kliG7OLKttdh4F/xVXfyY59Bc70c+iwmMjUR3S2jf6iC2GbwK/Ibw F0MP0/nL/wK/gcvgLSLfhW3oFIE/BfwH3gzGfg+eSvss5dO76K9kbDu8UYz9 hfn+Dr8hcz+Ij6vgt2ePJrDWw0AM/+el/daGAj9C/hVkmub7jdWBN52xT7A3 UzLI72RsH7p7gYHYWsJ8zWKWWQr+BTLfQl8Fiji/Cdi7ztp6I98U+dUJ+yIb g6Bfhm7EegZCF0FXwsY9ce9J5chvUG9xDPxizSf/oMuhB0BvTRvfCfTP+g7q LmoPVqG/A379mHWWovsOdBjzGXdmbaWMnWOtTwHHOI/R6A8HfwYbb8NvI3vI TgaKwceh/xX8BsxXlfluIFPG+qZCd4EeBV0C/Sz0T6C7swft2c83oHtDd005 Nr4G3Qu6I5BgronQncALmGNbrs9IZ/Vr7A2G/xvottDH4V/El8uKj9gayRon sdZr0AlkqzKWz3wFQGHac2pu3Zn7xMv67V3CZk/dzcix4VXoDeCJyG+lUPEM fAv70xzbi6FnRL7zuvv1gC3Y/wwow9/W0Id0N3RnwZ8GWiO7N+3YrrH94NsT jlX3QZ+Fnhj5LmsPJ0TeE+2N9qwb/lZPeS16wxXhFSreQbfUmwZ/HnvtwPM5 k7s4v9PswQZsrwdeYv4XEo7tGpsJfTBtX3WmOttVyL8DvhB4AroQeAR8Ljb7 wDsTObdsYn9OgrdgrD/8fsBtbFWD/i7XY0HGY+JNQacIXh290Tz7WBc8mfTa dWY6u2msL8yzjRfA56BfCv0sMl2wd2/G+F5gKfj96I+K2Uf5egwb57G1Dp0j 8H4L/V2+52wLfSByrlgLvQd8G/YL0P05UAH9eMa4YrJi8xfI/Fvngfw/Iu+h 9lI54Qz2BkJPB9/OfvdAvil0F2THM9YcvFnGuHyUr+XInEe2GPoI+KTQsT3F 2GTww2nz9Kb0trRGrVUxdApnVxxathr0Aug20EnoFqyxA/t1CB9P4+/H+PBZ 5Dunu6ecMjbpmKvY+yTQAl5RxvgubPRjvsPY6xv4DozLOAYqFn6K/RXYP4fN K9j/BHtnwf8AHFS9o5yv2Ad0Bd8Kfyb+nQeehB4HlMA7CnwZ9xl9ju0hkWuf x6GH6jyQHw2+Qm8Q+n7gIfA32aN18O6FvprjmqoLeAOgE/ifFPPxvT50x7jH xFNOVm5WTN6T9hvXWy9hrBf4COBirn3+JfhM4IE8zzkr8p3V3X2T9Y9IeU1a m2oS1SaqcVTrTGPsb+An4Z9AdrPui+ofbLwd953Q3TiKjeP53sMvI8dQxdI+ jA2ANzjrXKQYWIz++oTXrpqtL/L1gA5xx2zF7u6Rc30xMsfxZxP0+LhrnI2R 91R7qxg6GLwcm0vynMOnZJwjlCv0BvQWXo5cG6oGbQX/FjY3Y+um7jt0K/g9 467BPkB+XuSzUkyeC94jZdkbwGnka0FfijlGK1aPTzhWLVJ8Qr9G5LujmlG1 o2K2Yrdyblt0/xg59ihnTkw4xyrX6g3pLTVH5krMOVa59hr+Dsuxj61Va8sn 8Cz899POScpNqvlU+32U8F0Yqho1dI5SrlIMfxT+waRr16P4Mw37HbLOTdfg 10o65yj3/FA5M/QZ6Cy05hMZ1zCqZeTjSdW6kXOH7th08E3i57rGLsDWGqA8 3z7L91Ls/QDbG4FOyO5mDU1irmE+Bd+ND8fjvvO6+3uBk+A3sZEI/eb09nQn zqFfC53a8KoDDVOuuVV7D8T+MuS7ZnzXFXMnYvu5pHlDgFWqL1OOBXWhHwwd QxVLNec+8G7MsaPAPst37an2VjX489haHdqWegz1Gndhryb7WQNIsbe1k95b 9UhX8HVN0rlYMiH8mshXU62hN5J1jFOsO8P8RyKfsc5aNXOPpHsa9TbSSWZd w6qW1Z6VR45himVXob9S7oiMq4dSL1UPnXbodlA9xdylwLx81zSqbRTzFfuV Y3JD50TlxkvY+FfkmkG1g2KaYptqUNWiyin/jNxDqJf4kLFm2LoH+1Wh5wNV mHtgyrHhDfj5Kddkqs3Ug5WgOxl7w/P+f2c4u0HI9Mu3j0XYG4PMIvBGQLF6 K2Rmx9yzzEk65iv2q6ZRbXM5dO6chfw3od+w3vItoCf6R9E5F3cMVyw/HHnv 1YOpFzsVee230E+GzpnKnV8zdgK8etZr0x1shr2zGdv+MfRPU+5h1cuqZ1Xv WhL6rqkmUG3wesq9oda4ADybcq+mGnU/to5HnksxVrF2Yui3qRypXKmeVb1r IfYz2G+ETP0KrrFVa+vN6O2oh+vLfvw1ci9TkZiyKPKatLbNwFsp16CqRRfi U5n69YxzkWLsrqRrdNXqr8EfDd087bNWD6xeWDWWai314KvhN8j6rqlmVe2q Hlm9cmf0lyXcM6h3UE90B7qd0o4NugMd0+4Z1Dsop51QLRb67NVTXAUfF7qX rYfOeO1H2ndLMUixSD2Nehv15C+i30pvsMA9uXpz9Wjq1ebAf0jxLbQtvXm9 ff3T0L8N9aDd2K8m6BSiuwadsfDXJrwXimG7sD07aVu6k7qbikmKTTqTO7Ku cVTrKIdOixwjFCtUo9yJ7AXVd3HnXOXejUBZvn1uqXo/5bulmqFXyj2jekfp fK1aMOPeTD42Vq4KffeV8y5qf7K+K6phVMsoZyl36Y02QP7urM9GMaJ+1nfg f3dBbzblHlq9tN7M56ofE64N9M9kF/YPpJxbVLMdhN8o438b6tEaZxzjFOv0 D6EGslOS7jVUc6r2/DDj3kw9/sqM/wno34B6+JzI/xj0r0H/CPSvoDDrf0Gq 2U4plmbdu6mHUC+hnkG9g/5J6d/U9dC1pXKqcuuAhGsdxRTFlu9TfhuqSe5G /7/y5ndU "]]}]}, {LABColor[0.9236774722667135, 0.0241080281440582, 0.3439463404154385], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNnHe4VNXVxs/MLVPv3Bm/RImNokiighiqohSlCygdbBSRLk0wCphgQxAL FsQYTSQaokZFLCgKiBoTbKiJBQsWbLEQIxowapJv/e778pA/zrP37LPOPrus vda7ypmmY6cPmpZOkqRrJkmqohwYP86Ka0rUn88myea4TogbJ1bpN/Xh1Uky Iq6NQTMio/Z5Uc/Hc6dE+8GpJDm1WvWno31kRv1A26w2SYZEeV/QdIu26dXq b6T7HBPtGwtJsjLec3gxSTpGOTToH46+L65Wv5cETdey+ukSZW19kgyLfo+u JEn7uD842u8OmiFRHxrXvHj2mSrVO6ZUDnF9sOu9YpzHlfWublFO8D3aP4hx Dor6cdE2P8ot8Xuf6O+YnGi2BM2MWrXPi98zo/56dk/b66Z/yPNkjiNcbxxj 65DRGrCek+L3h1FOjGtKPknaRTk4yvdijr8KmlFRbxL9NY6rT9zbP9puiuvJ eG7/tNofiv57RX0C+xPXMfHubjVJ0inK+hjzd3H/h3H9qFp9PhG0t8aaL4j7 m+uiX+Ya9D3jd9PYg1L8bhFruy6r9WdPT432G9i7GM/WKtXfivKgoGkW19dB 80JK9V9GfUmUl8e1ONoOKOn+OfHsXvHcynhXJcrn492N4/5VnmNT+C/63J7V 783u/+C4Ho8x71URTfMYy95R3xhtc6LvL7Kig+YHFdG3CJqHo//rom1tXvM4 zbz0dfR7MnsQ9wYEXTnargya38ZzO+I6Luh+Ge09ozypKP4aZB5rG/fbxHV8 3NsZ5TdxHR5zGx/rvCvqZdYy+OBfUe9WK9odpuf+TtNX/Jv6yym1r4pyQ1bv 2h5ja1LR+w6M8oic3gXtgLh/YlwHBU0hrlROe7Qy5nBL3L+srD4GeswnxnPf xbUpaKamxNvw0slZPbsk2ubk1O8ZKb3nXx5bj+i/e1z9on533H8z2rum9X7o ed+4tN51YND8N+b8RnbPmXjDZ+GeKJ+Kti9i70+qqDw/9m4ZMiSjfXo8aDbG tTr6XFKtOvPl/qmmeSB+j457f413Lcro3l5RH8s5i6tT1Fvn1Bfrf3yt6vT5 YZXooBkFf/oZLtqRUb+ItTs03nNPrGUnj3dLWvIMuYY8pBxh/mkbcxkW9ePL 4qmRbv9rrdr/HvQj0qJHZl5VIz4spvXe0R7Ppuj/6bgKMYYdcf3Z9QWuhzho KDe5/eMq0W9P6aId2knIyriGBf3b8dD8eN/WOo2D+oooj6yWbEIuLeecRP36 KLNBf3CM+0+xL12D9rUYc4cqla+4TvlqRmv0VFn1dQXxUdp8+HvzYeNYm/8E TSHG9u8oX4rn18S7quNek6BtFn38I+rnxXvviPf+MsrPoq8tQZcua50e9pmd HOXt5tv/i/5+EFevoKuKd5SjvKmk8b2cUZ/paK8Pmvuizw/jui7m8+9Yh/1z ep5nb0CmZMXfL3uOzIv7tC+P+rdVGv+2KK/NiA4aztHxKcnb/0S/10R9Rcz7 Su4F/Wno1azq7Hsqnhsd9XNjDlfG3NbG/T/mxYejzZ83pXQmG6XEH6dk1ca6 UmdtL6qWXmRNVkafv4+rcbQ3ivGdHTQvJZJ1F1sfXxt0s6K9dUq0t5se2lmm 31nQ/L4v60yM8njYk4v8rr1zel+HtLDBWZ7Xw1FuRWclkjvsO/tfHfz0VdAN KWrO9Am/89w05hX91OX0+ybjiIuMJc6vlt5FbpyR1nsZc5LRPdq5T312lc4q e5IUdebYd/h9Sko6fHjcOirutQz6fYMv1se9y4If9o57neM6CoyA/op1WB33 XozyaNM3Db76Mu63zIqvGsWYN3DewQNxv3W0t6+SruXMwIOtsqIPsgba9ZZd tB8R14tB0yyn39Svr9OzyyijzyOzwkHnFMXzc4qStegS1ndH0F0e9F/WSbe0 sc56LMb9u3jui9iHr+Jek6BdmpeMXe+9Y948uyHo2gbdNVH/V9Cui3KJ2+mv rd/VtCLd1R9sllYfyPlddXoX77wsJf2CLs9VdDYbBX2mTvr/PwWNCfoNUZ8W bb3jOjP6mR5ln7jGR/1X8cx6znxeWGm98dL2eLZ33P86yu9iHt/H9Xr8/ndG v8EJYJdHg75HlB9n1Q4N680cWefPo/5tRngJmo/8+42CeOL1snhmV0Z8816M 4+V4/2fRvi36GhPXoLgOiHlVxf1Fcf9D6OL6ANwY5ftciXjn/bhej+e/LGvM 2+I97erEF+dFuYFno35KXI9G/R2wc1zrov4u+jmu+fF8T7Az6xRj7B1Xv7TW gjX5KPo8KebxfXaPnv/ee9E4JwxzkM9Jq3juQvR7SuUf/S7ee0JcbWLvugVt v9iHHPg7JcywweMBAyCbG85PtNUFzdVR/jjRWbogrn2jfhh8F9eLicZzmfv5 PiWsAc2r0cdOP9MspXfRz2nG/Mi/zjlhTXDm4XF/YVztg+b0aF+WEg7v6bXn /HKWl8fVM+qXprVOrG/LaLvU42nleoeoz7PeQf8c5v5fgJ4zxP7GNTPeNSMn HA2mvSyur6L9xpTmjvx8NNpGxDU0q7kw9xZg8aL01jd10rdrasTXb1luIjPX gN+z4rP2JenmG4o6o+t8Hs+MvZ4fTDMuyoOjvDcrPsWeWhVXTCE5PCOawzI6 q5zZE4viZejhlZbR/63xng15YSQwJRirR0Zj6J4RPnnIGKUN+CE6vybe+0k8 PxOclUjXgzuXWLdc63Vgna/12raNd62NfoYhk3PCHfA9vLrG86UPbMimKeEs 8OHlQffTeHZltG/Ma0zQs57YHPQJP/SoyJY4KPqfXxJWe7ckXTPGWG44OCiu u+PZn7l+c9QPjL7v8P0ZUf87/BLXrZy5aPst5zOl+n0+m+j6vlGfja6L+tlR fgnfgRmjvCv6+Xlcg+L37JTKBdF+oekvwv6JckhcV3o81H8d9XOjHBnX6kRj HOFxzoiyX0rrPtv1C6L+N85rSvKoe1k6Dxy6PX73NT1zoM8VUe4X4+of9XFR nxXlAPYtkR0w1TpykvUg9i88Bn919Tx5lnlPj34WMvZEMuY7y5w21cLWV8RV TAmHglfHB/396M6ov5EIux+TCPNSB/diN52Zk/0z3XoBfb3NchVZ+nJcD/rZ zu6TerYgfP9h7PvFadEcm8g2WOX34n8Y6/FNsxwFGx9eJdzMWDtYbrwd7b+L cfSP8dyWlZ2KfwFbDfsGOwd7anLcrzZP/wKbIN7Rt1b8dIf57MAY2/Bo64QN Z367y/jt1pRwDpjuZGO8zwtqLxclV5AvLb3uFyfin2vdzlnbKycMh23CexgH Y8hFP19GW6Pgi5VZzWcqsi5+Lw2auWW13eZ25srvJWmVPANumxvtE7HRE82b OnPH3sbufi3KNrXqB//RD2Oet8d6/Zjxg0uzwmsnVlQfEGW7jGh2xq0m0d8d Uf8m6p2ivrpGMrdJ9Nsuyuvi7HeJ5/4QV+e4Fsezl2WE9XvlZKuDeShvzUre IQuRidtrpMfujPKQatmJi/3sMveJnwVbh/bOVboW2ZbEplxk+mOL4u8uRclN 5OeysnBG32rZCIOLWsv29eKzAdU6C5wvfEngnqNizG+DOdKyod/Kqq9JVWrH pgPDvOl25DbPcjbfiKu/7UT8HPg78LPwDtrXxP2/ux0fCG0DTN8mo3u0s06s F/6OezIaAzY99ubWrPxR4IsN+D/sWwIzgZfASeCl49IqwU/gK3DWx8ZRzGOr 58L4eC++IHw5+HTojzl96DVpV5HvaWCsXy/jMfqkL9672Zhtu+uMfYXHD7a6 Juh+FO3nl1WfX9aZwm+FrYSPcJX5ARx5ZkZzHBzPjMOng5+zrPr62Ntjot+P aqSfh2Wl19Hph0Y/U9GrVbqmwItBszbuPZIVv7bOqJ2zQTnVdcqzXN9qvd89 kX8GXw9yZQ6YKiufT/P4vTorGXw0Nl2UjdLakwdrtC/jY8w70J9x1o8oqX1o UX1scD+9S+KtIfXC0TMyWgPeBx0YfmRZ7S/bP8a6Fb1O4+MqoXOy+k0dHLHa WIL3M3fWCh/qpIx8ttjI18VVl1K5zHXO3fVxbcLujnJ5Vj7f3q7Dy83jjEyq lg/tRxU9e0LMsSc+vWj7aVF9LPP5RQeiC2ckkhG0gxOx0a+1H2B4TnXGwHjX eszIs0mWaTdnxFcLYvxdwA41wqbNSxoj/ukR5gfs/D/Feq0P2lxZ+7nWe4pP d7r9KqPBjVFvVq353WA9iUyYbD8GtDNM38zPguXwoSFDsXOxLZHbe0d5SVn7 MBCfSrTdmBFWxRd3U0b+QPwgyK1M7PvivOwU7BXokLPIWPQhehGM9G2t6sit EyqyaXsW5aPumNHzLaPfw3Ly29yR13PV8Z7Dc2rHZ3ip6ZFvLXO6R3vfit57 fPQ5ye34fbBnW5pmUEWy+KmSZDwymd8dcxoHZ3Yk9nJOPj0wK9gV3yD90Q9z R0+3954i99pmpGte8m/qP3XM4Pa89quD59giK3rkJGU703cuigfgBeQZ/SDT lns/4VvWtkNO/F/OqY7t0LCGOa0Jdkxn2y3ISNqZ1wuWHfjHaTvK9MhS6tAS cyD2QPwCnuWcVNx2rNvxJeFTGljSe471u77xWrFutHEP/HwOtmFOOhS7skWt ZP/hUf6kVj6Zp6tkV2ATYUMeaV7tVBSWx5ZF1rW2PFwTz/TwnnKe6J8zRdnL 76Lew+3Ic9qhxUfaOyff6c9yqn+eyHfbOrdnz1t7Lvkos3F1Sguv4NPn2T45 /d7tg8UP9AfWoVbxmX2ini9IfiFHjygKi7wb56WmqH4ej7XsU5bPuTr45Rrj eDDYoLRiZsTL+poG2htrdJY4R32KkiMfRJ+TC/IZt6/IH058iHHsF88cyRkn zhK059VqH/5Ykm93dTx7ZFFyD/m3POhXw3tRXlGWL++qKO9Ma2xXJ/IH8yz6 F3z7qTEudj/+PXBmi2qtBeswwLgYnHBcRfTfxXjvzOu5Ykk8BJ9ha6OnvgDL pGWnwdPcPzTGOgu+qRePwV/w5NsF8dAR0feP6xUTGBNtXYs6g5xFYlBb7E/o ir6rFRYjhrKjVjGI9kXJe+JjjaNejGe3sj5x/wjigGn5lRlDF3BCXnIav2z3 isaciufeKOtd+JjHF+TDu6ssHwo67ay87G18E/gl7i7JZ90maPbJyP5kzsQ0 2EvmM7iiMa/Ky8fMvvP82JyeRWaeVJY+HRLlv8ryaeN3PyMnOnzhh0Qfs2u1 BmCqb+3Xwl7AR3Gr5cSRlhXg5WMsz9HJ4AbmgB9yqOUhPkhsb87qKVGeiq2V Fh4Bl4BrDshJV6F/8KuMstygz3uNQ9Cf6FH8oP9XVhxxL/zzOT0Db8APPIuf GR/EoZYbo0xD+0teF3xxF8U4TkamJ7Knhrn/m4vCOjcV5ffF74xc65vT2cZO eSWld/NeZABza2l78xTPsYnXttoyc6JxxYHRNia3Z97UkW34fxgzfoYhFa3N s7H/Oa9b1rprqPVXvyhPyMn2YVx9LXdo7+9xgj8Pykino7vQYdir2LrYvNio 2E/93M+UnNaE8ffMah3x4WJrjoirKqeY4Xjby9hrff0ugvonWGaOiL2Zxp5F Oc/2NXOnHOf3ckZbVeucHm6/EfsFHhntNWntdcafAw5tbizKOOAHMBW/4RF8 BcjqkZbP5+Y0L8Y23ONnfxnDeI/nmLTGg43ZNKfzwL6x5/vkdD7xW1PH70zZ yO30V+0+scOpI+cZW43r2OW1OdnFXDXmc3B/Ieq3pNVWa3p04hzrJ/Y8573A x1UxD8MH6B5kDrona96jr7z1ETIpZxraCq4PwD+Sk26lrHOdGAh1YkUPxzve TOSPJT5AnIBzTAwfHyQ+W+h4/jTjDdqJ71+dF7/g+7+xJFwDBsQ+xP+C/wo/ H/4+/G/4NnkerLIbu9APPNbce5Qz7x9t/QyvDzc++WFOWAU9h9zrHWd2v2jb N6eYGiW/ibXdm9FvcDOxtf1Mw5nr7nMH7ib+AfYmbsJes//I0y5u72F65sme 4AfZYt7Y23yyw3YuPoGJ5inkAOsIn2EXHGxZUGeeOcC8caDrtCPTKu4fXwvv muU+mrgf5rG/54gsOdBnB16GDllHPBGavfxsM7dD29j0+OmpM67Vafno0Ouz S7JJ68qK5TDvlmXZZNhmO2yj9c/KL03cnBge8TvauIfNgM+Ne/jGwFJLTIO9 THwRP9TKuHc92DaRXdbHNhqxS+TWasuiKp+X3wXdMj8DfS/b78gS5Bd7i7+A dngQm3q4bShsqWGuj8zKvrrGNNjc+MfA1+AqMMrS6Gd2XKPS0oXDTHM1GCje s7Ss8fb2GPAz45uEr3q5vcFfEuWArOJ8A7xurA9YA38yeOODkvBHpiDdUbFN ge8K3bfTflp8t/iW8WORl4Mv655E7b9JpCOh/0mci1VuuyWRrVywvXxb/L7O 64jNl9juIwenvlpxG2yErxJh7M2MNcrFcV2BbIprZFo+Q9YN3yC5G8cZO+1v nAnebBs0ryayVZtblzC3vTxH6NEXc60nhltuor/wJeNTxke9Jeqvcdm2+mci mwjZjw443nK3xrL3Xs97RVyHFIVfyAlinNgn6At8/Cd5v4ihsHebEvmZaSee RZycODI+fjDdLRlh0S41asMu5ZzOzurMgrPJz9rH+P+3GbXhe1mRkZ8E/Tw3 q7kONR+yhovKojndtj88Soz92Iroj4ny13H/Nxn5o/BVdrVfgvga7yXGdmlZ NKcW5C/8XY18hvuVVN871uMqcH1GmJ354I8g1opddLP7p7/57hPeXeLz3rxa MSnirKzHr70mtC1xO+c75TPOM9zDP3+z6emfWDq8B9/hH+3iueBLpg7vIL+R 48jtQUXN56BYh6qYyw0xl38WdB87pX88OyGt39TfBnOk5GMnTnt0Vs9vtQzD ZmGfB3qvm1dEc3BF8h55guwjRg3ORieQy8DZH1glXyY+TXynJzl36+N6jeU+ j2GMZSOycEy03ZWRL/CsgjDBgLJ8MPiQ4Xn6wz8KRr2hLN2F76fBv5yV/4B1 wffEucLGYh2ws8C3PEuuVE/bzsj52pJkWk1J64zPiufvDbo/pBU3wrbBxjmw KNlwcVyXJMKGYAvG80Ai2YEMTpVlRyVRPhHPfwymTiQ7yF/B/sMPiD9wYUF+ ZvzXjA3cS1yUuGq7ovx/u4KmbVG2Yq+K4oHYLMQEl9bIpsOPh2+9hc/XiIpi cMTieIb2NkXx5yGm6eb6YvMg9+BD8hGbWH6uSaSHfh/Xz8vyIS4oC7/PNSYh n5P8TvI8D7A+Ql+Ps+wCT4Iz51mOvZ6SzYC9MNft9HNdQTbt+yXNh3mBgeGF +bYrb6hX/ss3ZeUzLrHuuNz6FF7CVsfu/ndB8RniNMRusGmJlRMbv7Fe8mN7 QTwM/2Jr4vvGB94qxnBFXroIP9+NRfkF2pSUs7HB/UxCjrB3FfksWLdWReUu NOQwFBQfI2ZGjGwo8irm8lBevtFNniNYlHb82W3rxVMvleT7mVer+wdUJLuQ Ye3qFeN4pSR7nrW6Ji+MjZ8FPMCePOt9aeU9wr5o72fp46B4/i7yZKLcFW23 g0njetC8zN6jM5rZF4r/fph10Kro9564zrfcHu525H86Ix1QrkiGkcdKfjDP 1tQrlntronju/YnqnB8w70xj6MeD5iP0M2OtVXwLX09tQbriF2CxuH4a7X/O 65kZxuR3p+WDQc+hJ/EZXZvIV4A/F53+Sb3qf6vXvYt8ton5gWnm1gsHcNYX eo/YH3A+seKrjC3Qg2Cy1Z7TtcYQ2EHIDWAE+vcE7wt692qP6euS2hsXhNt4 z6WJ5jHTtgA2KXOfapkzxXIH+xLfHDZmzu3YR9ju2PC77bDJtsuwl/H5Hubn sAmxBxsbJ4N1d1mHIR/6mYb34PvnPucaXD3auHyG5Sh+yOlef8ZMOd17wdk9 0ucXew67Dt8jPuc5rnOG2nl/yTvAv4Nvp6fpsQHB3ew18QJ+8yy+zV1+N7Fu 7ABsjGa2j37mOU703Gkn54x8IHLKDjM99gjx+pNSyh8gb2hbopyQL92+IMqO 8ezwGNeMgkryItBl6+y35TfyA5mO7gMfXpUWRnw6pXzEf8AzabXfwJ6mhR1H Wuegey5IZFdCP8/0S423Z7vOs7P87KJE+Q6rfB4f8NlcapzLeeAs0H5/Wr+h v8s0vPe+tPyXq11nDHeaHpo5zn9rV9I76J++7/F7oSEv4l7rzd19YTdhP612 n/fntV7I1I3I5bR05LneL/gN3zextVMT5TyTGwrOWe46eQXEhcmlI0ZMfB1s 9KOyxvuAxzPIvj58fuS0YEOCRdG3y90PNjh4F1zzVkG2OLlm4NazjTPx6+Df +crjutFjw/7ubR7D98yYiPewp5d7X55Jqf5378P9lk13l2VX/6EsfMlcsJd/ YnmPLwJfBT4L/BmD/F7OyPVl4aHrysrfxGdBHijYC9rG3tO7vBd3mbdYk/tc Zy/OKCiu2bmiOBjxMGLB+OlX2FdP/hlYIVsXZUV65N14rldKeStnJLLLWVt8 MuA7zgbn4oC0zg9nZ7ntPmxYzjjnm2fwexMjxx6cVpDuQwfOTCnXhZwX8hHP gQcT4W6wFNgbmwxMxW989i3stz8bmyWlfA3iq+AKYqyJsRnfWywqKA+U7xI4 Z6f5bE5IlFPD+9J1wmm9HQegDjb+dVFzfCyvNR/sdX8wr/jClOh7orHB6UGb LspGwv+NPp9bu8f/NMA6pVNZscNjonw23vEF+CiucQV9Q9Ilnj0x6BbHNcB8 dKd56Xnv/zzv72rf61hUbIUYS1fbEV+ar8BVyGRw9zhj7zEuBxrTMH7mAc9T h/caZFyV8vmIozBf5s1asCbIyCb+bgX9T64+4yPnnnmiQ7Gdny9pzI/kdUY4 H+clsiN4PzxMPhh5TucmWrNDjZHYZ/zSyIlmRdnM5KBNy8v2Pyzazo7nnrN9 jvyGD5Htp0f78ynt9TluR5efW5btd15ZMcc2jj/iMwAT42cgDoFPjpzJT1OS 6fTzl5TwEzgZ2m+MpcDPu4ypiEOCb/AznOKxscfogdHWEevy2oP+5JHZb4z/ mBxg9CW6Ep8k/kPwJHN90u+bE+WLtv+PdByQPIfPUpovPotPwJx+7xjT0z42 rTnwLHpwYEpx/F720+AvIqcLWYw/FF1Mfgb5t58go1OSA+RzkQNK/ucHierj EsXkic2ju8l56+VzTW4ZOWbkgJ3ldvrhNz5s7uPTpt4rkU7unlKuHfm9vHds oryD7q5PTil3ruGbC3wBcQ1J5Ccht6xHony2Y91On8wFXT/Bz5Kzim3c2XMh V+RY0/C92mD76pkX+Sb4cJa7f57tYjuyrfvr7Hbs0vam35pSnfH0sy8A25v8 aGIz+CTBJ8T7wTk527x5vvNwvtfL5JsUhO//W6c4EjFgzgjfqvF92Q8cq8T2 5/m/lIQfXywprx1+hKfhNfA59jTx4DXWrcSwifkcUa+xrPF48Jm19PPod/QJ +oA4ObFzfAlflRWnqJS1TuRfM3fyhcgV4vf3BcU6iXkSl8FXhg+qn/UL/aYs P0+vF29u91kmNkyMuFQSPXqGfEtsA2yEFvXKwUEHkGtDnJY41lrjlweMhbb7 OZ4nZkqMlbgb3/HwnQ95ia+mZLfiZwNzgjexl4n7kRdC7K9jQbkXs8qSaZwz MECN7WLsKPz0+OvRJaw1fgtiA6wHshmewZ/XwCvwbUE255tl4Qj6pU/sz2xa frk5KeW1grWuq5MN9kSsQfei8j3I+9hp2YRcQl4gN5BL9JFzPz2Kmg+5J6vz wrLkhZHLRr4FeWTwVBPLxL5FxQhOKOq7OL5TaBbl3XlhBnLYOY/dfI7A7+ij tzzmAZYDT0Z5Ulp+EjDOL9N7dA16BiwBv5/ldnT+NvtSyOUkp5M8XWJYxHyI AaEn0ZfYj3xrhS22wnqrf1q56E/4vdiZfPcJ/cREuLS/Md5640ywwhz7BMES W0rSR89F2Tutbz75/ggZebGx5eS0vinlO4JRBe0L+0MfHd3PMtc5a+jeQcYS /T13xgDPnmF8iI/wZvsVsflytgf/FGOeaV0Jfhng+kzLVeRwt7T8TIyNkt/4 JgYbX5JHAe4Bb4GDyAsmxxddc7/rxCxYY9Ya3w652L3/Z+49rSP4TqFvWt8q rPLesC/4BsmrxB93orEMa36D9QtjQ1bhrwTzr41nj08rBneL97fhmynjQ75b AesxZvDhw6ZHR37kOAhxD/ImKft6br383kdSGjPfU/T0GKiTv9zN4yFWxPiw GR60LmSO2NsXeQ3BKeAV7Hf8/3yPQUwEP8aitPiLuU7xvuxbJRsM7IGMPNjx XL694DySh4/vhjZ0H/mAxIfwCW4rSobuVxF/LTSP8Q1Awc/i+zna/h+wELbi IvP4Ip+LPwfdZ4n2/amof5roDPKdC3nq8MxUjxl69uRSn51+rvf3+Z1qGmip 0xfj4JuCHycqGdvTib4vy7tOWWca5jLZawU+OttjhvcvML+BKeZ7bPDdJZ77 ud4DeJ9vLDnzPcuSGdPM2+QC4NfAp8Lcacd/MtLrQ6yNPeQcgUf51oD+4XF8 Pdi92LwL/S72eqb3nfezn+d7T7GJ+b3U41xoGTHL+wHeA7Nhz2PLs97MC1mJ T+4h+6k5J/AYdtFjPlN8owQOmWfe2O0XAH+C6ea4T/K58KEQu+jkNeTsQAsN eA/Zs8Dy5yrHPchvZLy903u+geqT1rdJ5PaQ14PPhFybg50jBDagpB++X3+0 es93YMQWsLk59z3t6yYGu5/jsIc416aL9Sj6FP260PKIPS2UFdedUNDz9MfZ JE/nbD/P93/kZ/I88WnwDdgG2Yaf4VTz52LzKr6Tk81jrCXnhfOGPUx9bEHf 7nf19/uXWMYwJnxJfF/Y8H1rRj5AfJ58L0gObsN/J+T0HLTkhGLHkQuEfYcN AD5gzl29fsTYiZ2vdwwKXMR+DDBfI6/wUc72OObWSa+Rh4WtjUyB98BV4Im2 xgXQ49/8fUn+DPzfPzc9/oER9nMQayP2VLKNTYxupnP1Wtcr14NcrfbmEfYI OYAdxtqSAwve2J2DSYk/ENuVuZ9Z0HPMCUw1xXKCs9O0rJzVJuQBlpVb0DrK dbXiOTAxuah8CwCfPWXZhc34TkF+CfwTnGvONLYzZ/hkn9PnvObEaq/3mee8 M3/WbkGiPBNylsixIMYxzjIHPcP5RNcg8yak98TUJlpfcLaRXxOtK8dbL0yy jxEs393P9rN+nGhZSkwZewxbDHv0AMsQ4rljfU7BOXwrxXcrYPCWPrP4QcBB fKe8PiX5OdIyk/GDMbCPxibCuPz3BbnnGxPJgzMsE170GIgdL7bMh+/+4jGA G+HlDubnDn6W/vmWgP+/6JPoG6b9LTNZS9ahpfdhpPcCn9kIy17w3iCfTfJu 8Ing+8ROx1+Ar4CS37t9p6O8d/BUJ5+pP6aEY6ZYXkzwecH2Pd39YK/z3nnW d0PMf7yfZ/FDYs9ig2J7rLRsRa5iNw9Ni692eByMAZ888hksgF92tGXvestM vhv9s5+FX4mhkcPHN9JdfO6RpfhHGBv5PMiD3TKVfGpsf+b4J4/5POuLbsY/ 5NaR44LNiM3MdyrgMfiG/WP84BD0KuN5xfYMuWS7TNNgF2SVy0YuN/E0SvDe a34GGxZMyDcw5Km2cj/cJzftFfcJv7zkPhf6XHA+OI/MgfFjK29J7en7dffP /x2gU8hD/8p8yXrio2P/2Dv8GM+4H9aV9Z3r+UIPD+O/ecn11/wubO0Jfhfx R/A/2B99+qrpeni+1LG//pYSr4CLwJTgUTDkvXnprU0l8dCTpsGeeML1j9yO rmHv4VH4kz18yuP/2O0N9MaL7BF6HhnB2D5OqU/qH5q3oAHHPe7+0W/YLZyj d0yDHIAH15n+U68/8hb8CvYFV6/Jy+/8TEl451E/+47nC827pkd2fe6zxJq/ mRLmxkbg2yC+EUIegMEf9rP4d+EZ/EjvpNQ/a/h0STnum0uSFw+5/Quft7le t01eq2nea9aQWDI2RcO3hSnFzcGQ5DkRRyeuyv8ukLML3vzcOgXdQiwY+xmb F7zdzPVW5kf2fZzlG/L//YK+b99R1nfJh7t/cjjA3Mhe1gHbgHXFjnjEdb5z webF/8H3oH+zHGavHzP/4cdC7ow1P2+ybpvh9lk+L4ytp3nsST872LIPPuru /seYZza6HfnU1frofp9pZDK6Yr3lwkTzG/tLjjDnGX8+34fxnRjfwHEekafI 0n+4jj7lncxthmXjc27Ht7nZ5xfd8oLPI77JF9zPKcZD0COz+P8BZBj+1Wd3 80BK/Sw2b9A/mA37Av8F/lhs0wc8t/GWx8wX3y/+nQWJfHLsHWcdfmyQZYn8 cLRx9uHbtW7HzzfBsgJbkP2lT75Zb2WeI5b4uvd3qXmJdmTnKo+HXCZsQuxB 8haJl5C7OMIy7XPPm/mjt95N6cxydvCP8q0s/sxuriPz+a8DfKboql6uYxPh K53iNYR+sp89yvWhrjMvbId7vbdTLBdph8fArsSM0TvEW8Ec2Ak8O8l9oufR 9+j9p/KK8/61pLEwvg98dj/x+WWun3pPG3jfculx1+HnBp61rHvCdXh4vNeI 9UG/TfV6wfvIaOTnM34XPPKU2z/zGvI983ivzyTPnfg1OUb45fAfEr+ETz7x 2eOcNsSgUsLQJ7rO+oO/sQfA4/yXAN/18X8CV9QLs15Zv+cZaBu+807tiWed 6H7wA5OLhY8ZHzK+4re9p9DP8hhmen97uU4/5CHw7Trfp4MbiWdc6XbqV3nN ppsfmOMM94kvBHmMvB3mfrBxsW0Wem7EclmTCxLlbPAd/mrPBf/dhYlyEflm nrzCwW5nbPx/D9/+NeDFnHJtyfl91jyA/CBHjRyt/5b1vyf4vr+tUw4CPlb8 q/+sU57Tzii/qFO+zj+i3FrQ/yN8Xaf8LfK4Di4pN4+cP3IYhvmd5D/QH+3k JCCz+f8L5Da5A7vc3quovOeP6pULSE7gIRXltw+3D/cy41V4skHep6T7GvK6 LTfeMx/Dwx+Z16nzDXQL5101c+4NOTiHFpW3uq1e/uYdnnt/5zcRGyDHmPaN ib7rJv/1wJLavjL9u34XZwq7lzx1ZON3nu++lnVbzW8NOYApxUHeT5T3MNgl 8RX0UQ/Xuf+ez/UZlv3IZWQyNh52e3E3L6ckS/kGCh863y9tNj06pK4k2xbf /3P2o/Kdx9seE8/uHh9jQ5ciE5GHH3gcu8f8nsfTyPNlH9eZnvUgZocvgPUg hrPtf+ayzf087H1EX2/z/Jl7F69PQ55kSthlNyZ6x2eHfAVwCX4mvhPa7Wuc ah0N5nrW/M5aXWi+Y5zYu3yXSN7+LYnOELnJ2EnYqNhK+IvQqdganE9ymu/2 GYWGHKW9bU+z/uSmMWfwDTlV5Cbe7/PL2f1topwI+Ak7cGpe/wc3sKKzzBhW xNWyqO8wG1WU10Qf5GsROyBuALbf7P1Ev3/jM8a5QyaSA0Uu1G88J8aN3xod gs+J7wPwJxCLmW0bFzsFzL7T/eNLY87IMeIMHe3Xuch9k0NFLgOxbvxsxCfA FV9bfi3zOC40LbFybC/kAX4b/i8EuYnMxBeC3d3gD6lWXIa8Juy/lV5/bKU1 Hif5cQ96ffmOkLyEeT7byC/yKsEme/vcfW/+ZO+x129yndxqMEOLRDm9+LiI 07UvKK9uWEV5uOTjkpuC7GrqPj8wj6LTwe29bXeT4wDGJXd3f/Mj7T2d5wJG vtj9gJnBL/iKiM2t9ByZG5ilpWmw88A82HdgJXAUOBnMc5jHf4//74L/vVjo dmhm2nbF/gMngsfAiug/dDP6cPf/AUHPdwl8U0AeHu3NPAZyOVt7DKOcc0Kc Dv8xfmTw1aUeMzR98opTfluv3F7yLRk3cbSTbY/iVyF2hA6c7vw1ztEy7/Ft 5hvOBGe0jzEzcgA/PXvMOqJzbzYvEVskrvib3TIk0R5d4/O3wu3s3xDz8q2+ h1xZ6/7B5PiL3ksku5Bbg83Tt/mZ671njLW/bUDosQ3x9YPtwUHgJLAQNgIy DvmGjHzEcnKI9wh5RTz8Lb/rv/4fNv6PDX9RJ9tEx7ifQR7bVs+lh8eJTO7g uSPPz/J8wTDtTQ+/Yec+5jH8P7DBphI= "]], PolygonBox[CompressedData[" 1:eJwlmHt0VdURxk/uTe693nNyc66CQKWQAIIECAkhgALyiBQCCiVAMIr4qNZq AVtBWyNW12pr0crT8MYni6dAC1aRSli2leVrydL6wtb6gAJtFahIBVGkv4/v j73uzJ7ZM3P2nj3z7Vt2w231MxJBELQuCIJCfveVBMGGoiAohekdBcGRMAg+ SAbBDub65oLgAKM2FQQF6SD4D7qN6OxE9hDjWHEQjI2DoB79G5GPg347GwQ/ gW7B3kp0W7KWbWI8jHwqc6PRX04Q10AvZm419BbkS6A75fGbwSfry6ALmWuD bDcxTMTWl/hcgO+XsdGf9d8g3wcdsuZb6PmMdejvwOY86NOxZafQGZ11DIrl esZO+G18UwnyBvjLkB2C/x6+uzCqsP8z5s5n7QLkd0Pfxv5sg97KWAp/nHjm E0+Evxr0B2s/kE1gXArdEHkvl2FvCnQt3/QQ/rZi8wy2xqOT4yx+iH49dHf8 3863Pot+M/rvsf8vYHs68knIPy/23j/I2Mv6HzPGYKsR+UjkQxgToTth4y85 x6BY+mFvKPZeZq4rsiGseQl6GPJJyKuIaRP7URt7L95C52liOY2/Znz9lnEU ejg2tkIPxN5l0Gl0Ymw9yJqZrO2CzRXIq5EPRj6BuY4J50Qj9EH0tyEfgrwO +Rp8ruL7lzGXZO1XyG9JO6bh6GfwOQzdB9BJQ/dAPivlb/g9awehMw7dx5Gv hd/BaMbfFOZGI7ue/fkpuk/CPwB/Mfs/i29tS8zr8PcS+n2QH8T/LPhKdEag W4q9hchGwV8Ffxz9IuLtg/+70e+uM0L+O8bMlGNSbF2xvwZbo4m5PvIea691 puXIqxh3Qe9E/jRrtzOaUrYp24XobyvwGQ7F907ifxf6HcaL8I3Yb30Oe4TN BPtxOXPjoTciXwj9ETaOYWs445/Yei7ru/gsMVXqvInpVMpnlJIv5M8jH64c xd51+DuJvBtzfdE9w1xFoWuCasNJfPya+J5j7ivoJvytht+gb4BezJrtyDZh rxP2Oyo/kd1LfDej/6lqRMJ7/Bn0ksi2tqNfhf4q+F3w3VjzB2L7e+xcb8H/ 37A1h7kk/gawvgxZdc57uRabfaBb0HlPe8eaJcT+Z+1/kfd0A2uPsOYE8lHU vsPQx1Qj4Pdg/5PQOa/cV8zHWduFeOrQXY+PO6H/hfxMyjl1EfT0rG1diI0v sNWN88mpsMJfBH0n8uOwVfDtlc/MnUf+LSXeNpFrmmrbFuamQfeKnXs90K9Q 7WP0hH6F+D4kvg7wNfB9Gd+F3kOMPVm/CnvPsz7AZnnCObMbeXv8VWTOhhMM RDYPnRj7j2k9sjHYXAzdzPgF+ouLvXfDGEuhn2JuV9p3ag66s+EXwe/nG/ep nmCvJuWafkvoNVo7SD0BvgofjfhfhM8ns84x5Vod67fCf8oeJtI+o2tD9xj1 Gs1Jlg6dyxXk/FV510TVxp3MzUVexvf3gq/Bfin0ZOQL0z6jfyPvz5oZ+B9H PK8jb4pdyyuZewr/34Fvl/Q33QN9JnYtUk/5Et9TGU+kXdNV26+Bfxz6qO4f vqbBr0+758xFPiX03j7KuF/5QAyHE7YxB34/MdyR9FwqdE1SbdKd0917B/k0 zqoa/l3oNnnnjnrA+dC/RH85/HzGz6F/xVgBHTLq+J6rsbEq7Zo4ENkFeZ+V 9uhi4i0ingZsz0DegPzb0LVVPUm9qS2jG/Sf8Hdt5B6tXv0Me9KbeMbADy10 DR8J/TA+X+N7XmV8hK3/YvPrtO/Ufvhq+De1v8ITsXuEekUXYsio12JjUKF7 inpLRc65IUzQK+ccV64rpl7IJxPfgYzvsO7y7YzfQB9EP4G//jnXnips9IO+ KXQuak+0N+PzvmtH0fk+dJ/IvV53oJ3wRt69Qz0tmXdPVW9VD1AvWJT1XRQG +R+53AudsRn38LnIesDXwb/PGd4hLITPyUljBmEHzUn2Dfznuuuxa5m+YQDy 69QPiac9Y4buS+RvESZZDj0K+0uwX4ONfvD7QtvSnmvv3+Kbq9jb2Yxq9vf9 0LVzr+pnbAwkLFSCvR9Bfxz67FTjn9H5FbvXC+MJ6zXgr3PaOZPSeWFjNrIj rBkB/ces75YwyK2sXxTbtzDhdPivdaeTzlnlbkR8hws8Vwz9BqN3yjHvxtbb Oee+aopqSzthnoTvqO7qXcWuZRHxNkGvlL0i94QV0MtL3IvUo5ZBd4isq5g/ hN/Dmvuw1RH568XOGeWOeqp66z0558ZAbFwJ3wqfK1nfjnFe7BqkWiRMnGHt LsaapHNSuXmq2LneG34QvhOx914+C6Dnlbh26U5sxtcVrFmb8Z2fEBmzCbup R5/t1SW+28JEwka9S4xta1lfCZ2P3XtmMg5lXXNUe1SjVKuy8C3ojxRGhu6A /fVF7iHqJa/mjGXUQ16BPs2aQ0mf0UbsXU58qzPuGWOJZ2qJa59qWHNoTCJs op6r3tucdS0+hs8BkXNMuaaeWAr/Qta9WnfiUd33yG8P7fEnwkaxa5swt7D3 pMi1R5jgEegTobG2MKOw432xe5d63r3Cvuh8kfSeam/Vg5Uw69QDdFfzptUj 1CtyOWM7rSmEvwH7lyRd01TbDjL2JowZhR2FEYQVyuDPhS+OjR3rcXO17kLk t4v2THuXZ5RmjCGEJdSj1avVk9SbRkXGwsLYB/j+j3POPfmU7+Wx3xo6w2U6 68i+ZVO2J8Z+OwhjC2srB5QL+oYfEGtb9FtljDmEPXRndXf15knAlzOGZnzH tqhWwjdlfOf7hcZkwmZ64/wjNIYUlhTGE9YThhGWEea9AFl7xlroc5F3QjYQ e5NTtjkYuiPyjUXG9JuzxjjCOrMZN0HfGJsW5hH2ORwaqwtDCEsIQwpLymaH 0G9AvQVVE1Ubm2O/JSvY7xnIh0R+iyzTGSDvCb826RqtWq03j94+6mmj1V9i 90bVFNWW7pHvvu5Ma/R359y7hPknwFfq+zLGwJ/hr3PkbxcGFxaXT/mWz0uR haHvxtk3B7Z6RK71eoOXQz+RNVaSTdmen3WtGg9fAT8h69qvM9PZ3Rz6buuM z4F/I/TbUj1Jvekk9ejWQteoE9D3h3476I6/mHOPV6/vgn4rYVPV+4wxa1ft R9ZvV73B9RbvFllXOtJVjVOtE8YU1nwNm+Upv2kmwddGfisKowirdMz7raY3 fmneGExYTBhgBLrrs36rKoeUS5ti1zph0M2x90B7oTfEB3zLmzmftXrIX3U2 yC/J+E2jt43eEHpL6M2lt5fe0HpLK8a96HfO+62mNRdCXxH7vwG9qfS2qo78 FlLOKndrcn4LaE+vRLYg9ttLGFBY8P9rviET "]]}]}, {LABColor[0.9752975074227263, -0.03101814111372725, 0.2242118466260119], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxFmH1s1dUZx3/3d2/b+9bbexElVFBBoDi2lBYq0lqBTP+YW0CBqHPIJlLh j21GZQIyadFJtmQtlJdOQtDIi7AFzDJDsrkXk6FZsrFsGUucmEUdbG4OjNvI eMlo93z4fhv+OPec37nnPOc5z8v3eZ4zacVji7+eJknSFT/Z6PdmkmRLtAnR +nIxjtYV40nx/+7om6K1xnhP9NVY/0T8/6LH5zKafyvGIxnNs74/2kvQjPls 7H3Z8895vjna9FqS3J5Pkpbo+4PmQLSbUvHD+omx90nPc2ZXHDgzGP5SKUle j+85ea2/NfrX6pLkrpz27fVdtngMnemx7iBnRqvFeH/0v4n51Q1Jcjy+j0ar 8zw8bwua06Odr0+SReYTfhcWkmR+tEZ4LSfJ9dAoJsn2+P/haBdj/++ykuFQ jKcFzQP00Q5lxMOMRD3fs2he86lE+7Z6b1u0V8xzj8es2eG90Hkozlwe7dX4 PprX9/GYf8Nj5hcEPz8Jmm3Rfze+d0W7OdrFkGcu1lyI/qa4W0eMb4z+XyHL O2N8ItZcm2oMTWiwBjkjl37ra1dZ+ngh+gshzxFkGmeVY20x2gdZtUJe56/J aT17N3sNcmQ8Ia91x+rF29uxb2fQ7Y21Mythj0F7VbTWrPi6y7wNxf/PRvth 0F8Rc49E+yiVTvjGPv8WeqoE3feDzuw4/9lo7dEyXseaa2K8LMYbM6LB3ksZ 2R/3XRHjjTE3077xWL14QGbfD/qT4vuXQf+GvGxmVU56WGY+B6Lvj5bG/nHm d27M14dNz4+9pyrSJ3tmxx2H4q6VGHdndf7krHi4p0F6xR82x9k/ysoXLzZI B8j/MzXN/74keSLL/Vnddbvv9Uyd1nZiY0F/ZbSd8X0m9pyEftB4L8bt8f/2 uN++BtkBZ79ojMCvh037lrjLvuh/lZWNnY77bIrxe03aD50VQW9rXvPI+YmC 9rB+aay5LWjksM2g/VpWsiraLrCjOXH+6ej/EOuaU417Y299nHUbvIW9vBX7 zwJuZcmO8Qx0W9Y97ytLlt2W53BVZ/wv+unx/ynz82Z8743xz0q63z7fMVvR mgNF0WVNiCq5L/b+1vJEN1d0lMonTmQl672x593o22raD53zJcnik1T3QsZ3 2We35GU3s7CHRp3181i/uaq5ZSXt67BM5pdlO3dUhQnYKN8fV2Ub98e5jwbt uVnh1eyyxl8pCcvwxbuLsif8DHy/2/OXq7oPfF2fkY0MWyYrS5LB94LHyWVh z4SQ08aqZP35+P+pmL8mzp5Slm/ho/gd9oLckXlrTmuIQesLso+BGD8YcxON jf1F2TY2PhJ0z8T4s2BXVWu+UZTfnLWOO4PGk9FWYvMx/81oJ+PsSznthY+u gs4bMEZyLvywb43nuzyG3pRU/w147XrbMbTO2B+xg9X28RnGDOxtQ5z/rWiP Yrcxf9nxEWwk5oF3lWjVaFMdTxn/OtG+5/Py0+dNB79i3xrjam/M9eVlg9Di P+L1gOmzpilVLCQOvmiMW2E6T3g9PrHZvjfBY+xgnfcTj/Y7psJni+eh2Z3K Pztj/LTxDjkMRj8+VVzDd5tt88jiOq8BL8FiMBOMHOf1+Nfj9rEh04H++lTr iYnouGLeiJtjPA/9R3KKxeDrUWNs1bJGtmNTrYd//OaocRvM7zXur7b+5loX Gyx/cApsJ99Y4XwAjL01fOCngbNzKpoj3uB35BL4IWNw93Be/B3JawwOLioo hrAODAALDmd0zoDH+O525x70O3zuYF44ix/SDxpzHyBeBz8dFeHHgOPRcL3y HmI7MkAWLeQfTTr/703yuVbbNj70jO++wT7FGDtHXth6n+UGLhCf++zXxG5y ixO+ywnnafjOOeeT+Cc0kfc9Ncnl3ui7g/8jwf+U4P8fTZLP/WWds9Fn3eDY 22gsedznPmVfI8cbPRsZ/ieMfTiw8WtF5Y1jbQNttklsBlwhtwN/wOodzsFG 8QL72ZZqHnu+k/wirxg2sabxQFF5xybnHtjsRtNB7uScYOVE+xu+xjp8hBg3 vqY17XHf4YzyaWQ16p9JKhzqMha95DXctz3V3ZBzg8fccZNzTnRDjEIOyJ7x Sds7+elK55/kDBedYww4LwIvTpUkn0+qijHEml+UhJMDls8GYx6+g81j73zv rFMseScrG/3Ecllj3AZvdwStHSGj5U3Kn3ssN/Cmx7xtcl6HjpAhdoANNBtD 4QE5TfQ89QL1CbEMuxjJXK1TMo5NjJH1+IzyV2QMvQUF0Wp0PTTiNbtNEzpr U/kWMp9XEE32jubW+FdLzE8ryOe/6vyHPIhvZMQ3a7D/j+tkT7OcF+0xb6O5 67XGzI9DVkOxdqRR+NyQXtU1eu60XW3ymLtT/2AnWz2PDAu2Ke7dlkqGrNll WSBP4tBK65Eze5xDYv/wmrOtwQN12cuOecinzf9fbwzs8X33j/IT/fm4w2DQ vdAoPus9T7wnzg7HXWfU5J+fDr84WFGePzfmHipJVuRKZ5wrgy87nAODnf8t qVYZqSquYN/E7VfrlHNQK1B7EEd/XBS/qXl+3PjCvl11yj+JaW1l4emHYauz K5ILOjlk3KDu406cxd6trrv77E9gATjwnap4fLgk+7psGzvrXI6crs1161Rj FXoAr6gR9rlOWO+4hr191KRc8a/B1z89Zo5adWoqP0d2yJCaiXvADzlDW0W5 2lBZsQ89c96kmurwyTXVs9SqYCe5ODI5VlGdREzFPvPOWR+M9Y+UhDMfOi8G C8ABfAWfuWifY4zvzHMNzvyz1s+Q/ZF51hIfOnLCzDXGQzCI3GOP8wawensq XeDHC7y32f+B4awd9Br0ts3jbu9lbbdpMg/mchb5cId5g4cuY9gtzmc6jYHk jfgSvP25JNm2WVZ3uq4kd0KvyPOUa2nyUmL4oO2nxfoFB9kDvhDX0Gen894X mlQH7moSv92WwzLnCeAtNcBc2923q9JXS5PeE7a6jmUPuRf3+GJVbyhLol9c VW1+b/QbYs8PYu/TTcoXjhqrwIxm48aNFeUps8raD52lVdUT7KXeSsvyX/wY e3wzWmtGst9m+VM3c+fDxgbwBXz4U4PuC52R4Puy8ytqVvCaXHec5Upu+UpR PnN7VT7T5tptrPGrxfnDc/ZB6jPencCDutG8IiO9gx3o/ssl+Rd+9pJjEPfH TufZ3lrNDzR52yJn7ykpL+23X1NTkdfsbBTGX2Nfpr4ivzvkemi330bWWg5g VHdVee7ykt7BXnHsJJcmJ+syNu83/71VvTv0VWXz2AW+kBQkR2IQNTh4d9r2 iF6xyVWxZjgv/33b7wD4BL6Nj9eqqhWI2dwLXrEZ7KPd+SD3Gm/7Qi/rnJ+z fn5V5+Yqev8bNi7xvkDecHNZOQI2gT3Ac8U2M9kYznsSuctq+yFvDcSc+4vK Nzc45ySG77YMibF7rKMp5gefusOyRcbU5NTmvBkcMP6Bw9T54NrZkvJU8tKF NeHKQceCjO0K28D2sV3sFj1QvxILwEowsyHofK4mO5tXlg7xR+I4+uHO3Bcd oAvGyIB5dPeka1f4X2p9gRPURG/Yx4ftL+xdbOya6nuzF/+ltt6bvVrX4lf4 1FbTwS6fs89M8JvndGPUduMPdydnh0bNdSj+QO05zfaGz2KbbaYDXyPmDRvh /p22mW7LARsnDpETdptHeDvgeXSDT7fbj/DVBx1H9pgHdP2FmvKYRWW/xaay SeL/WucA+Nla53hHisI0sO2y7w6dhka9NeQbxS++B8/48XrzwDt0r++OnNeZ /z77KfcCr542/+SHyAj5LCkofmNvY0yT3PiB4P8SdVpFPtdi+aN39iBLMIw7 gmNX3qptG+Sbl+zvHX53AwfGmM6V+igrHMzZp9fZT8mL7nPNBX+cA2+7y7rn H4vy+eO+7wnrAhle5zsSH6mbX/e7Bpi5sHC1dl7k+hl/WuQ3+VpN+djUsu63 1Ha7yHsbTWeBx+j6qHnYb8wCr+D3ikwz8oWllhXvSuSZ5JuzXcMR37e4NuS+ H5T0hvXvINpR1rvWuUb5yEzbDL4waFsihrU7DweXThiboNdqGd5Rlr/j9+hn ie8F3i72+JjfP+fFuQvL0in22+t3oCvvkLYZdNpvn0JfU/wuh/yg947f9HjP 3mW8Z36V/xtTE2/clXoPXv9SEs7xP77J2zE13cvouqRc8f2Szm8xD8Tzd70e Oa8qXM1ZFjtfgt5J84NNtrhWIvbcZvn/H7BtA8A= "]], PolygonBox[CompressedData[" 1:eJwllVlsTWEQxz9ub3ty7rm35/IkorQl+iBBFyX2pHhAlYgtUtHaHiwvSCzV erBEglTaUn1SiS3aByKxBbHEC6mEhFTEvqZFrdVw6/fPPEzOzDfzzcw38585 2RUb5q3v65xbD6VBe0Lnzkecy/ecG5R0Ljfh3EYU1RjlwD+IOXcO/e6oc23w Qzlrga/u41wUfi53Wrg7Fl9rfc4560I/Jd25dOwv+ubrHtQUOFdDvIYMfONz B3w+Z3ncPwRNx1cGd75iuxP9G3z9Rn4Nn0dORdjOgUrgzxNjNvwwqD/ySKgf 92dAdfgax51CdJORa5D5uBX4mgZTi9xK/jnoH/mW2xpyWkw+ZdAF5NXI8+AP +FYbxSzFfoJs0I3C/3j4SfirQt/OnUr8e3HnerD9hDwL+7mh+WqCdsGXZ5If tTlL/D7Knze28pYi7kxCXh6z3Fch52G7FLkgYj1Sr/RmvX0MMbOJ3Yn+Kbrb +DyKfSv5JjyrcTX2U7HZhZxPvOfYZnM/S72GQnRviV8UsZp76Es4O+hZzL7Y joAGkcsS6Ab6cqgQ3Qbi7cX/T+SXEetRBF8zY9Zb9XQAvq4hd5PLH+gL9u+Q H6LvRf6B3E29annPZWgRsRp5wy18P0G/BX4BZyuJ3YC+EP+9cePr8XEBX8Wc XYkaZoXdq5w1o+uE7oRWE9UmAZ1En0VO04Ql8hsCXx83bOhOA3wZ8YrRXcam Eb6KOz2eYbwMw+3In6N2tgj5W2jYa1MNiD0802qjGdAs3ISykYuxqcP/64TN hjBQh31Rwt5+n/ubiLeV+2fQpZBD5IW+zZZqsBT5PfpUuuWoXDWDmsWx6NPh C8ipEl0PZy3CLnK5Zz2bElgP1UthTtjrJf/Asx6qlx8yDXuroY/wJ/FxCf44 /diH7fzQZkUzolnRm/Q2YWgZ9ycHhmXtiImav9Bya9ROgD8SWG3VszHEz0ka ltUT9eYY8drxVY8+he/BSeuVclAuydBmLUUO30ObKc2WdtR+9MOxn+AZxoV1 1VS11Y7YHNiO0a5RDUcjFwRWK+0M7Y7SpL1dPubAd+M/zTNMHqEeuYHtJu0Q 7ZIG5LvIj6HD8D/itqt09ox6XIeqoobx33HDtLCtHm+D/4t/37Me/ML2Vcyw pJnrCm1HaFdoJjWbmlnN7kAwMQRdWsJqK4yd5v0uMOxrB2gXVMRs9rWjtKtW xmx3aSdqN2omNZvKUbmu8622mlHNqmZUs6oZ7gytJ+qNdk4zti8SNluaCc2G MCKsaEee8G0HahcKk8KmaqRaqaZ/sH0Rs1nWjtKuEuaFfWGgA10K6ojYTs2I 2z9I/yKd9cKf8m2XC+PC+r/QaqOapuD/A6/k66U= "]]}]}}, {{}, TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwl00lsjVEYh/FTQ9sYqrWToHPaBIm2SoTetjEFpQNxDVUUiYVhVYmxNsaE jY6sSCgLdhILSgxrFrbS0mpNram0Elq/LxZPnvO+5z3/c+6X3Mz6QzUHE0II vUicHEJjSgh500I4lxpCnbqEYyibEkJhWgi3JoUw00yWeoU6m7vM9+olmd+q l8zv1B/1P2GHumlqCE/0bjs/gctkluKpdbmMRJ6IHJSoS7FaVoxz9R7LmGs9 R69Bxjdn3+p95R7+zm94uv1cc2mcw4fRgGIZm3nEO4bxyOwXZzo5bnbQegBD 6NM74I4f1mnot96tFzNXz5fVXVyu7uZ7GJM5yAvcs8k9tYhHv9X5jbwf1ear cCJ6Cx/nbvTZW6zusL7iew3IKVBf1x+Ve43nqz/rp8o9auYYjqAdbRhxz2+0 2m9BgazX5oecL1YPW9+QM17/Z/Res7/4D4/iL9bY34cM86nuy+Q8zkcl1iOu 98F975GPXTLOO7sz+u32Vpkp4nT33JFVpK5QJ3tHEkbNLdMb4xd4iXnqi2ZP y6lGDaqi74YN2IJX9q/KuR99C9nN1lmcjUVYiDa9dlSh39sKeKXsQp7Ba911 UtYpNOKurGDvufUDe8/4Ibd4ZzNasUdd6uxe3oYlZpbiprMXuIPT7WdgNrKi 74Z1citREX03vmRulvVZZ2rlnOHtPM7ecv0ErvPmJr2elP//xX/58nht "]]}, RowBox[{"-", "20"}]], Annotation[#, -20, "Tooltip"]& ], TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwV1FtM12Ucx/FH1FIQTSUhVJClFDAOJiCeNoPEwNPk4GFNcc0wM9F1Vusq 5+zCM5WaddNdkKV4rLTaUCiTlaWCpkun3uRmB2vTdOv1XLx9P9/v8/k+v+fn /j+ynl1V09QrhFDjn2cSQ0h+KIRXBobQYX2Dk5JCaNRL5LIBITTrj9LPwkR1 +uAQJvBwvspvyr6FdDyCNPQ3uxe5MrXmV6BU9mn1eP43OYR/sF2/UO+ybKq5 pXgOBcjHVvt/y23jInUhbuJ3XNH71VyB+S3Wp+W68LFesN8LCTGrvsA93MMX +CJ385/yf2GhO/3Bt3Af1we5q941ruIbPJ1noBqtnvekM8pxx97dmNNbr66I GXd6istRGefU07hFZq3MOryONXgDb+M/9ymXu8fJ/q8H4BP5++p9zm9Xb7Cu i3ezToj3lk/Qe8l8GY/iLGw0N9L+O7xb9gPM11+AeejrjIlmH+B5XGp2Mk/B JGSol8ll8m2zbXIV6uL4XrxfnRDfyboSlzzrsl6Gd7zEmbxWbw1KMEk9Qn4y 31XfQbG5cfjU+ZvNbEKz/RzORYd+Jz73Dnnqz7jWGSf0avgk99N/2RkP8h51 b/0+qNKrxlEzRzxro/doic9CKxrVRWYKMddcu9xm/S3YhBftb+VtmIlZ+Epm Bx/jOTwbK+W2x/dwzs/OOWHvRz6Dn1Cs3yTTLPMe3sVxmXx7BZjrfUvcd5/e Tvfcz6PVY/Aoauxn87D4vcmncj91GvfnZc5Oit9q/OZwMp7Du/A+VtlfHb9j 2a/tfWTuG37CWeOwW92mHuueB3iP+kPUo9D+Il6M550x1RnLuVPuF3vncBYl ZktRKzdLpo77YKC9b2X7xu/eXaZjhfmD8W+B3AvWX8TvVm68+kvrLuvv8D0O xXs69zDX2z+lV8c/cDfqnXeeX8Uw/VQM1xuB1+LvXz/bs4fqP8Yp3MBpnM8j 5TIico+rH9bP4SF6Q5GCBudccYcC/d/i74Wvxt8n56HJ/hL8D/tapUw= "]]}, RowBox[{"-", "30"}]], Annotation[#, -30, "Tooltip"]& ], TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwV00lIlVEchvEjQQunm0FKExENKxtokQRJVC6EBiNII7ratGpRm5TcJC5U 8BolkRgUQUUTgaY5NBe1CSxNUyub08paRXvtdxYPz3fe/3A+P66LDxzdeSQt hDCJ8vQQxrJCSHJiVgjZSOQwJmVJ519czk/xBO/1P+CHuI/HeITejBCyzC3M DCGTF/Co3spECN1qx7iHq7iDM/TM05POc3lQ7z172tTucjsPyPpRke0dkERO 7LXjvPphvsJ75Hc8d2GGeplzKXahVf25Hc+wT/2scwW38H7e4q5+fW3xTpyU 75Y3cRn323fbbINzN/egEx1o9G1O6xlXO8UT3MzruFK9Kt4Z3x9F8TtyIRe6 bz1q9BXrfynrdc8a99+SF8vz5M2yE2ZqUICLsrV8QX9KbxPyZSuxAtvMzeet XKtWrS/X+Tjn+85zPNfa/w9/UeScG/829UX6z8kKzHa6twN7428DKc+NKPWc px7MreZp/av4kNpBbJZXO7fIN3neiHbU298qSzOfFr8vB77hzpu4iuu4hil7 lvKSmJvZoG+2HUN29MleOS/j5fhjzwvnhvgNuY77uJ5nqu0wX4LtOCNPyuu4 iUe4kYc5Ffe7d9jOEbzBW4xG1Ad5KP5O8BoDSLe/xDtNm52Kv3FZFy7p/8xf 8AGf8BHv7P8Z/5/wA78xiTH94zyBr/iOb8iw/7KZ/70tiTU= "]]}, RowBox[{"-", "40"}]], Annotation[#, -40, "Tooltip"]& ], TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwV0ktIVGEYxvHPtKKcykzo5qYQKo0QqlW7WkQtCkKhi5tGmwytUAMjC4qu QrWwwkVRNtEiCFMbUaHoBlkzJagxUK20RRfIhW5apPU7iz//8z7f873nMLoq fnzPsZwQwgiq5ofweUEI+7lpYQiN+LJIhlR+CM18Eg3yWEEIe/Wy+pV8VFaP lTGZziP9Ru7mI/LZ+nMwrF9jrkYchfqjenf16vghV8lzdQd1b5sz8pjePnk+ p81ZjnO78wp5jedqXDe/4/cYxNzF3o1h/QH7Er610+5a83PzM2RlKe5FWr7D vp14a1efHf344ew77ugejL6Lu3Q6sdz5MpTon3O2m7dwj7M++z7oXjBfjN5h TuGE5xb5aT6DcYxhl7v37ZriDp7kZNTlMi7mFr5qxzVsNRfpLcFZ71thnuRT vFSviA/wZd3D3MoJPoRm779k3qhTYL7h3k0UR9/q7ImzNnM3V8oqkJHneddm d245a8eE8yl5rnyT/I9sluccBHe2Odsum9ab8XxP9o+nZTP4iw3uNfi7NEW/ lXtp83nO8C/9n3igl0QHyu365jzBr/kNXuAVXqIr+o3sWm3nePT/Z88Y5/FT WQo9aDM/1l3neS3WRP+jso/81f0h/mQu5TKsx2/9CYzKr3jXCLfyPFnS9/wH WMZ7KQ== "]]}, RowBox[{"-", "50"}]], Annotation[#, -50, "Tooltip"]& ], TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwV0l1ozmEYx/HLyWjDNpO87WAlORQna2FT7ICEKZodGdssjz1ClLRmTXk5 GM4cTJZnRsxLa1NENjFaeU124GXHUhMHYhOf++Db9/pd9/W/7v/2f8rqszUt 0yJiFLX5EWOzIrbzgdkRWYwVRnxAX0HEIe7nffrTiyJm4J35vXITGlEyM2Ic X5Axf9X8Lv1e3i938Wt+gzr9V/wy3WH+qV3N7m5Rz0278ElucN6IbfIkT2HY 7CZ5IzLm8/EWecX2833np93VpD7DD+T3dl3j63ih38sjvF6/zc41PMGVdubp D6b31Husvqt3GxvsWqh/Ie31/FlU4J6zcr5kftDZgNyPlXpbPNOpd8xZVq6W x3mYD/IQf+Y25MwMee6K+rh+l7sq5GXyIvkjl/JyvqG/hBfIBer5XCaXp/8d l8gXeR4381o+5T2q+CR3YIf+HLnSPYXqblzGV2fn7TmHO+oVZm5xH2qd70zv q25FtfqH9/5t9g9+Yan5jN/HHv16M0flm3wk/U3m/6X7nXWmb6r+q96sP8U1 6VtjK3rsyOGnmR6zOXRjlT3P0m8m7XS+Wi5K35CLeTLdq78bpfJitKsb9Kvw XV5nzyN+iA7PtfNzPsEjPGr+sNnWdKd7nqi/ecc69X/TQ3Tt "]]}, RowBox[{"-", "60"}]], Annotation[#, -60, "Tooltip"]& ], TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwV0l9ozXEYx/GvcDOzsyMrpWzSIpLmTmzUzFJoJv/iwmayrJ3tzM2pFbLk 4miZk2QXJ5k/hXEjsc2fKGmxXJiE8q9xIXTcYFx4fS8+vZ/n83me5/x+v878 5o7G1JQQwkt6WBTCueIQps4IoXlmCHtpOk2jrGwQ7yRCGKJ8SQgjOEz77ORk 2+w9Ug/JfmFTaQiT9irMbJclsJzmURe/2k4N9Zg9Si3q3/zreIMKvDq31tEf 9QbeJC5x6x9m+SdoQt1jr1d9Vd1gblSfxyb9alxDl9XHzHzDv1gwU89f5N5h 3lp1LXXyizGN3fwq+Rb9D/0qz/6Vl+GVxOfXV1Opvi0ZQhK/u13l3efKW6mM 148HsQwz8lm40r1yLNJXxHeTV+IV/QLsly/FQfeX4bB8MXbLF8Z9XEF5eUF2 gXdXf4/a1QP2H6jT6koz9WbeqevwpHfojd89fn9aTjfjc+NFOm9+gG7zbsXf 4W22l7NzXH3I7Qyu543wxvR9+ueYs3eaaux9kZ9Rn6IJ+We6RJv0R2RP4jPg GNaaf4Y/4/vQW31WtlX92t1k/G7UFv8LuJ+XwPvu7TSzixr1fXZ2x3354/gd 9e12zuIrbJW9l80xm9B30Q71Rt6o+Qbco3/D/6h+yvuEnfbS8f8u68AUfTDz AmfjAX4Zjuuv+a1xeynefxZKd08= "]]}, RowBox[{"-", "70"}]], Annotation[#, -70, "Tooltip"]& ], TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwV0k1IVGEUxvFXWlTq+AF9kItglCTFWhWltrAhEcyCBgqKFtFGtHAsAkmy EqJyUUiEERlTm1JpH31gFEMkFUEUUWEt+iZNqWbQLOh3Fw//9zzPOWfeO/fG 96aSHXkhhHFKF4YwLxZCQXEIhZRPdQUhxDCbH8KUPF0UwmWq5xfxn/PnzPyl jPxB1MPL4RVcVxLCXf3leuPUy9/HW2F+Dx7Xk+XN4iU7BumnepoSvBls5m2m j87V5rY6T8g6zX/mnbF/BFfJtsnGZBsxQcP8U/Jr2MufwD71afrmXGXmMDbq TcljGOP18L7o6cYk74es1v3raT1N0nd5Axbrby91Z/UkDehdFj2L+5XhQfki 7JKVYp18Oc5Xr6SFVEPVNKt3yM4RGlZfxwv6y/VfxBq8wVuNt/VWYbe+Stwg H5RN8ferpzFPtgk71PecO3GnulJfBeV4Feo2d41jI6+J1ujrUaf5c/Tb+Q/W 0llZUv0heifURyfsORnNuEMX3vK/9eMd3K73nPMz2Xm7R3lr7cnSV1kOB/hH KKM+imO8Y7iFWqLvht+MDX4nQU/saLLvF++tege+Urd6D68xo35I7foWUIme UXfYxbuP/fZlo+enGXqpp8XcP+f3etuwNTrzlqpT8qfqA7hEvZge2fOY0na9 4V/FdzgefTPmdnuGId5N/BR9E2bK6JC8Xf3C7H/0VX+e "]]}, RowBox[{"-", "80"}]], Annotation[#, -80, "Tooltip"]& ], TagBox[ TooltipBox[ {GrayLevel[0], Opacity[0.5], CapForm["Butt"], LineBox[CompressedData[" 1:eJwV0EtIlGEUxvHXNmXpZIukZUUkUusKCUICUaR7ixgrdazwkjPa5K2sQCEi CldBJIWVhjlQtMsiuojdly4qzU1BOtllMTUt+83iz3POeZ5zvpdvTSyxN54X QphC+dIQ8peHEC0IIaNOrAhhZVEIxejASTznZen8shB6+GmaKgxhDLvt9usf R0K4LXMLf91JymVps74W59QZd67nbsp38jtonVkDb6tbh82+6NP6HfrvNC6f yO3wNsq3qodlRlCiH6XnfbtPdthbjsp9M7toNker3KlEl7obBXZ6aYTOyfy2 d8LOD1pmfzMW8BPz/DSa+L/oAq7IrXLvmncM5v4Rr92tF+oJdMoU0Xq5GG+9 vgRLsAGl+Cd/1/16/qj+jnoEV+0Eszyk9PdxD+Py03QGPfJxfky2gR5Bs/cM 8lroIn7AdjtRnOIfoDX0NNbJ/eGvNWv0ztW0wuw4rxVdOGt2g7cFZThkdsnt y5jgXaB9bvQjqe71lgG6j/fIv91Pn9InOGh3kxvjsmd856V6kt9t3oZX+rd4 jV38IXoTVepqlNvb5v47tyroR/0nHLP7QT8pk89rwmI8845a3gM3Bnwnw8+i UnaKX00/259Fo9ys/j0/wmtDId64Uccbsl9Kd8rMmO+hUXdr0G7+Vf9QnZJL 8sfof4FTetE= "]]}, RowBox[{"-", "90"}]], Annotation[#, -90, "Tooltip"]& ], {}, {}}}], {}}, AspectRatio->1, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> True}, PlotRange->{{0, 10}, {0, 5}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.930301168213212*^9, 3.9303043365226917`*^9}, CellLabel->"Out[10]=",ExpressionUUID->"835009b9-f73c-4094-9dac-e793cf04dfdd"] }, Open ]], Cell[BoxData[ RowBox[{"(*", " ", RowBox[{"Solution", ":"}], " ", "*)"}]], "Input", CellChangeTimes->{{3.930301048902836*^9, 3.930301059780163*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"358f490d-1f1f-4ef5-8170-d82ae9b8ef7a"], Cell[BoxData[ RowBox[{ RowBox[{"LikelihoodFunktion", "[", RowBox[{"a_", ",", "b_", ",", "Ergebnis_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"Erwartungswerte", ",", "Likelihood"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Erwartungswerte", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"a", "/", "i"}], "+", "b"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "10"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Likelihood", "=", RowBox[{"Product", "[", RowBox[{ RowBox[{"PDF", "[", RowBox[{ RowBox[{"PoissonDistribution", "[", RowBox[{"Erwartungswerte", "[", RowBox[{"[", "i", "]"}], "]"}], "]"}], ",", RowBox[{"Ergebnis", "[", RowBox[{"[", "i", "]"}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "10"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", "Likelihood"}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.92941747791635*^9, 3.929417589597007*^9}}, CellLabel->"In[12]:=",ExpressionUUID->"61efb2b6-7e28-476e-aa88-e658cb6dc367"], Cell[TextData[{ StyleBox["4.", FontWeight->"Bold"], " Schreiben Sie eine Funktion, die das Maximum der Likelihood-Funktion \ findet, also diejenigen Werte von a und b, die die Likelihood-Funktion \ maximieren. Hinweis: Es ist numerisch einfacher, den Logarithmus der \ Likelihood-Funktion zu bestimmen. F\[UDoubleDot]r schnellere numerische \ Konvergenz d\[UDoubleDot]rfen Sie au\[SZ]erdem annehmen, dass ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["a", "TI"], TraditionalForm], "errors" -> {}, "input" -> "a", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "696d7eff-3519-4ad9-905f-6cc71c209c1d"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ StyleBox["b", "TI"], TraditionalForm], "errors" -> {}, "input" -> "b", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "747303ba-bdfa-4bfa-b7a6-25b63a44ca3f"], " zwischen 0 und 20 liegen." }], "Text", CellChangeTimes->{{3.929429752679281*^9, 3.929429827913946*^9}, { 3.929430228220875*^9, 3.929430243963483*^9}, {3.929430409553989*^9, 3.929430409620048*^9}, {3.929437265289734*^9, 3.92943726565587*^9}, { 3.92977596446776*^9, 3.929776031837904*^9}, {3.9297765094023*^9, 3.929776516049571*^9}, {3.929786359772596*^9, 3.929786367908918*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"0d742181-c405-4935-bf7a-9a463bebd4b0"], Cell[TextData[{ StyleBox["Hinweis: ", FontWeight->"Bold"], "N\[UDoubleDot]tzliche Befehle: ", StyleBox["NMaximize[] ", FontWeight->"Bold"], ". Falls die numerische Maximierung zu langsam ist, k\[ODoubleDot]nnen Sie ", StyleBox["WorkingPrecision -> ...", FontWeight->"Bold"], " setzen f\[UDoubleDot]r einen schnelleren Ablauf. WorkingPrecision gibt an, \ die Anzahl der Nachkommastellen, die in den internen Berechnungen der \ Funktion benutzt werden. " }], "Text", CellChangeTimes->{{3.929436888285372*^9, 3.929436930159102*^9}, { 3.9294371835309772`*^9, 3.929437195504073*^9}, {3.929771307000428*^9, 3.929771317529364*^9}, {3.929776499449049*^9, 3.929776690401609*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"4f4ee7d2-8381-47c4-a6d7-de9df6716975"], Cell[BoxData[ RowBox[{ RowBox[{"MaxLikelihood", "[", "Ergebnis_", "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", "Maxi", "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Maxi", "=", RowBox[{"NMaximize", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Log", "[", RowBox[{"LikelihoodFunktion", "[", RowBox[{"aa", ",", "bb", ",", "Ergebnis"}], "]"}], "]"}], ",", RowBox[{"aa", ">", "0"}], ",", RowBox[{"aa", "<", "20"}], ",", RowBox[{"bb", ">", "0"}], ",", RowBox[{"bb", "<", "20"}]}], "}"}], ",", RowBox[{"{", RowBox[{"aa", ",", "bb"}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "8"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Exp", "[", RowBox[{"Maxi", "[", RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", CellChangeTimes->{{3.9294298344427023`*^9, 3.929429931889526*^9}, { 3.929430058717946*^9, 3.929430059404357*^9}, {3.929430180903833*^9, 3.929430343367247*^9}, {3.929430376511244*^9, 3.929430397390396*^9}, { 3.9294307368555098`*^9, 3.929430749274446*^9}, {3.929430914469803*^9, 3.929430920282098*^9}, {3.929775900874848*^9, 3.929775908668942*^9}, { 3.929783397253446*^9, 3.929783397562879*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"8921d988-41bc-4fe7-a492-e9a64c09d3ac"], Cell[TextData[{ StyleBox["5.", FontWeight->"Bold"], " Berechnen Sie f\[UDoubleDot]r die 1000 zuf\[ADoubleDot]lligen \ Messergebnisse jeweils den Ausdruck ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["q", "TI"], "\[LongEqual]", "-2", RowBox[{"(", RowBox[{ SubscriptBox[ StyleBox["L", "TI"], "0"], "-", SubscriptBox[ StyleBox["L", "TI"], StyleBox["max", FontSlant -> "Plain"]]}], ")"}]}], TraditionalForm], "errors" -> {}, "input" -> "q = -2 ( \\Log L_0 -\\Log L_\\mathrm{max})", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "d12ec62a-ad57-4b87-b201-972c711319c3"], ". Dabei bezeichnet ", Cell[BoxData[ FormBox[ SubscriptBox["L", "0"], TraditionalForm]],ExpressionUUID-> "98984dc4-46a7-47a6-b486-9ac2b9d13161"], " den Wert der Likelihood f\[UDoubleDot]r ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["a", "TI"], "\[LongEqual]", "10"}], TraditionalForm], "errors" -> {}, "input" -> "a = 10", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "bd382e6c-4d7d-48f0-a1e8-1b7c499befc8"], " und ", Cell[BoxData[ FormBox[ TemplateBox[<|"boxes" -> FormBox[ RowBox[{ StyleBox["b", "TI"], "\[LongEqual]", "5"}], TraditionalForm], "errors" -> {}, "input" -> "b = 5", "state" -> "Boxes"|>, "TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID-> "c38b5257-d2fb-46da-ba3f-7037484a71fa"], " und ", Cell[BoxData[ FormBox[ SubscriptBox["L", "max"], TraditionalForm]],ExpressionUUID-> "d109717c-dbf0-49f4-a8af-f55e373c259d"], " den maximalen Wert der Likelihood f\[UDoubleDot]r die gefitteten Werte von \ a und b. Zeigen Sie grafisch, dass q einer ", Cell[BoxData[ FormBox[ RowBox[{ SuperscriptBox["\[Chi]", "2"], "-", "Verteilung"}], TraditionalForm]], ExpressionUUID->"bee64699-b40a-45b6-b310-08cd37bf8e0b"], " mit 2 Freiheitsgraden folgt." }], "Text", CellChangeTimes->{{3.929429966736289*^9, 3.929429973728672*^9}, { 3.929430040735958*^9, 3.929430054964446*^9}, {3.9294304818969812`*^9, 3.929430525024475*^9}, {3.929430564227847*^9, 3.929430632262744*^9}, { 3.929430830492697*^9, 3.929430849241171*^9}, {3.929437335160636*^9, 3.929437335549252*^9}, {3.9297863793782682`*^9, 3.9297863807642736`*^9}, { 3.929786458219371*^9, 3.929786467957387*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"707f6808-59bf-4ab7-9927-27cdb3f79406"], Cell[TextData[StyleBox["Hinweis: ParallelTable[ ], KolmogorovSmirnovTest[ ] \ , ChiSquareDistribution[ ]", FontWeight->"Bold"]], "Text", CellChangeTimes->{{3.929436888285372*^9, 3.929436930159102*^9}, { 3.9294371835309772`*^9, 3.929437195504073*^9}, {3.929771307000428*^9, 3.929771317529364*^9}, {3.929776499449049*^9, 3.929776690401609*^9}, { 3.9297774197557077`*^9, 3.929777469783823*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"31ac254d-9b58-4077-b62f-2b4168e86063"], Cell[BoxData[ RowBox[{ RowBox[{"Delta2logL", "=", RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", RowBox[{"LikelihoodFunktion", "[", RowBox[{"10", ",", "5", ",", "erg"}], "]"}], "]"}], "-", RowBox[{"Log", "[", RowBox[{"MaxLikelihood", "[", "erg", "]"}], "]"}]}], ")"}]}], ",", RowBox[{"{", RowBox[{"erg", ",", "Ergebnisse"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.929430074618526*^9, 3.929430098656657*^9}, { 3.92943042599487*^9, 3.9294304512976*^9}, {3.929430654315145*^9, 3.929430714007653*^9}, 3.929430855018528*^9, {3.9297708020118113`*^9, 3.929770810283865*^9}, {3.929771625742153*^9, 3.929771629904914*^9}, { 3.929771744817771*^9, 3.929771746360888*^9}, {3.9297764664357023`*^9, 3.9297764680868196`*^9}, 3.929777366829154*^9}, CellLabel->"In[14]:=",ExpressionUUID->"68653c04-0e61-4975-8be2-794f8ddcd716"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Histogram", "[", RowBox[{"Delta2logL", ",", "Automatic", ",", "\"\\""}], "]"}], ",", RowBox[{"Plot", "[", RowBox[{ RowBox[{"PDF", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", "2", "]"}], ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.9294307709847927`*^9, 3.929430794576724*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"684fa3a1-5de0-448c-ae78-9b346ed11650"], Cell[BoxData[ GraphicsBox[{{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.567], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.567], Thickness[Small]}], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0}, {0.5, 0.442}, "RoundingRadius" -> 0]}, ImageSizeCache->{{29.355640762610086`, 54.16542977028681}, {-101.16686804503857`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.442]& , TagBoxNote->"0.442"], StyleBox["0.442`", {}, StripOnInput -> False]], Annotation[#, Style[0.442, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.5, 0}, {1., 0.356}, "RoundingRadius" -> 0]}, ImageSizeCache->{{53.54042977028681, 78.35021877796353}, {-58.82755661546091, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.356]& , TagBoxNote->"0.356"], StyleBox["0.356`", {}, StripOnInput -> False]], Annotation[#, Style[0.356, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0}, {1.5, 0.288}, "RoundingRadius" -> 0]}, ImageSizeCache->{{77.72521877796353, 102.53500778564026`}, {-25.349961531608812`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.288]& , TagBoxNote->"0.288"], StyleBox["0.288`", {}, StripOnInput -> False]], Annotation[#, Style[0.288, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.5, 0}, {2., 0.2}, "RoundingRadius" -> 0]}, ImageSizeCache->{{101.91000778564026`, 126.71979679331699`}, { 17.973985047493855`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.2]& , TagBoxNote->"0.2"], StyleBox["0.2`", {}, StripOnInput -> False]], Annotation[#, Style[0.2, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0}, {2.5, 0.138}, "RoundingRadius" -> 0]}, ImageSizeCache->{{126.09479679331699`, 150.90458580099371`}, { 48.497674682770764`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.138]& , TagBoxNote->"0.138"], StyleBox["0.138`", {}, StripOnInput -> False]], Annotation[#, Style[0.138, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.5, 0}, {3., 0.136}, "RoundingRadius" -> 0]}, ImageSizeCache->{{150.27958580099371`, 175.08937480867044`}, { 49.482309832295826`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.136]& , TagBoxNote->"0.136"], StyleBox["0.136`", {}, StripOnInput -> False]], Annotation[#, Style[0.136, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3., 0}, {3.5, 0.11}, "RoundingRadius" -> 0]}, ImageSizeCache->{{174.46437480867044`, 199.27416381634717`}, { 62.28256677612163, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.11]& , TagBoxNote->"0.11"], StyleBox["0.11`", {}, StripOnInput -> False]], Annotation[#, Style[0.11, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3.5, 0}, {4., 0.07}, "RoundingRadius" -> 0]}, ImageSizeCache->{{198.64916381634717`, 223.4589528240239}, { 81.97526976662286, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.07]& , TagBoxNote->"0.07"], StyleBox["0.07`", {}, StripOnInput -> False]], Annotation[#, Style[0.07, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4., 0}, {4.5, 0.076}, "RoundingRadius" -> 0]}, ImageSizeCache->{{222.8339528240239, 247.64374183170062`}, { 79.02136431804766, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.076]& , TagBoxNote->"0.076"], StyleBox["0.076`", {}, StripOnInput -> False]], Annotation[#, Style[0.076, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4.5, 0}, {5., 0.036}, "RoundingRadius" -> 0]}, ImageSizeCache->{{247.01874183170062`, 271.8285308393774}, { 98.71406730854889, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.036]& , TagBoxNote->"0.036"], StyleBox["0.036`", {}, StripOnInput -> False]], Annotation[#, Style[0.036, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5., 0}, {5.5, 0.034}, "RoundingRadius" -> 0]}, ImageSizeCache->{{271.2035308393774, 296.0133198470541}, { 99.69870245807395, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.034]& , TagBoxNote->"0.034"], StyleBox["0.034`", {}, StripOnInput -> False]], Annotation[#, Style[0.034, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5.5, 0}, {6., 0.024}, "RoundingRadius" -> 0]}, ImageSizeCache->{{295.3883198470541, 320.19810885473083`}, { 104.62187820569926`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.024]& , TagBoxNote->"0.024"], StyleBox["0.024`", {}, StripOnInput -> False]], Annotation[#, Style[0.024, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{6., 0}, {6.5, 0.028}, "RoundingRadius" -> 0]}, ImageSizeCache->{{319.57310885473083`, 344.38289786240756`}, { 102.65260790664914`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.028]& , TagBoxNote->"0.028"], StyleBox["0.028`", {}, StripOnInput -> False]], Annotation[#, Style[0.028, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{6.5, 0}, {7., 0.012}, "RoundingRadius" -> 0]}, ImageSizeCache->{{343.75789786240756`, 368.5676868700843}, { 110.52968910284963`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.012]& , TagBoxNote->"0.012"], StyleBox["0.012`", {}, StripOnInput -> False]], Annotation[#, Style[0.012, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{7., 0}, {7.5, 0.006}, "RoundingRadius" -> 0]}, ImageSizeCache->{{367.9426868700843, 392.752475877761}, { 113.48359455142482`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.006]& , TagBoxNote->"0.006"], StyleBox["0.006`", {}, StripOnInput -> False]], Annotation[#, Style[0.006, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{7.5, 0}, {8., 0.008}, "RoundingRadius" -> 0]}, ImageSizeCache->{{392.127475877761, 416.93726488543774`}, { 112.49895940189975`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.008]& , TagBoxNote->"0.008"], StyleBox["0.008`", {}, StripOnInput -> False]], Annotation[#, Style[0.008, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{8., 0}, {8.5, 0.008}, "RoundingRadius" -> 0]}, ImageSizeCache->{{416.31226488543774`, 441.12205389311447`}, { 112.49895940189975`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.008]& , TagBoxNote->"0.008"], StyleBox["0.008`", {}, StripOnInput -> False]], Annotation[#, Style[0.008, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{9., 0}, {9.5, 0.004}, "RoundingRadius" -> 0]}, ImageSizeCache->{{464.6818429007912, 489.4916319084679}, { 114.46822970094988`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.004]& , TagBoxNote->"0.004"], StyleBox["0.004`", {}, StripOnInput -> False]], Annotation[#, Style[0.004, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{9.5, 0}, {10., 0.004}, "RoundingRadius" -> 0]}, ImageSizeCache->{{488.8666319084679, 513.6764209161446}, { 114.46822970094988`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.004]& , TagBoxNote->"0.004"], StyleBox["0.004`", {}, StripOnInput -> False]], Annotation[#, Style[0.004, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{10.5, 0}, {11., 0.004}, "RoundingRadius" -> 0]}, ImageSizeCache->{{537.2362099238213, 562.045998931498}, { 114.46822970094988`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.004]& , TagBoxNote->"0.004"], StyleBox["0.004`", {}, StripOnInput -> False]], Annotation[#, Style[0.004, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{11., 0}, {11.5, 0.006}, "RoundingRadius" -> 0]}, ImageSizeCache->{{561.420998931498, 586.2307879391748}, { 113.48359455142482`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.006]& , TagBoxNote->"0.006"], StyleBox["0.006`", {}, StripOnInput -> False]], Annotation[#, Style[0.006, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{12.5, 0}, {13., 0.002}, "RoundingRadius" -> 0]}, ImageSizeCache->{{633.9753659545282, 658.785154962205}, { 115.45286485047494`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.002]& , TagBoxNote->"0.002"], StyleBox["0.002`", {}, StripOnInput -> False]], Annotation[#, Style[0.002, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{13., 0}, {13.5, 0.002}, "RoundingRadius" -> 0]}, ImageSizeCache->{{658.160154962205, 682.9699439698817}, { 115.45286485047494`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.002]& , TagBoxNote->"0.002"], StyleBox["0.002`", {}, StripOnInput -> False]], Annotation[#, Style[0.002, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{14., 0}, {14.5, 0.004}, "RoundingRadius" -> 0]}, ImageSizeCache->{{706.5297329775584, 731.3395219852351}, { 114.46822970094988`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.004]& , TagBoxNote->"0.004"], StyleBox["0.004`", {}, StripOnInput -> False]], Annotation[#, Style[0.004, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{14.5, 0}, {15., 0.002}, "RoundingRadius" -> 0]}, ImageSizeCache->{{730.7145219852351, 755.5243109929119}, { 115.45286485047494`, 117.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 0.002]& , TagBoxNote->"0.002"], StyleBox["0.002`", {}, StripOnInput -> False]], Annotation[#, Style[0.002, {}], "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], Opacity[1.], LineBox[CompressedData[" 1:eJwVy3k41AkYwHFCtYwyJU1kDr+eRLJKPXb2qd43OjFKiNXFyJEZI/OYlCMS CaumIkNusbV2XEvWWY6SXKsh+zh2WgylFDvN1khmd//4Pp+/vgx28FHfJWpq aqz/+t/sS+ylW88k7zbJselQqaTQJqE7utPPQlPECQe+XAqqp01X6PSLsNmX XPdmUgrZj1NoWvRECLXku011S4G7SxD0iZYBTo1mTsZZUpB8CUidpT0Ayt66 TD5TCsuGx0xnaLVw2EPiXR32J+Q/zw15S+uAMheG4fYlo1BaljjMtRyCev4t 22L9IfCHvox3/HFoVDnEMbMHgSczG68qfQODy39mbuUOgDYjzlT63SzEf4hb PLpfAtf1Os3zveSgm3ebqxbWB+xh10caXf/AnqsVd5t9eiHkSRw72HQe0moC SCF2XVBxjuRCOfQV6I5p7u/zOiA/gjNt5a6Gg6K5ah9SO8TmLjh/fKeOk56S KJm0DdQkr7AhXANDKK1RrnMtsDHU74KruRb+NbTa8TipGSYU6cd0Gpdi41Jm n+dUE9jLAqNuhSzHzmz/bWnt9eA0IdxMpWpj2HpWDkOrFqZb2THPxDpYuiPL UlzxECzJL43tTuui4fnawD2BVaANCu8R+QosbfjKK79UCQdmPD+ZuOnh60nq GkpOOfzRckbd04KM+3V+Gbj4VgzV19pO0RVkjCJU+jb0EvDTErzq6VmFH+0l HxZ87oMPP6KalLkaU6M9jlAMiuFb/809jt76aH6/xObtN/egd5WFjoC5Brc/ qxWvWl4A9aWxdy00DPDAy7JwA/c8iFA3P9I1aoDWRqQkw9PZoD0SfpBXtRZf 3/AamudngqyYkZobSUGpea998EI6pG5ap1nrtg4rCrwmJLfSQJjp1+5NN0T1 LFl3ZNJt8Ew92UOaMkRn0dEnSxpuwue9RcrcJiNcpvdDf/+7GzAus73QkrAe jw0eTHGd/REKdm016vY2RrFkYK2JZhKI4wVk/y1UTA5jZY6mJECCm4+DhoKK i61hzImT8bBjJP9BQjcNaxJ+i6Yzr4DI7K6424GOepcbkpsCL0P04xSRQy0d Gy7RrKxY0cAycit6voGBGZV1uoWWkbCH136cnMhAZhSFn5dyEXLXszd0KRgY POK6r2D+PGxo/emO03ETpJETdwh6Q0G4pcX8RZMJGpfbZhmM8cFPrtnXYU5g 25OVYx6L54Bd8Tc98QaB2zw6TXndPODGuizY3ySQqn9G/voRDwQuVYOk2wRG PdpZeraSB9cUguvCOwRa59hNRabzoJSp/JKeTaB9hMp42psHymbVy+ISAlnw 4MTopyAQviCltLUTmKe6xlqzKQgyC4MCrnYQWGuj1D5kFASFoT12BzsJjEmO 8ItdEQQPDYTznT0E/lozNKOl4MKI5+oAyQCBmmq7lIdbuGA6vs5ubJxAw/5J 6cxJLlhVhVPvyQgUDs16hDtz4fv4YaXv1H//fsNDpH1ccDTNLn8zTWDQiHU8 WnCBz6FT5+YIHC0XmU3PcyBy52VlpZxAsrWYUvCeA/G6Y/2hCgLdwrs5p8c4 ICorTP78mcC5U/Xbpzs4UBCj6V83T+AK0e9FNY0cKHH2tY1cIHCwKyYkqYID VSZPjXcvEujlzU9jF3GgSb5RqVIR+LzZcSVmcOBfaJc9SQ== "]]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVy3k41AkYwHFCtYwyJU1kDr+eRLJKPXb2qd43OjFKiNXFyJEZI/OYlCMS CaumIkNusbV2XEvWWY6SXKsh+zh2WgylFDvN1khmd//4Pp+/vgx28FHfJWpq aqz/+t/sS+ylW88k7zbJselQqaTQJqE7utPPQlPECQe+XAqqp01X6PSLsNmX XPdmUgrZj1NoWvRECLXku011S4G7SxD0iZYBTo1mTsZZUpB8CUidpT0Ayt66 TD5TCsuGx0xnaLVw2EPiXR32J+Q/zw15S+uAMheG4fYlo1BaljjMtRyCev4t 22L9IfCHvox3/HFoVDnEMbMHgSczG68qfQODy39mbuUOgDYjzlT63SzEf4hb PLpfAtf1Os3zveSgm3ebqxbWB+xh10caXf/AnqsVd5t9eiHkSRw72HQe0moC SCF2XVBxjuRCOfQV6I5p7u/zOiA/gjNt5a6Gg6K5ah9SO8TmLjh/fKeOk56S KJm0DdQkr7AhXANDKK1RrnMtsDHU74KruRb+NbTa8TipGSYU6cd0Gpdi41Jm n+dUE9jLAqNuhSzHzmz/bWnt9eA0IdxMpWpj2HpWDkOrFqZb2THPxDpYuiPL UlzxECzJL43tTuui4fnawD2BVaANCu8R+QosbfjKK79UCQdmPD+ZuOnh60nq GkpOOfzRckbd04KM+3V+Gbj4VgzV19pO0RVkjCJU+jb0EvDTErzq6VmFH+0l HxZ87oMPP6KalLkaU6M9jlAMiuFb/809jt76aH6/xObtN/egd5WFjoC5Brc/ qxWvWl4A9aWxdy00DPDAy7JwA/c8iFA3P9I1aoDWRqQkw9PZoD0SfpBXtRZf 3/AamudngqyYkZobSUGpea998EI6pG5ap1nrtg4rCrwmJLfSQJjp1+5NN0T1 LFl3ZNJt8Ew92UOaMkRn0dEnSxpuwue9RcrcJiNcpvdDf/+7GzAus73QkrAe jw0eTHGd/REKdm016vY2RrFkYK2JZhKI4wVk/y1UTA5jZY6mJECCm4+DhoKK i61hzImT8bBjJP9BQjcNaxJ+i6Yzr4DI7K6424GOepcbkpsCL0P04xSRQy0d Gy7RrKxY0cAycit6voGBGZV1uoWWkbCH136cnMhAZhSFn5dyEXLXszd0KRgY POK6r2D+PGxo/emO03ETpJETdwh6Q0G4pcX8RZMJGpfbZhmM8cFPrtnXYU5g 25OVYx6L54Bd8Tc98QaB2zw6TXndPODGuizY3ySQqn9G/voRDwQuVYOk2wRG PdpZeraSB9cUguvCOwRa59hNRabzoJSp/JKeTaB9hMp42psHymbVy+ISAlnw 4MTopyAQviCltLUTmKe6xlqzKQgyC4MCrnYQWGuj1D5kFASFoT12BzsJjEmO 8ItdEQQPDYTznT0E/lozNKOl4MKI5+oAyQCBmmq7lIdbuGA6vs5ubJxAw/5J 6cxJLlhVhVPvyQgUDs16hDtz4fv4YaXv1H//fsNDpH1ccDTNLn8zTWDQiHU8 WnCBz6FT5+YIHC0XmU3PcyBy52VlpZxAsrWYUvCeA/G6Y/2hCgLdwrs5p8c4 ICorTP78mcC5U/Xbpzs4UBCj6V83T+AK0e9FNY0cKHH2tY1cIHCwKyYkqYID VSZPjXcvEujlzU9jF3GgSb5RqVIR+LzZcSVmcOBfaJc9SQ== "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0, 10}, {0., 0.49999994897959443`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0, 10}, {0., 0.49999994897959443`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Line[CompressedData[" 1:eJwVy3k41AkYwHFCtYwyJU1kDr+eRLJKPXb2qd43OjFKiNXFyJEZI/OYlCMS CaumIkNusbV2XEvWWY6SXKsh+zh2WgylFDvN1khmd//4Pp+/vgx28FHfJWpq aqz/+t/sS+ylW88k7zbJselQqaTQJqE7utPPQlPECQe+XAqqp01X6PSLsNmX XPdmUgrZj1NoWvRECLXku011S4G7SxD0iZYBTo1mTsZZUpB8CUidpT0Ayt66 TD5TCsuGx0xnaLVw2EPiXR32J+Q/zw15S+uAMheG4fYlo1BaljjMtRyCev4t 22L9IfCHvox3/HFoVDnEMbMHgSczG68qfQODy39mbuUOgDYjzlT63SzEf4hb PLpfAtf1Os3zveSgm3ebqxbWB+xh10caXf/AnqsVd5t9eiHkSRw72HQe0moC SCF2XVBxjuRCOfQV6I5p7u/zOiA/gjNt5a6Gg6K5ah9SO8TmLjh/fKeOk56S KJm0DdQkr7AhXANDKK1RrnMtsDHU74KruRb+NbTa8TipGSYU6cd0Gpdi41Jm n+dUE9jLAqNuhSzHzmz/bWnt9eA0IdxMpWpj2HpWDkOrFqZb2THPxDpYuiPL UlzxECzJL43tTuui4fnawD2BVaANCu8R+QosbfjKK79UCQdmPD+ZuOnh60nq GkpOOfzRckbd04KM+3V+Gbj4VgzV19pO0RVkjCJU+jb0EvDTErzq6VmFH+0l HxZ87oMPP6KalLkaU6M9jlAMiuFb/809jt76aH6/xObtN/egd5WFjoC5Brc/ qxWvWl4A9aWxdy00DPDAy7JwA/c8iFA3P9I1aoDWRqQkw9PZoD0SfpBXtRZf 3/AamudngqyYkZobSUGpea998EI6pG5ap1nrtg4rCrwmJLfSQJjp1+5NN0T1 LFl3ZNJt8Ew92UOaMkRn0dEnSxpuwue9RcrcJiNcpvdDf/+7GzAus73QkrAe jw0eTHGd/REKdm016vY2RrFkYK2JZhKI4wVk/y1UTA5jZY6mJECCm4+DhoKK i61hzImT8bBjJP9BQjcNaxJ+i6Yzr4DI7K6424GOepcbkpsCL0P04xSRQy0d Gy7RrKxY0cAycit6voGBGZV1uoWWkbCH136cnMhAZhSFn5dyEXLXszd0KRgY POK6r2D+PGxo/emO03ETpJETdwh6Q0G4pcX8RZMJGpfbZhmM8cFPrtnXYU5g 25OVYx6L54Bd8Tc98QaB2zw6TXndPODGuizY3ySQqn9G/voRDwQuVYOk2wRG PdpZeraSB9cUguvCOwRa59hNRabzoJSp/JKeTaB9hMp42psHymbVy+ISAlnw 4MTopyAQviCltLUTmKe6xlqzKQgyC4MCrnYQWGuj1D5kFASFoT12BzsJjEmO 8ItdEQQPDYTznT0E/lozNKOl4MKI5+oAyQCBmmq7lIdbuGA6vs5ubJxAw/5J 6cxJLlhVhVPvyQgUDs16hDtz4fv4YaXv1H//fsNDpH1ccDTNLn8zTWDQiHU8 WnCBz6FT5+YIHC0XmU3PcyBy52VlpZxAsrWYUvCeA/G6Y/2hCgLdwrs5p8c4 ICorTP78mcC5U/Xbpzs4UBCj6V83T+AK0e9FNY0cKHH2tY1cIHCwKyYkqYID VSZPjXcvEujlzU9jF3GgSb5RqVIR+LzZcSVmcOBfaJc9SQ== "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PlotRange" -> {{0, 10}, {0., 0.49999994897959443`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-0.17, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->NCache[{{0, Rational[17, 2]}, {All, All}}, {{0, 8.5}, {All, All}}], PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.929775931849172*^9, {3.929783001699346*^9, 3.929783021038912*^9}, 3.929783128585156*^9, 3.929783407696123*^9, 3.929788488920706*^9, 3.929788617244803*^9, 3.9303011797643633`*^9, 3.930304344830658*^9}, CellLabel->"Out[15]=",ExpressionUUID->"b7b0ae2a-ce98-4077-82ba-f15091e8f542"] }, Open ]], Cell[TextData[{ StyleBox["6. ", FontWeight->"Bold"], " Importieren Sie nun den Datensatz \[OpenCurlyDoubleQuote]Data.dat\ \[CloseCurlyDoubleQuote], der auf ILIAS zur Verf\[UDoubleDot]gung steht. \ Bestimmen Sie daraus durch Maximierung der Likelihood-Funktion die Werte von \ a und b." }], "Text", CellChangeTimes->{{3.929430965032612*^9, 3.929430994292651*^9}, { 3.9294310487469807`*^9, 3.929431067831378*^9}, {3.929783678499864*^9, 3.929783716646359*^9}, {3.9297856348906927`*^9, 3.929785636598433*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"eafd119a-68e2-4bfc-a5c7-eca87e28d1f7"], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{ RowBox[{ "Import", "[", "\"\\"", "]"}], "//", "Flatten"}]}], ";"}]], "Input", CellChangeTimes->{ 3.9297775187477617`*^9, {3.9297775694558983`*^9, 3.929777581104844*^9}, { 3.929777728485922*^9, 3.9297777592242603`*^9}, {3.929777821454777*^9, 3.929777828644463*^9}, {3.9297778606861153`*^9, 3.929777935942326*^9}, { 3.92977823519429*^9, 3.929778256051956*^9}, {3.929778321168067*^9, 3.9297783328976183`*^9}, {3.929778985051787*^9, 3.929778985898671*^9}, { 3.9297832699092607`*^9, 3.929783271514386*^9}, {3.929783756974759*^9, 3.92978376130628*^9}, {3.929783800443344*^9, 3.929783843366584*^9}, { 3.929785702308755*^9, 3.929785732146735*^9}, {3.929785806491251*^9, 3.9297858459507*^9}, {3.92978592031653*^9, 3.9297859216587353`*^9}, 3.929786021789266*^9, {3.9297861252841682`*^9, 3.9297861498982277`*^9}, { 3.929786184222395*^9, 3.929786184404517*^9}, {3.929786216436139*^9, 3.929786216799686*^9}, {3.929787110532406*^9, 3.929787121594698*^9}, { 3.929788587718217*^9, 3.929788593211933*^9}, {3.929788684602729*^9, 3.929788721874668*^9}, 3.930301144286985*^9}, CellLabel->"In[16]:=",ExpressionUUID->"e6bb5db0-be0d-46c0-8d0b-71c54ca530e5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"histData", "=", " ", RowBox[{"HistogramList", "[", RowBox[{"data", ",", RowBox[{"{", RowBox[{"0", ",", "10", ",", "1"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.9297779172901917`*^9, 3.9297779608809013`*^9}, { 3.929778400720468*^9, 3.929778407880512*^9}, {3.929778551001238*^9, 3.9297785606561623`*^9}, {3.9297787099502172`*^9, 3.92977871168237*^9}, { 3.9297787712738943`*^9, 3.929778803788432*^9}, {3.929778839056883*^9, 3.9297788524511213`*^9}, {3.929778925453143*^9, 3.929778931543249*^9}, { 3.929779398926031*^9, 3.929779497646508*^9}, {3.929779530961529*^9, 3.929779557220316*^9}, {3.929779587560609*^9, 3.929779671300181*^9}, { 3.9297797209630213`*^9, 3.9297797487707253`*^9}, {3.9297798534772663`*^9, 3.9297798976350594`*^9}, {3.9297799472316933`*^9, 3.9297799723974743`*^9}, {3.9297814668105173`*^9, 3.9297814672993383`*^9}, 3.929783172466165*^9, {3.9297857347331553`*^9, 3.9297857359210176`*^9}, { 3.929785958132402*^9, 3.929785967545833*^9}, {3.9297860086237907`*^9, 3.929786013396001*^9}, 3.9297860588390408`*^9}, CellLabel->"In[17]:=",ExpressionUUID->"9e5c628b-b714-4b78-b325-209489475956"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "0", ",", "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{ "18", ",", "10", ",", "11", ",", "17", ",", "10", ",", "5", ",", "13", ",", "5", ",", "7", ",", "4"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.929779540710205*^9, 3.929779557625486*^9}, { 3.929779618847061*^9, 3.929779672014863*^9}, {3.929779724878121*^9, 3.929779749100649*^9}, {3.9297798548577843`*^9, 3.929779914269169*^9}, 3.929779972918331*^9, 3.929781467877783*^9, {3.929783001841894*^9, 3.92978302118235*^9}, 3.929783174064933*^9, 3.929783278945703*^9, 3.929783869675818*^9, {3.9297857056808662`*^9, 3.929785736373682*^9}, 3.92978592893927*^9, {3.929785962554096*^9, 3.929785968078158*^9}, { 3.929786011027164*^9, 3.929786014025702*^9}, {3.929786059391457*^9, 3.9297860811412783`*^9}, {3.929786129152719*^9, 3.929786159529874*^9}, { 3.929786189708179*^9, 3.929786218766279*^9}, 3.929788489118915*^9, 3.929788762571916*^9, 3.9303011481454067`*^9, 3.930301179790882*^9, 3.930304344880268*^9}, CellLabel->"Out[17]=",ExpressionUUID->"0a98c411-526b-407a-b6b0-b7d39ea98861"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Histogram", "[", RowBox[{"data", ",", "10"}], "]"}]], "Input", CellChangeTimes->{{3.9297788577270813`*^9, 3.929778906946575*^9}, { 3.929778953302525*^9, 3.9297789536451483`*^9}, {3.929779018912323*^9, 3.929779084937415*^9}, {3.929783282847438*^9, 3.9297832850718403`*^9}, { 3.929785985528859*^9, 3.929786004683524*^9}, {3.929786530853856*^9, 3.929786534537415*^9}, {3.929789169861659*^9, 3.929789174113267*^9}}, CellLabel->"In[18]:=",ExpressionUUID->"5b9967b7-7b62-4dd4-892c-56e596a85332"], Cell[BoxData[ GraphicsBox[{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.616], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.616], Thickness[Small]}], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0}, {1., 18.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{25.884582666132907`, 67.96374599679744}, {-130.75704353742094`, 118.0625}}], "DelayedMouseEffectStyle"], StatusArea[#, 18]& , TagBoxNote->"18"], StyleBox["18", {}, StripOnInput -> False]], Annotation[#, Style[18, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0}, {2., 10.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{67.33874599679744, 109.41790932746198`}, {-20.4483575207894, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 10]& , TagBoxNote->"10"], StyleBox["10", {}, StripOnInput -> False]], Annotation[#, Style[10, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0}, {3., 11.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{108.79290932746198`, 150.8720726581265}, {-34.236943272868345`, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 11]& , TagBoxNote->"11"], StyleBox["11", {}, StripOnInput -> False]], Annotation[#, Style[11, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3., 0}, {4., 17.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{150.2470726581265, 192.32623598879104`}, {-116.96845778534201`, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 17]& , TagBoxNote->"17"], StyleBox["17", {}, StripOnInput -> False]], Annotation[#, Style[17, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4., 0}, {5., 10.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{191.70123598879104`, 233.78039931945557`}, {-20.4483575207894, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 10]& , TagBoxNote->"10"], StyleBox["10", {}, StripOnInput -> False]], Annotation[#, Style[10, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5., 0}, {6., 5.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{233.15539931945557`, 275.23456265012015`}, { 48.49457123960531, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 5]& , TagBoxNote->"5"], StyleBox["5", {}, StripOnInput -> False]], Annotation[#, Style[5, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{6., 0}, {7., 13.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{274.60956265012015`, 316.6887259807847}, {-61.814114777026234`, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 13]& , TagBoxNote->"13"], StyleBox["13", {}, StripOnInput -> False]], Annotation[#, Style[13, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{7., 0}, {8., 5.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{316.0637259807847, 358.1428893114492}, { 48.49457123960531, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 5]& , TagBoxNote->"5"], StyleBox["5", {}, StripOnInput -> False]], Annotation[#, Style[5, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{8., 0}, {9., 7.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{357.5178893114492, 399.59705264211374`}, { 20.917399735447418`, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 7]& , TagBoxNote->"7"], StyleBox["7", {}, StripOnInput -> False]], Annotation[#, Style[7, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{9., 0}, {10., 4.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{398.97205264211374`, 441.05121597277827`}, { 62.283156991684244`, 118.06250000000001`}}], "DelayedMouseEffectStyle"], StatusArea[#, 4]& , TagBoxNote->"4"], StyleBox["4", {}, StripOnInput -> False]], Annotation[#, Style[4, {}], "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-0.2, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->{{0., 10.}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.929778885957415*^9, 3.9297789072583513`*^9}, 3.929778954174734*^9, {3.929779004318659*^9, 3.9297790250417433`*^9}, { 3.9297790567317543`*^9, 3.929779085441584*^9}, 3.929779776167839*^9, 3.929779986100065*^9, 3.929781486947134*^9, {3.929783001994066*^9, 3.929783021346899*^9}, {3.929783280102537*^9, 3.929783285363736*^9}, { 3.929785721016678*^9, 3.929785738880468*^9}, 3.92978593100781*^9, { 3.929785971761971*^9, 3.9297860053346863`*^9}, 3.929786083569734*^9, { 3.9297861301540403`*^9, 3.9297861603395844`*^9}, {3.929786190645217*^9, 3.929786219899046*^9}, 3.929786556706255*^9, 3.929788489153651*^9, 3.9297887658699913`*^9, {3.9303011537908487`*^9, 3.93030117981566*^9}, 3.9303043449063473`*^9}, CellLabel->"Out[18]=",ExpressionUUID->"5378cc11-5252-48aa-a5a2-7a8f50f80787"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NMaximize", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Log", "[", RowBox[{"LikelihoodFunktion", "[", RowBox[{"aa", ",", "bb", ",", RowBox[{"histData", "[", RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], ",", RowBox[{"aa", ">", "0"}], ",", RowBox[{"aa", "<", "20"}], ",", RowBox[{"bb", ">", "0"}], ",", RowBox[{"bb", "<", "20"}]}], "}"}], ",", RowBox[{"{", RowBox[{"aa", ",", "bb"}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "6"}]}], "]"}]], "Input", CellChangeTimes->{{3.9297831965892973`*^9, 3.92978324681671*^9}, { 3.929783291401875*^9, 3.929783291957161*^9}, 3.929787097180203*^9}, CellLabel->"In[19]:=",ExpressionUUID->"1e3f4a12-3c5f-47fb-a338-7e72013076e7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "26.7529554714981400837`6."}], ",", RowBox[{"{", RowBox[{ RowBox[{"aa", "\[Rule]", "12.8361778703720028872`6."}], ",", RowBox[{"bb", "\[Rule]", "6.2403371947110840918`6."}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.929783247355686*^9, {3.92978328919564*^9, 3.929783292523284*^9}, 3.929783876058168*^9, {3.929785709273397*^9, 3.929785741929275*^9}, 3.929785934980983*^9, 3.9297859957724657`*^9, {3.929786065771097*^9, 3.929786086376278*^9}, 3.9297861326336937`*^9, {3.9297861632012987`*^9, 3.929786222574127*^9}, 3.929788489244779*^9, 3.92978876926229*^9, { 3.930301158139894*^9, 3.930301179855969*^9}, 3.930304344963427*^9}, CellLabel->"Out[19]=",ExpressionUUID->"a661af93-8552-4786-8cc1-34775363a2df"] }, Open ]], Cell[TextData[{ StyleBox["7. ", FontWeight->"Bold"], StyleBox["(Optional)", FontSlant->"Italic"], StyleBox[" \n", FontWeight->"Bold"], "Stellen Sie grafisch den Konfidenzbereich f\[UDoubleDot]r die Parameter a \ und b dar, welcher gegeben ist durch\n", StyleBox[" - 2 (log L (a, b) - log L_max) < \ InverseCDF[ChiSquareDistribution[2], CL]", FontWeight->"Bold"], " mit CL = 0.68 f\[UDoubleDot]r 68 % Konfidenz und CL = 0.95 f\[UDoubleDot]r \ 95 % Konfidenz . " }], "Text", CellChangeTimes->{{3.929783289158105*^9, 3.929783289946972*^9}, { 3.9297838959964533`*^9, 3.9297839089663267`*^9}, {3.929785161762927*^9, 3.929785190483838*^9}, {3.92978564737569*^9, 3.929785689056451*^9}}, Background->RGBColor[ 0.94, 0.88, 0.94],ExpressionUUID->"1705f820-626c-4e39-b34c-50fe802cbeae"], Cell[TextData[StyleBox["Hinweis: RegionPlot", FontWeight->"Bold"]], "Text", CellChangeTimes->{{3.929436888285372*^9, 3.929436930159102*^9}, { 3.9294371835309772`*^9, 3.929437195504073*^9}, {3.929771307000428*^9, 3.929771317529364*^9}, {3.929776499449049*^9, 3.929776690401609*^9}, { 3.9297774197557077`*^9, 3.929777469783823*^9}, {3.92978706503582*^9, 3.9297870665530987`*^9}}, Background->RGBColor[ 0.87, 0.94, 1],ExpressionUUID->"f2c2f33c-97a8-47ee-8f50-6ceb786128d8"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"DeltaLogL", "[", RowBox[{"a_", ",", "b_"}], "]"}], ":=", " ", RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"Log", "[", RowBox[{"LikelihoodFunktion", "[", RowBox[{"a", ",", "b", ",", RowBox[{"histData", "[", RowBox[{"[", "2", "]"}], "]"}]}], "]"}], "]"}], "-", RowBox[{"Log", "[", RowBox[{"MaxLikelihood", "[", RowBox[{"histData", "[", RowBox[{"[", "2", "]"}], "]"}], "]"}], "]"}]}], ")"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.929784117815875*^9, 3.9297841415361834`*^9}, { 3.929784179880219*^9, 3.9297842023217287`*^9}, {3.929784272875992*^9, 3.9297842967022543`*^9}, {3.929784395125074*^9, 3.929784399261134*^9}, { 3.9297845264989777`*^9, 3.929784605071274*^9}, {3.9297846938665543`*^9, 3.929784706521509*^9}, {3.9297847721210403`*^9, 3.92978479091927*^9}, { 3.929784968738647*^9, 3.929784983365217*^9}, {3.929785339788228*^9, 3.929785398421986*^9}, {3.929785440122233*^9, 3.929785482287225*^9}}, CellLabel->"In[20]:=",ExpressionUUID->"768ec7c2-4823-410e-8427-911d74482c54"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"max95", "=", RowBox[{"InverseCDF", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", "2", "]"}], ",", "0.95"}], "]"}]}], "\[IndentingNewLine]", RowBox[{"max68", "=", RowBox[{"InverseCDF", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", "2", "]"}], ",", "0.68"}], "]"}]}]}], "Input", CellChangeTimes->{{3.9297855528142757`*^9, 3.9297855714927797`*^9}, 3.929785770257093*^9, 3.929786507794641*^9, {3.929786748604323*^9, 3.929786749655168*^9}, {3.9297869724184713`*^9, 3.929786997205929*^9}, { 3.9297887771796207`*^9, 3.929788785819735*^9}, {3.930301292769302*^9, 3.930301320393564*^9}, {3.930301440339821*^9, 3.930301455128594*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"f687c8f5-e250-42fe-b61b-0258c1ed4757"], Cell[BoxData["5.99146454710798`"], "Output", CellChangeTimes->{3.9303013209189672`*^9, 3.930301455819931*^9, 3.930304344976891*^9}, CellLabel->"Out[21]=",ExpressionUUID->"df541746-a081-4a66-9143-baf78dd96054"], Cell[BoxData["2.2788685663767305`"], "Output", CellChangeTimes->{3.9303013209189672`*^9, 3.930301455819931*^9, 3.930304344977769*^9}, CellLabel->"Out[22]=",ExpressionUUID->"fa5a02bc-3714-4cae-b301-40a4c144e031"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ContourPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"DeltaLogL", "[", RowBox[{"a", ",", "b"}], "]"}], "==", "max95"}], " ", ",", RowBox[{ RowBox[{"DeltaLogL", "[", RowBox[{"a", ",", "b"}], "]"}], "==", "max68"}]}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", "0", ",", "25"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", "0", ",", "12"}], "}"}], ",", RowBox[{"FrameLabel", "->", "Automatic"}]}], "]"}]], "Input", CellChangeTimes->{{3.9297855528142757`*^9, 3.9297855714927797`*^9}, 3.929785770257093*^9, 3.929786507794641*^9, {3.929786748604323*^9, 3.929786749655168*^9}, {3.9297869724184713`*^9, 3.929786997205929*^9}, { 3.9297887771796207`*^9, 3.929788785819735*^9}, {3.930301292769302*^9, 3.9303013180780993`*^9}, {3.930301361155492*^9, 3.930301363652689*^9}, { 3.930301460414976*^9, 3.930301488519487*^9}, {3.93030158750356*^9, 3.930301587952457*^9}, {3.9303022355002003`*^9, 3.9303022439173603`*^9}}, CellLabel->"In[23]:=",ExpressionUUID->"132ecf72-93c6-46ad-a3f1-12aa8f9ea562"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"3.38353383096097`*^-235\\\", \\\" \\\", \ \\\"1.856031960313263`*^-120\\\"}]\\) is too small to represent as a \ normalized machine number; precision may be lost.\"", 2, 23, 1, 28008352611990477689, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.93030149492448*^9, 3.9303015951463633`*^9, 3.930304351581588*^9}, CellLabel-> "During evaluation of \ In[23]:=",ExpressionUUID->"354e606f-17f4-4fbd-8356-7c38a5ad01ec"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"3.38353383096097`*^-235\\\", \\\" \\\", \ \\\"1.856031960313263`*^-120\\\"}]\\) is too small to represent as a \ normalized machine number; precision may be lost.\"", 2, 23, 2, 28008352611990477689, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.93030149492448*^9, 3.9303015951463633`*^9, 3.930304351640218*^9}, CellLabel-> "During evaluation of \ In[23]:=",ExpressionUUID->"e5c72d64-0c01-448e-99d7-098651a62cf5"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJxlWgk0lG3Ytu/LjG1mLGPGjH0bY2wJV5IWqYiypVKJFslWhJRUQklFRVRK aaM9RQspaxtaUCqVFqGFSsU/XzPe//znnzPHuOeded7nuZfrvq77DDNklfcS MRERkR38P/+9Ch4OsHr0quqIhwpUZLq2hH+xR8ellfynCp4cOOhb8dwexuIT Awv3qSDivwt37GEvP7z/WKMKvFI0+xtv2OPfxztUkPDHyXDrMXtILaZljyqo CtbJ4tsPMp33T1KFvcF2kDLtkcOeyn+qYirztnN5pD2U072PMdar4mRMrPYZ X3v8W+6SqmBdLXukNnR8uWCghqE7EmG9o3Z4dOpVa/w8NXSdTBbb8cYO/5bL UROsW2qH1yl71nb+VYOUqGn08Qw7XP1xJU7TRh1f923atH2FnfB86oL72Nqh f9zmvTIN6rigQZvvoGqHizPq7K9KaCBIesbcCX22wv1qYMp//9y2Rfn3PK9d WRo4La1dVrvfFpsooUyvVg1I1Cw2MFhmK/gcmyLYl7ctjnQnbjKaRsGIw8fG 6Tq2+PB6fYzbfgpe1ri7lb60wei/BwX/wsG3pcwaG0VEqTAOGKqZXWQDzT9x 1yfMpwr3bYNPxUUX1cuo+Ei6XinvZSP0PxWqNhsUTuna4OiUTh0JJk3w/m8e nJd5Nxv507DsyqJZmZU8rPi3EA26xpwQnSIeQvvmkeVf0QTnTOchIb7k2qtR Guiz2MoJLB5Y//yridpu2UuG2jy4vcjixRZoCvJBgwfK2f7wU8WaCCmQ97o4 aI1Fg74JfQ818e9rR6xRNunNzYQJWohaV9w5Nc8ag+dp8rY+WvCz1lR/tMka 7YJAC/zFtUbk8zb59g4t+B+VatcmWWNeI7d9i7Q29KlarMWvuNj574PaAn/d 5GLvx07fxBhtHLlTXO+3lYu/d32KL1dow0P+zEJVO64wHjq4/M9PVugbbEqS z9XBpOfKTuw4Kyyz7KMPUulIEE+NI5tZof/o5rCJsXTB+YY4iA3MGqy/SEd7 pO+Wwo8cjH59ndFXQ8de+fit+k85uPhvXTqm/XefTRxMjHNguDnronxpbajI PA4cWCKKr5fpoqNp6em9uhyh/3Wh/98xVDjYhbdMxzu6ePs3mrTxgCVoLVZ/ ZsowIPrf+WCJn4sv2iezGegvt7m69aaF8PwMhDx3V7+z3gLzshgncwMYuPLf PgItIGOX1790MQNpbJ/7PvfMUTcokf8ik4FJrjduRQSbY8bPMH29kwyUzEt/ F29jLtwPAwb/AmYGj1Ej3rrXDHzfb3VX194M5KNyjh6/GFhxq8JwQq6p0J9M OA/H7n9FMoWIr1uK6GQmdv/3dr0J1ulJ0Z/7MWHWVWFW+t4YonnTSlx2MxF0 /+cE2yfG0FI8cOvcXqbgfCLGsFPyizNpZmJ5bc/DcVeMMD76cFfmcyauPLBf WcsxEtYHU3A+LSN8zX7Toi6ph8/G7LuFmw2xSuvo1KkGeoJ42Rri+Dsj84n2 etgTuL/A2scAGYucpxyO0INIVlJry3QD6I4bt9M3Ug+d//JOH2vVeOS2g3pw /bHpzR6KPkgNNFuNc3pY+XEJx2gOW1hferDIDLc3bGfBc079E/1BPUG8j7AQ 4ZS/oX5UD4uLFj0Z1Gahbig9P43/2lU5KVE0Tw9k1hzeGhsWAh1qJ/Ty9IR4 whLmIxNiKlIzuvxZuJqyIOejBxOX8Lr452r+dftbx7+NY8AqeM3COcUsYb4w 8MQ0aVNwKQvDeWF5x4Z1kVfaodx0ioUD7nKFmqm6QvxkCfOBn5cLHia9b2ZB MdtvxetGHZzocb874xkLPLHm7ylTdDCYGdyT+1q4fo424laFDIr2s5Cv9dTG 950WHMWSUjx/syAzzSQmcrIWcG7aYVcptuAc9Zq4ePzo7guKbDT296pvSdLE 21C7pBUqbEwPOTij2ZMmzBe2oF5FaCiNKVtPN2bD3eR7ROM7Kt4mtb0rNGFj J/d1gdduCmQ9enaKOLKF8aTgvYve7ykubMw8GDl75IQGdMglG1nubJw/VMG4 TdKA8+IHnAsebGE81XEkldRv4MWGxe6Zz9by+8Jnb8oWjj8bPi1Hq/03qEFx pHRwO98WxE8VS76nn78wjw2DKImrg/w+Vv9g905WCBuVSinOhkUqqDR7+GDm IrYwXmTIiQT75PDtL8q3VH3kydi+acbauQvYwviQsHb1y4E2vj0qIZlo76ME Ly8vtkeQ8HqOAsZ9Y36+4c1GXFya2PUyWZxrcdYodRjzjyzeXpxcaWvDhnff ysk38mQwr6qkT82KjRknKRHet6QJf7r+6V1vZyOFRvPsnYcUxs4viTmvLNl7 /rAQv0Nfu7FeQoCvn1kw1CxSqjKWQFdw39C15yzh+cXRLJZgtYqfHzYaPlfr fosR+XNJ/lGqfqIYNhQZmeUUj+WrKLwDjn/xTGOhZLmqa8gtUcG+U1jov5M9 GnpMFLlp8rduxbMQ/FrVsoIrisqoAatF81hCPBXBB0ObqSc9+PXQ8WTvyT4R oh4WSY28y70kgiJxWeOV/Hp5M8HnR8EWEQQMKa+ex2Dhl822q6FLRQR9QoWF 4hmL0tLniiBNt7HylywLzz9RQh5TRRAodea3bace5JY+DX1AESHq96yNuwyV b9s09Ym2t+sJ4yWCthyKaM0jPUw6n3Jb7suoS8u6zjulx/QQfrw6+ufAqMs/ fx/Rw6nKpmWm/Otfab03Ew/poW6aY/fv36Mue9Z+mWzAxxPrFls1pdFRF0E/ +9/1qyMsbPJ9+Dhw7Z6TmJEIlh0qrY5z0ENmYI5BuakIHkTNIt+31sOEwcHs +NUiBN79Eas0aUoTQf83VgLrKxNVTTNiZpaJwFh0WfAfPm6wm1xEea1C/9Uz cX/8tCOu0qK4Pjih5kwZE4lyIdsmqogi/M2a3hUnmKB2xDvN8RAV8iUmph10 q5oRIYot0uyvnDQmKrLMVjDbRfG3ryN3TyATpQVaETl8+99x+HZ4xRTfe3z7 sCa/3fDtsXzo5lCu6PFtJ3mXWlNTMcH+XZiYNyHqXbq3GIK+Ufyfc5n4W+yz QcNPDGVmpDVyVkxo9x1Y8269GNFPBP1cDAc+zi5tJzGR9jruxPJHYviQvy06 QJ6JlO9V660/iuHG10YDNQkmPvj0pe5xEBfmNwMJU0uaLwSJo3HwthHlLYPI 71atgF9bHjDQ3JubkCUuQfS7gbNfYqqTJXAqeVeVxX4GKntWhN3tksDIf/tf zyDqaba2YW5bMANVylsPq5yUhEqL3YYNs/g4XH5+2axGSaIfK21Z8DvdQQo3 luaolnEYGPWvONF1V0qYrwx4KV141vJVCp9zxdx15RhCfJMG5/3y2SNDupCW TH7FbZUm+EHO97+17EkymBy1+JfYNl38lD2ze3OjDKLFs/MqfXVhtq+m8nuv DLL/3UCXwI+K97VPWa66kPKeerjvuCzarsu//ynO5xe35V9yaHIEXxHkjRz2 KjnIhB+g43LsaSZHWx5ha5sNjm6g4+1M0XwPL3khP6MT+BXq/6rJUpSOnoG7 L0J3K0Bp8Kr4RhE60p9o3XywR0Hgv1Ed9EgpZrQVKWA+O3HPjT86uG1WUSv7 WVHIJ3Xg8uqJ4jO6Ehy+J5JupOpgROlrbsgcZYKvJV6ob1h+Thk+zqxuM1kd Al/N6m/ZBbzXRvWad0eCj5HwbpG6+IVsbUid/37ERJ9M8MMxvF7Eva+rxu9j 0x980Vo7SwW/zm289+aoFq5RJWQ8rqoQ/HOsH+zVLU/7PKSJqw0bSwZk1fDH f5HXl2pNSLyc++39cjWCD0/IWxm/pVcNLlqKr9x9NIn+E6EgsVmGqgnJgoiM 9kfq2HPUPXJpDw3qnc57VB01CP6t3qPz4W6lBqpGLc+7JtKIftfvvzz0nTuN fx/xNWYnKFD82HT/rgoNpjUbZ283ohJ8f6yfbnc79CVoAxWPYlpXN2yn4W+6 kd42NyrkZGQeN/M0CX0x1q+nUNMdM2sp0D9+ujZrvRbOdJh+YSRSkP2k9NjQ fG1Cv4zxgac3dHTbyBT8TtqylTFLB1Nk5HdH1WvgS0rkitvrdNBlMrHetkKD 4Bth++kRrWEasFHaUGFzlk7op29LGubv2qKLo4Wq/XV/1Qk+c3LCXmZsnTo+ 7XYL/7SLQegzfftlv7zuMVDa6ZrS5K4u7B8MUHpnnz1npo7awjp5hi8TeXOK Y+r4caiafNv1VAsTR9wKza/tUyP4ldGHxudPd6uhWbvylwifV254pOjetEsN N3a9Tw/oYhL6UYA/eji4z8dGih93uvcs26xverCbveum33tVzC1o3+/vxiL0 6Rj/yx03obUrWRUPa+KSrPi8Z6Hej0Un3FSx/FS41v3bbEIfVzXXXdrM0Yfq R1lW+UEVgn9m7I2nNm5Qgbln17viWQbQVrqfv3yELPCPtwGYmZdnrf1LRp7k rgYzPwMcsPU67jdMJvjula6z8oHbyFhVH8c7m2yIZ+w9a7eGkyE7M9Jm5Leh QIexyQR//hn/0DZMnYwLEXU5i08bQY6865ZbG4ng44nF9yZeKCXBdBunLanO WBg/EtocWx787DBGzHRJ426QMCBzfZ3YiDHItLzOKxwSwf+jd4hN+ntDGW0v gtdNpJpCvT6WPTdaGZXpfXUfqk2F/lDCM/1a5XQfM5jzqrkvFisR+uMBN3vi ZDslGMfumxLCM0fYdGee9RFFrPrva3HmsHxsIS66WhGXihtcD+aYQ9w93Lnb XxE+XAnLe23mwvxVJPTQ02kXfJpuKkCSq/zV5KIFxlWlnpm0VgGPpEIePX5q Ad+6l6UpwQqE3qJcf7B9hKIA5tGbnxvIHGE+ymP60Dg5Y75e6z05utuRb4/p N06aRZc036Z7ixfn8O1NtF/FBSvkYUG5uFLmOgfbStIWbNwlR+jJ8tJD6yf5 yOHpRsu2slArXDaIVll5WhZ288KozhFW8ApLtHMvliX0qkVqb9JFA1lMycCn +VQuBp64r5H5KCPIH08udH4NlNw4IoPpPw+U+J3nQjqwgZbHkSH0celWDU8/ tgw2tPRMvn+XC8kHqk5/dWSQeLGlVO8tV4gjMvj4SIx3Z701ft5WfH0uSprQ 75JXUh9fnyONS0NtOkZvrJHebs5sk5cm9L9IZEqx1xspyE1fXDnbjoePBt2t LbVSONQUX/cujgfDLyPbOTukiPnCyy+eX+03SeHqDu6Sl208YX5J4VFjstnA IA89l+54KPOkiPmFynyRVZ0WUljfIvNOWcIGTukVcX8NpYh5SFDGtNbFHyRx aKOGXUuVDc5LPh//oVaSmKd8lRtyzz0lia91LY9ESbYYYBiUNGZLEvMZS6NN RQYJkng1FP57KMMWnSUmP2pXSRLznpNDqevsfSQx+feZnkFZO4y3+Tmp3FmS mB+F5odUr3eShEJ02bhJS+zQnfBuQqqbJDGPKpS/2hPrIAk3Z/ua6f12WH56 eFWVoyQx3xpw/hRVMl0S3UGxaz562sO/jW5lxL/f3KSlljEB9rD2l+Ix5koi vtM+YHX62HxOkpiv2e/QlZeJlETz8hnL/lTZo+h9QObdHZIYMjB/cqHNHhPD Vk+uLBH6Q8QBX5qCagcbJNFO/bLtVD0HzlPERt4UkXD1Kv3H8CV+vr8O3f6Z X/9xulNnuOZzBHG+RCLmGxszjGl51SRkPR5OWDGPg1PNi5aHPSNhoW/6y01m HNCto1V5X0lEfeRGxkyrFCVjQVnpiLEEByYD261jZcmYFZA3re+iJZ75Zcep MMmC+j9niTi98zEuemS4LC8TyT5hSeBX/K2dt5cFWiImfYvnG2cyUa/d+seK wtzJqEiTOj1LwRIjNwIDOXPIgvpotoDcaGcrdTkZpNPkcr1yCzz87NDZHUsm 8MG37vdnpz1keFsyHVxLzbFxs7XXgftkAm9cRR9JV78mw/zXys8/FpojPoIR +vUTGVO2qG2foG8u9KsKgV92Ny/FTBmnAombzlE/rcyws+3myrggFVwU3bzx LdUM09Kmab0NVcHz//Z32hTmu0Y9JuaqIPfCq7R5YqZEvxiUOV2g0GEC2R8n Fxf2qhD4auzaGlLzTQWPw8+/p+abwNLn7otD0qowO5jxctTZBJt2rPZ24gr7 0xtjGEhMz1kXrIofM862mh81RsC8I9oiCapYda+E7Mo0JvrZGP4nB/vuj76r iqrDn6XrXhhh31G2043Hqthzy7iZHGuEhyX5eR8U1Ih+Ula+fut0JzVUmtSZ nnppiEard66v/NVQurPWRj7akOivdkX5HcXTDXFnemsq95ga0b/sTFsGL5xX Q+O2zlNFPQY47NaQ4f9Cjeh/bwsmiM/kqSPA+c3OXAsDPFxc2bLaQx1Xhq88 fvBJn+AL5CyfmsBCfSwYzTkaXqBO9Ff65Knt466pY+d10YRcsj5mX/uUfX5A HbpgD8/JY+N2wvVtqXxetusfPrFxZqnyjko3DUiHyz3z2sxG9+jVWxHuGvCk r0iX3Mgm+EzQmhdzdUZZCFoXt4Z0UIPgAxOWLMuQ6dKAyt9pyS58HZxXK8r4 PayBpzWH7r1wZBH8KlmlIPX5dz08jtwZ6z2XQvCPFeX223YlUBAzPjt6f6Ge 0H8UKKyP9dCN0kO2qnfN+IsUIf7rgR7/IyL+HgWhsienlsjpEXzPlxvoumSA iXEPHz9hqFEJPlRzUz0wj02FmF7846WJTCH/pSLtcNuqt6uZmP01VYMeRxWc M5yvO73NzkxNoiKDXbtupTUTZSvXnew8RgWztzeySYqJpte2X3SbqAQ/27B1 10XHZ1TQgzfm5Q8yYFt99+S4dioUs2lRrO8Mgr8K8ISB+dmeW4ccaDDZ+fBg WCIDUwcUU2ZMoOHQ47q+7CiGkM/TCL74KPF95IpCGgZurLsdIclASyf55KYT NMiHTo00+qxL8GsBPujizqK5T82lNeHtYRzYyNRFlmPnARUNTRxFxoklIrrC eGgS/DWldSe1O0YTKVWzFH840eE43vEEe5Mmon8u+9BOpxP8/99543SwcFhz rdd7TZj/vrvq5nwdZN1taH7/XRPpCTZl66foCPWQJsGnK3u2rFgYooUgRa2s bVu0YbS/Imd7mBZWBqlnTkjSJvTIhVUuXZd1tPE7NqUnvlgL47ut3MdLa+Os Q0lAbLkWytaddyBd1xL6UwuGN37VPbnE1zVTdkTe79IS5MdpLViUOo5seKsF BeP5AQPyWoQ+mjmgkp/Srwm1o5qc7YHahD74sGOklx6rjQuK9+LdlmgK/amN Ea2q54UcTQwFvPIL6tAW4PIbGr5+obiVkXVwyLP508N6GqHfRN4s9lm9jwaa a53mYb4fAh6v8jq9jgbxAx8u9/P9dD7go32mE43Qg2N6JlbcKDPlrg7eDDPf vXpCxe7W3/7Xe3VQqU/Tvn6dSuhLeU9/itgWKibRNi0stqbD72eW9aF4Km6e nb9iPehQe9ey4f4MKqFfC9cPLwxyocI5857dUDJdUA9aVFSnr89/dZyOJMOl qw73Uwh9bLE3n9rTSsH+cXP6Jv+lY6Tgvtr5GxTs+jb3vbaOrrC/UxBVpjSH 5KyLzNlnQ54fohB6fI+Eb0VYJgVyc+OsbKJ0IbbBfmDaWgr8vnIuROXx7Sdl +jLLKYTeb5exbGxfTMGLhbv39zfpIlezLlN/BgV7WtoczykwcP2V3JyY6RRi njBx/UpeLN8uapLkL8vXTWZL0iU8KPga0tzj6caAFfW4mYknhZhP5JpNUc/w oeB1h3KS2ywGho2/V2vEUYh5h82uF+xZBylYMm+TXeYBBlwM6TcGWynEvGTM X5Rl0Q5x9xlo/hwYeM6bitSRFovolwycnaP8wSaTSsxj1EdU87Trqci6pcDt HmYQ8b2ZIhm0RpyPQw/vMZ970TC9/2tOL4mJjxNWfEx9SEOAEiVhVJdJ5NfP uWYuNnpMKIS4Tnf8SyPmRbJXGnWX7dZEQVbVBwcrJpG/LupTtHR4TPQyp5gU amjBxoftb2LH/N962PrQapwLE1lPWr48VNWG/mRv315XJlGf3zzBmDiJCabI hirXHm24z2l7JjOZiTffHNX36Ong9zPlLmu+PVb/DxVKeY58e3Jo5iFKgw5m Fr69Hj2ZSeDJn87DtivcmGgrffH3wjM6DF6Q2l7y7zeacHv2/Yu6cB9piDd0 YRL41tVZT1vnyIRL7zHdjHEMXBtPMnrL37/NwSur/D4yENH88MouEyaBtwef eLBZxkxs98mXqRhhQCq074GfERPVI4fn+TOZhL+2sl5Gkq8woXOqwWqfKpPo BxufWidMVmaivjpr20w1PbjYPst3k2XiZRJtwHSlHlLy//o++MMg+pPPd5/2 2AEGCiUe/2nRYSHyRKPk224G9uZ8mk/yYyFBKe7E7g4G0Q9LMyR7Evg6Pry/ wH2iDZvIpyU/x/exo9k4Ln7WafopBtF/jzVtp809zkD5NBl16mU27pM2fWk6 yMDA8s8vlGn6OP7xQ4DDdgbR30/82nt8VRIDy2Ynh22q1MeHw+Nf/ojg950G LZsOrgHaB1oKx/kxCD6R8XT2/FQvBup6tW/sDTZAQJLfXMWZDBzpfbAlLNGA qJd/+79tgA9nJtQPOTBQS4mz6PpjgFoPnu9McwbBX454eCbtYTLgrXx1UnGS IVGf2X9zuhXzDRGjGNGfJs+A/8GwOZH3DFGwVcUuRIRB8Cexbs3zKzp1wdjb Ic+1NUJMZduJrAe6uHKoZqtShBGBD2P8zGoka9eFSF0U7HqqLxVuDJeizGXg 97nKGulTUtuNIcJL1Ey10CX433DaqUpZMV0kHL6X4TlqjO7PW50pg3Tk0NqX r+eaEHjneSj8cdBuE2zexYqu5uPhGN90eP9pdFUmHZriu1/KrDPF7S4PyWMc OsFf5/aUjZir0zFUXtIdcs0UjLtvpBmKdLCTL+1f0GZK4PXSsvb3jdPN4ESS mTOtSofgyxoWp9N09+hgSWljltZz/vWz3LTQFfzr8V8b9wWZE/1kjI+vP+G8 RlRdB+PuPAs8XGgOZ9ieChnRFuz3gznoP2IPWT3Sxv1Ih+G1w+Y48rt9QfJd bXQFMsmHKRZEPxvj/3XbJNddztJGZjLbfsNmC5hEffqVHKWNwuCtU+KaLYh+ OaYnAlubI/5M0UZe11rPF2RL9NGUJ3ZoaxN6ZAFDvuXLiBZMFp6ev6XAEky1 0Mptd7RQsU25skORgxl1LiJ2cVqEPnJqO35naaQWwq6cMWSpchAoXRPpv0oL r+ebz4pR4xB84N9+PTgY1xMz+RVbC0ty67oL53CwTEqZlaSuhbxY94PpSzkE 3xjTa+ONCxanPdUErXnd9ZJ9HEQx6udWX9VEVN1dsVtXOASf+Xe+Kg6M7xhN C8jQhC2jOYbbyUH8GXMubb4mMb84VdoSstFRE6p5eRWLpa0I/vRJJiTJnm6F 3u2PQ1aJaQrwgmOFRe5JDxQ+0qBrqHO/Z7YVwc/iDwU0nJ5vhfGNS8vLjgh/ fxBuhdbAyEuz82jo8fSaFFpoRfC/6CqLxLSDVhBJj110axJNUGeHrXA/qGbA ciIN/tn6n36VWyHG5tGrfjMaMT+Rs7SwDvhERe/hExLm76wI/inBUVrZTedi 54LzT9M2UIl5ivWZ1SX+PCpKyt0q+yK4BJ8eEblW/X4fF8NlTwqfXxrj61wc DWyZ5hxNgdOd6KDkPi7B79t6DPNkyNao3RFiefWNBvH7hokL5Dp9jmgg/0RW fes0a5TK2JpOWquBKMeSuOeLrAl9YcbTqXVKtUbAJgO2gawGMY/5dvDBwW23 1NGwJJRBuspfT9J58XCuOo4dIc1/2GxN6KG1fXkPFfqtcWfZy9dTmOooOibr UDFiLezD6sT8xsSpMVzxthquZ+2fGqTHw4ai4knzj6thtfQJhosp7//OR2fx sLlj7w0NSzW8uEZ28PbmwW/bXitpYzUU3Zyp8nM2T3h+NUxeetqrIpCH3CXN N5WV1NB9KFm5LowHqPhJRb5TxTdx0U/31/AI/cmVb57xJ4mHF1JSS1cdUiXm RZemVuu/XKuK1pBmHfkc/nrllxc4Bqhi6lHnoi+5POL3RAsf6SSbFvNwxwg1 phRVLPjL9C0/woPnnXVUL5Lw90hHeXD1vZqeL6+KREst074yHqG3r8kMliy8 wEPvitGkazdV4JOlKFF1i4dKkRPvaiJUsLKwy+kl3xb4VwULoxZ69PHtS55F K2X49r9tVPOw/rRqSniYCsaPVy+90MAj5gP3w+3XqNTxMLdgwZQlB8gw3ZIs 7l035l8yjh70MAm+y8OBi8oWW7aSifUmyrsVcZaRMe+P4+yXFTwMWGqfu8wj 40w9e+joRR4xH+n7FB78nH9ed9npq/z6SSh/sdk+cDcPDynTVRc1kVDrlP3a YBuPmOeM+fd1WFLzxIskfNK7u7aBH59Fe99Zu24hEfGOul1QSl9JwseA0OCN RjxiHiw9evxvjRYP7w0bfl52IRH59HTpmeuRTiTs956gIq7Eg2TCUlFjexLe dSc/3sXPx+miTVFPDUiCentujUVKs6uHGSRkFJ36HlBtjfKo02oH1Ej4Jefk FnzTGtGPF3bXqpKI/G9VXz3vkyIJMmKjnZTt1qjh7OblSpHQsfvk/h8p1jh4 RiKkToIkiOtya2ifbg9fK0bCSfPYnQb+1iAPJPrL/1UGW2n3sJKbNV78jG3S /K1M1KeM1U+jrcPKyE/NHilj8vczUGi0d0gZhYelF5rLWaP7j1if209lgR9+ cfHHo8Mpif95D/rdkIc9XIRHZGwL+aWMuMAl07Y+4qIp13CD5IgygRdDKy5V 7BQlIe+z+sjRk1yQdl77nMLf32nv6857CriYWfMhlC0p9OdmLnxWJ1FyZEmw V7OY83YFF81pQzbuiiQCr6QdXrEu8v3lo0iVuM7jorVVxItLI6GdGeZ70oyL Xz0do12awvmdGhepf0Mz0vVICJJPtTgjxgX5TVZtAz8emZPW2L/5YIVj+5dU zzcnEfgZOdfsylkuCePq5+xpemiFwI3MtGO2JAJ/syfdKO9yI8H2wNK9G3Kt iPyY+XH7dfJqK0xaE7wnyI9E4PuMmAevSgJIEE32k9QJtsK2m8/qvYJJWB5g MHnZBCvYlSqu2b2MRPQPpee3mpKjSChYN76Mqc7vL8kf+q8mkuD16rfGEhUr eK2s+SSeTCL6k69eRO+ZDNL/m2/+Dxvt3sw= "], {{}, {}, TagBox[ TooltipBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJwl1Gl8CAQYBvDNNpttbDa7zQ7bHLvvzTaSJOWodaoko+jaSkWoHCGVSoUO t3IURYdulcpRIkd034focKQoHf779eH/vJ+fD8+b0dBU3xgYEBBwkmi+LQgi mBBaEkoYrQgngkha04YoomlLDLG0I454EkgkiWRSaE8qHUgjnQwy6UgW2eTQ ic50oSu55JFPAYUUUUwJpZRRTgWVVFFNN2qopY7u9GjuT09Ophen0JtT6cNp 9OV0zqAf/RnAQM7kLOo5m3M4l/M4nwsYxIVcxMUM5hKGcClDaWAYw7mMyxnB SK7gSq7iaq6hkSau5TpGcT03cCOjGcNNjGUc47mZW7iVCUxkEpO5jSlMZRq3 M507uJO7mMHd3MO9zOQ+7ucBZjGbOTzIQzzMI8xlHvNZwEIWsZglPMpjLGUZ y1nB4zzBSlbxJE+xmjU8zTM8y3Os5Xle4EVe4mVe4VXW8Rqv8wbreZO3eJsN bGQTm3mHd9nCe2xlG++znR3sZBcfsJs9fMhHfMwnfMpnfM4XfMlXfM03fMt3 fM8P7OVH9rGfn/iZX/iVAxzkEIf5jSP8zh8c5Rh/8hfH+Zt/+Jf/aB5/IC0I IpgQWhJKGK0IJ4JIWtOGKKJpSwyxtCOOeBJIJIlkUmhPKh1II50MMulIFtnk 0InOdKErueSRTwGFFFFMCaWUUU4FlVRRTTdqqKWO7vQI/P//nQACzonW "]]}, RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{"26.7529099728188523193`8.", "+", RowBox[{"Log", "[", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"7381", " ", TagBox["a", HoldForm]}], "2520"]}], "-", RowBox[{"10", " ", TagBox["b", HoldForm]}]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "10"], "+", TagBox["b", HoldForm]}], ")"}], "4"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "9"], "+", TagBox["b", HoldForm]}], ")"}], "7"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "8"], "+", TagBox["b", HoldForm]}], ")"}], "5"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "7"], "+", TagBox["b", HoldForm]}], ")"}], "13"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "6"], "+", TagBox["b", HoldForm]}], ")"}], "5"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "5"], "+", TagBox["b", HoldForm]}], ")"}], "10"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "4"], "+", TagBox["b", HoldForm]}], ")"}], "17"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "3"], "+", TagBox["b", HoldForm]}], ")"}], "11"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "2"], "+", TagBox["b", HoldForm]}], ")"}], "10"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ TagBox["a", HoldForm], "+", TagBox["b", HoldForm]}], ")"}], "18"]}], "12983025373071256126433995475139024687630886626341683200000\ 000000000000"], "]"}]}], ")"}]}], "\[Equal]", "5.99146454710798`"}]], Annotation[#, (-2) (26.7529099728188523193`8. + Log[Rational[ 1, 129830253730712561264339954751390246876308866263416832000000000\ 00000000] E^(Rational[-7381, 2520] HoldForm[$CellContext`a] - 10 HoldForm[$CellContext`b]) ( Rational[1, 10] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^4 ( Rational[1, 9] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^7 ( Rational[1, 8] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^5 ( Rational[1, 7] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^13 ( Rational[1, 6] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^5 ( Rational[1, 5] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^10 ( Rational[1, 4] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^17 ( Rational[1, 3] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^11 ( Rational[1, 2] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^10 (HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^18]) == 5.99146454710798, "Tooltip"]& ], TagBox[ TooltipBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2], LineBox[CompressedData[" 1:eJwlzneYDwQAxvHfXaVURFspUUJDQ0ok4zh7nb3d4gYOt+/cuWHccqKhrDKz tWghWkaDQmZRoWHvUejT44/P97/3ed6qEQlhQ4MCgUAHaUJTQmhGc0JpQUta 0Zo2tKUd7YOubjvSiTA604WudKM7PehJL3rTh770oz8DCCeCSKKIZiCDiCGW OOIZzBD+P5/AMIYzgkSSSCaFVNJIJ4NMRpJFNqPIIZc88hnNGMYyjgIKKaKY EsZTygReYiKTeJlXeJXXmMzrvMEUpjKN6czgTd5iJrOYzRzmMo+3mc8CFrKI xSxhKct4h3d5j/f5gOWs4EM+4mM+4VNWsorVfMYa1vI5X/AlX/E161jPBjby Dd/yHd+zic38wI9sYSvb+Int7GAnu9jNHn7mF/ayj1/5jd/ZzwEO8gd/8hd/ c4jDHOEoxzjOCU5yitOc4SznOM8FLvIP/3KJy1whEBwIBBHMNVzLdZThem6g LDdyEzdTjvLcQgUqciu3cTt3cCd3cTeVuId7qcx93E8VHqAq1XiQh6jOw9Sg JrV4hEd5jMepzRM8yVM8TR2eoS7P8hz1eJ76NOAFGvIijWhME5oSQjOaE0oL WtKK1rShLe1oTwc60okwOtOFrnSjOz3oSS9604e+9KM/AwgngkiiiGYgg4gh ljjiGcwQhpLAMIYzgkSSSCaFVNJIJ4NMRpJFNqPIIZc88hnNGMYyjgIKKaKY EsZTygT+A2Loo3s= "]]}, RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{"26.7529099728188523193`8.", "+", RowBox[{"Log", "[", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"7381", " ", TagBox["a", HoldForm]}], "2520"]}], "-", RowBox[{"10", " ", TagBox["b", HoldForm]}]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "10"], "+", TagBox["b", HoldForm]}], ")"}], "4"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "9"], "+", TagBox["b", HoldForm]}], ")"}], "7"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "8"], "+", TagBox["b", HoldForm]}], ")"}], "5"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "7"], "+", TagBox["b", HoldForm]}], ")"}], "13"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "6"], "+", TagBox["b", HoldForm]}], ")"}], "5"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "5"], "+", TagBox["b", HoldForm]}], ")"}], "10"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "4"], "+", TagBox["b", HoldForm]}], ")"}], "17"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "3"], "+", TagBox["b", HoldForm]}], ")"}], "11"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ TagBox["a", HoldForm], "2"], "+", TagBox["b", HoldForm]}], ")"}], "10"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ TagBox["a", HoldForm], "+", TagBox["b", HoldForm]}], ")"}], "18"]}], "12983025373071256126433995475139024687630886626341683200000\ 000000000000"], "]"}]}], ")"}]}], "\[Equal]", "2.2788685663767305`"}]], Annotation[#, (-2) (26.7529099728188523193`8. + Log[Rational[ 1, 129830253730712561264339954751390246876308866263416832000000000\ 00000000] E^(Rational[-7381, 2520] HoldForm[$CellContext`a] - 10 HoldForm[$CellContext`b]) ( Rational[1, 10] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^4 ( Rational[1, 9] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^7 ( Rational[1, 8] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^5 ( Rational[1, 7] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^13 ( Rational[1, 6] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^5 ( Rational[1, 5] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^10 ( Rational[1, 4] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^17 ( Rational[1, 3] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^11 ( Rational[1, 2] HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^10 (HoldForm[$CellContext`a] + HoldForm[$CellContext`b])^18]) == 2.2788685663767305`, "Tooltip"]& ]}], {}}, AspectRatio->1, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->True, FrameLabel->{{ FormBox[ TagBox[ TagBox["b", HoldForm], HoldForm], TraditionalForm], None}, { FormBox[ TagBox[ TagBox["a", HoldForm], HoldForm], TraditionalForm], None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "GridLinesInFront" -> True}, PlotRange->{{0, 25}, {0, 12}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.930301288086996*^9, 3.930301315255494*^9}, 3.930301356756597*^9, 3.930301423826477*^9, 3.9303014704430017`*^9, 3.930301560047567*^9, 3.93030166142344*^9, 3.93030442189091*^9}, CellLabel->"Out[23]=",ExpressionUUID->"96dcb3a1-a37f-4325-944a-c17b5b0bb7c3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RegionPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"DeltaLogL", "[", RowBox[{"a", ",", "b"}], "]"}], "<", "max95"}], " ", ",", RowBox[{ RowBox[{"DeltaLogL", "[", RowBox[{"a", ",", "b"}], "]"}], "<", "max68"}]}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", "0", ",", "25"}], "}"}], ",", RowBox[{"{", RowBox[{"b", ",", "0", ",", "12"}], "}"}], ",", RowBox[{"FrameLabel", "->", "Automatic"}], ",", " ", RowBox[{"PlotPoints", "->", "10"}]}], "]"}]], "Input", CellChangeTimes->{{3.9297887949106207`*^9, 3.929788801495326*^9}, { 3.930301506351541*^9, 3.93030151802343*^9}, 3.9303015992464457`*^9, { 3.930304322391029*^9, 3.9303043272146473`*^9}}, CellLabel->"In[24]:=",ExpressionUUID->"94298491-766a-4eff-9526-cd7fdb073b4f"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"1.6612726506305885`*^-222\\\", \\\" \\\", \ \\\"6.399353449508471`*^-114\\\"}]\\) is too small to represent as a \ normalized machine number; precision may be lost.\"", 2, 24, 3, 28008352611990477689, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.930304422186548*^9}, CellLabel-> "During evaluation of \ In[24]:=",ExpressionUUID->"6bac47f4-6ea9-4ea4-aa32-85d8b590682a"], Cell[BoxData[ TemplateBox[{ "General", "munfl", "\"\\!\\(\\*RowBox[{\\\"1.6612726506305885`*^-222\\\", \\\" \\\", \ \\\"6.399353449508471`*^-114\\\"}]\\) is too small to represent as a \ normalized machine number; precision may be lost.\"", 2, 24, 4, 28008352611990477689, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.930304422219306*^9}, CellLabel-> "During evaluation of \ In[24]:=",ExpressionUUID->"e77112c0-fcce-4c97-836b-6834b01a647b"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" 1:eJylWHlUk1cW/xRBZDMEAgmQEBIQ/djCFiJSchVU3EDBT7CyubUUF5a615LU ZaSVYQClKkWLFQTjAoooKgW0VHBD1AZ3SyUioiLudYNJp3NfBpgzc+YM/3B+ 573vvrv87haHOUnh8wdSFKUcQFF//M+6t+BTu3oXiFRc4VMUC6KuOXynUkkI bv/xrwPrU7wJXrHrzWetMinBQ76ef6mnR0Zwss3mra2yYdCgGBfHMBxA+YhR PmKUjxjlI44zPPOyVWYFI5XHClQqG5gaVnVGpRISjO8hxvcQ43uI8T3EKF+l dL3b02NP5CNG+YhRPuIAjVeZRmYAmbUXs1UqEZGHGOUhpv7xNwKyejKqVSo2 CM9dbZSZecFH3d5vVSojKCsLkjJqH4Lh29LtKfl+BKO/EaN+KK/FZ7hnfYr4 n+9wyfd4rrxSUGdXb0vOAz96OmyvigWp1OejGYZP9MVz1Off33f4U/9Md/I9 2oMY/YP3UT/E6A/EKP9P/4pJ/NBejB9i5AtilI/86S3Pnsjrpa9W/77x7qsv xg/tQf1680cMJc535jFqR9hX88CMoiz/1Pepxz+/F4Adb9Zve1UUKON3Pujp cSD3EctMJ55PyXeGJXLJYoYxB+6Y1A8yMxFo5LtKVSoriC41UvDrjWFeQfC2 P+L0D3toN4JRPuqL8cf8LPzbN0dloTIiH+3vxUctxvuTjybYZYp9YFDaqpkU ZQiWKsFUuw2+BKP88x9qKxlGH27l/7JW1SEl5/geYtYxE9eRmYJ+9qB/0H70 B/IV44EY7et67BNDUTzIF3aPZBgxkY8Y/b8s7XEew5gSfyI/ML4YL9QX/YH6 9eUP6ot8QX2xPuD3Dc8qvDPn0sTfve3hE/4gbhTFZNanWMAMsHra02NL8g/l IUb9MR7oT8w/zFfEWO/W1R1q76nxIvJ75x+fYLQX9Ud+Yb6hPhhv9B/ah+9h fOxqo6cyDI/kL+qH/MJzlIf+Qn4hRnmoP9qH+mB8EGP8e/Fdex/5XXXp/eGU aE9ybuK0c+zCSBnhs9Xt1+k/JdD9+mO0JOGtKl9Xj6I2jjLYmzyY+EcyzbuS +UKf1OsXr62PMvX6hC+H832tKGM2Ob+2Uc6hprAhI62a99DHsl+/q/zENY6J 1vXHeSaxkcwSa3DbLQrwPeVB4oX6vD8xIoRJtyX1Srh4dpdCIgS9p5sqzwY7 kfxBvgZXv3+k4DmQ9/ImCUeqs8SQOEssuRPlAhmrzDczrkNhdfueWl8pB5pP 3X6tcLeBzPft42JiJXDkYKhGscge0jMObot45ASCuqicjvUiiGkzGVJa7glZ 67dNp8KGAM9846ZT5V6wIuhcFOVhCG0Kn2dcthOJ191YKWVsZgvKWy/30sXW kDnlatLtG0Ph8rTkx4q3djBwY5zX+hZfwp84+zr4aJAXVPk2P1Qk8OGy0dy0 CLkbyMLPBuUeFkJZYMSh0Ra6fuQxfpDXVw8HkHry/dVkzv0WmuCx1WOFhmFm IK1dvbEj2hHk3i6/ra21hb+wb2ckdothU/I5Xs5lW4g9Kb0r/yAm+fLqYFUy s5sF3RlX0ywKdP3K711qZ2Czrp7UslhXn6zyI/mL/E59NCKe4ermnemPJxaq KniQl7Tx7C2JTb/++8y7cptqox2UnSuxi2X7EL5gffAqO1Oo2sQj9TxY4DhW HSkk9a4zcF4WbSIm/NhsuTuDNnWELzQnVzZn6ffrbyHNiVL1REfYbjwhAvbY kvP4L++7LzdxhMKZc6touQU0xaSP+KtcBuHcknnqVgtoO1b0rnuSL1S164Wr W7nQXfzO5u1yCqYfm7O5440DXA6p9Ts5mwLXk8oHNYYiGNR4q9T/O2eY3Pn1 T/R0cwivFOgnFzjDeZ8HXOU0c2i7z28bUCqEgp2/DVHO5MCCb0Mnbb4khZAR +/SVq6yg/mnAvpEV3pBf1ryDdrWFa3tCAwzPGsDdd4rvEs2FcKOBp05vcYV9 kzid8kYhBBpn+558TcHw7UJ/zmRtv6hOv7Ng4QB4llI8MnehGLgu0pLPB4sg PdDInxOunSvyNcURfBGEDOf5c0LFMPelN9/teY8c8wn774tx6/05nmKoXq4M WvdABnXBay2VCl1/NXA0f67abELq0cBjZd+qZunq7wu1fi7dqJuHjl+saFHM c4Q2dts4p19dgX2vaSvTZgrJv7YNr57gBiYVx4KpbFMir7KgidqrMYQ1D6+Y hJVJwMT2RhiVawStVpeX3TztBc1Fiw4wNoa6+a7Wv4IZbwBNt/anjmrV1ud4 ixhqyGCoPL62W7DBB37ZdmTI3q8MYLSH3PO2mxQK0laY7lXoAxPu3HLUyBfc D9VVMCLtnPc+LeHzHVJSP5HfJVO651Lu+jCIVXCzeLQUasWdc6jl+nDu5OQK YbsM5rVx5lAH9Un/GMgui2RireEvXiOzz2cJYYxcfpherM0Ps+IXZ50FUNla qq9caQUnHtvudzlgRvK7K3t9+MWlhtAgdtMoltmDZtyXxxdYG0P4pFP3FUoB lL56dqlL5gll/uJ2xScC2C8c89CP5QU2xse/pWfyoS7gYke7qTOcej15U2Kw CAqnleZsuuAMBmd2BOZaiyDn3oNwp90jwHLfBOAUOcDvr5fc8/IaDLU7P83o 4DsS/Z89+NpPra0PGvHg1Z0ftHXRtkKWu19M6u3uJ0m5TKMZGHTO/njhOA+Y zK38njExgR3L4t+XRIrgxv27pspxljA8fdOZvAohqRc4v1R96meqXGJJ8vmW BesEnWcBmqa5Rd5nRP3mGffQhON0vQVUhy7KiuEP7jfPHDB75a9m28Nax43B tynPfvNNhtPWnI4lIvAL9FwWP5kNM6qPtMi1fEweIj318pwlSKeMkuZGOsLi sMIIpyUjYOs5bztlEgsuFW8/+qZYAgs99IuYAiPY90A+++cLTiAxO5qoDmLD 7DfRBw58yYa2z4Qh6m9sIXv39Ft+5lL4YUrKDHW5NXDD1csjBnjAgaCQLrmf ECY+zR8Up/ECR/9Px6rH2mnzwdn8rY0eNL67Oib3pRCm6+9iT6UcoSnyi1Gc JyJo8u38cfYyF7i7Qm9MrrsDnPArHyrN8IPqwawKWtvHQvP1jiw154LrrsHh 6rtcKPLJ7V68xgccIf53hbENVD38RJ7+Uh9eHZrrxzF0/L/32/91f/1v+2jf fe/fzvP/Mh/1nT/xft95EXHf+RD164v/4/yltb/veV990V7Ur9c8o53fcD7E eRT5ifMj8h33IZwPcR/A+RXtw3jgPIzzM9rb1/5e8fyXebLv/Ijy+s6rqC/e R3t678N8gtF+zHfUH+3vZa/Wnyiv9/7KJ/tU3/0K5aN9ffMd7cf9FP2D/kb7 kJ/4Hvob/Y/2YHzRHtQX/YP2oX/67jOIkW+oH/oDz+McVnZGsfvn563VQ2tU G3T8azYZb0uV6n7fCnm+vEE1gAWWC9e9THzEJ/oet7kxVr+4/+9HY361jlZ7 WBH7pd27HykkDsR/midf5NHaeStg/4FLDvQwCN3ddJgez4GP16cFtxTYQ2PO 6V30dR4Y3Df6RbJHAsITiyepi21g3p2l3tVLaIgKyMmmTwhgodS3qFwtAtcJ 1/fRidaQ6CC5nF7iBq8sfzpJN5rDD3qHPsTW+MD0bxSWSiUbem5eTLIt8YGu LTvYygEWRL9hs9rf9XB58JPXxKSKISLiv2v1v0UWLLKB/K4NnYpSO5jx0CfO 9Z0bpBU2b6Ub7KBBj5keP9sWXsSIt3QEOIC3yKp4KdsO1lnNfiQP0u27ksKr gYyhAHi3Tsx5b+hG+GAWca3o+R4RSLvctia+1M2f/t//rEd9sAL/7Rk7jVJ1 9SON01ZneMynX71aUxObr1LbknrhvlWYp0qygzu0RrEhwprwGe8nLK4ZrQYH MNi7K6e8qT/frSJkGsXn9mBjdvPrKy40uE40zKZbBND0MU/FC/EBVVNmJa3t v+8HegnaSrzh2mjzcrqGA2vWdkTdSRDCwgWbHtX4avu/y4RV548OgzsXbud1 BAhhT1NT6s3runqP+XL3w2oT5W5LyNEkn2t67QWHY6uj1BxrmF/9yH6Yl3e/ +iO1tJrPnLYg/K+6Glui2s4Fo6yqLeWpw8BoASdezeeAZgrn3OgnztAx86Sp MsyS+Kc9W86lFOaQKuxac8XAFX6IP22pXMSGorOv8u+6SqBOEGajfMoC/+uH okyOe0BzxevFanvdfmw0cBqfErMgaNF1Y8VziXYvtU9Rb2SB8Zu4mBe/e8Ll LVmp6uEsmCKIXOKizQdl08oGWps/IwLGr7QVaPvHmdl8pYAFN5JsNjem8wgf alYXdunlWUNdSqFGMcMelpfbB12P4QLk5X+kjhbArhOZad+VS4DVHPpKsc0G HoZOiDu81BPaHxeHqdfzgDlUfZA3Sis/8bM99Awu4dPUtnFB6qtCWPcyquHt EAd4ls0fk+vsAOuGDtrubegEbR9edMpzhFC37FRIYLUjfLKdG5z7vZDk6445 eXHqQA4kzF0aPv/nEVD55dkTdIKFrl9Jlk1SF9lA2+N3mvbtw4HuaJGpd9qT enoopaOrxljLi+hZbkeXOUJwdsEsdZgVnG5odw/c7wJWsPkzdTYbRv/yzcC/ pXpD2f0LfKXWX0E3C7pDFT7QGG91mi5iwUz6LCfnnh3Y3a7cQfvYgv9e/wNf 7fOABHezZ4oftXvn4QUXWpJ0/Rn7jZl10T56hTUc0WttdQhxgM0Wy0voLVw4 KhisdJ5oDWns5WNzRwuhSfbrpaqRXFiY2f5YfkMIfwfoaObU "], {{ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2.], Opacity[ 0.3], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJwBnwJg/SFib1JiAgAAANoAAAADAAAARC0aamsfZFsERxwbb25BV1YYHgYN YQ4UDgYHDwcIaF4JWlkhWAwSEwwNbQMJSCIgWVgRMCUPHRgGMigTNSoWKxkC LBoDbm0IaWgjJBEWXg8ISxIXZWQfIh4MBg4NBw8OWwkDYRMNHi4GOCcVJyQV SxYRKBcSSjIpBhgHcBkDAxoERkUbPxsFGxwFUTYuNh0GOy4eDB4Na2o/LRsE JRQOICIMXCMJPC8kFSQWDyUONzElXyYPZiAMEygSOTMoYikTFioVTysCGSwD Gi0ELyERVkEHU0kvDBMSKjQVJTEUPFMvVTkyKTITLjYGKDMXGz8EJjAPPjgV MjkoHToYIjseJzwkMDclXl8PTTUWMT0ULEMaL0khb0ICB0EIQkEBS0wWQD8F EksRQFIfa0AfTkwXTE0WQk8CO1AuTEsXZGofSlUyamQEbFkLQVYBVlcBbGZY EVgSBFsDIVkRYF8QX14QVDcwW1wJXVwKXF0jCV4IXFsKZ2YLWVoLX2AmZGUK YWITY2IUYmMpW2QKWGYMGFYHDmENP2oEYmEUXmgQI2gJaGkQJC8RZmcgRUcb LUYbx3JFg9gB6Hgd7qAzuY0mQm9BQW4IcW4CcXBtCG0Ju5IqvogZ658x09JK 1Lop15RO2LwB29xQ4uFUQGs/hJoL3t1RWWxYbm8CGXACbXADc4MBqqs653Qr jrA9j9EmjKcjkdQp86I07X8nwHUs0bkm1aE0na4QbnFtxsdFvbhCcHECl99S m4ogmK0KeoQLzYshpKM15Lsqppkfrn4QZmwLzMtIzs9Jiegdi5whisogh74Z orI0p54jrXwKs4IXtrU+oLQzlucrxcREqag4o+U1wsNDfesxkO0ngO4zofM0 dL8rqgK+6g== "]], PolygonBox[{{195, 193, 26, 67}, {154, 241, 103, 11}, {124, 234, 93, 10}, {208, 226, 84, 48}, {130, 215, 78, 23}, {129, 239, 99, 20}, { 120, 170, 58, 29}, {117, 194, 67, 44}, {224, 206, 73, 83}, {229, 228, 42, 53}, {147, 164, 53, 77}, {114, 201, 71, 69}, {133, 125, 49, 55}, {196, 118, 45, 68}, {126, 236, 96, 16}, {168, 144, 39, 56}, { 136, 192, 44, 25}, {200, 198, 69, 70}, {188, 189, 66, 1}, {118, 200, 70, 45}, {171, 149, 24, 58}, {203, 123, 34, 72}, {121, 183, 64, 5}, {181, 169, 56, 62}, {180, 179, 23, 51}, {178, 177, 21, 52}, { 134, 128, 51, 57}, {240, 152, 10, 101}, {218, 222, 81, 46}, {230, 115, 1, 87}, {172, 219, 80, 59}, {183, 151, 82, 64}, {221, 165, 54, 81}, {202, 204, 72, 32}, {149, 230, 87, 24}, {233, 122, 11, 90}, { 193, 197, 68, 26}, {223, 166, 31, 82}, {220, 218, 46, 80}, {210, 227, 85, 74}, {241, 155, 32, 103}, {175, 224, 83, 60}, {184, 217, 79, 66}, {214, 147, 77, 76}, {146, 213, 52, 42}, {242, 157, 16, 105}, {225, 133, 55, 84}, {234, 140, 35, 93}, {156, 233, 90, 33}, { 176, 129, 20, 61}, {177, 182, 62, 21}, {159, 142, 61, 49}, {127, 175, 60, 39}, {123, 172, 59, 34}, {153, 240, 101, 31}, {239, 145, 41, 99}, {236, 143, 38, 96}, {158, 242, 105, 35}, {217, 150, 43, 79}, {148, 214, 76, 78}, {141, 208, 48, 38}, {186, 211, 74, 41}, { 207, 205, 33, 73}, {201, 119, 28, 71}, {191, 135, 25, 43}, {165, 137, 29, 54}, {227, 134, 57, 85}}]}]}, {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2.], Opacity[ 0.3], EdgeForm[None], GraphicsGroupBox[{PolygonBox[CompressedData[" 1:eJxNlGlPk1EQhe+00lZQhKJCEaiAbAKSqFHjbtyjiRH3fd8V5INRo0Z/tIJW oJ6T+5jw4cl5e997586cmbeDj+dn5woppQVRFD8ipe9iQgyImvij9S5pVfzU c4d0p1hMeU9dLOv5pfSV6BZ9okX80nrDsYmzKkqcbZOuFyEmienY7WJd5HMn pBdEEmNiXKzoZ4X9BXFY3I8c+4n0qdgiZsQD8hjn/O+Uaxrh2TrK86z0htgo 3ojXokc09a4sXZK+ld7h3hoxXddz6TOxVTwSD8Vm0R+5zgq1tlOX6yvy3MRT e+LzZe4soV63P53cO4YHvreFuu3zED3y+hS+NqjRuf5NuVcD3O38Spwfjnze cUfxJ9GHDex3HkFPy/hkTzZJW4kf1NmgR23k0Uo875mOnF+VHlaIXWHvIn64 9iVqW8WHHvYXiDdCzCoxfe976TvRyx1DzK1/b2P/Lul+1g9Jz1H78ci///tb Jabz7+bOq+JU5LpdSxeelJi7Jnn2k+sVsRev7OUgfh4Ul/G3Rl/8HTmvBXIr su5cdksPMKuXpB/EdtaOsV5nbZk576Ve59hHnl+kF+mTc6mTj3sxuWbGasTc J50n5ifpZ7FDnBcfI8/gFF44vt8fYU/wzuv3pLfxy/Xdpcab0m+R5/to5O/Q s/U18vdW4J1z81y8iPy/kIg1vabPw8Q8Iz0deX6d4wx5nhVzzMGtyHd34lON Gq/TM/drhe/K/p+M/P84wZkO9lyL7JHP7onsr739B91bejs= "]], PolygonBox[CompressedData[" 1:eJwt0ldLA0EUhuHZECO2iFgimqAhEtQLsV4oNuxdIxbsGrtiIjZELH9aULC+ h/kuHmbZ3fnm7DmbzOaXcyHnXCvC2Aqcu0QtQtjFAarwy/Ml1js0IIksTlCD P56PsS6gGOWYxRPScLjBNAoQxx76lW33hvCKZnxyb4R1AmFEMYAZFKIJmcDX ZLWUYh/tiKhme3cQZdrTiy4UoQRvmFe9LVjHGj6c3zOOPmVbDcfoUJZ9860y LSuBucDXHNUZ1otRZdsZ91jFN/mNrBfKSKjnL3hW7yuwjR1U4p093awbemY1 HmkG1vtqfcsZYjrvHKfqfUy9OQz8uxHNcjHwtdhMrzCJetQhj2tdW82bmmFc NT2gTbWlWHPowZfzGTbLYfw4P1P7Fzo127R6+ahZWk+nlJnSHstaCfy/ZJn/ nHsz6A== "]]}]}, {}, {}, {}, {}, {}}, { {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2.], LineBox[{121, 5, 28, 119, 201, 114, 199, 198, 200, 118, 196, 197, 193, 195, 194, 117, 192, 136, 190, 135, 191, 116, 231, 150, 217, 184, 189, 188, 216, 131, 115, 230, 149, 171, 170, 120, 232, 137, 165, 221, 222, 218, 220, 219, 172, 123, 203, 204, 202, 138, 155, 241, 154, 132, 122, 233, 156, 139, 205, 207, 206, 224, 175, 127, 237, 144, 168, 169, 181, 182, 177, 178, 162, 243, 161, 213, 146, 187, 228, 229, 163, 164, 147, 214, 148, 215, 130, 179, 180, 160, 238, 128, 134, 227, 210, 211, 186, 212, 145, 239, 129, 176, 142, 159, 235, 125, 133, 225, 226, 208, 141, 185, 209, 143, 236, 126, 174, 157, 242, 158, 167, 140, 234, 124, 173, 152, 240, 153, 166, 223, 151, 183, 121}]}, {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2.], LineBox[CompressedData[" 1:eJwl0NkyggEAhuG/S+kGIqGFZIk2Wym7KEuyJUmWwqX3NB08M+/ZN/OFm53K SygIgiqn4oJzusSJ8EGeJVb5JUOCOb4psUaLNvfs8Mc/G+ySpcoCk+Ecz7zS YZEaffZ4Z58yKTbZYp1tfoiRpMcDj5zxxJARx5wwzwGHHFFhhSJpvvgkyi13 NLnhmlmuaFBnmUtmGFDgLTT9cgzBWB7r "]]}}}], {}}, AspectRatio->1, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox[ TagBox["b", HoldForm], TraditionalForm], None}, { FormBox[ TagBox["a", HoldForm], TraditionalForm], None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange->{{0, 25}, {0, 12}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.930304666363125*^9}, CellLabel->"Out[24]=",ExpressionUUID->"06b07437-31f1-44a3-8845-70315c41bfd8"] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{658.5, 773.25}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, Magnification:>1.25 Inherited, FrontEndVersion->"13.3 for Linux x86 (64-bit) (July 24, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"e064317f-1c94-4146-9511-3e6ce7d7ce4e" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 219, 3, 36, "Input",ExpressionUUID->"c22a04d7-f3c4-4738-819c-f8ab099b7991"], Cell[CellGroupData[{ Cell[802, 27, 402, 5, 146, "Chapter",ExpressionUUID->"9549d516-5ace-4b64-ab57-b4c23eb0b6cc"], Cell[CellGroupData[{ Cell[1229, 36, 443, 10, 67, "Subsection",ExpressionUUID->"18d2d4ba-0053-4efa-8860-76b67255daa6"], Cell[1675, 48, 4693, 115, 434, "Text",ExpressionUUID->"54edffc3-bd56-4e89-8141-c7a1de1ebefa"], Cell[6371, 165, 350, 9, 92, "Text",ExpressionUUID->"f5c1b5f1-3502-49bc-b512-63b0809d18c0"], Cell[6724, 176, 1141, 30, 245, "Input",ExpressionUUID->"4c93623e-25d5-486e-9939-ff8b3b8007b3"], Cell[7868, 208, 2358, 55, 185, "Text",ExpressionUUID->"3fd45ab2-7931-431d-8e1b-0d7ac7a35f80"], Cell[10229, 265, 375, 10, 63, "Text",ExpressionUUID->"eb0da4ee-8849-4b43-a0b3-c3aee26bfe73"], Cell[10607, 277, 477, 11, 36, "Input",ExpressionUUID->"c33909b1-c2de-40a8-977e-09b420d898b6"], Cell[CellGroupData[{ Cell[11109, 292, 320, 7, 36, "Input",ExpressionUUID->"4503f0a6-8c68-4db0-a80e-ebbd926e5c87"], Cell[11432, 301, 444, 6, 41, "Output",ExpressionUUID->"4575a744-f238-4331-b4af-9fe46cde9d37"] }, Open ]], Cell[CellGroupData[{ Cell[11913, 312, 331, 7, 36, "Input",ExpressionUUID->"19b5f482-9040-4d96-9260-c5d1c3f57c11"], Cell[12247, 321, 392, 6, 41, "Output",ExpressionUUID->"c1482471-1d79-4393-9bee-5dc02bb6f1c9"] }, Open ]], Cell[CellGroupData[{ Cell[12676, 332, 230, 4, 36, "Input",ExpressionUUID->"d23f1a61-b6eb-499b-99a0-d546b8a8a945"], Cell[12909, 338, 386, 6, 41, "Output",ExpressionUUID->"78d72a8c-b4ae-4b8c-8f7d-e4222afa9dfa"] }, Open ]], Cell[13310, 347, 1154, 27, 151, "Text",ExpressionUUID->"1fb0a751-8e02-441a-900c-0446819f7e74"], Cell[14467, 376, 461, 10, 92, "Text",ExpressionUUID->"b48ff0a7-bd6c-40be-8596-87eda5282919"], Cell[CellGroupData[{ Cell[14953, 390, 1413, 38, 245, "Input",ExpressionUUID->"3efb7260-eb85-47f0-970f-dc56cbcba546"], Cell[16369, 430, 486, 9, 68, "Output",ExpressionUUID->"7141fa81-5d09-4d88-acaf-7d373ca8c422"], Cell[16858, 441, 120085, 2033, 480, "Output",ExpressionUUID->"835009b9-f73c-4094-9dac-e793cf04dfdd"] }, Open ]], Cell[136958, 2477, 231, 4, 36, "Input",ExpressionUUID->"358f490d-1f1f-4ef5-8170-d82ae9b8ef7a"], Cell[137192, 2483, 1254, 33, 245, "Input",ExpressionUUID->"61efb2b6-7e28-476e-aa88-e658cb6dc367"], Cell[138449, 2518, 1464, 31, 237, "Text",ExpressionUUID->"0d742181-c405-4935-bf7a-9a463bebd4b0"], Cell[139916, 2551, 785, 17, 207, "Text",ExpressionUUID->"4f4ee7d2-8381-47c4-a6d7-de9df6716975"], Cell[140704, 2570, 1445, 33, 219, "Input",ExpressionUUID->"8921d988-41bc-4fe7-a492-e9a64c09d3ac"], Cell[142152, 2605, 2621, 65, 211, "Text",ExpressionUUID->"707f6808-59bf-4ab7-9927-27cdb3f79406"], Cell[144776, 2672, 497, 8, 92, "Text",ExpressionUUID->"31ac254d-9b58-4077-b62f-2b4168e86063"], Cell[145276, 2682, 1014, 22, 95, "Input",ExpressionUUID->"68653c04-0e61-4975-8be2-794f8ddcd716"], Cell[CellGroupData[{ Cell[146315, 2708, 570, 15, 63, "Input",ExpressionUUID->"684fa3a1-5de0-448c-ae78-9b346ed11650"], Cell[146888, 2725, 28756, 735, 301, "Output",ExpressionUUID->"b7b0ae2a-ce98-4077-82ba-f15091e8f542"] }, Open ]], Cell[175659, 3463, 614, 12, 121, "Text",ExpressionUUID->"eafd119a-68e2-4bfc-a5c7-eca87e28d1f7"], Cell[176276, 3477, 1326, 23, 121, "Input",ExpressionUUID->"e6bb5db0-be0d-46c0-8d0b-71c54ca530e5"], Cell[CellGroupData[{ Cell[177627, 3504, 1198, 19, 36, "Input",ExpressionUUID->"9e5c628b-b714-4b78-b325-209489475956"], Cell[178828, 3525, 1267, 23, 68, "Output",ExpressionUUID->"0a98c411-526b-407a-b6b0-b7d39ea98861"] }, Open ]], Cell[CellGroupData[{ Cell[180132, 3553, 528, 8, 36, "Input",ExpressionUUID->"5b9967b7-7b62-4dd4-892c-56e596a85332"], Cell[180663, 3563, 8579, 244, 303, "Output",ExpressionUUID->"5378cc11-5252-48aa-a5a2-7a8f50f80787"] }, Open ]], Cell[CellGroupData[{ Cell[189279, 3812, 786, 19, 115, "Input",ExpressionUUID->"1e3f4a12-3c5f-47fb-a338-7e72013076e7"], Cell[190068, 3833, 813, 16, 41, "Output",ExpressionUUID->"a661af93-8552-4786-8cc1-34775363a2df"] }, Open ]], Cell[190896, 3852, 799, 19, 207, "Text",ExpressionUUID->"1705f820-626c-4e39-b34c-50fe802cbeae"], Cell[191698, 3873, 485, 8, 63, "Text",ExpressionUUID->"f2c2f33c-97a8-47ee-8f50-6ceb786128d8"], Cell[192186, 3883, 1169, 26, 89, "Input",ExpressionUUID->"768ec7c2-4823-410e-8427-911d74482c54"], Cell[CellGroupData[{ Cell[193380, 3913, 788, 16, 63, "Input",ExpressionUUID->"f687c8f5-e250-42fe-b61b-0258c1ed4757"], Cell[194171, 3931, 214, 3, 41, "Output",ExpressionUUID->"df541746-a081-4a66-9143-baf78dd96054"], Cell[194388, 3936, 216, 3, 41, "Output",ExpressionUUID->"fa5a02bc-3714-4cae-b301-40a4c144e031"] }, Open ]], Cell[CellGroupData[{ Cell[194641, 3944, 1115, 23, 98, "Input",ExpressionUUID->"132ecf72-93c6-46ad-a3f1-12aa8f9ea562"], Cell[195759, 3969, 527, 12, 58, "Message",ExpressionUUID->"354e606f-17f4-4fbd-8356-7c38a5ad01ec"], Cell[196289, 3983, 527, 12, 58, "Message",ExpressionUUID->"e5c72d64-0c01-448e-99d7-098651a62cf5"], Cell[196819, 3997, 23623, 466, 473, "Output",ExpressionUUID->"96dcb3a1-a37f-4325-944a-c17b5b0bb7c3"] }, Open ]], Cell[CellGroupData[{ Cell[220479, 4468, 840, 20, 98, "Input",ExpressionUUID->"94298491-766a-4eff-9526-cd7fdb073b4f"], Cell[221322, 4490, 481, 11, 58, "Message",ExpressionUUID->"6bac47f4-6ea9-4ea4-aa32-85d8b590682a"], Cell[221806, 4503, 481, 11, 58, "Message",ExpressionUUID->"e77112c0-fcce-4c97-836b-6834b01a647b"], Cell[222290, 4516, 11507, 200, 473, "Output",ExpressionUUID->"06b07437-31f1-44a3-8845-70315c41bfd8"] }, Open ]] }, Open ]] }, Open ]] } ] *)