(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 6.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 25219, 683] NotebookOptionsPosition[ 23212, 619] NotebookOutlinePosition[ 23608, 636] CellTagsIndexPosition[ 23565, 633] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["4.Computeralgebra und Quantenmechanik", "Subtitle", CellChangeTimes->{{3.497847685534316*^9, 3.497847686688397*^9}}], Cell[CellGroupData[{ Cell["Harmonischer Oszillator in der Quantenmechanik", "Section", CellChangeTimes->{{3.497847687877708*^9, 3.497847689104889*^9}, { 3.532063021469096*^9, 3.532063022642334*^9}}], Cell[CellGroupData[{ Cell["\<\ Der Hamiltonoperator des Harmonischen Oszillators in der Quantenmechik lautet\ \>", "Subsubsection", CellChangeTimes->{{3.494904063861188*^9, 3.494904078889677*^9}}], Cell[BoxData[ RowBox[{"H", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"p", "^", "2"}], "/", RowBox[{"(", RowBox[{"2", "\[VeryThinSpace]", "m"}], ")"}]}], " ", "+", " ", RowBox[{ RowBox[{"(", RowBox[{"m", "\[VeryThinSpace]", RowBox[{"\[Omega]", "^", "2"}], RowBox[{"x", "^", "2"}]}], ")"}], "/", "2"}]}]}]], "Text", CellChangeTimes->{{3.494904083406437*^9, 3.4949041293749857`*^9}, { 3.500639160849016*^9, 3.5006391629666853`*^9}, {3.500692557625212*^9, 3.500692567230387*^9}}], Cell[TextData[{ "Eine elegante Art und Weise, die Energieeigenwerte und \ dazugeh\[ODoubleDot]rigen Wellenfunktionen auszurechnen basiert auf der sog. \ \"algebraischen Methode\", die hier in ", StyleBox["Mathematica", FontSlant->"Italic"], " realisiert werden soll." }], "Text", CellChangeTimes->{{3.494904147204727*^9, 3.494904243329873*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Auf - und Absteigeoperatoren", "Subsubsection", CellChangeTimes->{{3.494904249652938*^9, 3.4949042594973183`*^9}}], Cell["\<\ a = ( x+ i p)/Sqrt[2] ac = (x - i p)/Sqrt[2] (Beachte: \"a\" und \"ac\" sind Operatoren!)\ \>", "Text", CellChangeTimes->{{3.494904290216488*^9, 3.494904317825111*^9}, { 3.494904470070025*^9, 3.494904487890999*^9}, {3.494904688037101*^9, 3.494904699135509*^9}, {3.499656191445369*^9, 3.499656230140438*^9}, { 3.500692537110567*^9, 3.500692554336496*^9}}], Cell["\<\ Aus der Kommutatorrelation [x, p] = i folgt unmittelbar [a, ac] = 1 \ \>", "Text", CellChangeTimes->{{3.494904337360376*^9, 3.494904384728999*^9}, { 3.494904690776085*^9, 3.494904690883914*^9}, {3.49965624705748*^9, 3.4996562625782967`*^9}, {3.500692427634949*^9, 3.500692428406611*^9}, { 3.500692577780733*^9, 3.50069258512098*^9}}], Cell["\<\ Au\[SZ]erdem kann der Hamiltonoperator folgenderma\[SZ]en geschrieben werden : H = ac * a + 1/2 Es kann gezeigt werden, dass gilt: a |n> = Sqrt[n] |n-1> ac|n> = Sqrt[n+1] |n+1> ( |n> sind die Eigenzust\[ADoubleDot]nde von H: H|n> = En |n> ) Damit ergeben sich folgende Energieeigenwerte: En = n + 1/2\ \>", "Text", CellChangeTimes->{{3.4949044083849907`*^9, 3.494904463124463*^9}, 3.494904500566074*^9, {3.494904692981658*^9, 3.494904706818487*^9}, { 3.4996562722758627`*^9, 3.499656278874619*^9}, {3.4996673534905033`*^9, 3.4996674629167137`*^9}, {3.500639170093465*^9, 3.500639199397808*^9}, { 3.50069246824815*^9, 3.500692470367701*^9}, {3.500692504065642*^9, 3.500692528185319*^9}, {3.500692595171891*^9, 3.500692612930292*^9}, { 3.500692911488534*^9, 3.500692917934628*^9}, {3.532750225134959*^9, 3.532750257404704*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Implementierung von a und ac in Mathematica :", "Subsubsection", CellChangeTimes->{{3.494904747912871*^9, 3.4949047764996433`*^9}}], Cell["Ortsraum: x = x und p = - i d/dx", "Text", CellChangeTimes->{{3.499656080394104*^9, 3.499656187758821*^9}, { 3.499657711452271*^9, 3.4996577185225363`*^9}, {3.500692667016925*^9, 3.500692677793173*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"a", "[", "f_", "]"}], ":=", RowBox[{"Together", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"x", "*", "f"}], "+", RowBox[{"D", "[", RowBox[{"f", ",", "x"}], "]"}]}], ")"}], "/", RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}], "\n", RowBox[{ RowBox[{"ac", "[", "f_", "]"}], ":=", RowBox[{"Together", "[", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"x", "*", "f"}], "-", RowBox[{"D", "[", RowBox[{"f", ",", "x"}], "]"}]}], ")"}], "/", RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}], "Input", CellChangeTimes->{ 3.4996563182316113`*^9, {3.499666982190744*^9, 3.49966701032526*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Check", ":"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"a", "[", RowBox[{"ac", "[", RowBox[{"f", "[", "x", "]"}], "]"}], "]"}], " ", "-", " ", RowBox[{"ac", "[", RowBox[{"a", "[", RowBox[{"f", "[", "x", "]"}], "]"}], "]"}]}], "//", "Expand"}]}]], "Input", CellChangeTimes->{{3.532750265779798*^9, 3.53275032996496*^9}}], Cell["\<\ a[f] und ac[f] k\[ODoubleDot]nnen nun verwendet werden, um 1. die Grundzustandswellenfunktion zu berechnen, 2. alle angeregten Wellenfunktionen zu berechen, 3. Orthogonalit\[ADoubleDot]t und Normierung zu \[UDoubleDot]berpr\ \[UDoubleDot]fen, 4. Zeitliche Entwicklung von Zust\[ADoubleDot]nden zu betrachten.\ \>", "Text", CellChangeTimes->{{3.494904886033023*^9, 3.494905057374784*^9}, { 3.499657229491544*^9, 3.499657230930781*^9}, {3.499667508524683*^9, 3.499667527574925*^9}, {3.500692736749532*^9, 3.50069274854761*^9}}], Cell["zu 1. : Grundzustand", "Text", CellChangeTimes->{{3.494905061040306*^9, 3.494905064246504*^9}, { 3.499656541846158*^9, 3.4996565444414387`*^9}}], Cell[BoxData[ RowBox[{"eq", " ", "=", " ", RowBox[{ RowBox[{"a", "[", RowBox[{"psi0", "[", "x", "]"}], "]"}], "\[Equal]", "0"}]}]], "Input", CellChangeTimes->{{3.494905080589509*^9, 3.4949050924906063`*^9}}], Cell[BoxData[ RowBox[{"sol", " ", "=", " ", RowBox[{"DSolve", "[", RowBox[{"eq", ",", RowBox[{"psi0", "[", "x", "]"}], ",", "x"}], "]"}]}]], "Input", CellChangeTimes->{{3.494905108252088*^9, 3.494905129853825*^9}}], Cell[BoxData[{ RowBox[{"norm0", " ", "=", " ", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"psi0", "[", "x", "]"}], "^", "2"}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Clear", "[", "psi", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"psi", "[", "0", "]"}], " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"psi0", "[", "x", "]"}], "/.", RowBox[{"sol", "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"norm0", "\[Equal]", "1"}], ",", RowBox[{"{", RowBox[{"C", "[", "1", "]"}], "}"}]}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.499656362607533*^9, 3.499656510874209*^9}, { 3.499656590403164*^9, 3.499656594262248*^9}, {3.499664519311111*^9, 3.499664539031049*^9}, {3.532750419338483*^9, 3.532750428625108*^9}}], Cell["zu 2. : angeregte Zust\[ADoubleDot]nde", "Text", CellChangeTimes->{{3.4949051450074167`*^9, 3.494905154026602*^9}, { 3.4996565586136847`*^9, 3.499656566264102*^9}}], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"psi", "[", RowBox[{"n_", "/;", RowBox[{"n", ">", "0"}]}], "]"}], ":=", RowBox[{ RowBox[{"psi", "[", "n", "]"}], "=", RowBox[{ RowBox[{"ac", "[", RowBox[{"psi", "[", RowBox[{"n", "-", "1"}], "]"}], "]"}], "/", RowBox[{"Sqrt", "[", "n", "]"}]}]}]}], ";"}]], "Input", CellChangeTimes->{{3.4949051942325*^9, 3.4949052159708633`*^9}, { 3.494905255521799*^9, 3.494905296751522*^9}, {3.494905382013596*^9, 3.494905386899569*^9}, {3.494905438498192*^9, 3.494905451476842*^9}, { 3.4996566028886957`*^9, 3.4996566576475477`*^9}, {3.499656710601952*^9, 3.49965676612484*^9}, {3.499656837016584*^9, 3.499656841955791*^9}, { 3.499664465551395*^9, 3.499664470377872*^9}, {3.49966450791164*^9, 3.499664508738124*^9}, {3.499664685599083*^9, 3.499664690612939*^9}, { 3.4996647346262207`*^9, 3.499664736535309*^9}}], Cell[BoxData[ RowBox[{"psi", "[", "12", "]"}]], "Input", CellChangeTimes->{{3.494905223400607*^9, 3.494905234512487*^9}, { 3.4949053009861393`*^9, 3.494905328564506*^9}, 3.4949053975215178`*^9, { 3.494905457503003*^9, 3.494905478043128*^9}, {3.499656715719116*^9, 3.4996567693864117`*^9}, {3.499656848022106*^9, 3.499656848153178*^9}, { 3.499663096137237*^9, 3.499663099210696*^9}, 3.4996644904126577`*^9, { 3.4996645887622004`*^9, 3.499664600433996*^9}, 3.4996670898848*^9}], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"psi", "[", "n", "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "0", ",", "10", ",", "1", ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.499656982692081*^9, 3.499656996609709*^9}, 3.499663086502812*^9, 3.499664715587517*^9, {3.499667118314343*^9, 3.499667118897994*^9}}], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"psi", "[", "n", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "5"}], ",", "5"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "0.8"}], ",", "0.8"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "0", ",", "10", ",", "1", ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.499657048511593*^9, 3.499657049523489*^9}}], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"psi", "[", "n", "]"}], "^", "2"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "6"}], ",", "6"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"n", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "1", ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.4996571438544073`*^9, 3.499657174168947*^9}, { 3.500639228361953*^9, 3.500639231654223*^9}, {3.532750540095222*^9, 3.53275054326089*^9}, {3.532750577006872*^9, 3.532750608286693*^9}}], Cell["Kontrolle : Energieeigenwerte", "Text", CellChangeTimes->{{3.499657874444578*^9, 3.499657881316555*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"en", "[", "n_", "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"ac", "[", " ", RowBox[{"a", "[", " ", RowBox[{"psi", "[", "n", "]"}], " ", "]"}], " ", "]"}], " ", "/", " ", RowBox[{"psi", "[", "n", "]"}]}], "+", RowBox[{"1", "/", "2"}]}]}], "\[IndentingNewLine]", RowBox[{"Table", "[", RowBox[{ RowBox[{"en", "[", "n", "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "0", ",", "10"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.499657899586671*^9, 3.499657939628168*^9}}], Cell["\<\ zu 3. Orthogonalit\[ADoubleDot]t und Normierung \ \>", "Text", CellChangeTimes->{{3.499667493904562*^9, 3.499667494077772*^9}}], Cell[BoxData[ RowBox[{"Table", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"psi", "[", "n", "]"}], "*", RowBox[{"psi", "[", "m", "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "0", ",", "10"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"m", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.4996572591892242`*^9, 3.499657262607244*^9}, { 3.499657307291367*^9, 3.499657309910776*^9}, {3.499657350321679*^9, 3.4996573528490953`*^9}}], Cell[BoxData[ RowBox[{"MatrixForm", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.532066243105652*^9, 3.532066246192168*^9}}], Cell["\<\ zu 4. Zeitliche Entwicklung eines Gau\[SZ] - Wellenpakets\ \>", "Text", CellChangeTimes->{{3.4996573966596746`*^9, 3.499657412965377*^9}, { 3.499661544264019*^9, 3.49966155480803*^9}, {3.499667498025579*^9, 3.49966749935172*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"psiG", "[", "x_", "]"}], " ", "=", " ", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", "*", "k", "*", "x"}], "]"}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"1", "/", "Pi"}], "/", RowBox[{"sig", "^", "2"}]}], ")"}], "^", RowBox[{"(", RowBox[{"1", "/", "4"}], ")"}]}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"x", "^", "2"}]}], "/", "2"}], "/", RowBox[{"sig", "^", "2"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"psiG", "[", "x", "]"}], "]"}], "^", "2"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"k", ">", "0"}], ",", RowBox[{"sig", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Conjugate", "[", RowBox[{"psiG", "[", "x", "]"}], "]"}], "*", RowBox[{"(", RowBox[{"-", "I"}], ")"}], "*", RowBox[{"D", "[", RowBox[{ RowBox[{"psiG", "[", "x", "]"}], ",", "x"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"k", ">", "0"}], ",", RowBox[{"sig", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.499657433542829*^9, 3.4996574568840923`*^9}, { 3.4996575302769423`*^9, 3.499657560622835*^9}, {3.4996586535187063`*^9, 3.499658772467211*^9}, {3.4996589015691643`*^9, 3.4996589018524427`*^9}, { 3.499659025984106*^9, 3.49965904890989*^9}, {3.4996592405253487`*^9, 3.499659240895134*^9}, {3.499659299448138*^9, 3.499659300400435*^9}, { 3.4996593532205887`*^9, 3.4996593553649*^9}, {3.499659416982379*^9, 3.499659417080007*^9}, 3.4996596081368113`*^9, {3.4996597106291723`*^9, 3.499659718543159*^9}, 3.4996600584804897`*^9, {3.499661386778057*^9, 3.499661386834908*^9}, {3.499661582663158*^9, 3.49966158272733*^9}, { 3.499664791783779*^9, 3.499664841821908*^9}, {3.4996648985671663`*^9, 3.4996648986732283`*^9}, {3.49966637619652*^9, 3.4996663860916224`*^9}, { 3.499666656965322*^9, 3.499666681526388*^9}, {3.4996667303341208`*^9, 3.4996667304700727`*^9}, {3.500693586124814*^9, 3.500693586325525*^9}, { 3.50069368937351*^9, 3.500693689749355*^9}, {3.5320688141761923`*^9, 3.532068816395569*^9}, {3.5320690772814302`*^9, 3.53206907736208*^9}, { 3.532069142271037*^9, 3.5320691449981127`*^9}, {3.532069248966476*^9, 3.5320692492450123`*^9}, {3.532069290899486*^9, 3.5320693229389277`*^9}, { 3.532069381289418*^9, 3.532069470973896*^9}, {3.532069506416687*^9, 3.532069508478673*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"psiG", "[", "x_", "]"}], "=", RowBox[{ RowBox[{"psiG", "[", "x", "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"k", "\[Rule]", "1"}], ",", RowBox[{"sig", "\[Rule]", RowBox[{"4", "/", "10"}]}]}], "}"}], " "}]}]], "Input", CellChangeTimes->{{3.532069485159432*^9, 3.5320695037220697`*^9}, { 3.53275161064181*^9, 3.532751651355812*^9}, {3.532751693791991*^9, 3.532751696634102*^9}}], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"x", "^", "2"}], "/", "2"}], ",", RowBox[{ RowBox[{"Abs", "[", RowBox[{"psiG", "[", "x", "]"}], "]"}], "^", "2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.499659359332623*^9, 3.499659401298365*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", "co", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"co", "[", "n_", "]"}], " ", ":=", " ", RowBox[{ RowBox[{"co", "[", "n", "]"}], "=", RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ RowBox[{"psiG", "[", "x", "]"}], "*", RowBox[{"psi", "[", "n", "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "Infinity"}], ",", "Infinity"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "100"}]}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.499657581150323*^9, 3.499657590181448*^9}, { 3.499660601022273*^9, 3.4996606307192173`*^9}, 3.499660674441536*^9, { 3.499661443088064*^9, 3.499661449367621*^9}, 3.50069340600643*^9, { 3.53206889137062*^9, 3.5320689506202917`*^9}, {3.532751125554093*^9, 3.532751128061462*^9}, {3.5327511704296513`*^9, 3.532751174020401*^9}, { 3.532751239898473*^9, 3.532751240180849*^9}, {3.532751328223089*^9, 3.5327513294011297`*^9}, {3.532751479978243*^9, 3.53275148235716*^9}, { 3.532751660362761*^9, 3.5327516822274427`*^9}, {3.5327517150029697`*^9, 3.532751715585663*^9}, {3.532751753067531*^9, 3.532751753298115*^9}, { 3.532751885381629*^9, 3.532751892942254*^9}, {3.532751933486479*^9, 3.5327519454342117`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"psiG", "[", "x", "]"}], "*", RowBox[{"psi", "[", "10", "]"}]}]], "Input", CellChangeTimes->{{3.532068848526391*^9, 3.532068848980425*^9}, { 3.532751345894858*^9, 3.5327513604868937`*^9}, {3.532751722699727*^9, 3.53275172403195*^9}}], Cell[BoxData[ RowBox[{"co", "[", "15", "]"}]], "Input", CellChangeTimes->{{3.49965759650224*^9, 3.499657611564496*^9}, { 3.499666641572398*^9, 3.499666668417447*^9}, {3.50069341174733*^9, 3.500693412114068*^9}, {3.532066346377718*^9, 3.532066355688394*^9}, { 3.532068840346045*^9, 3.5320688406559896`*^9}, {3.5320689186244164`*^9, 3.532068920173788*^9}, {3.532751067035274*^9, 3.532751067330855*^9}, { 3.532751491822872*^9, 3.532751504251957*^9}, {3.532751760892295*^9, 3.5327517609915247`*^9}, {3.5327518778936663`*^9, 3.5327518800236483`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"psiG", "[", RowBox[{"x_", ",", "t_"}], "]"}], "=", RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{"co", "[", "kk", "]"}], "*", RowBox[{"psi", "[", "kk", "]"}], "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], "*", RowBox[{"(", RowBox[{"kk", "+", RowBox[{"1", "/", "2"}]}], ")"}], "*", "t"}], "]"}]}], ",", RowBox[{"{", RowBox[{"kk", ",", "0", ",", "20"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.4996576229397717`*^9, 3.499657659156399*^9}, { 3.4996579546210213`*^9, 3.4996579801547956`*^9}, {3.4996582812994337`*^9, 3.4996582855617437`*^9}, {3.499658403160851*^9, 3.499658407024187*^9}, { 3.499658810017425*^9, 3.4996588104705667`*^9}, {3.4996589854815903`*^9, 3.4996589858803596`*^9}, {3.499659854086296*^9, 3.499659861173976*^9}, { 3.499659894183835*^9, 3.499659894255453*^9}, {3.4996600921571703`*^9, 3.499660092593625*^9}, {3.499660206142445*^9, 3.499660206281543*^9}, { 3.499661285785104*^9, 3.499661287194436*^9}, 3.4996614664944477`*^9, 3.499661629794072*^9, {3.499662219988577*^9, 3.4996622245512342`*^9}, { 3.4996649296430387`*^9, 3.4996649300245047`*^9}, {3.500693551652738*^9, 3.500693551878162*^9}, {3.500693607813979*^9, 3.500693671132685*^9}, { 3.500693754878818*^9, 3.500693755166534*^9}, {3.5320691024795427`*^9, 3.5320691071721478`*^9}, {3.532069636581159*^9, 3.532069640398696*^9}, { 3.5327511600534277`*^9, 3.532751245809326*^9}, {3.532751767539442*^9, 3.532751767782406*^9}, {3.5327520029703608`*^9, 3.532752003148282*^9}}], Cell[BoxData[ RowBox[{"psiG", "[", RowBox[{"0", ",", "0"}], "]"}]], "Input", CellChangeTimes->{{3.499666604336748*^9, 3.4996666183624697`*^9}, { 3.4996669013046637`*^9, 3.4996669015272427`*^9}}], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"psiG", "[", "x", "]"}], "]"}], "^", "2"}], ",", RowBox[{ RowBox[{"Abs", "[", RowBox[{"psiG", "[", RowBox[{"x", ",", "0"}], "]"}], "]"}], "^", "2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "1.5"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.499659805593872*^9, 3.499659849583693*^9}, { 3.499659913336212*^9, 3.499659951956901*^9}, {3.499660083603488*^9, 3.499660084291668*^9}, {3.49966012074971*^9, 3.499660120945928*^9}, { 3.49966147391676*^9, 3.4996614754914017`*^9}, {3.499664941517023*^9, 3.4996649416057663`*^9}, {3.499666543689835*^9, 3.499666553556576*^9}, { 3.499666840616707*^9, 3.499666851794297*^9}, {3.499666890881934*^9, 3.4996668911569357`*^9}}], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"psiG", "[", RowBox[{"x", ",", "t"}], "]"}], "]"}], "^", "2"}], ",", RowBox[{ RowBox[{"x", "^", "2"}], "/", "2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "1.5"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"t", ",", "0"}], "}"}], ",", "0", ",", "10", ",", ".005", ",", RowBox[{"AppearanceElements", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"ControlType", "\[Rule]", "Animator"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.499658022653472*^9, 3.4996580538248367`*^9}, { 3.499658096516246*^9, 3.499658101014904*^9}, {3.499658172745953*^9, 3.499658270649023*^9}, {3.499658420111658*^9, 3.499658428181595*^9}, { 3.499658842058803*^9, 3.49965884336624*^9}, {3.4996591057377*^9, 3.499659152399496*^9}, {3.499659194237298*^9, 3.499659195068671*^9}, 3.4996595912927303`*^9, {3.4996597446444597`*^9, 3.499659769085127*^9}, { 3.499661497986257*^9, 3.499661499527996*^9}, {3.4996668748738213`*^9, 3.49966687500257*^9}, {3.500693779920811*^9, 3.500693780602441*^9}}] }, Open ]] }, Open ]] }, Open ]] }, ScreenStyleEnvironment->"Presentation", WindowSize->{1592, 873}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, ShowSelection->True, FrontEndVersion->"8.0 for Linux x86 (64-bit) (October 10, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 123, 1, 95, "Subtitle"], Cell[CellGroupData[{ Cell[715, 27, 180, 2, 126, "Section"], Cell[CellGroupData[{ Cell[920, 33, 176, 3, 48, "Subsubsection"], Cell[1099, 38, 530, 14, 49, "Text"], Cell[1632, 54, 350, 8, 83, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[2019, 67, 121, 1, 48, "Subsubsection"], Cell[2143, 70, 372, 8, 117, "Text"], Cell[2518, 80, 351, 7, 83, "Text"], Cell[2872, 89, 875, 17, 287, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[3784, 111, 143, 1, 48, "Subsubsection"], Cell[3930, 114, 220, 3, 49, "Text"], Cell[4153, 119, 697, 22, 90, "Input"], Cell[4853, 143, 445, 13, 90, "Input"], Cell[5301, 158, 542, 10, 185, "Text"], Cell[5846, 170, 153, 2, 49, "Text"], Cell[6002, 174, 220, 5, 52, "Input"], Cell[6225, 181, 228, 5, 52, "Input"], Cell[6456, 188, 1104, 31, 127, "Input"], Cell[7563, 221, 173, 2, 49, "Text"], Cell[7739, 225, 912, 20, 52, "Input"], Cell[8654, 247, 493, 7, 52, "Input"], Cell[9150, 256, 419, 10, 52, "Input"], Cell[9572, 268, 599, 17, 90, "Input"], Cell[10174, 287, 692, 18, 52, "Input"], Cell[10869, 307, 111, 1, 49, "Text"], Cell[10983, 310, 549, 15, 90, "Input"], Cell[11535, 327, 138, 3, 49, "Text"], Cell[11676, 332, 703, 19, 90, "Input"], Cell[12382, 353, 129, 2, 52, "Input"], Cell[12514, 357, 245, 5, 49, "Text"], Cell[12762, 364, 2928, 69, 201, "Input"], Cell[15693, 435, 450, 12, 52, "Input"], Cell[16146, 449, 424, 13, 52, "Input"], Cell[16573, 464, 1299, 26, 127, "Input"], Cell[17875, 492, 276, 6, 52, "Input"], Cell[18154, 500, 562, 8, 52, "Input"], Cell[18719, 510, 1659, 32, 52, "Input"], Cell[20381, 544, 201, 4, 52, "Input"], Cell[20585, 550, 987, 24, 52, "Input"], Cell[21575, 576, 1597, 38, 164, "Input"] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)