(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 37708, 950] NotebookOptionsPosition[ 36036, 894] NotebookOutlinePosition[ 36432, 911] CellTagsIndexPosition[ 36389, 908] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["4. Computeralgebra und Quantenmechanik", "Subtitle", CellChangeTimes->{ 3.494923504200873*^9, {3.4978477595492983`*^9, 3.497847759991787*^9}}], Cell[CellGroupData[{ Cell["4.2. Addition von Drehimpulsen", "Section", CellChangeTimes->{{3.494923511782043*^9, 3.49492351797571*^9}, { 3.494923560807108*^9, 3.494923565120832*^9}, {3.497847762876001*^9, 3.497847763614964*^9}, {3.499743105849313*^9, 3.499743106010036*^9}}], Cell[CellGroupData[{ Cell["Aufgabenstellung", "Subsection", CellChangeTimes->{{3.49492356751025*^9, 3.494923580331572*^9}}], Cell["\<\ Gegeben seien zwei Drehimpulsoperatoren, J1 und J2, die miteinander \ kommutieren. Die Eigenwertgleichungen lauten J1^2|j1,m1> = j1(j1+1)|j1,m1>, J1z|j1,m1> = m1|j1,m1> und J2^2|j2,m2> = j2(j2+1)|j2,m2>, J2z|j2,m2> = m2|j2,m2>. Dann gibt es eine gemeinsame Eigenbasis der Operatoren J1^2, J1z, J2^2,J2z, die mit |j1,m1;j2,m2> bezeichnet werden soll. Auf der anderen Seite gibt es den Drehimpulsoperator J=J1+J2 mit den \ Eigenvektoren |j,m>. Daher muss es m\[ODoubleDot]glich sein, f\[UDoubleDot]r gegebenes j1 und j2, \ die Zust\[ADoubleDot]nde |j,m> als Linearkombination von |j1,m1; j2,m2> zu w\[ADoubleDot]hlen welche dann Eigenzust\[ADoubleDot]nde \ von J^2 und Jz sind. Dieses Problem wird als \"Addition von Drehimpulsen\" bezeichnet.\ \>", "Text", CellChangeTimes->{{3.4949238278050003`*^9, 3.494923874224751*^9}, { 3.494923905476034*^9, 3.4949239526998034`*^9}, {3.494924046153162*^9, 3.4949241771434317`*^9}, {3.494924209966076*^9, 3.4949243982701*^9}, { 3.494924601443656*^9, 3.494924628968032*^9}, {3.494927730305798*^9, 3.494927821233506*^9}, {3.494927860790531*^9, 3.494927946666194*^9}, { 3.494928209945984*^9, 3.494928271521612*^9}, {3.494928363019948*^9, 3.494928371091289*^9}, 3.494928782496657*^9, {3.499743114910119*^9, 3.499743115004096*^9}, {3.50061274058394*^9, 3.500612811751641*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Vor\[UDoubleDot]berlegungen", "Subsection", CellChangeTimes->{{3.494928786171136*^9, 3.494928789327005*^9}, { 3.4949294938149567`*^9, 3.494929501426482*^9}}], Cell["\<\ Es gilt: m=m1+m2, da Jz = J1z+J2z. Die folgende Routine stellt in der m-m2-Ebene (m=m1+m2) die m\[ODoubleDot]glichen Zust\[ADoubleDot]nde dar, die bei der Addition von J1 \ und J2 eingenommen werden k\[ODoubleDot]nnen (oBdA: j1>=j2).\ \>", "Text", CellChangeTimes->{{3.4949238278050003`*^9, 3.494923874224751*^9}, { 3.494923905476034*^9, 3.4949239526998034`*^9}, {3.494924046153162*^9, 3.4949241771434317`*^9}, {3.494924209966076*^9, 3.4949243982701*^9}, { 3.494924601443656*^9, 3.494924628968032*^9}, {3.494927730305798*^9, 3.494927821233506*^9}, {3.494927860790531*^9, 3.494927946666194*^9}, { 3.494928209945984*^9, 3.494928271521612*^9}, {3.494928363019948*^9, 3.494928371091289*^9}, 3.494928782496657*^9, 3.494929506141266*^9, { 3.499742799140671*^9, 3.499742818313751*^9}, {3.499743132943246*^9, 3.4997431469500227`*^9}, {3.500612922621479*^9, 3.500612926732418*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Beispiel", " ", "zu", " ", "\"\\""}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Graphics", "[", " ", RowBox[{"{", " ", RowBox[{ RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", " ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.5", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1.5", ",", "2"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"1.5", ",", "1.5"}], "}"}], ",", ".2"}], "]"}], ",", "\[IndentingNewLine]", " ", RowBox[{"Text", "[", RowBox[{"\"\<123\>\"", ",", RowBox[{"{", RowBox[{"1.5", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], "]"}]}], "}"}], "]"}]}]], "Input", CellChangeTimes->{{3.500613046261882*^9, 3.500613161539192*^9}, { 3.500650209285199*^9, 3.500650230639787*^9}, {3.500694542718628*^9, 3.500694551817187*^9}, {3.50069459816988*^9, 3.500694649956418*^9}, { 3.500694719033856*^9, 3.500694752194779*^9}, {3.532752710859194*^9, 3.532752735460062*^9}, {3.532752770994735*^9, 3.5327527729197617`*^9}, { 3.53275286027477*^9, 3.532752923527081*^9}, {3.532753207206378*^9, 3.5327532321183023`*^9}, {3.5327532770887337`*^9, 3.532753366518021*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"Fig", "[", RowBox[{"j1_", ",", "j2_"}], "]"}], ":=", "\[IndentingNewLine]", RowBox[{"If", "[", RowBox[{ RowBox[{"j1", "<", "j2"}], ",", "\[IndentingNewLine]", RowBox[{"Fig", "[", RowBox[{"j2", ",", "j1"}], "]"}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"d", "=", RowBox[{"0.75", "*", "j2"}]}], ",", RowBox[{"d2", "=", RowBox[{"0.1", "*", "j2"}]}], ",", RowBox[{"d3", "=", RowBox[{"0.15", "*", "j2"}]}], ",", RowBox[{"r", "=", RowBox[{"0.05", "*", "j2"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics", "[", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"\[CapitalADoubleDot]u\[SZ]ere", " ", RowBox[{"Begrenzung", ":", " ", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", "j2"}], "\[LessEqual]", "m2", "\[LessEqual]", "j2"}]}]}], ";", " ", RowBox[{ RowBox[{"-", "j1"}], "\[LessEqual]", "m1", "\[LessEqual]", "j1"}], ";", " ", RowBox[{ RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}], "\[LessEqual]", "m", "\[LessEqual]", RowBox[{"j1", "+", "j2"}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"j2", ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j2", ",", RowBox[{"j2", "-", "j1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "j2"}], ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "j2"}], ",", RowBox[{"j1", "-", "j2"}]}], "}"}], " ", ",", RowBox[{"{", RowBox[{"j2", ",", RowBox[{"j1", "+", "j2"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Koordinatenachsen", " ", "und", " ", RowBox[{"Beschriftung", ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2", "-", "d"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"j1", "+", "j2", "+", "d"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "j2"}], "-", "d"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"j2", "+", "d"}], ",", "0"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{"j1", "+", "j2"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}], "+", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "d3"}], ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}], "+", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ")"}]}], ",", RowBox[{"{", RowBox[{"d3", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}]}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j1", "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{"j1", "-", "j2"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}], "-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{"d3", ",", RowBox[{"j1", "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j2", "-", "j1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{"j2", "-", "j1"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}], "-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ")"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "d3"}], ",", RowBox[{"j2", "-", "j1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "j2"}], "-", "d2"}], ",", RowBox[{"-", "d2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"j2", "+", "d2"}], ",", RowBox[{"-", "d2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"m", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j1", "+", "j2", "+", "d"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"m", ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"j2", "+", "d"}], ",", RowBox[{"-", "d2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"M\[ODoubleDot]gliche", " ", RowBox[{"Zust\[ADoubleDot]nde", ":", " ", RowBox[{"oberes", " ", "und", " ", "unteres", " ", RowBox[{"Dreieck", ":"}]}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Join", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"m2", ",", "m"}], "}"}], ",", "r"}], "]"}], "}"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{"j1", "-", "j2", "+", "1"}], ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"m2", ",", RowBox[{"m", "-", "j1"}], ",", "j2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Join", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"m2", ",", "m"}], "}"}], ",", "r"}], "]"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}], ",", RowBox[{"j2", "-", "j1", "-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"m2", ",", RowBox[{"-", "j2"}], ",", RowBox[{"m", "+", "j1"}]}], "}"}]}], "]"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Zentraler", " ", "quadratischer", " ", RowBox[{"Teil", ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Join", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"m2", ",", "m"}], "}"}], ",", "r"}], "]"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{"j2", "-", "j1"}], ",", RowBox[{"j1", "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"m2", ",", RowBox[{"-", "j2"}], ",", "j2"}], "}"}]}], "]"}], "]"}]}], "\[IndentingNewLine]", "]"}], RowBox[{"(*", " ", "Join", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "Graphics", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "With", " ", "*)"}], "\[IndentingNewLine]", "]"}], " ", RowBox[{"(*", " ", "If", " ", "*)"}]}]], "Input", CellChangeTimes->{ 3.4949237648363132`*^9, {3.499741465083798*^9, 3.499741476314713*^9}, { 3.499741564085764*^9, 3.499741575825767*^9}, {3.499741621802803*^9, 3.499741624963147*^9}, {3.499741695985126*^9, 3.499741771440151*^9}, { 3.499741852357395*^9, 3.499741881919804*^9}, {3.499741939324561*^9, 3.499742092198566*^9}, {3.4997422370324087`*^9, 3.499742241719977*^9}, { 3.4997423118729887`*^9, 3.499742314815939*^9}, {3.4997425786489153`*^9, 3.4997425931820583`*^9}, {3.499742843951495*^9, 3.499742893276801*^9}, { 3.49974293400935*^9, 3.499742951545714*^9}, {3.499742994029047*^9, 3.499743049312923*^9}, {3.499743241793544*^9, 3.4997432620988398`*^9}, { 3.500650299096488*^9, 3.500650333113119*^9}, {3.532752829745062*^9, 3.532752840854725*^9}, {3.532753240928739*^9, 3.532753263749758*^9}}], Cell[BoxData[ RowBox[{"Fig", "[", RowBox[{ RowBox[{"1", "/", "2"}], ",", RowBox[{"1", "/", "2"}]}], "]"}]], "Input", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQBWIQfcHKYjUn1yvHti9f14Fos+L520D0yZJDYDolq/sW N5CukHS/B6J/dbA9A9EldzjB9I2WB19BtN6KKz9B9JLZT/6B6J08/xh4gPSM wJch9UD6w8EdESA6sF2FpQtI3zZWB9Prnrj7WAm/cnSZ1OILojvy1aJA9IYe OzC9MrqTwRpI//u4EkwvXBjBDaK3BBeD6d2dGf8ei7xyZJQQ/Q+iWdY16T0B 0re5DoJpf2sBxm9AulT+OJi+aVS3glsU6M63V8C0ZWfOOhBdK/IPTGu3228H 0UuVZoLpDJFpboZBrxwZ4nPdQbRTVVIciF7zZ3M8iJ6lLqhtBKT/WVvrgGgA sDuUGw== "]], Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", "Fig", "]"}], ";"}]], "Input", CellChangeTimes->{{3.4949284035121326`*^9, 3.494928407284191*^9}}], Cell["\<\ Es gibt einen Zustand mit m=j1+j2, zwei Zust\[ADoubleDot]nde mit m=j1+j2-1, etc.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.494929654050688*^9}, 3.495164031886148*^9}], Cell["\<\ Die Anzahl der Zust\[ADoubleDot]nde nimmt zu bis m=|j1-j2| erreicht ist; danach bleibt die Anzahl konstant bis m=-|j1-j2|.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929755715198*^9}, 3.495164039716642*^9, { 3.4997459577878*^9, 3.49974596621661*^9}}], Cell["\<\ Danach nimmt die Anzahl der Zust\[ADoubleDot]nde ab, bei m=-j1-j2 gibt es \ wieder nur einen Zustand.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929836410471*^9}, 3.495164088559992*^9}], Cell["\<\ Der maximale Drehimpuls, den man mit der Addition von J1 und J2 erreichen \ kann, ist j=j1+j2.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929765609109*^9}, {3.494929868142016*^9, 3.4949299241946287`*^9}, 3.495164103919148*^9, {3.4951641424152718`*^9, 3.495164209018684*^9}, { 3.500613868173596*^9, 3.500613870666464*^9}}], Cell["\<\ Betrachten wir nun die zwei Zust\[ADoubleDot]nde f\[UDoubleDot]r m=j1+j2-1: Einer davon geh\[ODoubleDot]rt zu j=j1+j2, der andere zur maximalen \ Projektion (d.h. max. m) f\[UDoubleDot]r den Drehimpuls j=j1+j2-1.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929765609109*^9}, {3.494929868142016*^9, 3.4949299241946287`*^9}, { 3.495164103919148*^9, 3.495164105196148*^9}, {3.495164217898878*^9, 3.495164268756419*^9}, {3.4951643022130632`*^9, 3.4951643436400337`*^9}, { 3.495164467241707*^9, 3.495164511400818*^9}, {3.495164829900577*^9, 3.495164833815361*^9}, {3.495186271359577*^9, 3.495186271940858*^9}, { 3.499745978247449*^9, 3.4997459833139143`*^9}}], Cell["\<\ Insgesamt kann der Drehimpuls die Werte j=j1+j2 bis j=|j1-j2| mit \ Schrittweite \"1\" annehmen.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929765609109*^9}, {3.494929868142016*^9, 3.4949299241946287`*^9}, { 3.495164103919148*^9, 3.495164105958068*^9}, {3.495186380025275*^9, 3.4951864225338917`*^9}, {3.49518651543608*^9, 3.4951865217736263`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Algorithmus", "Subsection", CellChangeTimes->{{3.49518656920572*^9, 3.49518657420251*^9}}], Cell["\<\ Startpunkt m = j1 + j2. Das entspricht dem Zustand | j1,j1; j2,j2> mit j=j1+j2. Damit ist der Zustand gleich |j1+j2, j1+j2>.\ \>", "Subsubsection", CellChangeTimes->{{3.4951866073820066`*^9, 3.495186782517404*^9}, { 3.495186813950519*^9, 3.495186842442586*^9}}], Cell[CellGroupData[{ Cell["\<\ Wir operieren nun wiederholt mit dem Leiteroperator J- = J1- + J2- und \ konstruieren somit Schritt f\[UDoubleDot]r Schritt alle Zust\[ADoubleDot]nde mit j=j1+j2. Normierung beachten: J-|j,m+1> = Sqrt[(j-m)(j+m+1)] |j,m> Im Folgenden: ket[m1,m2] == |j1,m1; j2,m2> KET[j,m] == |j,m> \ \>", "Subsubsection", CellChangeTimes->{{3.495186901196472*^9, 3.495187081514359*^9}, { 3.495187135576795*^9, 3.4951871687084913`*^9}, {3.4997440196249237`*^9, 3.49974405765777*^9}, {3.499744251036666*^9, 3.499744263137025*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Jm", "[", "k_", "]"}], ":=", RowBox[{"Expand", "[", RowBox[{"k", "/.", RowBox[{"{", RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "\[Rule]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j1", "-", "m1", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j1", "+", "m1"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{ RowBox[{"m1", "-", "1"}], ",", "m2"}], "]"}]}], "+", "\[IndentingNewLine]", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j2", "-", "m2", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j2", "+", "m2"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{"m1", ",", RowBox[{"m2", "-", "1"}]}], "]"}]}]}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"m1", "=", "j1"}], ",", " ", RowBox[{"m2", "=", RowBox[{ RowBox[{"j2", ":", " ", RowBox[{"KET", "[", RowBox[{ RowBox[{"j1", "+", "j2"}], ",", RowBox[{"j1", "+", "j2"}]}], "]"}]}], " ", "=", " ", RowBox[{"ket", "[", RowBox[{"j1", ",", "j2"}], "]"}]}]}]}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{"Jm", "[", " ", RowBox[{"ket", "[", RowBox[{"j1", ",", "j2"}], "]"}], " ", "]"}]}], "Input", CellChangeTimes->{{3.499743842164628*^9, 3.499743843930616*^9}, { 3.499743920500081*^9, 3.499743927605586*^9}, {3.4997439709403973`*^9, 3.4997439736908903`*^9}, {3.4997441614278803`*^9, 3.499744234058714*^9}, { 3.499744276055373*^9, 3.499744355132766*^9}}] }, Open ]], Cell["\<\ Danach erniedrigen wir j um \"1\". W\[ADoubleDot]hle den Startpunkt |j,j> so, dass er orthogonal zu allen schon \ konstruierten Zust\[ADoubleDot]nden mit gleichem m ist. Das wird folgendermassen erreicht: 1. W\[ADoubleDot]hle |j1,j-j2; j2,j2>. 2. Subtrahiere die Komponenten in die Richtungen aller bisher konstruierten \ Zust\[ADoubleDot]nde. 3. Normiere den Zustand. Wende im n\[ADoubleDot]chsten Schritt wieder J- an, um die \ Zust\[ADoubleDot]nde mit niedrigerem m zu konstruieren.\ \>", "Subsubsection", CellChangeTimes->{{3.49518717505512*^9, 3.495187252794203*^9}, { 3.49518728900203*^9, 3.495187293357806*^9}, {3.495187334890863*^9, 3.495187420094923*^9}, {3.495187514007577*^9, 3.495187571780981*^9}, 3.495187694612158*^9, {3.499744760191187*^9, 3.4997448714449053`*^9}, { 3.499744916024016*^9, 3.4997450786966963`*^9}, {3.499745179337322*^9, 3.499745185358899*^9}}], Cell["j wird solange erniedrigt bis | j1 - j2 | erreicht ist.", \ "Subsubsection", CellChangeTimes->{{3.499745249017453*^9, 3.499745279898829*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Implementierung", "Subsection", CellChangeTimes->{{3.4952494401254683`*^9, 3.4952494425167723`*^9}}], Cell[CellGroupData[{ Cell["\<\ AddJ: Funktion mit Drehimpuls j1 und j2 als Argument. Ausgabe: KET[j,m] == |j,m> als Linearkombination von ket[m1,m2] \ == |j1,m1; j2,m2> Jm: lokale Funktion. Operator J- sp: Skalarprodukt von zwei ket[m1,m2] == |j1,m1; j2,m2> \ \>", "Subsubsection", CellChangeTimes->{{3.495187850414179*^9, 3.495187850876498*^9}, 3.4952481126175737`*^9, {3.495248511238284*^9, 3.495248511324315*^9}, { 3.495249470346119*^9, 3.495249478052022*^9}, {3.495249550534318*^9, 3.495249640377877*^9}, {3.495249756401022*^9, 3.495249767973694*^9}, { 3.495249992583453*^9, 3.4952501427880163`*^9}, {3.495250242240789*^9, 3.495250247895533*^9}, {3.495250623195623*^9, 3.495250644372507*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"AddJ", "=", RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"j1", ",", "j2"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"If", "[", RowBox[{ RowBox[{"j2", ">", "j1"}], ",", "\[IndentingNewLine]", RowBox[{"AddJ", "[", RowBox[{"j2", ",", "j1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"KET", ",", "j", ",", "J", ",", "m", ",", "Jm", ",", "sp"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"J", "-"}], ":"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Jm", "[", "k_", "]"}], ":=", RowBox[{"Expand", "[", RowBox[{"k", "/.", RowBox[{"{", RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "\[Rule]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j1", "-", "m1", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j1", "+", "m1"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{ RowBox[{"m1", "-", "1"}], ",", "m2"}], "]"}]}], "+", "\[IndentingNewLine]", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j2", "-", "m2", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j2", "+", "m2"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{"m1", ",", RowBox[{"m2", "-", "1"}]}], "]"}]}]}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{ "Skalarprodukt", " ", "von", " ", "2", " ", "Zust\[ADoubleDot]nden", " ", RowBox[{"ket", "[", RowBox[{"m1", ",", "m2"}], "]"}]}], " ", "=", " ", RowBox[{"|", "j1"}]}], ",", RowBox[{"m1", ";", " ", "j2"}], ",", RowBox[{ RowBox[{"m2", ">"}], ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"sp", "[", RowBox[{"k1_", ",", "k2_"}], "]"}], ":=", RowBox[{ RowBox[{"Expand", "[", RowBox[{"k1", "*", "k2"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "^", "2"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "*", RowBox[{"ket", "[", RowBox[{"M1_", ",", "M2_"}], "]"}]}], "\[Rule]", "0"}]}], "}"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "=", RowBox[{"ket", "[", RowBox[{ RowBox[{"j", "-", "j2"}], ",", "j2"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ "Subtrahiere", " ", "die", " ", "Komponenten", " ", "in", " ", "die", " ", "Richtungen", " ", "aller", " ", "\[IndentingNewLine]", " ", "bisher", " ", "konstruierten", " ", RowBox[{"Zust\[ADoubleDot]nde", "."}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Do", "[", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "=", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], " ", "-", " ", "\[IndentingNewLine]", RowBox[{"Expand", "[", RowBox[{ RowBox[{"sp", "[", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], ",", RowBox[{"KET", "[", RowBox[{"J", ",", "j"}], "]"}]}], "]"}], "*", RowBox[{"KET", "[", RowBox[{"J", ",", "j"}], "]"}]}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"J", ",", RowBox[{"j1", "+", "j2"}], ",", RowBox[{"j", "+", "1"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Gebe", " ", RowBox[{"(", "normierten", ")"}], " ", "Zustand", " ", RowBox[{"aus", ".", " ", "\[IndentingNewLine]", RowBox[{"Beachte", ":", " ", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], " ", "ist", " ", "ausgedr\[UDoubleDot]ckt", " ", "durch", " ", RowBox[{"ket", "[", RowBox[{"m1", ",", "m2"}], "]"}]}]}]}]}], " ", "*)"}], " ", "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "j", ",", "\"\<,\>\"", ",", "j", ",", "\"\<] = \>\"", ",", " ", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "=", RowBox[{"Expand", "[", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "/", RowBox[{"Sqrt", "[", RowBox[{"sp", "[", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], ",", RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}]}], "]"}], "]"}]}], "]"}]}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"Wende", " ", "J"}], "-", " ", "an"}], ",", " ", RowBox[{ RowBox[{"um", " ", "alle", " ", "Zust\[ADoubleDot]nde", " ", RowBox[{"KET", "[", RowBox[{"j", ",", "m"}], "]"}], " ", "mit", " ", "m"}], "<", RowBox[{"j", " ", "zu", " ", RowBox[{"berechnen", "."}]}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "j", ",", "\"\<,\>\"", ",", "m", ",", "\"\<] = \>\"", ",", " ", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "m"}], "]"}], "=", RowBox[{"Expand", "[", RowBox[{ RowBox[{"Jm", "[", RowBox[{"KET", "[", RowBox[{"j", ",", RowBox[{"m", "+", "1"}]}], "]"}], "]"}], "/", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j", "-", "m"}], ")"}], "*", RowBox[{"(", RowBox[{"j", "+", "m", "+", "1"}], ")"}]}], "]"}]}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"m", ",", RowBox[{"j", "-", "1"}], ",", RowBox[{"-", "j"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}]}], " ", RowBox[{"(*", " ", "Do", " ", "*)"}], ",", " ", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"j", ",", RowBox[{"j1", "+", "j2"}], ",", RowBox[{"j1", "-", "j2"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}]}]}], " ", RowBox[{"(*", " ", "Do", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "Module", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "If", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], RowBox[{"(*", " ", "Function", " ", "*)"}], ";"}]], "Input", CellChangeTimes->{{3.4952481606831408`*^9, 3.495248286846879*^9}, { 3.495248327968109*^9, 3.4952483297379932`*^9}, {3.4952483782696333`*^9, 3.495248440377008*^9}, {3.4952484946941137`*^9, 3.4952486603162518`*^9}, { 3.495248761551305*^9, 3.4952487898301277`*^9}, {3.495249496290002*^9, 3.495249532310174*^9}, {3.495250171874601*^9, 3.4952502170153303`*^9}, { 3.4952506496548967`*^9, 3.495250758382045*^9}, {3.499745322380767*^9, 3.499745458080372*^9}, {3.4997455034342318`*^9, 3.499745525424013*^9}, { 3.499745583619969*^9, 3.499745585891288*^9}, {3.499745617720961*^9, 3.499745704105986*^9}, {3.499745748212658*^9, 3.499745844518404*^9}, { 3.499745875500877*^9, 3.4997459089928293`*^9}}], Cell[BoxData[ RowBox[{"AddJ", "[", RowBox[{ RowBox[{"1", "/", "2"}], ",", RowBox[{"1", "/", "2"}]}], "]"}]], "Input", CellChangeTimes->{{3.499745914492776*^9, 3.499745928033827*^9}, { 3.499746034161337*^9, 3.49974605130193*^9}, {3.500613971773577*^9, 3.500613971973615*^9}, {3.500614015832132*^9, 3.500614016151771*^9}, { 3.500696102981718*^9, 3.500696120481324*^9}, {3.53275525707828*^9, 3.532755271538859*^9}}] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, ScreenStyleEnvironment->"Presentation", WindowSize->{1592, 873}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, ShowSelection->True, FrontEndVersion->"8.0 for Linux x86 (64-bit) (October 10, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 151, 2, 95, "Subtitle"], Cell[CellGroupData[{ Cell[743, 28, 258, 3, 126, "Section"], Cell[CellGroupData[{ Cell[1026, 35, 103, 1, 67, "Subsection"], Cell[1132, 38, 1359, 26, 457, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[2528, 69, 166, 2, 67, "Subsection"], Cell[2697, 73, 917, 16, 185, "Text"], Cell[3617, 91, 1683, 41, 201, "Input"], Cell[5303, 134, 12330, 312, 1311, "Input"], Cell[17636, 448, 545, 13, 52, "Input"], Cell[18184, 463, 146, 3, 52, "Input"], Cell[18333, 468, 206, 5, 84, "Subsubsection"], Cell[18542, 475, 342, 6, 73, "Subsubsection"], Cell[18887, 483, 324, 6, 37, "Subsubsection"], Cell[19214, 491, 466, 8, 37, "Subsubsection"], Cell[19683, 501, 801, 13, 109, "Subsubsection"], Cell[20487, 516, 489, 8, 37, "Subsubsection"] }, Open ]], Cell[CellGroupData[{ Cell[21013, 529, 97, 1, 67, "Subsection"], Cell[21113, 532, 279, 6, 120, "Subsubsection"], Cell[CellGroupData[{ Cell[21417, 542, 536, 11, 217, "Subsubsection"], Cell[21956, 555, 1902, 53, 201, "Input"] }, Open ]], Cell[23873, 611, 906, 17, 264, "Subsubsection"], Cell[24782, 630, 148, 2, 37, "Subsubsection"] }, Open ]], Cell[CellGroupData[{ Cell[24967, 637, 107, 1, 67, "Subsection"], Cell[CellGroupData[{ Cell[25099, 642, 713, 13, 192, "Subsubsection"], Cell[25815, 657, 9732, 220, 1274, "Input"], Cell[35550, 879, 434, 9, 52, "Input"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)