(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 16029, 469] NotebookOptionsPosition[ 14721, 419] NotebookOutlinePosition[ 15079, 435] CellTagsIndexPosition[ 15036, 432] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["2. Klassische Mechanik und Computeralgebra", "Subtitle", CellChangeTimes->{{3.494908211331071*^9, 3.4949082312250957`*^9}, { 3.497845914853921*^9, 3.497845915971698*^9}}], Cell[CellGroupData[{ Cell["Mathematisches Pendel", "Section", CellChangeTimes->{{3.494908197098586*^9, 3.494908200099038*^9}, { 3.494912314080553*^9, 3.494912317638442*^9}, {3.494912357656418*^9, 3.49491236226724*^9}, {3.497845942642861*^9, 3.4978459445242167`*^9}, { 3.531463150063863*^9, 3.5314631507079*^9}}], Cell["\<\ Massenpunkt (Masse m) h\[ADoubleDot]ngt an einer Schnur der L\[ADoubleDot]nge \ l und wird um den Winkel phi ausgelenkt. Wie lautet die L\[ODoubleDot]sung der Bewegungsgleichung. Graphische \ Darstellung, ...\ \>", "Text", CellChangeTimes->{{3.494908259561584*^9, 3.494908328459826*^9}, { 3.494912387771822*^9, 3.494912493752038*^9}}], Cell[CellGroupData[{ Cell["Bewegungsgleichung", "Subsection", CellChangeTimes->{{3.49490833098764*^9, 3.494908334576943*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["d", "2"], " ", RowBox[{"phi", " ", "/", " ", "d"}], " ", SuperscriptBox["t", "2"]}], " ", "+", " ", RowBox[{ RowBox[{"w", "^", "2"}], " ", RowBox[{"Sin", "[", "phi", "]"}]}]}], " ", "=", "0"}], "\n", RowBox[{"w", "=", RowBox[{ RowBox[{"Sqrt", "[", " ", RowBox[{"g", "/", "l"}], " ", "]"}], " ", "=", " ", RowBox[{"2", "*", RowBox[{"Pi", "/", "T"}]}]}]}]}], "Text", CellChangeTimes->{ 3.494908360236998*^9, {3.494908442027588*^9, 3.4949086984665937`*^9}, { 3.4949125023581753`*^9, 3.49491252436443*^9}, 3.4949176322952967`*^9, { 3.494917667463983*^9, 3.494917667955839*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Approximation f\[UDoubleDot]r kleine Winkel\ \>", "Subsection", CellChangeTimes->{{3.494909032825118*^9, 3.494909048317815*^9}, { 3.494917589263175*^9, 3.494917604605822*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["d", "2"], " ", RowBox[{"phi", " ", "/", " ", "d"}], " ", SuperscriptBox["t", "2"]}], " ", "+", " ", RowBox[{ RowBox[{"w", "^", "2"}], " ", "phi"}]}], " ", "=", "0"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"L\[ODoubleDot]sung", ":", " ", RowBox[{"phi", RowBox[{"(", "t", ")"}]}]}], " ", "=", " ", RowBox[{ RowBox[{"A", " ", "sin", RowBox[{"(", "t", ")"}]}], " ", "+", " ", RowBox[{"B", " ", "cos", RowBox[{"(", "t", ")"}]}]}]}]}], "Text", CellChangeTimes->{{3.4949090526172457`*^9, 3.49490915696227*^9}, { 3.494917648090646*^9, 3.494917744568687*^9}, {3.494917845369945*^9, 3.494917850636888*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ L\[ODoubleDot]sung der Differentialgleichung und graphische Darstellung. Vergleich mit der Approximation fuer kleine Winkel.\ \>", "Subsection", CellChangeTimes->{{3.494917829489387*^9, 3.494917881926186*^9}}], Cell[CellGroupData[{ Cell["Anfangsbedingungen", "Subsubsection", CellChangeTimes->{{3.494917890872052*^9, 3.4949178960130444`*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"phi0", " ", ":=", " ", "0.5"}], ";", " ", RowBox[{"phip0", " ", ":=", " ", "0"}], ";"}], "\n", RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"**", RowBox[{"*", "\[IndentingNewLine]", "phi0"}]}], " ", ":=", " ", "0.1"}], ";", " ", RowBox[{"phip0", " ", ":=", " ", "0"}], ";", "\n", " ", RowBox[{"phi0", " ", ":=", " ", "0.5"}], ";", " ", RowBox[{"phip0", " ", ":=", " ", "0"}], ";", "\n", " ", RowBox[{"phi0", " ", ":=", " ", "3."}], ";", " ", RowBox[{"phip0", " ", ":=", " ", "0"}], ";", "\n", " ", RowBox[{"phi0", " ", ":=", " ", "Pi"}], ";", " ", RowBox[{"phip0", " ", ":=", " ", "0"}], ";", "\n", " ", RowBox[{"phi0", " ", ":=", " ", RowBox[{ RowBox[{"5", "/", "4"}], "*", "Pi"}]}], ";", " ", RowBox[{"phip0", " ", ":=", " ", "0"}], ";"}], "\[IndentingNewLine]", "**"}], "*"}], " ", "*)"}]}]}], "Input", CellChangeTimes->{{3.494917829489387*^9, 3.4949178329479237`*^9}, { 3.494917907506857*^9, 3.494917968255701*^9}, {3.494920589950598*^9, 3.4949205935411053`*^9}, {3.4949207197258043`*^9, 3.494920720264682*^9}, { 3.4978460102262487`*^9, 3.497846013590074*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ L\[ODoubleDot]se vereinfachte Bewegungsgleichung analytisch und exakte \ Bewegungsgleichung numerisch\ \>", "Subsubsection", CellChangeTimes->{{3.494917998414102*^9, 3.494918014187138*^9}, { 3.494919490196628*^9, 3.494919494904855*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"w", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ergapprox", " ", "=", " ", RowBox[{"DSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"phi", "[", "t", "]"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "2"}], "}"}]}], "]"}], " ", "+", " ", RowBox[{ RowBox[{"w", "^", "2"}], "*", RowBox[{"phi", "[", "t", "]"}]}]}], " ", "==", " ", "0"}], ",", " ", "\[IndentingNewLine]", RowBox[{ RowBox[{"phi", "[", "0", "]"}], " ", "==", " ", "phi0"}], ",", RowBox[{ RowBox[{ RowBox[{"phi", "'"}], "[", "0", "]"}], " ", "==", " ", "phip0"}]}], "}"}], ",", " ", RowBox[{"phi", "[", "t", "]"}], ",", " ", "t"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ergexakt", " ", "=", " ", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"phi", "[", "t", "]"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "2"}], "}"}]}], "]"}], " ", "+", " ", RowBox[{ RowBox[{"w", "^", "2"}], "*", RowBox[{"Sin", "[", RowBox[{"phi", "[", "t", "]"}], "]"}]}]}], " ", "==", " ", "0"}], ",", " ", RowBox[{ RowBox[{"phi", "[", "0", "]"}], " ", "==", " ", "phi0"}], ",", " ", "\n", " ", RowBox[{ RowBox[{ RowBox[{"phi", "'"}], "[", "0", "]"}], " ", "==", " ", "phip0"}]}], "}"}], ",", " ", RowBox[{"phi", "[", "t", "]"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "0", ",", " ", "30"}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.494917829489387*^9, 3.4949178329479237`*^9}, { 3.494917907506857*^9, 3.494917968255701*^9}, {3.494918020446498*^9, 3.494918093297614*^9}}], Cell[BoxData[{"ergapprox", "\n", "ergexakt"}], "Input", CellChangeTimes->{{3.494917829489387*^9, 3.4949178329479237`*^9}, { 3.494917907506857*^9, 3.494917968255701*^9}, {3.494918020446498*^9, 3.494918133455209*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", "ergapprox"}], "\n", RowBox[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", "ergexakt"}], " ", "/.", " ", RowBox[{"{", RowBox[{"t", " ", "->", " ", "1.2"}], "}"}]}]}], "Input", CellChangeTimes->{{3.494917829489387*^9, 3.4949178329479237`*^9}, { 3.494917907506857*^9, 3.494917968255701*^9}, {3.494918020446498*^9, 3.4949181557955713`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Vergleich zwischen exakter L\[ODoubleDot]sung (schwarz) und approximativer L\ \[ODoubleDot]sung (rot)\ \>", "Subsubsection", CellChangeTimes->{{3.494919513682184*^9, 3.494919526685967*^9}, { 3.499482411913169*^9, 3.499482415557452*^9}}], Cell[BoxData[ RowBox[{"\n", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergapprox", "[", RowBox[{"[", "1", "]"}], "]"}]}], ",", " ", RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergexakt", "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", " ", RowBox[{"{", RowBox[{"t", ",", " ", "0", ",", " ", "30"}], "}"}], ",", " ", "\n", " ", RowBox[{"PlotStyle", " ", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"1", ",", " ", "0", ",", " ", "0"}], "]"}], ",", " ", RowBox[{"RGBColor", "[", RowBox[{"0", ",", " ", "0", ",", " ", "0"}], "]"}]}], "}"}]}]}], "]"}]}]], "Input", CellChangeTimes->{{3.494917829489387*^9, 3.4949178329479237`*^9}, { 3.494917907506857*^9, 3.494917968255701*^9}, {3.494918020446498*^9, 3.494918174684904*^9}, {3.494919545706389*^9, 3.494919564101282*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Vorbereitung der graphischen Darstellung der Schwingung: Disk[] : Massepunkt Line[] : Faden des Pendels; rot und schwarz zur Unterscheidung Norm - Koordinatensystem \"Standbild\": Test f\[UDoubleDot]r sp\[ADoubleDot]tere Animation\ \>", "Subsubsection", CellChangeTimes->{{3.494919586256488*^9, 3.4949196965400133`*^9}, { 3.499434810428437*^9, 3.499434813271565*^9}}], Cell[BoxData[ RowBox[{"\n", RowBox[{ RowBox[{ RowBox[{ RowBox[{"pendel", "[", "phi_", "]"}], " ", ":=", " ", RowBox[{"Graphics", "[", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", "phi", "]"}], ",", " ", RowBox[{"-", RowBox[{"Cos", "[", "phi", "]"}]}]}], "}"}], ",", " ", ".03"}], "]"}], "]"}]}], ";"}], "\n", RowBox[{ RowBox[{ RowBox[{"stange1", "[", "phi_", "]"}], " ", ":=", " ", "\n", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"1", ",", " ", "0", ",", " ", "0"}], "]"}], ",", " ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", "phi", "]"}], ",", " ", RowBox[{"-", RowBox[{"Cos", "[", "phi", "]"}]}]}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}]}], ";"}], "\n", RowBox[{ RowBox[{ RowBox[{"stange2", "[", "phi_", "]"}], " ", ":=", RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"RGBColor", "[", RowBox[{"0", ",", " ", "0", ",", " ", "0"}], "]"}], ",", " ", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", "phi", "]"}], ",", " ", RowBox[{"-", RowBox[{"Cos", "[", "phi", "]"}]}]}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}]}], ";"}], "\n", RowBox[{"pl", " ", ":=", " ", RowBox[{"Plot", "[", RowBox[{"0", ",", " ", RowBox[{"{", RowBox[{"x", ",", " ", RowBox[{"-", "1.5"}], ",", " ", "1.5"}], "}"}]}], "]"}]}], "\n", RowBox[{"Show", "[", RowBox[{"pl", ",", " ", RowBox[{"stange1", "[", ".5", "]"}], ",", RowBox[{"pendel", "[", ".5", "]"}], ",", " ", RowBox[{"PlotRange", " ", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"-", "1.2"}], ",", " ", ".2"}], "}"}]}]}], "]"}], "\n"}]}]], "Input", CellChangeTimes->{{3.494917829489387*^9, 3.4949178329479237`*^9}, { 3.494917907506857*^9, 3.494917968255701*^9}, {3.494918020446498*^9, 3.494918174684904*^9}, {3.494919545706389*^9, 3.494919575075059*^9}, { 3.494919643935149*^9, 3.494919651934166*^9}, {3.4949197156284027`*^9, 3.4949197569678087`*^9}, {3.494920644576236*^9, 3.494920679097702*^9}}], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{ RowBox[{"Show", "[", RowBox[{"pl", ",", "\[IndentingNewLine]", RowBox[{"stange1", "[", RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergapprox", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", " ", "\n", " ", RowBox[{"pendel", "[", RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergapprox", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", " ", RowBox[{"stange2", "[", RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergexakt", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", " ", "\n", " ", RowBox[{"pendel", "[", RowBox[{ RowBox[{"phi", "[", "t", "]"}], " ", "/.", " ", RowBox[{"ergexakt", "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", " ", RowBox[{"PlotRange", " ", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"-", "1."}], ",", " ", "1."}], "}"}]}]}], "]"}], " ", "/.", " ", RowBox[{"{", RowBox[{"t", " ", "->", " ", "t1"}], "}"}]}], ",", " ", "\n", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"t1", ",", " ", "2"}], "}"}], ",", " ", "0", ",", " ", "20", ",", " ", RowBox[{"AppearanceElements", " ", "->", " ", "\n", " ", RowBox[{"{", RowBox[{ "\"\\"", ",", " ", "\"\\"", ",", " ", "\"\\"", ",", " ", "\n", " ", "\"\\""}], "}"}]}], ",", RowBox[{"ControlType", "\[Rule]", "Animator"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.494917829489387*^9, 3.4949178329479237`*^9}, { 3.494917907506857*^9, 3.494917968255701*^9}, {3.494918020446498*^9, 3.494918174684904*^9}, {3.494919545706389*^9, 3.494919575075059*^9}, { 3.494919643935149*^9, 3.494919651934166*^9}, {3.494919701474195*^9, 3.494919708711054*^9}, {3.494919774207511*^9, 3.494919928915431*^9}, { 3.494919970525342*^9, 3.494919998826754*^9}, {3.4949201827624207`*^9, 3.494920211394043*^9}, {3.494920288813205*^9, 3.4949203669369164`*^9}, { 3.494920488531934*^9, 3.4949204953578568`*^9}, {3.499483005233469*^9, 3.499483010067265*^9}}] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{729, 907}, WindowMargins->{{Automatic, 411}, {22, Automatic}}, ShowSelection->True, FrontEndVersion->"8.0 for Linux x86 (64-bit) (October 10, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 179, 2, 54, "Subtitle"], Cell[CellGroupData[{ Cell[771, 28, 298, 4, 74, "Section"], Cell[1072, 34, 347, 7, 49, "Text"], Cell[CellGroupData[{ Cell[1444, 45, 105, 1, 39, "Subsection"], Cell[1552, 48, 695, 19, 49, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[2284, 72, 188, 4, 39, "Subsection"], Cell[2475, 78, 726, 21, 49, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[3238, 104, 220, 4, 59, "Subsection"], Cell[CellGroupData[{ Cell[3483, 112, 111, 1, 28, "Subsubsection"], Cell[3597, 115, 1290, 28, 164, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[4924, 148, 249, 5, 28, "Subsubsection"], Cell[5176, 155, 2044, 59, 126, "Input"], Cell[7223, 216, 221, 3, 50, "Input"], Cell[7447, 221, 447, 11, 50, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[7931, 237, 249, 5, 28, "Subsubsection"], Cell[8183, 244, 1040, 26, 69, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[9260, 275, 382, 8, 101, "Subsubsection"], Cell[9645, 285, 2654, 72, 231, "Input"], Cell[12302, 359, 2367, 54, 209, "Input"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)