(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 46659, 1196] NotebookOptionsPosition[ 44525, 1124] NotebookOutlinePosition[ 44921, 1141] CellTagsIndexPosition[ 44878, 1138] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["4. Computeralgebra und Quantenmechanik", "Subtitle", CellChangeTimes->{ 3.494923504200873*^9, {3.4978477595492983`*^9, 3.497847759991787*^9}}], Cell[CellGroupData[{ Cell["Addition von Drehimpulsen", "Section", CellChangeTimes->{{3.494923511782043*^9, 3.49492351797571*^9}, { 3.494923560807108*^9, 3.494923565120832*^9}, {3.497847762876001*^9, 3.497847763614964*^9}, {3.499743105849313*^9, 3.499743106010036*^9}, { 3.5635400374613333`*^9, 3.563540038555807*^9}}], Cell[CellGroupData[{ Cell["Aufgabenstellung", "Subsection", CellChangeTimes->{{3.49492356751025*^9, 3.494923580331572*^9}}], Cell["\<\ Gegeben seien zwei Drehimpulsoperatoren, J1 und J2, die miteinander \ kommutieren. Die Eigenwertgleichungen lauten J1^2|j1,m1> = j1(j1+1)|j1,m1>, J1z|j1,m1> = m1|j1,m1> und J2^2|j2,m2> = j2(j2+1)|j2,m2>, J2z|j2,m2> = m2|j2,m2>. Dann gibt es eine gemeinsame Eigenbasis der Operatoren J1^2, J1z, J2^2,J2z, die mit |j1,m1;j2,m2> bezeichnet werden soll. Auf der anderen Seite gibt es den Drehimpulsoperator J=J1+J2 mit den \ Eigenvektoren |j,m>. Daher muss es m\[ODoubleDot]glich sein, f\[UDoubleDot]r gegebenes j1 und j2, \ die Zust\[ADoubleDot]nde |j,m> als Linearkombination von |j1,m1; j2,m2> zu w\[ADoubleDot]hlen welche dann Eigenzust\[ADoubleDot]nde \ von J^2 und Jz sind. Dieses Problem wird als \"Addition von Drehimpulsen\" bezeichnet.\ \>", "Text", CellChangeTimes->{{3.4949238278050003`*^9, 3.494923874224751*^9}, { 3.494923905476034*^9, 3.4949239526998034`*^9}, {3.494924046153162*^9, 3.4949241771434317`*^9}, {3.494924209966076*^9, 3.4949243982701*^9}, { 3.494924601443656*^9, 3.494924628968032*^9}, {3.494927730305798*^9, 3.494927821233506*^9}, {3.494927860790531*^9, 3.494927946666194*^9}, { 3.494928209945984*^9, 3.494928271521612*^9}, {3.494928363019948*^9, 3.494928371091289*^9}, 3.494928782496657*^9, {3.499743114910119*^9, 3.499743115004096*^9}, {3.50061274058394*^9, 3.500612811751641*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Vor\[UDoubleDot]berlegungen", "Subsection", CellChangeTimes->{{3.494928786171136*^9, 3.494928789327005*^9}, { 3.4949294938149567`*^9, 3.494929501426482*^9}}], Cell["\<\ Es gilt: m=m1+m2, da Jz = J1z+J2z. Die folgende Routine stellt in der m-m2-Ebene (m=m1+m2) die m\[ODoubleDot]glichen Zust\[ADoubleDot]nde dar, die bei der Addition von J1 \ und J2 eingenommen werden k\[ODoubleDot]nnen (oBdA: j1>=j2).\ \>", "Text", CellChangeTimes->{{3.4949238278050003`*^9, 3.494923874224751*^9}, { 3.494923905476034*^9, 3.4949239526998034`*^9}, {3.494924046153162*^9, 3.4949241771434317`*^9}, {3.494924209966076*^9, 3.4949243982701*^9}, { 3.494924601443656*^9, 3.494924628968032*^9}, {3.494927730305798*^9, 3.494927821233506*^9}, {3.494927860790531*^9, 3.494927946666194*^9}, { 3.494928209945984*^9, 3.494928271521612*^9}, {3.494928363019948*^9, 3.494928371091289*^9}, 3.494928782496657*^9, 3.494929506141266*^9, { 3.499742799140671*^9, 3.499742818313751*^9}, {3.499743132943246*^9, 3.4997431469500227`*^9}, {3.500612922621479*^9, 3.500612926732418*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Beispiel", " ", "zu", " ", "\"\\""}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Graphics", "[", " ", RowBox[{"{", " ", RowBox[{ RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "2"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", " ", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"1.5", ",", "1.5"}], "}"}], ",", ".2"}], "]"}], ",", "\[IndentingNewLine]", " ", RowBox[{"Text", "[", RowBox[{"\"\<123\>\"", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}]}], "}"}], "]"}]}]], "Input", CellChangeTimes->{{3.500613046261882*^9, 3.500613161539192*^9}, { 3.500650209285199*^9, 3.500650230639787*^9}, {3.500694542718628*^9, 3.500694551817187*^9}, {3.50069459816988*^9, 3.500694649956418*^9}, { 3.500694719033856*^9, 3.500694752194779*^9}}], Cell[BoxData[ GraphicsBox[{LineBox[{{1, 1}, {2, 2}}], DiskBox[{1.5, 1.5}, 0.2], InsetBox["\<\"123\"\>", {1, 2}]}]], "Output", CellChangeTimes->{3.563540522164135*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Fig", "[", RowBox[{"j1_", ",", "j2_"}], "]"}], ":=", "\[IndentingNewLine]", RowBox[{"If", "[", RowBox[{ RowBox[{"j1", "<", "j2"}], ",", "\[IndentingNewLine]", RowBox[{"Fig", "[", RowBox[{"j2", ",", "j1"}], "]"}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]", RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"d", "=", RowBox[{"0.75", "*", "j2"}]}], ",", RowBox[{"d2", "=", RowBox[{"0.1", "*", "j2"}]}], ",", RowBox[{"d3", "=", RowBox[{"0.15", "*", "j2"}]}], ",", RowBox[{"r", "=", RowBox[{"0.05", "*", "j2"}]}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Graphics", "[", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"\[CapitalADoubleDot]u\[SZ]ere", " ", RowBox[{"Begrenzung", ":", " ", "\[IndentingNewLine]", RowBox[{ RowBox[{"-", "j2"}], "\[LessEqual]", "m2", "\[LessEqual]", "j2"}]}]}], ";", " ", RowBox[{ RowBox[{"-", "j1"}], "\[LessEqual]", "m1", "\[LessEqual]", "j1"}], ";", " ", RowBox[{ RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}], "\[LessEqual]", "m", "\[LessEqual]", RowBox[{"j1", "+", "j2"}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"j2", ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"j2", ",", RowBox[{"j2", "-", "j1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "j2"}], ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "j2"}], ",", RowBox[{"j1", "-", "j2"}]}], "}"}], " ", ",", RowBox[{"{", RowBox[{"j2", ",", RowBox[{"j1", "+", "j2"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Koordinatenachsen", " ", "und", " ", RowBox[{"Beschriftung", ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2", "-", "d"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"j1", "+", "j2", "+", "d"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "j2"}], "-", "d"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"j2", "+", "d"}], ",", "0"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{"j1", "+", "j2"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}], "+", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "d3"}], ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}]}], "-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{"d3", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}]}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j1", "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{"j1", "-", "j2"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}], "-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{"d3", ",", RowBox[{"j1", "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j2", "-", "j1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"d2", ",", RowBox[{"j2", "-", "j1"}]}], "}"}]}], "}"}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "1"}], "]"}]}], "+", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "d3"}], ",", RowBox[{"j2", "-", "j1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"-", RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}]}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "j2"}], "-", "d2"}], ",", RowBox[{"-", "d2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}]}], "]"}], ",", RowBox[{"Text", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"j", ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"j2", "+", "d2"}], ",", RowBox[{"-", "d2"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"m", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "d2"}], ",", RowBox[{"j1", "+", "j2", "+", "d"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"m", ",", "2"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"j2", "+", "d"}], ",", RowBox[{"-", "d2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"M\[ODoubleDot]gliche", " ", RowBox[{"Zust\[ADoubleDot]nde", ":", " ", RowBox[{"oberes", " ", "und", " ", "unteres", " ", RowBox[{"Dreieck", ":"}]}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Join", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"m2", ",", "m"}], "}"}], ",", "r"}], "]"}], "}"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{"j1", "-", "j2", "+", "1"}], ",", RowBox[{"j1", "+", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"m2", ",", RowBox[{"m", "-", "j1"}], ",", "j2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"Join", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"m2", ",", "m"}], "}"}], ",", "r"}], "]"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{ RowBox[{"-", "j1"}], "-", "j2"}], ",", RowBox[{"j2", "-", "j1", "-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"m2", ",", RowBox[{"-", "j2"}], ",", RowBox[{"m", "+", "j1"}]}], "}"}]}], "]"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Zentraler", " ", "quadratischer", " ", RowBox[{"Teil", ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Join", "[", RowBox[{"Table", "[", RowBox[{ RowBox[{"Disk", "[", RowBox[{ RowBox[{"{", RowBox[{"m2", ",", "m"}], "}"}], ",", "r"}], "]"}], ",", RowBox[{"{", RowBox[{"m", ",", RowBox[{"j2", "-", "j1"}], ",", RowBox[{"j1", "-", "j2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"m2", ",", RowBox[{"-", "j2"}], ",", "j2"}], "}"}]}], "]"}], "]"}]}], "\[IndentingNewLine]", "]"}], RowBox[{"(*", " ", "Join", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "Graphics", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "With", " ", "*)"}], "\[IndentingNewLine]", "]"}], " ", RowBox[{"(*", " ", "If", " ", "*)"}]}]], "Input", CellChangeTimes->{ 3.4949237648363132`*^9, {3.499741465083798*^9, 3.499741476314713*^9}, { 3.499741564085764*^9, 3.499741575825767*^9}, {3.499741621802803*^9, 3.499741624963147*^9}, {3.499741695985126*^9, 3.499741771440151*^9}, { 3.499741852357395*^9, 3.499741881919804*^9}, {3.499741939324561*^9, 3.499742092198566*^9}, {3.4997422370324087`*^9, 3.499742241719977*^9}, { 3.4997423118729887`*^9, 3.499742314815939*^9}, {3.4997425786489153`*^9, 3.4997425931820583`*^9}, {3.499742843951495*^9, 3.499742893276801*^9}, { 3.49974293400935*^9, 3.499742951545714*^9}, {3.499742994029047*^9, 3.499743049312923*^9}, {3.499743241793544*^9, 3.4997432620988398`*^9}, { 3.500650299096488*^9, 3.500650333113119*^9}, {3.5635407150685673`*^9, 3.5635407490209846`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Fig", "[", RowBox[{ RowBox[{"5", "/", "2"}], ",", RowBox[{"3", "/", "2"}]}], "]"}]], "Input", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGAQBmIQfcHKYjUn1yvHti9f14Fos+L520D0yZJDYDolq/sW N5CukHS/B6J/dbA9A9EldzjB9I2WB19BtN6KKz9B9JLZT/6B6J08/xh4gPSM wJch9UD6w8EdESA6sF2FpQtI3zZWB9Prnrj7WAm/cnSZ1OILojvy1aJA9IYe OzC9MrqTwRpI//u4EkwvXBjBDaK3BBeD6d2dGf8ei7xyZJQQ/Q+iWdY16T0B 0re5DoJpf2sBxm9AulT+OJi+aVS3glsU6M63V8C0ZWfOOhBdK/IPTGu3228H 0UuVZoJpo7kHVV71AP0dV64BogEQo4my "]], Cell[BoxData[ GraphicsBox[{ LineBox[NCache[{{Rational[3, 2], 4}, {Rational[3, 2], -1}, { Rational[-3, 2], -4}, {Rational[-3, 2], 1}, {Rational[3, 2], 4}}, {{ 1.5, 4}, {1.5, -1}, {-1.5, -4}, {-1.5, 1}, {1.5, 4}}]], LineBox[{{0, -5.125}, {0, 5.125}}], LineBox[{{-2.625, 0}, {2.625, 0}}], LineBox[{{-0.15000000000000002`, 4}, {0.15000000000000002`, 4}}], InsetBox[ RowBox[{ SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]}], {-0.22499999999999998`, 4}, {1, 0}], LineBox[{{-0.15000000000000002`, -4}, {0.15000000000000002`, -4}}], InsetBox[ RowBox[{ RowBox[{"-", SubscriptBox["j", "1"]}], "-", SubscriptBox["j", "2"]}], {0.22499999999999998`, -4}, {-1, 0}], LineBox[{{-0.15000000000000002`, 1}, {0.15000000000000002`, 1}}], InsetBox[ RowBox[{ SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]}], {0.22499999999999998`, 1}, {-1, 1}], LineBox[{{-0.15000000000000002`, -1}, {0.15000000000000002`, -1}}], InsetBox[ RowBox[{ SubscriptBox["j", "2"], "-", SubscriptBox["j", "1"]}], {-0.22499999999999998`, -1}, {1, -1}], InsetBox[ RowBox[{"-", SubscriptBox["j", "2"]}], {-1.65, -0.15000000000000002`}, {1, 1}], InsetBox[ SubscriptBox["j", "2"], {1.65, -0.15000000000000002`}, {-1, 1}], InsetBox["m", {-0.15000000000000002`, 5.125}, {1, 0}], InsetBox[ SubscriptBox["m", "2"], {2.625, -0.15000000000000002`}, {0, 1}], { DiskBox[NCache[{Rational[-1, 2], 2}, {-0.5, 2}], 0.07500000000000001], DiskBox[NCache[{Rational[1, 2], 2}, {0.5, 2}], 0.07500000000000001], DiskBox[NCache[{Rational[3, 2], 2}, {1.5, 2}], 0.07500000000000001]}, { DiskBox[NCache[{Rational[1, 2], 3}, {0.5, 3}], 0.07500000000000001], DiskBox[NCache[{Rational[3, 2], 3}, {1.5, 3}], 0.07500000000000001]}, DiskBox[NCache[{Rational[3, 2], 4}, {1.5, 4}], 0.07500000000000001], DiskBox[NCache[{Rational[-3, 2], -4}, {-1.5, -4}], 0.07500000000000001], { DiskBox[NCache[{Rational[-3, 2], -3}, {-1.5, -3}], 0.07500000000000001], DiskBox[NCache[{Rational[-1, 2], -3}, {-0.5, -3}], 0.07500000000000001]}, { DiskBox[NCache[{Rational[-3, 2], -2}, {-1.5, -2}], 0.07500000000000001], DiskBox[NCache[{Rational[-1, 2], -2}, {-0.5, -2}], 0.07500000000000001], DiskBox[NCache[{Rational[1, 2], -2}, {0.5, -2}], 0.07500000000000001]}, { DiskBox[NCache[{Rational[-3, 2], -1}, {-1.5, -1}], 0.07500000000000001], DiskBox[NCache[{Rational[-1, 2], -1}, {-0.5, -1}], 0.07500000000000001], DiskBox[NCache[{Rational[1, 2], -1}, {0.5, -1}], 0.07500000000000001], DiskBox[NCache[{Rational[3, 2], -1}, {1.5, -1}], 0.07500000000000001]}, { DiskBox[NCache[{Rational[-3, 2], 0}, {-1.5, 0}], 0.07500000000000001], DiskBox[NCache[{Rational[-1, 2], 0}, {-0.5, 0}], 0.07500000000000001], DiskBox[NCache[{Rational[1, 2], 0}, {0.5, 0}], 0.07500000000000001], DiskBox[NCache[{Rational[3, 2], 0}, {1.5, 0}], 0.07500000000000001]}, { DiskBox[NCache[{Rational[-3, 2], 1}, {-1.5, 1}], 0.07500000000000001], DiskBox[NCache[{Rational[-1, 2], 1}, {-0.5, 1}], 0.07500000000000001], DiskBox[NCache[{Rational[1, 2], 1}, {0.5, 1}], 0.07500000000000001], DiskBox[NCache[{Rational[3, 2], 1}, {1.5, 1}], 0.07500000000000001]}}]], "Output", CellChangeTimes->{ 3.5635406163234386`*^9, 3.563540720195548*^9, {3.563540754556855*^9, 3.5635408040379133`*^9}}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", "Fig", "]"}], ";"}]], "Input", CellChangeTimes->{{3.4949284035121326`*^9, 3.494928407284191*^9}}], Cell["\<\ Es gibt einen Zustand mit m=j1+j2, zwei Zust\[ADoubleDot]nde mit m=j1+j2-1, etc.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.494929654050688*^9}, 3.495164031886148*^9}], Cell["\<\ Die Anzahl der Zust\[ADoubleDot]nde nimmt zu bis m=|j1-j2| erreicht ist; danach bleibt die Anzahl konstant bis m=-|j1-j2|.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929755715198*^9}, 3.495164039716642*^9, { 3.4997459577878*^9, 3.49974596621661*^9}}], Cell["\<\ Danach nimmt die Anzahl der Zust\[ADoubleDot]nde ab, bei m=-j1-j2 gibt es \ wieder nur einen Zustand.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929836410471*^9}, 3.495164088559992*^9}], Cell["\<\ Der maximale Drehimpuls, den man mit der Addition von J1 und J2 erreichen \ kann, ist j=j1+j2.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929765609109*^9}, {3.494929868142016*^9, 3.4949299241946287`*^9}, 3.495164103919148*^9, {3.4951641424152718`*^9, 3.495164209018684*^9}, { 3.500613868173596*^9, 3.500613870666464*^9}}], Cell["\<\ Betrachten wir nun die zwei Zust\[ADoubleDot]nde f\[UDoubleDot]r m=j1+j2-1: Einer davon geh\[ODoubleDot]rt zu j=j1+j2, der andere zur maximalen \ Projektion (d.h. max. m) f\[UDoubleDot]r den Drehimpuls j=j1+j2-1.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929765609109*^9}, {3.494929868142016*^9, 3.4949299241946287`*^9}, { 3.495164103919148*^9, 3.495164105196148*^9}, {3.495164217898878*^9, 3.495164268756419*^9}, {3.4951643022130632`*^9, 3.4951643436400337`*^9}, { 3.495164467241707*^9, 3.495164511400818*^9}, {3.495164829900577*^9, 3.495164833815361*^9}, {3.495186271359577*^9, 3.495186271940858*^9}, { 3.499745978247449*^9, 3.4997459833139143`*^9}}], Cell["\<\ Insgesamt kann der Drehimpuls die Werte j=j1+j2 bis j=|j1-j2| mit \ Schrittweite \"1\" annehmen.\ \>", "Subsubsection", CellChangeTimes->{{3.49492956841259*^9, 3.4949295817678328`*^9}, { 3.494929672412374*^9, 3.494929682218091*^9}, {3.494929758506908*^9, 3.494929765609109*^9}, {3.494929868142016*^9, 3.4949299241946287`*^9}, { 3.495164103919148*^9, 3.495164105958068*^9}, {3.495186380025275*^9, 3.4951864225338917`*^9}, {3.49518651543608*^9, 3.4951865217736263`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Algorithmus", "Subsection", CellChangeTimes->{{3.49518656920572*^9, 3.49518657420251*^9}}], Cell["\<\ Startpunkt m = j1 + j2. Das entspricht dem Zustand | j1,j1; j2,j2> mit j=j1+j2. Damit ist der Zustand gleich |j1+j2, j1+j2>.\ \>", "Subsubsection", CellChangeTimes->{{3.4951866073820066`*^9, 3.495186782517404*^9}, { 3.495186813950519*^9, 3.495186842442586*^9}}], Cell[CellGroupData[{ Cell["\<\ Wir operieren nun wiederholt mit dem Leiteroperator J- = J1- + J2- und \ konstruieren somit Schritt f\[UDoubleDot]r Schritt alle Zust\[ADoubleDot]nde mit j=j1+j2. Normierung beachten: J-|j,m+1> = Sqrt[(j+m)(j-m+1)] |j,m> Im Folgenden: ket[m1,m2] == |j1,m1; j2,m2> KET[j,m] == |j,m> \ \>", "Subsubsection", CellChangeTimes->{{3.495186901196472*^9, 3.495187081514359*^9}, { 3.495187135576795*^9, 3.4951871687084913`*^9}, {3.4997440196249237`*^9, 3.49974405765777*^9}, {3.499744251036666*^9, 3.499744263137025*^9}, { 3.563591891212936*^9, 3.563591894404874*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Jm", "[", "k_", "]"}], ":=", RowBox[{"Expand", "[", RowBox[{"k", "/.", RowBox[{"{", RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "\[Rule]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j1", "-", "m1", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j1", "+", "m1"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{ RowBox[{"m1", "-", "1"}], ",", "m2"}], "]"}]}], "+", "\[IndentingNewLine]", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j2", "-", "m2", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j2", "+", "m2"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{"m1", ",", RowBox[{"m2", "-", "1"}]}], "]"}]}]}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"m1", "=", "j1"}], ",", " ", RowBox[{"m2", "=", RowBox[{ RowBox[{"j2", ":", " ", RowBox[{"KET", "[", RowBox[{ RowBox[{"j1", "+", "j2"}], ",", RowBox[{"j1", "+", "j2"}]}], "]"}]}], " ", "=", " ", RowBox[{"ket", "[", RowBox[{"j1", ",", "j2"}], "]"}]}]}]}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{"Jm", "[", " ", RowBox[{"ket", "[", RowBox[{"j1", ",", "j2"}], "]"}], " ", "]"}]}], "Input", CellChangeTimes->{{3.499743842164628*^9, 3.499743843930616*^9}, { 3.499743920500081*^9, 3.499743927605586*^9}, {3.4997439709403973`*^9, 3.4997439736908903`*^9}, {3.4997441614278803`*^9, 3.499744234058714*^9}, { 3.499744276055373*^9, 3.499744355132766*^9}}] }, Open ]], Cell["\<\ Danach erniedrigen wir j um \"1\". W\[ADoubleDot]hle den Startpunkt |j,j> so, dass er orthogonal zu allen schon \ konstruierten Zust\[ADoubleDot]nden mit gleichem m ist. Das wird folgendermassen erreicht: 1. W\[ADoubleDot]hle |j,j-j2; j2,j2> = ket[j-j2,j2]. 2. Subtrahiere die Komponenten in die Richtungen aller bisher konstruierten \ Zust\[ADoubleDot]nde. 3. Normiere den Zustand. Wende im n\[ADoubleDot]chsten Schritt wieder J- an, um die \ Zust\[ADoubleDot]nde mit niedrigerem m zu konstruieren.\ \>", "Subsubsection", CellChangeTimes->{{3.49518717505512*^9, 3.495187252794203*^9}, { 3.49518728900203*^9, 3.495187293357806*^9}, {3.495187334890863*^9, 3.495187420094923*^9}, {3.495187514007577*^9, 3.495187571780981*^9}, 3.495187694612158*^9, {3.499744760191187*^9, 3.4997448714449053`*^9}, { 3.499744916024016*^9, 3.4997450786966963`*^9}, {3.499745179337322*^9, 3.499745185358899*^9}, {3.563541263414199*^9, 3.563541289224659*^9}, { 3.563591940335434*^9, 3.563591963418174*^9}}], Cell["j wird solange erniedrigt bis | j1 - j2 | erreicht ist.", \ "Subsubsection", CellChangeTimes->{{3.499745249017453*^9, 3.499745279898829*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Implementierung", "Subsection", CellChangeTimes->{{3.4952494401254683`*^9, 3.4952494425167723`*^9}}], Cell[CellGroupData[{ Cell["\<\ AddJ: Funktion mit Drehimpuls j1 und j2 als Argument. Ausgabe: KET[j,m] == |j,m> als Linearkombination von ket[m1,m2] \ == |j1,m1; j2,m2> Jm: lokale Funktion. Operator J- sp: Skalarprodukt von zwei ket[m1,m2] == |j1,m1; j2,m2> \ \>", "Subsubsection", CellChangeTimes->{{3.495187850414179*^9, 3.495187850876498*^9}, 3.4952481126175737`*^9, {3.495248511238284*^9, 3.495248511324315*^9}, { 3.495249470346119*^9, 3.495249478052022*^9}, {3.495249550534318*^9, 3.495249640377877*^9}, {3.495249756401022*^9, 3.495249767973694*^9}, { 3.495249992583453*^9, 3.4952501427880163`*^9}, {3.495250242240789*^9, 3.495250247895533*^9}, {3.495250623195623*^9, 3.495250644372507*^9}}], Cell[BoxData[ RowBox[{"AddJ", ":=", " ", RowBox[{"Function", "[", RowBox[{ RowBox[{"{", RowBox[{"j1", ",", "j2"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"If", "[", RowBox[{ RowBox[{"j2", ">", "j1"}], ",", "\[IndentingNewLine]", RowBox[{"AddJ", "[", RowBox[{"j2", ",", "j1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"KET", ",", "j", ",", "J", ",", "m", ",", "Jm", ",", "sp"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{"J", "-"}], ":"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Jm", "[", "k_", "]"}], ":=", RowBox[{"Expand", "[", RowBox[{"k", "/.", RowBox[{"{", RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "\[Rule]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j1", "-", "m1", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j1", "+", "m1"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{ RowBox[{"m1", "-", "1"}], ",", "m2"}], "]"}]}], "+", "\[IndentingNewLine]", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j2", "-", "m2", "+", "1"}], ")"}], "*", RowBox[{"(", RowBox[{"j2", "+", "m2"}], ")"}]}], "]"}], "*", RowBox[{"ket", "[", RowBox[{"m1", ",", RowBox[{"m2", "-", "1"}]}], "]"}]}]}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{ "Skalarprodukt", " ", "von", " ", "2", " ", "Zust\[ADoubleDot]nden", " ", RowBox[{"ket", "[", RowBox[{"m1", ",", "m2"}], "]"}]}], " ", "=", " ", RowBox[{"|", "j1"}]}], ",", RowBox[{"m1", ";", " ", "j2"}], ",", RowBox[{ RowBox[{"m2", ">"}], ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"sp", "[", RowBox[{"k1_", ",", "k2_"}], "]"}], ":=", RowBox[{ RowBox[{"Expand", "[", RowBox[{"k1", "*", "k2"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "^", "2"}], "\[Rule]", "1"}], ",", RowBox[{ RowBox[{ RowBox[{"ket", "[", RowBox[{"m1_", ",", "m2_"}], "]"}], "*", RowBox[{"ket", "[", RowBox[{"M1_", ",", "M2_"}], "]"}]}], "\[Rule]", "0"}]}], "}"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "=", RowBox[{"ket", "[", RowBox[{ RowBox[{"j", "-", "j2"}], ",", "j2"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ "Subtrahiere", " ", "die", " ", "Komponenten", " ", "in", " ", "die", " ", "Richtungen", " ", "aller", " ", "\[IndentingNewLine]", " ", "bisher", " ", "konstruierten", " ", RowBox[{"Zust\[ADoubleDot]nde", "."}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Do", "[", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "=", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], " ", "-", " ", "\[IndentingNewLine]", RowBox[{"Expand", "[", RowBox[{ RowBox[{"sp", "[", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], ",", RowBox[{"KET", "[", RowBox[{"J", ",", "j"}], "]"}]}], "]"}], "*", RowBox[{"KET", "[", RowBox[{"J", ",", "j"}], "]"}]}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"J", ",", RowBox[{"j1", "+", "j2"}], ",", RowBox[{"j", "+", "1"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"Gebe", " ", RowBox[{"(", "normierten", ")"}], " ", "Zustand", " ", RowBox[{"aus", ".", " ", "\[IndentingNewLine]", RowBox[{"Beachte", ":", " ", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], " ", "ist", " ", "ausgedr\[UDoubleDot]ckt", " ", "durch", " ", RowBox[{"ket", "[", RowBox[{"m1", ",", "m2"}], "]"}]}]}]}]}], " ", "*)"}], " ", "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "j", ",", "\"\<,\>\"", ",", "j", ",", "\"\<] = \>\"", ",", " ", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "=", RowBox[{"Expand", "[", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], "/", RowBox[{"Sqrt", "[", RowBox[{"sp", "[", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}], ",", RowBox[{"KET", "[", RowBox[{"j", ",", "j"}], "]"}]}], "]"}], "]"}]}], "]"}]}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{"Wende", " ", "J"}], "-", " ", "an"}], ",", " ", RowBox[{ RowBox[{"um", " ", "alle", " ", "Zust\[ADoubleDot]nde", " ", RowBox[{"KET", "[", RowBox[{"j", ",", "m"}], "]"}], " ", "mit", " ", "m"}], "<", RowBox[{"j", " ", "zu", " ", RowBox[{"berechnen", "."}]}]}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "j", ",", "\"\<,\>\"", ",", "m", ",", "\"\<] = \>\"", ",", " ", RowBox[{ RowBox[{"KET", "[", RowBox[{"j", ",", "m"}], "]"}], "=", RowBox[{"Expand", "[", RowBox[{ RowBox[{"Jm", "[", RowBox[{"KET", "[", RowBox[{"j", ",", RowBox[{"m", "+", "1"}]}], "]"}], "]"}], "/", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"j", "-", "m"}], ")"}], "*", RowBox[{"(", RowBox[{"j", "+", "m", "+", "1"}], ")"}]}], "]"}]}], "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"m", ",", RowBox[{"j", "-", "1"}], ",", RowBox[{"-", "j"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}]}], " ", RowBox[{"(*", " ", "Do", " ", "*)"}], ",", " ", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"j", ",", RowBox[{"j1", "+", "j2"}], ",", RowBox[{"j1", "-", "j2"}], ",", RowBox[{"-", "1"}]}], "}"}]}], "]"}]}]}], " ", RowBox[{"(*", " ", "Do", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "Module", " ", "*)"}], "\[IndentingNewLine]", "]"}]}], " ", RowBox[{"(*", " ", "If", " ", "*)"}], "\[IndentingNewLine]", "]"}], RowBox[{"(*", " ", "Function", " ", "*)"}]}]], "Input", CellChangeTimes->{{3.4952481606831408`*^9, 3.495248286846879*^9}, { 3.495248327968109*^9, 3.4952483297379932`*^9}, {3.4952483782696333`*^9, 3.495248440377008*^9}, {3.4952484946941137`*^9, 3.4952486603162518`*^9}, { 3.495248761551305*^9, 3.4952487898301277`*^9}, {3.495249496290002*^9, 3.495249532310174*^9}, {3.495250171874601*^9, 3.4952502170153303`*^9}, { 3.4952506496548967`*^9, 3.495250758382045*^9}, {3.499745322380767*^9, 3.499745458080372*^9}, {3.4997455034342318`*^9, 3.499745525424013*^9}, { 3.499745583619969*^9, 3.499745585891288*^9}, {3.499745617720961*^9, 3.499745704105986*^9}, {3.499745748212658*^9, 3.499745844518404*^9}, { 3.499745875500877*^9, 3.4997459089928293`*^9}, {3.563541396663657*^9, 3.563541428634947*^9}, {3.563541479792204*^9, 3.5635415150619793`*^9}, 3.563541552863777*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"AddJ", "[", RowBox[{"1", ",", RowBox[{"1", "/", "2"}]}], "]"}]], "Input", CellChangeTimes->{{3.499745914492776*^9, 3.499745928033827*^9}, { 3.499746034161337*^9, 3.49974605130193*^9}, {3.500613971773577*^9, 3.500613971973615*^9}, {3.500614015832132*^9, 3.500614016151771*^9}, { 3.500696102981718*^9, 3.500696120481324*^9}, {3.563541434477068*^9, 3.5635414423191757`*^9}, {3.563541597437118*^9, 3.5635416134361362`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"KET[\"\>", "\[InvisibleSpace]", FractionBox["3", "2"], "\[InvisibleSpace]", "\<\",\"\>", "\[InvisibleSpace]", FractionBox["3", "2"], "\[InvisibleSpace]", "\<\"] = \"\>", "\[InvisibleSpace]", RowBox[{"ket", "[", RowBox[{"1", ",", FractionBox["1", "2"]}], "]"}]}], SequenceForm["KET[", Rational[3, 2], ",", Rational[3, 2], "] = ", $CellContext`ket[1, Rational[1, 2]]], Editable->False]], "Print", CellChangeTimes->{{3.563541431315525*^9, 3.563541442801878*^9}, 3.5635415193309517`*^9, {3.563541601531186*^9, 3.563541613727606*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"KET[\"\>", "\[InvisibleSpace]", FractionBox["3", "2"], "\[InvisibleSpace]", "\<\",\"\>", "\[InvisibleSpace]", FractionBox["1", "2"], "\[InvisibleSpace]", "\<\"] = \"\>", "\[InvisibleSpace]", RowBox[{ RowBox[{ SqrtBox[ FractionBox["2", "3"]], " ", RowBox[{"ket", "[", RowBox[{"0", ",", FractionBox["1", "2"]}], "]"}]}], "+", FractionBox[ RowBox[{"ket", "[", RowBox[{"1", ",", RowBox[{"-", FractionBox["1", "2"]}]}], "]"}], SqrtBox["3"]]}]}], SequenceForm["KET[", Rational[3, 2], ",", Rational[1, 2], "] = ", Rational[2, 3]^Rational[1, 2] $CellContext`ket[0, Rational[1, 2]] + 3^Rational[-1, 2] $CellContext`ket[1, Rational[-1, 2]]], Editable->False]], "Print", CellChangeTimes->{{3.563541431315525*^9, 3.563541442801878*^9}, 3.5635415193309517`*^9, {3.563541601531186*^9, 3.563541613732526*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"KET[\"\>", "\[InvisibleSpace]", FractionBox["3", "2"], "\[InvisibleSpace]", "\<\",\"\>", "\[InvisibleSpace]", RowBox[{"-", FractionBox["1", "2"]}], "\[InvisibleSpace]", "\<\"] = \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox[ RowBox[{"ket", "[", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox["1", "2"]}], "]"}], SqrtBox["3"]], "+", RowBox[{ SqrtBox[ FractionBox["2", "3"]], " ", RowBox[{"ket", "[", RowBox[{"0", ",", RowBox[{"-", FractionBox["1", "2"]}]}], "]"}]}]}]}], SequenceForm["KET[", Rational[3, 2], ",", Rational[-1, 2], "] = ", 3^Rational[-1, 2] $CellContext`ket[-1, Rational[1, 2]] + Rational[2, 3]^Rational[1, 2] $CellContext`ket[0, Rational[-1, 2]]], Editable->False]], "Print", CellChangeTimes->{{3.563541431315525*^9, 3.563541442801878*^9}, 3.5635415193309517`*^9, {3.563541601531186*^9, 3.5635416137345247`*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"KET[\"\>", "\[InvisibleSpace]", FractionBox["3", "2"], "\[InvisibleSpace]", "\<\",\"\>", "\[InvisibleSpace]", RowBox[{"-", FractionBox["3", "2"]}], "\[InvisibleSpace]", "\<\"] = \"\>", "\[InvisibleSpace]", RowBox[{"ket", "[", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", FractionBox["1", "2"]}]}], "]"}]}], SequenceForm["KET[", Rational[3, 2], ",", Rational[-3, 2], "] = ", $CellContext`ket[-1, Rational[-1, 2]]], Editable->False]], "Print", CellChangeTimes->{{3.563541431315525*^9, 3.563541442801878*^9}, 3.5635415193309517`*^9, {3.563541601531186*^9, 3.5635416137353973`*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"KET[\"\>", "\[InvisibleSpace]", FractionBox["1", "2"], "\[InvisibleSpace]", "\<\",\"\>", "\[InvisibleSpace]", FractionBox["1", "2"], "\[InvisibleSpace]", "\<\"] = \"\>", "\[InvisibleSpace]", RowBox[{ FractionBox[ RowBox[{"ket", "[", RowBox[{"0", ",", FractionBox["1", "2"]}], "]"}], SqrtBox["3"]], "-", RowBox[{ SqrtBox[ FractionBox["2", "3"]], " ", RowBox[{"ket", "[", RowBox[{"1", ",", RowBox[{"-", FractionBox["1", "2"]}]}], "]"}]}]}]}], SequenceForm["KET[", Rational[1, 2], ",", Rational[1, 2], "] = ", 3^Rational[-1, 2] $CellContext`ket[0, Rational[1, 2]] - Rational[2, 3]^Rational[1, 2] $CellContext`ket[1, Rational[-1, 2]]], Editable->False]], "Print", CellChangeTimes->{{3.563541431315525*^9, 3.563541442801878*^9}, 3.5635415193309517`*^9, {3.563541601531186*^9, 3.5635416137362127`*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"KET[\"\>", "\[InvisibleSpace]", FractionBox["1", "2"], "\[InvisibleSpace]", "\<\",\"\>", "\[InvisibleSpace]", RowBox[{"-", FractionBox["1", "2"]}], "\[InvisibleSpace]", "\<\"] = \"\>", "\[InvisibleSpace]", RowBox[{ RowBox[{ SqrtBox[ FractionBox["2", "3"]], " ", RowBox[{"ket", "[", RowBox[{ RowBox[{"-", "1"}], ",", FractionBox["1", "2"]}], "]"}]}], "-", FractionBox[ RowBox[{"ket", "[", RowBox[{"0", ",", RowBox[{"-", FractionBox["1", "2"]}]}], "]"}], SqrtBox["3"]]}]}], SequenceForm["KET[", Rational[1, 2], ",", Rational[-1, 2], "] = ", Rational[2, 3]^Rational[1, 2] $CellContext`ket[-1, Rational[1, 2]] - 3^Rational[-1, 2] $CellContext`ket[0, Rational[-1, 2]]], Editable->False]], "Print", CellChangeTimes->{{3.563541431315525*^9, 3.563541442801878*^9}, 3.5635415193309517`*^9, {3.563541601531186*^9, 3.563541613737101*^9}}] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, ScreenStyleEnvironment->"Presentation", WindowSize->{1592, 873}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, ShowSelection->True, FrontEndVersion->"8.0 for Linux x86 (64-bit) (October 10, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 151, 2, 95, "Subtitle"], Cell[CellGroupData[{ Cell[743, 28, 304, 4, 126, "Section"], Cell[CellGroupData[{ Cell[1072, 36, 103, 1, 67, "Subsection"], Cell[1178, 39, 1359, 26, 457, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[2574, 70, 166, 2, 67, "Subsection"], Cell[2743, 74, 917, 16, 185, "Text"], Cell[CellGroupData[{ Cell[3685, 94, 1097, 28, 164, "Input"], Cell[4785, 124, 172, 3, 380, "Output"] }, Open ]], Cell[4972, 130, 12204, 310, 1311, "Input"], Cell[CellGroupData[{ Cell[17201, 444, 508, 12, 52, "Input"], Cell[17712, 458, 3433, 61, 455, "Output"] }, Open ]], Cell[21160, 522, 146, 3, 52, "Input"], Cell[21309, 527, 206, 5, 84, "Subsubsection"], Cell[21518, 534, 342, 6, 73, "Subsubsection"], Cell[21863, 542, 324, 6, 37, "Subsubsection"], Cell[22190, 550, 466, 8, 37, "Subsubsection"], Cell[22659, 560, 801, 13, 109, "Subsubsection"], Cell[23463, 575, 489, 8, 37, "Subsubsection"] }, Open ]], Cell[CellGroupData[{ Cell[23989, 588, 97, 1, 67, "Subsection"], Cell[24089, 591, 279, 6, 120, "Subsubsection"], Cell[CellGroupData[{ Cell[24393, 601, 585, 12, 217, "Subsubsection"], Cell[24981, 615, 1902, 53, 201, "Input"] }, Open ]], Cell[26898, 671, 1016, 18, 264, "Subsubsection"], Cell[27917, 691, 148, 2, 37, "Subsubsection"] }, Open ]], Cell[CellGroupData[{ Cell[28102, 698, 107, 1, 67, "Subsection"], Cell[CellGroupData[{ Cell[28234, 703, 713, 13, 192, "Subsubsection"], Cell[28950, 718, 9663, 223, 1200, "Input"], Cell[CellGroupData[{ Cell[38638, 945, 461, 8, 52, "Input"], Cell[CellGroupData[{ Cell[39124, 957, 635, 17, 59, "Print"], Cell[39762, 976, 970, 27, 88, "Print"], Cell[40735, 1005, 1017, 29, 88, "Print"], Cell[41755, 1036, 703, 20, 59, "Print"], Cell[42461, 1058, 971, 27, 88, "Print"], Cell[43435, 1087, 1014, 29, 88, "Print"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)