(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 27258, 822] NotebookOptionsPosition[ 24760, 738] NotebookOutlinePosition[ 25395, 761] CellTagsIndexPosition[ 25352, 758] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["4. Computeralgebra und Quantenmechanik", "Subtitle", CellChangeTimes->{{3.563540103924034*^9, 3.563540110377282*^9}}], Cell[CellGroupData[{ Cell["Teilchen trifft auf Potentialbarrierie/Potentialsenke", "Section", CellChangeTimes->{{3.5322550295145187`*^9, 3.532255043217923*^9}, 3.5322553478433437`*^9, {3.562903968661458*^9, 3.5629039721527767`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"V", "[", RowBox[{"x_", ",", "a_"}], "]"}], " ", ":=", " ", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"Abs", "[", "x", "]"}], "<", "a"}], ",", "V0", ",", "0"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.532255048403338*^9, 3.532255092864155*^9}}], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"V", "[", RowBox[{"x", ",", "2"}], "]"}], "/.", RowBox[{"V0", "\[Rule]", "5"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "5"}], ",", "5"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "8"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.5322550831341877`*^9, 3.532255125618641*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["Fragestellungen", "Section", CellChangeTimes->{{3.532255143353458*^9, 3.5322552330080433`*^9}, { 3.532255275562224*^9, 3.532255324751252*^9}, {3.532255986547624*^9, 3.5322561627383204`*^9}}], Cell["\<\ 1. Loesung fuer Wellenfunktion in den 3 Bereichen 2. Verwende Anschlussbedingungen, um die freien Konstanten zu bestimmen. 3. Berechne Transmissions- und Reflexionskoeffizient 4. Betrachte die Energieabhaengigkeit des Transmissions- und \ Reflexionskoeffizienten (sowohl fuer V0>0 und V0<0) 5. Graphische Darstellung des Transmissions- und Reflexionskoeffizienten als \ Funktion der Energie und V0. 6. Ortsabhaengigkeit der Wellenfunktion und der Wahrscheinlichkeitsdichte 7. Animierte Darstellung der Zeitabhaengigkeit des Realteils der \ Wellenfunktion\ \>", "Text", CellChangeTimes->{{3.532255143353458*^9, 3.5322552330080433`*^9}, { 3.532255275562224*^9, 3.532255324751252*^9}, {3.532255986547624*^9, 3.5322561627383204`*^9}, 3.532256193932207*^9, {3.532324203609728*^9, 3.532324233730982*^9}, {3.532337831455325*^9, 3.532337847319242*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["zu 1.", "Section", CellChangeTimes->{{3.532256219090517*^9, 3.532256227086182*^9}}], Cell["\<\ Beachte: Einlaufende Welle ist auf \[OpenCurlyDoubleQuote]1\[CloseCurlyDoubleQuote] \ normiert Setze \[HBar]=1\ \>", "Text", CellChangeTimes->{{3.532256464384166*^9, 3.532256479416519*^9}, { 3.532256609108819*^9, 3.532256642855504*^9}, {3.532256676987773*^9, 3.53225668114785*^9}, {3.563548656621278*^9, 3.563548659373158*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"psiL", "[", "x_", "]"}], " ", "=", " ", RowBox[{ RowBox[{"Exp", "[", RowBox[{"I", "*", "k", "*", "x"}], "]"}], " ", "+", " ", RowBox[{"R", " ", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], "*", "k", "*", "x"}], "]"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"psiM", "[", "x_", "]"}], "=", " ", RowBox[{ RowBox[{"A", "*", RowBox[{"Exp", "[", RowBox[{"I", "*", "kM", "*", "x"}], "]"}]}], " ", "+", " ", RowBox[{"B", "*", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], "*", "kM", "*", "x"}], "]"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"psiR", "[", "x_", "]"}], "=", RowBox[{"T", " ", RowBox[{"Exp", "[", RowBox[{"I", "*", "k", "*", "x"}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{"kRule", " ", "=", " ", RowBox[{"{", RowBox[{ RowBox[{"kM", "\[Rule]", RowBox[{"Sqrt", "[", RowBox[{"2", "*", "m", "*", RowBox[{"(", RowBox[{"En", "-", "V0"}], ")"}]}], "]"}]}], ",", RowBox[{"k", "\[Rule]", RowBox[{"Sqrt", "[", RowBox[{"2", "*", "En", "*", "m"}], "]"}]}]}], "}"}]}]}], "Input", CellChangeTimes->{{3.5322562391576757`*^9, 3.532256354286141*^9}, { 3.532256392559071*^9, 3.532256448521367*^9}, {3.5322582399629583`*^9, 3.5322582522403297`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["zu 2.", "Section", CellChangeTimes->{{3.5322566936305857`*^9, 3.5322567004610167`*^9}}], Cell[BoxData[ RowBox[{"eq", " ", "=", " ", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"psiL", "[", RowBox[{"-", "a"}], "]"}], " ", "\[Equal]", " ", RowBox[{"psiM", "[", RowBox[{"-", "a"}], "]"}]}], ",", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{"psiL", "'"}], "[", RowBox[{"-", "a"}], "]"}], " ", "\[Equal]", " ", RowBox[{ RowBox[{"psiM", "'"}], "[", RowBox[{"-", "a"}], "]"}]}], ",", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{"psiM", "[", "a", "]"}], " ", "\[Equal]", RowBox[{"psiR", "[", "a", "]"}]}], ",", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{"psiM", "'"}], "[", "a", "]"}], " ", "\[Equal]", RowBox[{ RowBox[{"psiR", "'"}], "[", "a", "]"}]}]}], "}"}]}]], "Input", CellChangeTimes->{{3.532256984546936*^9, 3.532257047589752*^9}, { 3.5322571361931257`*^9, 3.5322571556548367`*^9}}], Cell[BoxData[ RowBox[{"ABRTrule", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{"eq", ",", RowBox[{"{", RowBox[{"A", ",", "B", ",", "R", ",", "T"}], "}"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "//", "FullSimplify"}]}]], "Input", CellChangeTimes->{{3.532257064629108*^9, 3.532257100705764*^9}, { 3.532257198452812*^9, 3.53225722627661*^9}, {3.532258275586812*^9, 3.5322583178131227`*^9}, {3.532259477303*^9, 3.532259478125462*^9}, { 3.563548754517421*^9, 3.563548764438883*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["zu 3.", "Section", CellChangeTimes->{{3.532257487199573*^9, 3.532257494538973*^9}}], Cell["\<\ Der Strom berechnet sich mittels j = 1/(2*I*m) * (psi^* d psi/dx - psi d psi^*/dx) Definiere zunaechst die komplex konjugierte Wellenfunktion Transmissionskoeffizient: T = |j_trans/j_ein| Reflexionskoeffizient: R = |j_refl/j_ein|\ \>", "Text", CellChangeTimes->{{3.5322575996915293`*^9, 3.532257711663472*^9}, { 3.5322606340766773`*^9, 3.532260685988715*^9}, {3.5629039927062197`*^9, 3.5629039936037807`*^9}, {3.5635487960511017`*^9, 3.563548797794064*^9}, { 3.563548828365285*^9, 3.563548833282528*^9}}], Cell[BoxData[{ RowBox[{"psiCrule", " ", "=", " ", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Complex", "[", RowBox[{"a_", ",", "b_"}], "]"}], " ", "\[RuleDelayed]", " ", RowBox[{"Complex", "[", RowBox[{"a", ",", RowBox[{"-", "b"}]}], "]"}]}], ",", RowBox[{"R", "\[Rule]", "RC"}], ",", RowBox[{"T", "\[Rule]", "TC"}], ",", RowBox[{"A", "\[Rule]", "AC"}], ",", RowBox[{"B", "\[Rule]", "BC"}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{"ABRTruleC", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"RC", "\[Rule]", "R"}], ",", RowBox[{"TC", "\[Rule]", "T"}], ",", RowBox[{"AC", "\[Rule]", "A"}], ",", RowBox[{"BC", "\[Rule]", "B"}]}], "}"}], "/.", "ABRTrule"}], "/.", "psiCrule"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"strom", "[", "psi_", "]"}], " ", ":=", " ", RowBox[{ RowBox[{"1", "/", RowBox[{"(", RowBox[{"2", "*", "I", "*", "m"}], ")"}]}], "*", RowBox[{"(", " ", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"psi", "/.", "psiCrule"}], ")"}], "*", RowBox[{"D", "[", RowBox[{"psi", ",", "x"}], "]"}]}], "-", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"(", RowBox[{"psi", "/.", "psiCrule"}], ")"}], ",", "x"}], "]"}], "*", "psi"}]}], ")"}]}]}]}], "Input", CellChangeTimes->{{3.53225772034753*^9, 3.5322578294545107`*^9}, { 3.5322578633648367`*^9, 3.532257997491445*^9}, {3.5322581953323708`*^9, 3.532258218943893*^9}, {3.5322583321305017`*^9, 3.5322583329374237`*^9}, { 3.532259266769294*^9, 3.5322592998386593`*^9}, {3.532259338686552*^9, 3.532259416213736*^9}, {3.563548954599999*^9, 3.563548964438238*^9}, 3.563549027081476*^9}], Cell[BoxData[ RowBox[{"Einlstrom", " ", "=", " ", RowBox[{ RowBox[{"strom", "[", RowBox[{"psiL", "[", "x", "]"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"R", "\[Rule]", "0"}], ",", RowBox[{"RC", "\[Rule]", "0"}]}], "}"}]}]}]], "Input", CellChangeTimes->{{3.532257931116436*^9, 3.532257935769785*^9}, { 3.532258004369254*^9, 3.532258020734457*^9}, {3.532258180141307*^9, 3.532258201093259*^9}, {3.53225838612218*^9, 3.532258390031982*^9}, { 3.5322593093208*^9, 3.5322593110064297`*^9}, {3.563549027101933*^9, 3.563549027102694*^9}}], Cell[BoxData[ RowBox[{"Rstrom", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Einlstrom", " ", "-", " ", RowBox[{"strom", "[", RowBox[{"psiL", "[", "x", "]"}], "]"}]}], "/.", "ABRTrule"}], "/.", "ABRTruleC"}], "//", "ExpToTrig"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.532258396098353*^9, 3.53225851433648*^9}, { 3.532259222157898*^9, 3.532259226494673*^9}, {3.532259432696035*^9, 3.5322594500266314`*^9}, {3.563549027107602*^9, 3.563549027110937*^9}}], Cell[BoxData[ RowBox[{"Tstrom", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"strom", "[", RowBox[{"psiR", "[", "x", "]"}], "]"}], "/.", "ABRTrule"}], "/.", "ABRTruleC"}], "//", "ExpToTrig"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.532259548295722*^9, 3.5322595565378304`*^9}, { 3.563549027116386*^9, 3.5635490271177673`*^9}}], Cell[BoxData[{ RowBox[{"RR", " ", "=", " ", RowBox[{"Rstrom", "/", "Einlstrom"}]}], "\[IndentingNewLine]", RowBox[{"TT", " ", "=", " ", RowBox[{"Tstrom", "/", "Einlstrom"}]}]}], "Input", CellChangeTimes->{{3.532260693397594*^9, 3.5322607222338448`*^9}, { 3.5635490271236887`*^9, 3.5635490271261063`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{"Check", ":", " ", RowBox[{"RR", "+", "TT"}]}], " ", "=", " ", RowBox[{"1", ":"}]}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"RR", "+", "TT"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.5322607392994757`*^9, 3.5322607838919573`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["zu 4.", "Section", CellChangeTimes->{{3.532261958202795*^9, 3.532261967133195*^9}}], Cell[BoxData[{ RowBox[{"num", " ", "=", " ", RowBox[{"{", RowBox[{ RowBox[{"m", "\[Rule]", "1"}], ",", RowBox[{"a", "\[Rule]", "1"}]}], "}"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"RRTT", "[", RowBox[{"En_", ",", "V0_"}], "]"}], ":=", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"RR", ",", "TT"}], "}"}], "/.", "kRule"}], "/.", "num"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"RRTT", "[", RowBox[{"10", ",", RowBox[{"-", "100"}]}], "]"}], "//", "N", " ", RowBox[{"(*", " ", RowBox[{"Test", " ", "zur", " ", RowBox[{"num", ".", " ", "Auswertung"}]}], " ", "*)"}]}]}], "Input", CellChangeTimes->{{3.532261993246084*^9, 3.5322621396052303`*^9}, { 3.532322262333015*^9, 3.532322281178816*^9}, {3.563549249433165*^9, 3.563549252294147*^9}, {3.563549282655114*^9, 3.5635493024540358`*^9}}], Cell[CellGroupData[{ Cell["Betrachte Potentialtopf der Tiefe V0 = -100", "Subsection", CellChangeTimes->{{3.532262399821629*^9, 3.532262414900846*^9}, 3.532262526130196*^9}], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"RRTT", "[", RowBox[{"en", ",", RowBox[{"-", "100"}]}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"en", ",", "1", ",", "300"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Red", ",", "Blue"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.5322621464102087`*^9, 3.532262232371298*^9}, { 3.532262429655346*^9, 3.532262447337619*^9}, {3.562904002988591*^9, 3.562904003413158*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Betrachte Potentialbarriere der Hoehe V0 = 2\ \>", "Subsection", CellChangeTimes->{{3.532262534916168*^9, 3.532262570150063*^9}}], Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"RRTT", "[", RowBox[{"en", ",", "2"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"en", ",", "0", ",", "15"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Red", ",", "Blue"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.532262461559017*^9, 3.532262507126343*^9}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["zu 5.", "Section", CellChangeTimes->{{3.532322354048126*^9, 3.532322370071227*^9}}], Cell[BoxData[ RowBox[{"num", " ", "=", " ", RowBox[{"{", RowBox[{ RowBox[{"m", "\[Rule]", "1"}], ",", RowBox[{"a", "\[Rule]", "1"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.532322395953823*^9, 3.5323225691038733`*^9}, { 3.5323226111277246`*^9, 3.532322612186846*^9}, {3.532322680036001*^9, 3.532322681275077*^9}, {3.532322717792417*^9, 3.532322724172823*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"Plot3D", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"TT", "/.", "kRule"}], "/.", "num"}], "]"}], ",", RowBox[{"{", RowBox[{"En", ",", "0", ",", "30"}], "}"}], ",", RowBox[{"{", RowBox[{"V0", ",", RowBox[{"-", "40"}], ",", "0"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.532322395953823*^9, 3.5323225691038733`*^9}, { 3.5323226111277246`*^9, 3.532322612186846*^9}, {3.532322680036001*^9, 3.532322681275077*^9}, {3.532322717792417*^9, 3.532322724172823*^9}, { 3.532322831601873*^9, 3.532322908160405*^9}, {3.563549420345829*^9, 3.5635494425131607`*^9}}], Cell[BoxData[ RowBox[{"Plot3D", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"RR", "/.", "kRule"}], "/.", "num"}], "]"}], ",", RowBox[{"{", RowBox[{"En", ",", "0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"V0", ",", "0", ",", RowBox[{"-", "30"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.53232273691702*^9, 3.5323228057501698`*^9}, { 3.532322922532399*^9, 3.532323016102529*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["zu 6.", "Section", CellChangeTimes->{{3.532337928343308*^9, 3.532337934212206*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"psiL", "[", RowBox[{"x_", ",", "aa_"}], "]"}], ",", RowBox[{"psiM", "[", RowBox[{"x_", ",", "aa_"}], "]"}], ",", RowBox[{"psiR", "[", RowBox[{"x_", ",", "aa_"}], "]"}]}], "}"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"psiL", "[", "x", "]"}], ",", RowBox[{"psiM", "[", "x", "]"}], ",", RowBox[{"psiR", "[", "x", "]"}]}], "}"}], "/.", "ABRTrule"}], "/.", "kRule"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"m", "\[Rule]", "1"}], ",", RowBox[{"a", "\[Rule]", "aa"}]}], "}"}]}]}]], "Input", CellChangeTimes->{{3.532323140099043*^9, 3.532323271885003*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"psi", "[", RowBox[{"x_", ",", "a_"}], "]"}], ":=", RowBox[{"Which", "[", RowBox[{ RowBox[{"x", "\[LessEqual]", RowBox[{"-", "a"}]}], ",", RowBox[{"psiL", "[", RowBox[{"x", ",", "a"}], "]"}], ",", RowBox[{ RowBox[{"-", "a"}], "<", "x", "\[LessEqual]", "a"}], ",", RowBox[{"psiM", "[", RowBox[{"x", ",", "a"}], "]"}], ",", RowBox[{"a", "<", "x"}], ",", RowBox[{"psiR", "[", RowBox[{"x", ",", "a"}], "]"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"psi", "[", RowBox[{ RowBox[{"-", "1.5"}], ",", "1"}], "]"}]}], "Input", CellChangeTimes->{{3.532323290803863*^9, 3.5323233632008543`*^9}, { 3.532323739199606*^9, 3.5323237430135517`*^9}, {3.532323792264749*^9, 3.5323237993737993`*^9}, {3.5323346758298187`*^9, 3.5323346962005568`*^9}, { 3.5323354765958023`*^9, 3.532335481230713*^9}, {3.5323355572509747`*^9, 3.532335563611458*^9}}], Cell[BoxData[ RowBox[{"Re", "[", RowBox[{ RowBox[{"psi", "[", RowBox[{ RowBox[{"-", "1.3"}], ",", "2"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"En", "\[Rule]", "1"}], ",", RowBox[{"V0", "\[Rule]", "1.1"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.532323754225312*^9, 3.532323783989073*^9}}], Cell[BoxData[ RowBox[{"Plot", "[", " ", RowBox[{ RowBox[{"Re", "[", RowBox[{ RowBox[{"psi", "[", RowBox[{"x", ",", "2"}], "]"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"En", "\[Rule]", "1"}], ",", RowBox[{"V0", "\[Rule]", RowBox[{"-", "12"}]}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "15"}], ",", "15"}], "}"}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.03", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}]}], "}"}], "]"}]}], " ", "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.532323556339926*^9, 3.53232359075634*^9}, { 3.53232367512743*^9, 3.532323700154978*^9}, {3.532323811457926*^9, 3.532323816396852*^9}, {3.5323238603087482`*^9, 3.53232389934149*^9}, { 3.532323943021879*^9, 3.532323963411421*^9}, {3.532324022079535*^9, 3.532324073434847*^9}, {3.5635501170752563`*^9, 3.563550192086479*^9}, { 3.56355024289028*^9, 3.563550257158897*^9}, {3.5635502963656893`*^9, 3.563550308770545*^9}, {3.563550358572331*^9, 3.5635503699756393`*^9}}], Cell[BoxData[ RowBox[{"Plot", "[", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"psi", "[", RowBox[{"x", ",", "2"}], "]"}], "*", RowBox[{"Conjugate", "[", RowBox[{"psi", "[", RowBox[{"x", ",", "2"}], "]"}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{"En", "\[Rule]", "1"}], ",", RowBox[{"V0", "\[Rule]", RowBox[{"-", "12"}]}]}], "}"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "15"}], ",", "15"}], "}"}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.03", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}]}], "}"}], "]"}]}], " ", "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.532324116475634*^9, 3.532324140289336*^9}, { 3.5323242474055653`*^9, 3.532324261282194*^9}}] }, Open ]], Cell[CellGroupData[{ Cell["zu 7.", "Section", CellChangeTimes->{{3.532324483046823*^9, 3.532324491546783*^9}}], Cell["\<\ Um die Zeitentwicklung zu erhalten muss die Wellenfunktion mit Exp[-I*En*t] multipliziert werden. Betrachte Real - und Imaginaerteil.\ \>", "Text", CellChangeTimes->{{3.532324547620222*^9, 3.532324608346353*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"aa", "=", ".5"}], ";", RowBox[{ RowBox[{"psinum", "[", RowBox[{"t_", ",", "x_"}], "]"}], " ", ":=", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Re", "[", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], "*", "En", "*", "t"}], "]"}], "*", RowBox[{"psi", "[", RowBox[{"x", ",", "aa"}], "]"}]}], "]"}], ",", RowBox[{"Im", "[", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "I"}], "*", "En", "*", "t"}], "]"}], "*", RowBox[{"psi", "[", RowBox[{"x", ",", "aa"}], "]"}]}], "]"}]}], "}"}], "/.", RowBox[{"{", RowBox[{ RowBox[{"En", "\[Rule]", "5.0"}], ",", RowBox[{"V0", "\[Rule]", "11.0"}]}], "}"}]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"plotRe", "[", "t_", "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"psinum", "[", RowBox[{"t", ",", "x"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "15"}], ",", "15"}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", "Blue", "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.03", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "aa"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"aa", ",", "0"}], "}"}]}], "}"}], "]"}]}], " ", "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"plotIm", "[", "t_", "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"psinum", "[", RowBox[{"t", ",", "x"}], "]"}], "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "15"}], ",", "15"}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", "Red", "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Thickness", "[", "0.03", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "aa"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"aa", ",", "0"}], "}"}]}], "}"}], "]"}]}], " ", "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{ RowBox[{"plotRe", "[", "1.2", "]"}], ",", RowBox[{"plotIm", "[", "1.2", "]"}]}], "]"}]}], "Input", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGCQAGIQ/a3B70l84CvH03tPPAfRjFWSb0G0rsrDDyD6qNZE sQQg/ffWEnEQnWqxoDIFSN9rEq0F0d8eFzWC6L3/jreC6Joipi4Qbbbr5lQQ fWwR12wQfVl45TwQfebS8sUgmv/YiTUgep5W3yawPLv0dhAdENSyD0QLLPhx HER7SJ++AKIrzjPfB9GztQ8+BtGuVsKMqUB65vG9PCD6A/NOWRDt8uCQCoie ccpaHUT/UXOxBdFXz9TZgeioNAkXEK3svcILRJdZzQoA0UU9P8LAtMSjKBDt sdkmA0QfeaGWC6JXfD6eD6JfmDwoBdE+8xjbQTRDy7qpIDqns205iJY+qfny Xc8rx+lXf78D0VHpnX9A9FMuQ+b3QLrkzil5EP1m0TEVEA0AFE7DuQ== "]], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"plotRe", "[", "t", "]"}], ",", RowBox[{"plotIm", "[", "t", "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "10", ",", RowBox[{"AppearanceElements", "\[Rule]", RowBox[{"{", RowBox[{ "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"ControlType", "\[Rule]", "Animator"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.53232474896518*^9, 3.532324764868771*^9}, { 3.5323248452030983`*^9, 3.532324929077368*^9}, {3.532335943939075*^9, 3.5323359648330803`*^9}, {3.532336009161545*^9, 3.532336020631085*^9}, { 3.5635497116339197`*^9, 3.56354972030064*^9}}] }, Open ]] }, Open ]] }, ScreenStyleEnvironment->"Presentation", WindowSize->{982, 873}, WindowMargins->{{Automatic, 151}, {Automatic, 12}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic}, PrintingOptions->{"PaperOrientation"->"Portrait", "PaperSize"->{594.75, 842.25}, "PostScriptOutputFile"->"/users/ttp/ms/tex/teaching/rechnernutzung/vl_\ material/print.pdf"}, ShowSelection->True, FrontEndVersion->"8.0 for Linux x86 (64-bit) (October 10, 2011)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 124, 1, 173, "Subtitle"], Cell[CellGroupData[{ Cell[728, 27, 216, 2, 189, "Section"], Cell[947, 31, 331, 10, 52, "Input"], Cell[1281, 43, 462, 14, 52, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[1780, 62, 202, 3, 126, "Section"], Cell[1985, 67, 870, 16, 457, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[2892, 88, 90, 1, 126, "Section"], Cell[2985, 91, 344, 8, 117, "Text"], Cell[3332, 101, 1363, 40, 201, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[4732, 146, 94, 1, 126, "Section"], Cell[4829, 149, 979, 26, 164, "Input"], Cell[5811, 177, 548, 12, 52, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[6396, 194, 90, 1, 126, "Section"], Cell[6489, 197, 524, 10, 185, "Text"], Cell[7016, 209, 1786, 48, 312, "Input"], Cell[8805, 259, 578, 13, 52, "Input"], Cell[9386, 274, 533, 12, 127, "Input"], Cell[9922, 288, 394, 10, 127, "Input"], Cell[10319, 300, 316, 6, 90, "Input"], Cell[10638, 308, 345, 9, 90, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[11020, 322, 90, 1, 126, "Section"], Cell[11113, 325, 901, 24, 127, "Input"], Cell[CellGroupData[{ Cell[12039, 353, 157, 2, 67, "Subsection"], Cell[12199, 357, 527, 14, 90, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[12763, 376, 140, 3, 67, "Subsection"], Cell[12906, 381, 402, 11, 90, "Input"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[13357, 398, 90, 1, 126, "Section"], Cell[13450, 401, 384, 8, 52, "Input"], Cell[13837, 411, 983, 25, 201, "Input"], Cell[14823, 438, 723, 19, 164, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[15583, 462, 90, 1, 126, "Section"], Cell[15676, 465, 734, 23, 127, "Input"], Cell[16413, 490, 953, 24, 127, "Input"], Cell[17369, 516, 341, 10, 52, "Input"], Cell[17713, 528, 1321, 34, 90, "Input"], Cell[19037, 564, 1026, 32, 127, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[20100, 601, 90, 1, 126, "Section"], Cell[20193, 604, 223, 5, 117, "Text"], Cell[20419, 611, 3460, 101, 608, "Input"], Cell[23882, 714, 850, 20, 201, "Input"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)