Rechnemutzung in der Physik

Datenformate

Datenformate

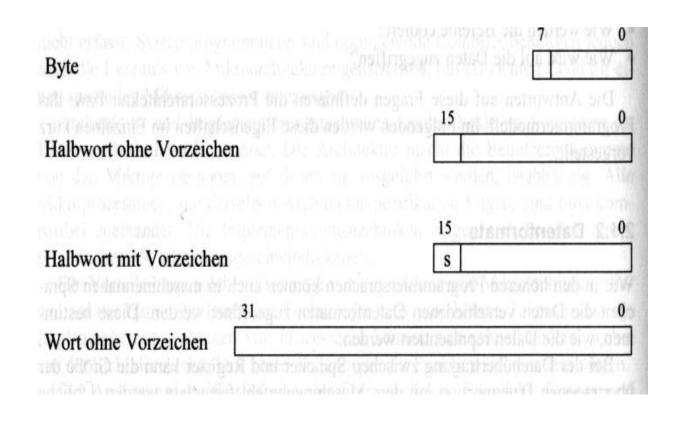
(digitale) Daten bestehen aus einzelnen Bits;

- in Kontroll-Registern sind einzelne Bits bedeutsam;
- für komplexere Datenstrukturen werden Bits üblicherweise in Vierergruppen zu einem "Hex-Digit" kombiniert (üblich ist auch die oktale Darstellung)

Dez	binär	Hex	oktal	Dez	binär	Hex	oktal
00	0000	0x0	0000	08	1000	0x8	0o10
01	0001	0x1	0o01	09	1001	0x9	0o11
02	0010	0x2	0002	10	1010	0xA	0o12
03	0011	0x3	0003	11	1011	0xB	0o13
04	0100	0x4	0004	12	1100	0xC	0o14
05	0101	0x5	0005	13	1101	0xD	0o15
06	0110	0x6	0006	14	1110	0xE	0o16
07	0111	0x7	0007	15	1111	0xF	0o17

Üblich ist 1 Byte = 8 Bits = 2 HexDigits als Einheit

Datenformate – negative ganze Zahlen


Für ganze Zahlen mit Vorzeichen wird das 8. Bit als Vorzeichen-Bit betrachtet; Darstellung als sog. Zweierkomplement:

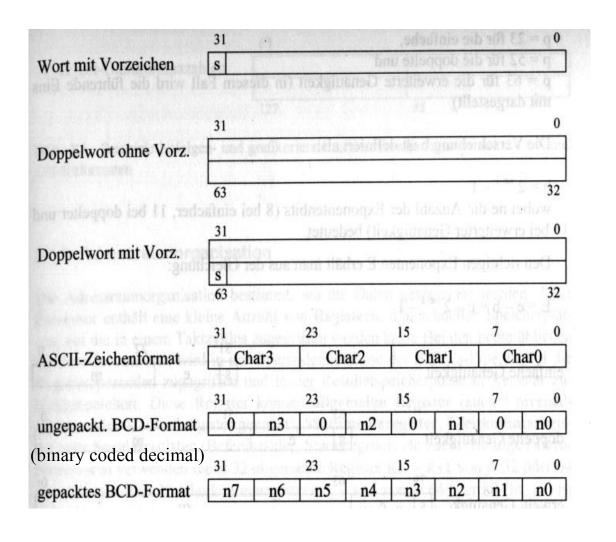
positive Zahl p, dann ist -p = invertierte Bits + 1 **Vorteil:** Subtraktion entspricht Addition des 2-Komplements

Dez	binär	Hex	oktal
-8	1000	0x8	0o10
-7	1001	0x9	0o11
-6	1010	0xA	0o12
-5	1011	0xB	0o13
-4	1100	0xC	0o14
-3	1101	0xD	0o15
-2	1110	0xE	0o16
-1	1111	0xF	0o17

Datenformate – Ganze Zahlen

In der Praxis reicht ein Byte meist nicht aus, komplexere Datentypen entstehen durch Aneinanderreihung von Bytes:

Wertebereich


0 bis 255 (-128 bis 127 mit Vorzeichen)

0 bis 65.535

-32.768 bis 32.767

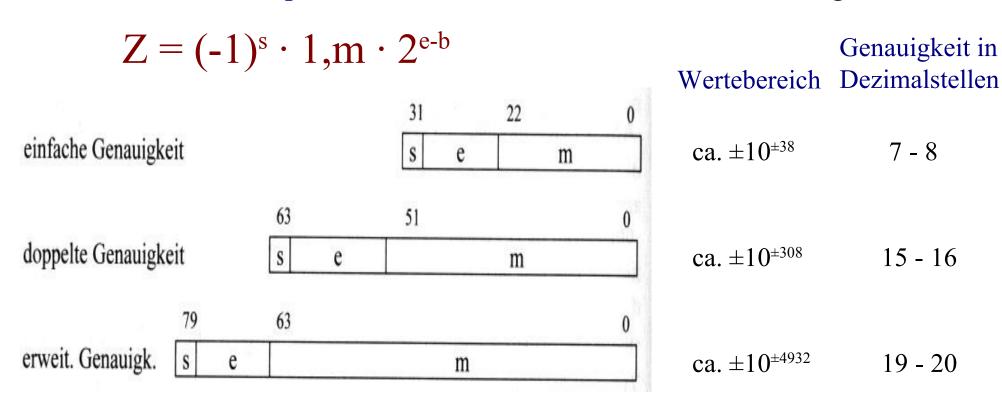
0 bis 4.294.967.295

Datenformate – Ganze Zahlen, Text

Wertebereich

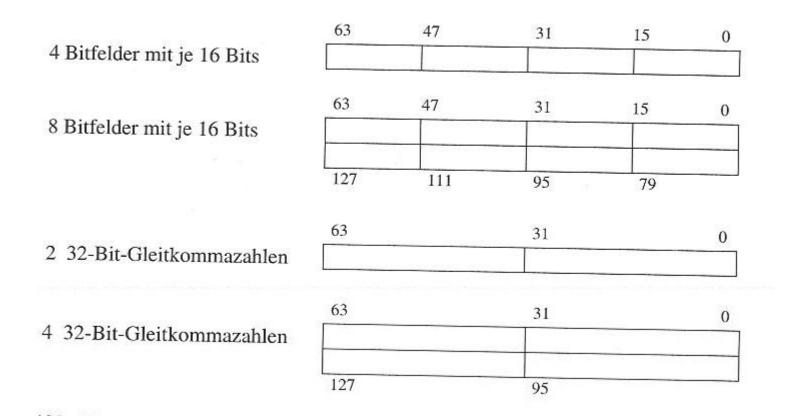
-2.147.483.648 bis 2.147.483.647

0 bis $\sim 1.8 \times 10^{19}$


 \sim -0.9 x 10¹⁹ bis \sim 0.9 x 10¹⁹

0 bis 9.999

0 bis 99.999.999


Datenformate – reelle Zahlen (Real, Float)

Reelle Zahlen werden beschrieben durch ein Vorzeichen s, eine Mantisse m, einen Exponenten e und eine konstante Verschiebung b:

Spezielle Bitmuster für $0, \pm \infty$, ungültige Zahl (NaN)

Datenformate – Multimedia-Formate

Mulimediabefehle führen dieselbe Operation auf allen Teilwörtern aus

Datenformate – Anordnung der Bytes im Speicher ...

... ist leider nicht einheitlich!

Wortadresse:	x0				x4			
Bytestelle im	7	6	5	4	3	2	1	0
Wort:						3005		

Wortadresse:	x0				x4			e crata
Bytestelle im	0	1	2	3	4	5	6	7
Wort:								

Abb. 2.4. Big-endian- (oben) und Little-endian- (unten) Formate.

x86-Architektur verwendet little-endian!

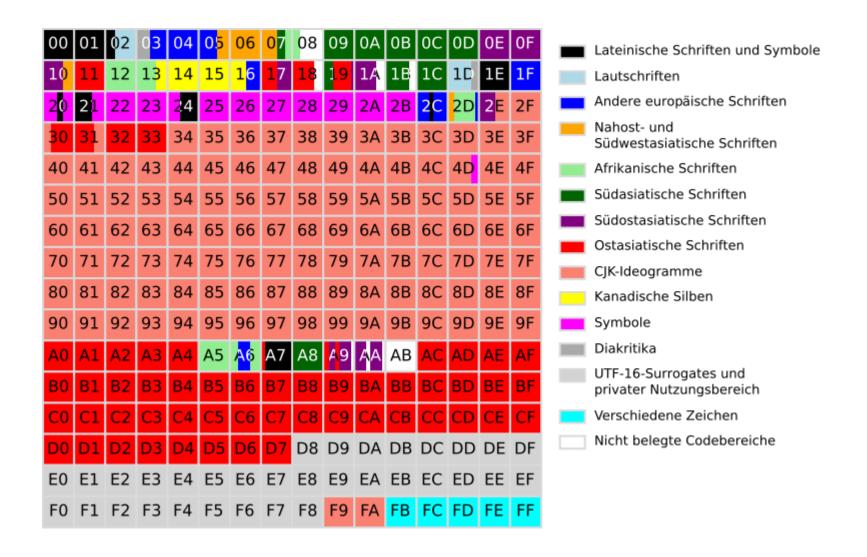
Wichtig bei Datentransfers von/zu anderen Plattformen! Datentyp, zu dem ein Byte gehört, muss bekannt sein.

Datenformate — Text: ASCII = American Standard Code for Information Interchange

Dec	Н	Oct	Cha	,	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	<u>nr</u>
0	0	000	NUL	(null)	32	20	040	@#32;	Space	64	40	100	 4 ;	0	96	60	140	`	8
1	1	001	SOH	(start of heading)	33	21	041	@#33;	!	65	41	101	A	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	@#3 4 ;	"	66	42	102	B	В	98	62	142	b	b
3	3	003	ETX	(end of text)				a#35;					a#67;					c	
4				(end of transmission)	ı			a#36;		ı			D					d	
5				(enquiry)				a#37;					E					e	
6				(acknowledge)				4#38;					a#70;					f	
7		007		(bell)				a#39;		71			a#71;					g	
8		010		(backspace)	I			a#40;		72			H					4 ;	
9			TAB	(horizontal tab)				a#41;					a#73;					i	
10		012		(NL line feed, new line)				a#42;					a#74;					j	
11		013		(vertical tab)				a#43;					a#75;					k	
12		014		(NP form feed, new page)				a#44;					a#76;					l	
13		015		(carriage return)				a#45;	_				a#77;					m	
14		016		(shift out)				a#46;					a#78;					n	
15		017		(shift in)				a#47;					a#79;					o	
		020		(data link escape)				a#48;					P					p	
			DC1	(device control 1)				a#49;					Q					q	
				(device control 2)				a#50;		ı			R					r	
				(device control 3)				3					S					s	
				(device control 4)	ı			a#52;					a#84;					t	
				(negative acknowledge)	ı			6#53;					a#85;					u	
				(synchronous idle)				a#54;					V					v	
				(end of trans. block)	ı			a#55;		ı			a#87;					w	
				(cancel)				a#56;					X					x	
		031		(end of medium)				6#57;					Y					y	
		032		(substitute)	ı			a#58;		ı			a#90;		ı			z	
		033		(escape)				a#59;		I			[_				{	
		034		(file separator)				a#60;					\		ı				
		035		(group separator)				=]	_				}	
		036		(record separator)				a#62;					^					~	
31	1F	037	US	(unit separator)	63	3F	077	4#63;	2	95	5F	137	a#95;	_	127	7F	177	a#127;	DEL

Datenformate – ASCII extended: Ausnutzung des 8. Bits

Erw	Erweiterung des Ascii-Standards um graphische und nationale Sonder-Zeichen														
128	Ç	144	É	161	í	177	******	193	Т	209	₹	225	В	241	±
129	ü	145	æ	162	ó	178		194	Т	210	π	226	Γ	242	≥
130	é	146	Æ	163	ú	179		195	H	211	L	227	π	243	≤
131	â	147	ô	164	ñ	180	4	196	_	212	F	228	Σ	244	ſ
132	ä	148	ö	165	Ñ	181	4	197	+	213	F	229	σ	245	J
133	à	149	ò	166	•	182	-	198	\ F	214	IF.	230	μ	246	÷
134	å	150	û	167	۰	183	П	199	JF.	215	#	231	τ	247	R
135	ç	151	ù	168	ė,	184	7	200	L	216	+	232	Φ	248	۰
136	ê	152	_	169	_1	185	4	201	F	217	L	233	$oldsymbol{\Theta}$	249	•
137	ë	153	Ö	170	-	186	N U	202	<u>JL</u>	218	Г	234	Ω	250	•
138	è	154	Ü	171	1/2	187	7	203	īĒ	219		235	δ	251	
139	ï	156	£	172	1/4	188	1	204	F	220		236	00	252	_
140	î	157	¥	173	1	189	Ш	205	_	221		237	ф	253	2
141	ì	158	7	174	«	190	4	206	#	222		238	ε	254	
142	Ä	159	f	175	>>	191	٦	207	<u></u>	223		239	\wedge	255	
143	Å	160	á	176		192	L	208	Ш	224	α	240	=		


Source: www.LookupTables.com

Datenformate - ISO 8859-1

8-bit ISO 8859-1 Latin 1 characters

			_		•						
160		176	0	192	Á	208	Ð	224	à	240	ð
161	Ī	177	±	193	Á	209	$ ilde{\mathbf{N}}$	225	á	241	ñ
162	¢	178	2	194	Â	210	Ò	226	â	242	ò
163	£	179	3	195	Ã	211	Ó	227	ã	243	ó
164	Ø	180	,a	196	Ä	212	Ô	228	ä	244	ô
165	¥	181	μ	197	Å	213	Õ	229	å	245	õ
166	l I	182	\P	198	Æ	214	Ö	230	æ	246	ö
167	§	183	•	199	Ç	215	×	231	ç	247	÷
168	••	184	3	200	È	216	Ø	232	è	248	ø
169	0	185	1	201	É	217	Ù	233	é	249	ù
170	<u>a</u> .	186	<u>0</u>	202	Ê	218	Ú	234	ê	250	ú
171	•	187	>>	203	Ë	219	Û	235	ë	251	û
172	7	188	1/4	204	Ì	220	Ü	236	ì	252	ü
173	_	189	1/2	205	Í	221	Ý	237	í	253	ý
174	B	190	%	206	Î	222	Þ	238	î	254	þ
175	_	191	i	207	Ϊ	223	В	239	ï	255	ÿ

Datenformate – UniCode (16 bit)

Datenformate – Text im Speicher

> hexdump	-C	Fai	ust	.tx	t												
0000000	48	61	62	65	20	6e	75	6e	2c	20	61	63	68	21	20	50	Habe nun, ach! P
00000010	68	69	6с	6f	73	6f	70	68	69	65	2с	0a	4a	75	72	69	hilosophie,.Juri
00000020	73	74	65	72	65	69	20	75	6e	64	20	4d	65	64	69	7a	sterei und Mediz
00000030	69	6e	2c	0a	55	6e	64	20	6с	65	69	64	65	72	20	61	in,.Und leider a
00000040	75	63	68	20	54	68	65	6f	6с	6f	67	69	65	0a	44	75	uch Theologie.Du
00000050	72	63	68	61	75	73	20	73	74	75	64	69	65	72	74	2c	rchaus studiert,
00000060	20	6d	69	74	20	68	65	69	df	65	6d	20	42	65	6d	fc	mit heißem Bemü
00000070	68	6e	2e	0a	44	61	20	73	74	65	68	20	69	63	68	20	hnDa steh ich
0800000	6e	75	6e	2c	20	69	63	68	20	61	72	6d	65	72	20	54	nun, ich armer T
00000090	6f	72	21	0a	55	6e	64	20	62	69	6e	20	73	6f	20	6b	or!.Und bin so k
000000a0	6с	75	67	20	61	6с	73	20	77	69	65	20	7a	75	76	6f	lug als wie zuvo
000000b0	72	3b	0a	48	65	69	df	65	20	4d	61	67	69	73	74	65	r;.Heiße Magiste
000000c0	72	2с	20	68	65	69	df	65	20	44	6f	6b	74	6f	72	20	r, heiße Doktor
000000d0	67	61	72	0a	55	6e	64	20	7a	69	65	68	65	20	73	63	gar.Und ziehe sc
000000e0	68	6f	6e	20	61	6e	20	64	69	65	20	7a	65	68	65	6e	hon an die zehen
000000f0	20	4a	61	68	72	0a	48	65	72	61	75	66	2c	20	68	65	Jahr.Herauf, he
00000100	72	61	62	20	75	6e	64	20	71	75	65	72	20	75	6e	64	rab und quer und
00000110	20	6b	72	75	6d	6d	0a	4d	65	69	6e	65	20	53	63	68	krumm.Meine Sch
00000120	fc	6с	65	72	20	61	6e	20	64	65	72	20	4e	61	73	65	üler an der Nase
00000130	20	68	65	72	75	6d	2d	0a	55	6e	64	20	73	65	68	65	herumUnd sehe
00000140	2c	20	64	61	df	20	77	69	72	20	6e	69	63	68	74	73	, daß wir nichts
00000150	20	77	69	73	73	65	6e	20	6b	f6	6e	6e	65	6e	21	0a	wissen können!.

Datenformate

```
Nahezu jede Anwendung bringt ihr eigenes Datenformat mit (Word, Excel, OpenOffice, ...) führt zu unendlichen Kompatibilitätsproblemen.
```

```
Jeder C++-Klasse entspricht im Prinzip einem eigenen "Datenformat";
Methoden der Klasse sind für die Prozessierung der Daten
(Drucken, Speichern, Verarbeiten, Konvertieren, …) zuständig
```

```
Viele moderne Datenformate bauen auf Ascii auf - SGML, HTML, XML ... recht gut lesbar, nahezu selbst-dokumentierend, aber Speicher-aufwändig (die Ziffernfolge "12345678" benötigt 8 Bytes, die dargestellte Zahl aber nur 3!) Komprimierungsverfahen (z.B. "ZIP") helfen, den zusätzlichen Speicherbedarf erträglich zu halten.
```

Datenformate – Huffman-Kodierung

Aufbau eines binärer Baumes:

- 1. Bestimmung der Häufigkeit der Zeichen in den Daten
- 2. Ordnung der Zeichen nach Häufigkeit
- 3. Zuordnung von Bits 1 und 0 zu den beiden Zeichen mit der geringsten Häufigkeit
- 4. Zusammenfassen dieser beiden Zeichen
- 5. Weiter mit 2. bis alle Zeichen zusammengefasst sind

$$A(40\%) = 0$$

$$B(33\%) = 11$$

$$C(16\%) = 101$$

$$D(11\%) = 100$$