{ "cells": [ { "cell_type": "markdown", "id": "0ab67285-75a6-400e-91ac-3c9b7705acb3", "metadata": {}, "source": [ "*Notebook erstellt von A. Naber am 25.11.2022*\n", "\n", "# Physikalisches Pendel und deterministisches Chaos\n", "\n", "## Einleitung\n", "\n", "In diesem Notebook wird die Bewegung des gedämpften physikalischen Pendels mit äußerer periodischer Antriebskraft numerisch gelöst. Interessant sind dabei vor allem die Verhaltensweisen für große Amplituden und insbesondere auch für Überschläge. Diese reichen von einfachen zu komplexeren periodischen Bewegungen bis zu chaotischem Verhalten ohne erkennbare Muster.\n", "\n", "Für das verwendete numerische Verfahren bringen wir die Differentialgleichung (DGL) aus der Vorlesung in eine andere Form. Zunächst werden für die Vorfaktoren einfachere Parameter eingeführt:\n", "\n", "$$ f = \\frac{F_0}{m l} \\ ; \\quad b = \\frac{\\gamma}{m l} \\ ; \\quad \\omega_0^2 = \\frac{g}{l} \\quad .$$\n", "\n", "Damit wird \n", "\n", "$$ \\frac{{\\rm d}^2\\alpha}{{\\rm d} t^2} + b\\,\\frac{{\\rm d}\\alpha}{{\\rm d}t}+\\omega_0^2\\,\\sin(\\alpha) = f\\,\\sin(\\omega t) \\quad .$$\n", "\n", "Diese DGL zweiter Ordnung wird zur numerischen Berechnung in zwei lineare DGL erster Ordnung zerlegt. Mit\n", "\n", "$$ \\alpha_1 = \\alpha \\quad\\text{und}\\quad \\alpha_2=\\frac{{\\rm d}\\alpha_1}{{\\rm d}t} $$\n", "\n", "erhalten wir dann\n", "\n", "\\begin{align*}\n", " \\alpha_2 &=\\frac{{\\rm d}\\alpha_1}{{\\rm d} t} \\\\[1ex]\n", " \\frac{{\\rm d}\\alpha_2}{{\\rm d} t} &= f\\,\\sin(\\omega t)-b\\,\\alpha_2-\\omega_0^2\\,\\sin(\\alpha_1) \\quad .\n", "\\end{align*} \n", "\n", "Diese Gleichungen werden im Skript mit dem Modul $\\tt odeint$ aus *SciPy* integriert. Die Schrittweite wird darin bestimmt durch ein Array $t$, welches die diskreten Zeitwerte für die zu berechnenden Winkel und Winkelgeschwindigkeiten enthält. Je kleiner die Schrittweite zwischen benachbarten Zeiten ist, umso präziser wird die numerische Berechnung, aber umso länger dauert sie dann natürlich auch. \n", "\n", "Die erste Python-Zelle des Skripts (\"Lösung der DGL\") berechnet die Lösungen als Funktion der gegebenen Parameter. Weisen Sie daher vor jeder neuen Berechnung (mittels Shift-Return) den Parametern zunächst die gewünschten Werte zu.\n", "\n", "Die darauf folgenden Zellen zur Darstellung der Ergebnisse sind voneinander unabhängig. Sie können sich also darauf beschränken, nur die auszuführen, die für Sie interessant sind, und die anderen überspringen. Wenn Sie die Darstellung z.B. eines Plots verändern wollen, dann können Sie das tun ohne Neuberechnung der Lösung. Das kann sehr viel Zeit sparen, wenn Sie eine kleine Schrittweite für die Zeit und damit eine hohe Genauigkeit verwenden." ] }, { "cell_type": "markdown", "id": "eed2a3f9-8e95-4dc6-9c2e-6289a0974973", "metadata": {}, "source": [ "## Lösung der Differentialgleichung" ] }, { "cell_type": "code", "execution_count": 1, "id": "3ba9fbe9", "metadata": {}, "outputs": [], "source": [ "%matplotlib widget\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.integrate import odeint\n", "from scipy.fft import fft, fftfreq\n", "from time import perf_counter\n", "import csv" ] }, { "cell_type": "code", "execution_count": 2, "id": "8666fb3f-663f-468a-8f5c-9e6b868daa8d", "metadata": { "scrolled": true, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ausführungszeit: 4.765115239\n" ] } ], "source": [ "# Definition der Differentialgleichungen für den\n", "# gedämpften Oszillator mit harmonischer Anregung\n", "def pendulum(alpha, t, b, omega0, omega, f):\n", " dalpha1_dt = alpha[1]\n", " dalpha2_dt = f * np.cos(omega * t) - b * alpha[1] - (omega0**2) * np.sin(alpha[0])\n", " return dalpha1_dt, dalpha2_dt\n", "\n", "\n", "# Simulationsparameter\n", "f = 2.7 # Anregungsamplitude\n", "b = 0.22 # Reibungskoeffizient\n", "omega0 = 1.0 # Winkelfrequenz der Resonanz für ungedämpften Oszillator;\n", " # Nicht ändern: bewirkt nur andere Zeitskala der Ergebnisse\n", "omega = 1.0 # Winkelfrequenz der Anregung;\n", " # wähle omega=omega0 wenn chaotisches Verhalten gewünscht ist\n", "\n", "# Anfangsbedingungen [Winkelauslenkung, Winkelgeschwindigkeit]\n", "alpha_0 = [0, 0]\n", "\n", "# Zeitintervall der Integration\n", "n_int = 100 # Anzahl der Zeitwerte für eine Periode; > 1000 für hohe Qualität (begrenzt durch Speicherplatz)\n", "n_cycles = 5000 # Anzahl der Perioden; 50000 für hohe Qualität der Poincaré-Map\n", "N = n_int * n_cycles\n", "tmax = (2 * np.pi / omega) * n_cycles\n", "t = np.linspace(0, tmax, N) # Das entsprechende Zeitinervall als array\n", "\n", "# Lösen der Differentialgleichung\n", "t0 = perf_counter() # timer\n", "alpha = odeint(pendulum, alpha_0, t, args=(b, omega0, omega, f)).T\n", "print(f\"Ausführungszeit: {perf_counter() - t0}\")" ] }, { "cell_type": "markdown", "id": "65b47d13-e487-48de-9913-3914d6aa09b5", "metadata": {}, "source": [ "## Darstellung der Ergebnisse\n", "\n", "### Winkelamplitude und Winkelgeschwindigkeit als Funktion der Zeit\n", "\n", "Im Folgenden werden zunächst der Winkel $\\alpha$ und die Winkelgeschwindigkeit $\\dot\\alpha$ als Funktion der Zeit geplottet. Meist genügt es hier, einen vergleichsweise kurzen Zeitraum darzustellen, um z.B. ein periodisches Muster zu erkennen. Chaotisches Verhalten kann dagegen eventuell erst für vergleichsweise große Zeiträume identifiziert werden.\n", "\n", "Ändern Sie in der folgenden Zelle die Limits der Zeitachse für die Plots, um diese Ihren Vorstellungen anzupassen. Wenn Sie die Werte in einem anderen Programm verwenden möchten, geben Sie für $\\tt filename$ einen Namen ein, dann werden die Daten als csv-Datei gespeichert.\n", "\n", "*Hinweis:* Die Darstellung der Winkelamplitude kann mit dem Parameter $\\tt reduce\\_to\\_2pi=True$ so geändert werden, dass alle Winkel auf den Bereich $\\pm \\pi$ reduziert werden. So können die Schwingungen besser visualisiert werden, aber die Folge von Überschlägen in eine Richtung ist nicht mehr erkennbar. Für die Fouriertransformation sollte immer $\\tt reduce\\_to\\_2pi=False$ gewählt werden." ] }, { "cell_type": "code", "execution_count": 3, "id": "8e01e0c6-b9e5-479b-94a7-4145e6996644", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e5f6667f069f47ffbb1fa3bf698d2007", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjuElEQVR4nOzdd1gU194H8O8Cy1IEpCiIomAv2AJqrIiK3RQTjTHXN+YmRqPGGDRFvYmaRI2JGm80McVcTdckxhRLBHtXrLGCHRtiQaosC8z7B9nGFnbZ2f79PI+P7MyZM+fMbJnfnDPnSARBEEBERERERERux8PeBSAiIiIiIiL7YEBIRERERETkphgQEhERERERuSkGhERERERERG6KASEREREREZGbYkBIRERERETkphgQEhERERERuSkGhERERERERG6KASEREREREZGbYkBIRERERETkphgQEhERERERuSkGhERERERERG6KASEREREREZGbYkBIRERERETkphgQEhERERERuSkGhERERERE5JaWLl2K5s2bY+nSpfYuit0wICQiIiIiIrd0584dpKen486dO/Yuit0wICQiIiIiInJTDAiJiIiITBAdHQ2JRILLly+LlqdEIoFEIhEtP0OsUXZHZKvjaYg9jrOhfYpdFld9r86aNQuCIGDWrFk22Z8jYkBI5OJ4AUNE7iQjIwMSiQQeHh64e/eu3jRff/216nvs559/1pvmxo0bqjT8DiJyDIsXL8asWbNw//59exfFpTAgJHIAvIAhIhJH06ZNER4eDkEQsGfPHr1pdu/erfp7165detMol9erVw/R0dEAgEaNGqFZs2aQSqXiFppchiO9RxypLOYwVu7Fixdj9uzZDAhFxoCQyAHwAoaISDzdu3cHYPi7cvfu3ahZsyZq1qxpNI1mXgCwZcsWnD17FnXr1hW5xOQqHOk94khlMYezltuZMSAkchC8gCEiEofyO1DzRprSnTt3cPbsWXTp0gWdO3fG33//jby8PJ10yu/ZHj16WLewRER2xoCQyEHwAoaISBzK79PDhw+jqKhIa53yO7Zbt27o2rUrysvLsXfvXq00eXl5OHHihFZegPHnmjWfrd64cSN69OiBgIAABAUFYcCAATh69KhZdRAEAZMmTYJEIkHjxo1x5coVrfWlpaX47LPP0K1bN9SsWRM+Pj5o3rw5/vOf/+j9fTDmwoULePrpp1GrVi34+fmhXbt2+Oyzz6qsc3XKceXKFYwdOxYNGzaETCZDQEAAGjZsiMcffxyrVq0yuI8vv/wSiYmJCA0NhY+PDxo2bIgnnngCv//+u8F6mXIeysvLERISAk9PT+Tk5Git279/v+q8fvXVVzr56zs2ho6Xpe+PK1eu4F//+hdq164NPz8/tGnTBp988gkEQTC4jbFzZ8k5r0zs96q+/a9cuRISiUSVd0xMjOqYSiQSbN++3aSyAsC1a9fw8ssvIzo6Gr6+vmjWrBkWLVqkOpZPPPEEZDIZrl27ZnKeTk8gIodw5MgRAYAglUqFwsJCrXVr164VAAhz584V3nvvPQGAsHHjRq00ubm5goeHhwBAOHnypGp5gwYNBADCpUuXdPYJQFB+DWzYsEHo3r27UKNGDSEwMFDo37+/cOTIEb1l1dxOU3l5ufDyyy8LAIRGjRoJly9f1lqvUCiEZcuWCV27dhWCgoIEmUwmNGvWTJgxY4aQm5urk5+xspvi6tWrwsSJE4UGDRoIPj4+QtOmTYWFCxcK5eXlgiAIwtChQwVvb2/h6tWr1cqfiBxTWVmZEBQUJAAQtm7dqrVuypQpAgBh586dwvbt2wUAwvTp07XSbNy4UQAghIaGqr4vBMG079Nly5YJEolEqFOnjvDQQw8J/v7+AgChRo0awpkzZwxup6m0tFQYPXq0AECIjY0Vbt68qbU+NzdX6NGjhwBA8PDwEBo0aCDExsYK3t7eAgChRYsWwq1bt7S2MVT248ePCzVr1hQACL6+vkJcXJwq7aRJk4zW2dxyXLp0SQgLCxMACH5+fkLr1q2Fdu3aCSEhIQIAoW3btjr7uHfvntC1a1fVcWrQoIEQHx8v1K5dW/Xa0vMwePBgAYDwxx9/aC2fP3++Kr9Ro0Zprbty5YoAQKhfv75Jx7m67w9BEITTp08LoaGhAgDBx8dHiIuLE+rXry8AEMaPH29wn2Kfc3u+Vzds2CB07dpVkMlkAgAhPj5e6Nq1q+qfoeuVytatWycEBgYKAITo6GihZcuWgkQiEQAIK1euFM6ePSt4eHgIY8eONSk/V8GAkMhB8ALG9AsYU/BLn8i9DRgwQAAgvPPOO1rLO3bsKHh7ewsPHjwQioqKBKlUKvTo0UMrzfTp0wUAwqOPPqq13JTvUz8/P2HFihWq5Xl5eULv3r0FAMJTTz1lcDsluVwuPPHEEwIAoWPHjsLdu3d1thkxYoQAQOjdu7dw4cIF1fJ79+4JQ4cOFQAITz75ZJVlLysrE1q3bi0AEAYMGCDcu3dPte6XX34RZDKZIJVKDdbZ3HJMnDhRACA8++yzQn5+vlZeZ86cET7//HOdfTz22GOqm4z79+/XWnfu3Dnhgw8+0FpWnfPw4YcfCgCEKVOmaC0fOHCg4OHhIUREROgEft98843eQLGqYMrc90d5ebnw0EMPCQCEfv36ab0ffvzxR0EqlQpeXl4mB4SWnHN7vldNWVeVgwcPCjKZTPDy8hK+//571fKlS5cKAIS+ffsKzz33nODl5VXtG9HOigEhkQPhBYzpPwrG8EufiObOnSsAEJKSklTLCgsLBalUKnTp0kW1rFOnToKPj48gl8tVy5Q3rxYsWKCVpynfpy+//LLOur///lsAIAQFBRncTlm+fv36CQCEnj17Cnl5eTrpjx8/rmoZ07e+sLBQiIqKEiQSiVYvDX1l/+uvv1Q3Eu/fv6+T18yZM1Xl09fKZG45lHU7fvy4Tnp9Dh48KAAQZDKZkJGRYdI21TkPBw4cULU6KSlv0rZv31549tlndY7B888/LwAQli9frpVXVQGhue+PzZs3q1rybt++rbN+0qRJBs+R2Ofcnu9VU9ZVpUOHDgIAYerUqVrLS0pKBC8vL6F27dqCVCoVnnvuObPzdnZ8hpDIgegbWKaoqAhHjx5FfHw8fHx84Ovri4ceeggHDx5ESUmJKp2+AWVM9fzzz2P06NGq1wEBAfjoo48AAH/99ZfRbYuKivDII49gzZo16NmzJzZv3oyQkBCtNH///TdWrVqFBg0aYO3atWjYsKFqXXBwML799ltERUVhzZo1Os8eVMeECRMgl8sxefJkjBw5UrX8xRdfhJeXF44dO4bvvvsOo0aNUo3GSkSuRflduG/fPpSVlQGoeCZMoVCgW7duqnRdu3ZFcXEx0tLSAAAlJSU4ePAggOo9j/3CCy/oLGvdujV8fHyQm5trcGqh3Nxc9OvXD5s2bcKgQYOwceNGBAQE6KRbu3YtAGD48OF61/v5+aFPnz4QBMHgAGRKqampAIChQ4ciKChIZ/1zzz1ncNvqlCMqKgoA8Msvvxh99k1J+Xzg448/jiZNmlSZXpM55+Ghhx5CjRo1cPToUeTn5wMAjh07htzcXCQkJCAhIQEAsGPHDtU2O3fuBGD+e8Tc98emTZsAAMOGDUNYWJjOtuPHjzdr/5accyV7vFctdfDgQaSlpSE4OBhvvfWW1jqpVIpatWohOzsb5eXlmDZtmlXL4ogYEBI5EF7AWP6jwC99IgKADh06QCaToaCgAMeOHQOgPaCMUteuXbXWHTp0CMXFxahRowbat29v9n4bNWqkd3mtWrUAAAUFBXrX9+rVC7t378aIESOwdu1a+Pj46E2nHOxm7dq16Natm95/yov+69evGy3ruXPnAABt2rTRu75BgwYIDAwUrRwTJkyAVCrFu+++i5iYGIwbNw7ff/89bty4oXcfZ86cAQA8/PDDRuuhjznnwcvLC126dEFZWZlq6idl8KcvILx58ybOnTuHOnXqmB2omvv+yMjIAAC0aNFC73ZNmjSBl5eXyfu35Jwr2eO9aqnffvsNADBkyBCj9RsxYoTZ59QVmP4OIiKrq3wBExcXZ/ACZtGiRdi9eze6du1q1QuYq1evoqCgAKGhoTrre/XqhSNHjmDEiBH45ptvDM51qPmjUHk0PyVly6ClPwr80iciAJDJZOjYsSN27dqFXbt2qb5PJRKJKggE1N+tu3btwhtvvKH6zu3cubNZF9pK/v7+epd7eFTcgzfUMnb+/HkAFTfjjM0bm5ubq0qv3MaQBw8eGF1fWFgIAHpv1CkFBAToHQmyOuVo164ddu7ciZkzZ2Lr1q34/PPP8fnnn0MikSApKQmLFy/WCnyU+61Zs6bR/PUx9zwkJCQgJSUFO3bsQP/+/bFjxw5IJBJ0794doaGhqFevniog1AwWrV0uZYCoDBj1bRcWFoasrCyT9m/JOVeyx3vVUsprjwEDBuhdLwgCPDw8MGPGDKuWw1GxhZDIgSgvYAB1t9GqLmCUaQDnuIDZs2eP3n/K4Z0t/VHglz4RKWl2wy8rK8O+ffvQokULrW7ttWvXRuPGjbFnzx6tXgrV6X5viY0bN6JGjRqYMWMGFi9ebDBdjRo1AABffvklhIqxIAz+mzVrltF9Kr/7DbVaAlB1oRSrHA8//DA2bdqEnJwc/PXXX3jjjTdQr149pKSkICkpCffv31elVQYtmsusRdm7ZseOHar3QWxsrOpmaI8ePXDx4kVcu3bNooDQXMrjfPv2bb3ry8vLDfbi0ceSc65kj/eqpdLT0wHob2lNT0/H7du30aJFC4Mtsa6OASGRg+EFzCyLysQvfSJSUl7k7969G8eOHUNBQYFWbwulbt264f79+zhx4oTqppKtv0+7dOmCdevWwc/PD6+++io+/fRTvelatmwJADh58qTF+2zatCmAiue89cnMzDTYUmRpOWrUqIF+/frh/fffx9mzZ9GoUSNcv34dGzduVKVp1aoVgIpHJ6ytY8eO8PX1xaFDh3Dw4EHcu3dPK+BT/r19+/ZqPz9YHcpzdPbsWb3rz58/D4VCYXZ+1TnnSvZ4ryop53I017179wCor0c0TZs2DWVlZUZvbLs6BoREDoYXMJbhlz4RKXXp0gWenp7Izs5WTSyu7/tU2QPjs88+w7179+Dt7Y1OnTrZtKxARdDx+++/w8fHBxMnTtQ7Gfrjjz8OAPjuu+/MahnSJykpCQDw66+/6m0VWrlypcFtxSyHn58fWrduDQBazxM+9thjACoeBbhw4YJF+6iK8pwrFArMmzcPgHYLoPK3+ZdffsGZM2dQq1Yt1W+bNfXt2xcA8PPPP+s9zoZ+dw2x5JxrsvV7VcnX1xeA+b2JlC2jld9HKSkpqnEOqhtsugRrDF1KRNWXl5cneHp6CgCEl156SQAgfPPNNzrpvvzyS6003t7eQlFRkU46Uyem18fUyWlTU1MFHx8fQSKR6AzBLQiCkJaWphrm+s6dO0Zqb3rZDQkODhYACJs2bdJavmnTJlW527dvb3J+ROTclHO4+fj4CACEixcv6qQ5ffq0VhrNaSk02eL7VBAqJuH29vYWPDw8hG+//VYnr+HDh6u+yypPyF1aWips27ZNGDlypFBcXGx0/2VlZUKbNm0EAMLgwYOFnJwc1bq1a9cKPj4+RuchNLcc48aNE1atWiUUFhZqpd2xY4cQEBAgALrz8D7++OMCAKFJkybCwYMHtdadO3dO+PDDD7WWVfc8CIJ6ygXlnLWV58YNDw9XrXviiSfMyr+65SovLxfat2+vd97A1atXC97e3mbPQ1jdc27P96rSoEGDBKBi/mRz9OnTRwAgdOvWTSgoKBAEQRCOHj0q1K5dW/D19RX8/f2FGjVq6J3awx0wICRyQLyAqbrshvBLn4g0vfLKK6rvrMjISL1pysvLhdDQUFW6N998U286W32fCoIg/Pbbb4JUKhU8PT2F1atXa63Lz88XkpKSVNvWr19f6NSpk9C6dWvB19dXtfzBgwdV7v/48eNCzZo1BaBiTtr4+HghOjpaNWeecrvMzEydMppbjrZt2woABC8vL6FFixZCx44dVfkDEP71r3/p7OPevXtC586dVWmio6OF+Ph4ITw8XDXHnRjnQRAEYcuWLartW7RoobN+2LBhqvUff/yxWflbUq6TJ08KISEhAv6ZjzA+Pl6Vfvz48Qa3Ffuc2/u9KgiC8M0336i2iY2NFRISEoSEhATh6NGjBo+tIFTcFFYG8yEhIUK7du0ELy8vwdPTU1i1apWQkJAgABCioqKEt956y2herogBIZED4gVM1WU3hF/6RKTpl19+UX2/DB8+3GC6IUOGqNKtX79ebxpbfp8KgiD8/PPPgqenp+Dl5SWsXbtWa11ZWZnw/fffC/369RPCwsIEqVQq1KlTR+jUqZPwxhtv6LSmGSv7+fPnhREjRgihoaGCj4+P0Lp1a2Hp0qWCIAhCWFiYAECrJam65di6davwyiuvCA899JBQq1YtwdvbW2jQoIHQr18/4Y8//hDKy8v17qOkpET45JNPhK5duwpBQUGCj4+PEBMTIzz55JPCn3/+afLxrOo4FBUVCd7e3gIAYdy4cTrrly5dqsr/2LFjZuVvSbkEQRAuXrwojBw5UuscLVmyRCgvLzc7IBSE6p1zR3ivCoIg/Pe//xXatGmjde2wbds2vWk1/fHHH0Lnzp0Ff39/wdfXV2jbtq2wceNGQRAE4cyZM8JDDz0kSCQSt7w2YEBI5IB4AVN12Y3hlz4RkeXu3LkjABBq1qxp76KQjfCcuyeJIBgYT56IiIiI3NaCBQvw2muvYeDAgVi/fr29i0M2wHPunjjKKBEREZGbOnHiBL744guteekEQcB3332Ht956CwAwbtw4exWPrIDnnCpjCyERERGRm9q+fTsSExPh6emJBg0aIDQ0FBcvXlRNEzB27Fh89tlndi4liYnnnCpjQEhERETkprKzs7Fw4UKkpKTg6tWryM3NRWBgINq3b48xY8bgqaeesncRSWQ851QZA0IiIiIiIiI35bbPEF6/fh3/+te/EBoaCj8/P7Rr1w6HDx9WrRcEAbNmzUJkZCR8fX3Rs2dPnDp1SisPuVyOl19+GWFhYfD398cjjzyCa9eu2boqRERERERE1eKWAWFOTg66du0KqVSKjRs34vTp01i4cCFq1qypSvPBBx9g0aJFWLp0KdLS0hAREYGkpCTk5+er0kyePBlr167FqlWrsHv3bhQUFGDw4MEoKyuzQ62IiIiIiIjM45ZdRt98803s2bMHu3bt0rteEARERkZi8uTJeOONNwBUtAaGh4dj/vz5GDt2LHJzc1GrVi18++23qr7WN27cQFRUFDZs2IB+/fpVWY7y8nLcuHEDAQEBkEgk4lWQiIhMJggC8vPzERkZCQ8Pt7xPahb+dhER2Z+Yv11eIpXJqfzxxx/o168fhg0bhh07dqBu3boYP348xowZAwC4dOkSsrKy0LdvX9U2MpkMCQkJ2Lt3L8aOHYvDhw9DoVBopYmMjERsbCz27t1rUkCoDCCJiMj+rl69inr16tm7GA6Pv11ERI5DjN8utwwIL168iGXLliE5ORnTp0/HwYMHMWnSJMhkMvzf//0fsrKyAADh4eFa24WHh+PKlSsAgKysLHh7eyM4OFgnjXL7yuRyOeRyueq1snE2IyMDISEhotXPkSgUCmzbtg2JiYmQSqX2Lo7oXL1+gOvX0dXrB7h+HS2tX35+PmJiYhAQEGCF0rke5XG6dOmSS/52KRQKpKSkoG/fvi75eQFcv46uXj/A9evo6vUDLK9jXl4eoqKiRPntcsuAsLy8HPHx8Zg7dy4AoH379jh16hSWLVuG//u//1Olq9wVRhCEKrvHGEszb948zJ49W2f5oUOH4OfnZ241nIafnx8OHDhg72JYjavXD3D9Orp6/QDXr6Ml9SsqKgKg+51P+imPU0BAAAIDA+1cGvEpFAr4+fkhMDDQpS9EXbmOrl4/wPXr6Or1A8Sroxi/XW4ZENapUwctW7bUWtaiRQusWbMGABAREQGgohWwTp06qjTZ2dmqVsOIiAiUlJQgJydHq5UwOzsbXbp00bvfadOmITk5WfVaGdknJiYiNDRUnMo5GIVCgdTUVCQlJbnkB9rV6we4fh1dvX6A69fR0vrl5eVZoVRERETOwS0Dwq5duyI9PV1rWUZGBho0aAAAiImJQUREBFJTU9G+fXsAQElJCXbs2IH58+cDAOLi4iCVSpGamorhw4cDAG7evImTJ0/igw8+0LtfmUwGmUyms1wqlbrkRZomV6+jq9cPcP06unr9ANevY3Xr58rHhIiIqCpuGRC++uqr6NKlC+bOnYvhw4fj4MGD+OKLL/DFF18AqGh6nTx5MubOnYsmTZqgSZMmmDt3Lvz8/DBy5EgAQFBQEJ5//nlMmTIFoaGhCAkJwdSpU9G6dWv06dPHntUjIiIiIiIyiVsGhB06dMDatWsxbdo0vPPOO4iJicHixYvxzDPPqNK8/vrrePDgAcaPH4+cnBx06tQJKSkpWg9ufvTRR/Dy8sLw4cPx4MED9O7dGytXroSnp6c9qkVERERERGQWtwwIAWDw4MEYPHiwwfUSiQSzZs3CrFmzDKbx8fHBkiVLsGTJEiuUkIiIiIiIyLo4Ay8REREREZGbYkBIRERERETkphgQEhERERERuSkGhERERERERG6KASERERFZ7OT1XCSvPobr9x/YuyjkQARBsHcRiKgKDAiJiIjIYoOX7MavR69j0o9HtZaXlwv4eMs57My4bXR7QRCw5/wdZOcXi1quE9dycSQzR9Q8lXIfKLDhxE0UK8qskr+5Vu65hNTTt+xdDJU7BXJ0mrsF7607be+iWOzi7QLsOX/H3sVwCMWKMmw5cwtFJaX2LopFfjp0Fck/HYOirNzeRQEAZN4tQlm5fW6gMCAkIiIi0WTcytd6veHkTSxKzcD//e+g0e02n8nGM8sPoPv8bSbtJ/NuEU5cyzWaprSsHEOW7sbQT/cir1hhUr7meG7FQYz//gjmbjgjet7mOnk9F7P+PI0x3xyyd1FUvtp9Cdn5cizffanKtIIg4FaeuDcDxNRr4Q48s/wATt/Is3dRqlSsKMPhKzlWCy7e/v0knv/6EF5Zdcwq+Z+4louLtwutkrem13/5G78euY71f9+0+r6q8sfxG+jx4TaM++6wXfbPgJCIiIjEU+ka9Oo907qQbkvPBgDIS027W9/jw20YsnQ3bhjpolqqcUGcWyR+QHgk8z4AYO2R66LnbS6xW1Y1yUvLUG4guLiZ+wBDluzGz4euWrSP2X+eRqe5W/BTmmX5WNvZLPsHhHsv3NG58aJp3HeH8cSyvfhsxwWr7P+nQ9cAwCqt0bfz5RiydDf6fbxH9LwNuVtYond5frEC0349gX0X7lq9DF/srDhX9mrhZ0BIREREoqkcNkgk1t3fhdsF1t2Bg3tQUobcB+IHu0r5xQq0npmCJz7bq3f9e+vP4MT1XLz2y9+qZbfyipFTWAJzTv3KvZcBAO//dbbKtN/su4yPUjPMyF3tdr4cL35zSHUDwtlcvlOIkV8ewKCl+wAAdwvkOi2B29Mrumcrj2ll5eUCRq84iLd/P2l0X9fvP8DRzBwUyEtx8nquTZ4HvZZTZPV9mGphSgZ+PJiJp7/cb7V93CkGCuT273rLgJCIiIgcjhjd3ZxtPJNv911Gn0U7cDO36lbVe4UleOOXv9Hi7b/QdnYKCuTWeY5xz/m7KCkrx9HM+yiUlyK/UtfbokoXswXyUnSauwXt30212s2At38/hf9uOVetmwHvrjuNlNO38NyKtGrt297vqYt31HW+UgA8PH8HRn11wKw8jl7Nwfb02/hm3xWj6bq+vxWPf7oXsTM3YfCS3dh61vIg+s/jN9BxzmYcvnLP4rys7cpd63VbVZSV48+/b+Ldo17otWgXJGbdPhEfA0IiIiKyO83LoQMX7yJ25iasOpgJeal1n4cyx+LNGRj431346dBV3DPQzcwSb/1+CuezCzB/o3Yr2dHMHJy8rv285Kw/TmG1RjfN80a6EIql1cxNaD0rBfJSw8Fn5l3btfAUVqNlJcuE5xQVZeUY/vk+/N//DmL5rotG62tPe7IqLuP3mtmlUVFWvc/S27+fsrjr9cs/HkV2vhwvfmOfZ+X0sUco9tJ3R5D88wkAQI4VurOby8veBSAiIiLXUfniqjotKuO/P4IHijK8+esJbD2bjZTTtzC5TxO80L0hMu8WoWVkoChlNdfizecAVAxG0Sw8wGr7KVaon6PMK1bg8U8rumtemDsQnh4VR1izpcgaSsvKUWbg5N3Ol2PjiSw0Dq+hs06zVbCqc19aVo79F++hff2aFpRUfDszbuPgpXuqv4tKHDMg1LQj4zZC/b3RLMJ678vr9x9g4Me7RMmr8sieV+8V4b6dAqPKLdnns/MR7Odt1X1uPqP9rKCpren5xQr8cvgaBrauA18Ry8OAkIiIiKxG0HmqsGrlGpFEyj+DLHy1+xJ+OXwN13Ie4Jt/dxStfNWVbsUWuW3p2Ui7fA+CAIQHylTLj13NQdrlHLSLqqnTxUzs9tNeC3fgdr4c859so7Nu/8V7mPPPyKqJzWoZzKOqMn285Rw+3noeDzcMqbI8pWXlyClSoFaArMq0xhi77j5w8S4K5KU6LWjHrt63aJ+28Ow/o/gOal3HqvsRa57RvOJSHL6Sg/BAGeoF+6H7BxWjCy8d2V6U/Kvr8p1C9Fm0E4Dx97a9vPXbSfx27AZW7LmMdePiRMuXASERERE5vPziUuQXV3QR3HDCtGHirT2gjbXIS8sx7LOKQUM+1AjInli2T/V367pBWtuI/Wxb5r2Krp/ns3VbIqf+fNzgdua0EP5wsKLL6/6LVT9P9sSyvTh+LRcbX+leZVpz7Dl/558bDUVIu1wxX+U7j7bSSqP5NrJ/x2U1fe/v9SZ+NhzBE8sqWr4Ht1EHsedu2XeQqMNXrDNnqViUz3Fm3ivCtF//riK16RgQEhERkXiqGYSZc6Gddtm2A1KUlQv4nwlz6VmD5uidmk5UeqZQUS7e5Nqao0ku33XRaNpt/4xoqTefKs6qOaNWHv9nzskB/7Wsy2LlIOqZ5boDsrz9+ymt15pdZ530HoMWR3geV9M6jXkAlV117UWzd4Kx97bY7uTLTUon0XgD/3lcvOCfg8oQERG5qXnz5kEikWDy5Mn2LopZLpgwaXVpWTl2n7sjyv5+OXxV1UXSUX2+w3jgZg7NeMGS5+fELJM+thrxc7sNAwNjdmbcxr9XHrIojw0nbuoNgh3FvovWn/PPEd3Itd48oqZgCyEREZEbSktLwxdffIE2bXSfEROTvYbp/3znRXy4KV2UvM7ctP4Ino7Ekvnm7D18flUsLZ8tuyF/su08Vu69jEAfL9QO8NEJlswpyvX7D1An0Afjvz8ibiHJZPcKSxDo4wUvT8drj3O8EhEREZFVFRQU4JlnnsGXX36J4OBgq+3nyt1CfFvFXGelZeU6AYhEhKvunzWmZCDnYU4waunbZOUe+3QDNtWHm9JxO1+OC7cLLWo5++XwNXR9fyveWCPeM2euxBYx/vnsfDz0bqrquUlHw4CQiIjIzUyYMAGDBg1Cnz59rLqfhA+3G533Lb9YgU5zt2DiD0dFb0kUK7sfDmRi5d7LIuXmHCw5drZsQbP0PTPrz9PiFMTBfZSaAQD4+fA1u5Xh4u0CfLPvslX3kXErH0czzR8UZsnW87gh0uip+vyUdlU1cqnyWVhHwy6jREREbmTVqlU4cuQI0tLSTEovl8shl6sHPMjLywMAKBQKKBS684ZJ/lmnT+Xlfx67hruFJVh/4iaeiq+nWm5OK1FpaZne/VXOQ1Gqv7zKtIoyAd5eHqo0yv+nrz1RZRkEGK5zVS7dKUTdmr7w9hLvHn1VZalcx8pKSqs3QI2h94TmvkrLyvHXqVuIa2C4ZdrUY1laWqo3rbH6CYJlg++Ulel/v4mlQF6Kc7cK0C4qqOrEVREEKBQKSIyE+JbWxdTtey3cYdX8AaDvRxVB1743EhBWw/TpSe4WlmDEF/uw5dXuKC/X/8ysJcfp9Uots6Z+PvWx1v0WBoRERERu4urVq3jllVeQkpICHx8fk7aZN28eZs+erbN827Zt8PPz01hScUmhUCiwYcMGrWVK6uUVTmRLAHhWlC0zE8qOS4qSEph66XPw4EHkZehe8BYVemrlsX3bdoQaqPL/0j1w4p4Es+PKEPjPfNSpqal666BPaalCp26mOHFPguXpnogJEDA5tsykfZnC1LKo66itIh40vywbNmzAjSL92yrLtP2mBGsve8JLIsDHC6h8nktKSgyUXzfPPXv34FoNw+XRV7+7dz1gSQe548ePw/vGsWpvX5X3j3viZpEETzcqg/KzYUhVnxC5XI4NGzbgwQNPg6mNv1eqfg+Y8l4rUJiWV2WCYPg9ql/FPn5evwUNAkxPDwCZ9x5gw4YN+FvjO0lTdT7f+vajzsvw8TC2rxKF4XNpCQaEREREbuLw4cPIzs5GXJx6QuOysjLs3LkTS5cuhVwuh6en9sXQtGnTkJycrHqdl5eHqKgoJCYmIjQ0VLX8lX0pAACpVIqBA/tpLVMaOHCg1uuiI9fx44WKIf6j6kcB2dcr8vD2BkpNuyPfsWNHdGscqrVMXlqOV/Zt1lrWM7EnooL9oI+ynHmhLfDEw/WQmpqKpKQkSKVSnTroo1lnc/z67REAd3ApX4KBAweatC9TVD7OlSkUCq06ViYvLceUA5v1bFn1fs/dKsD847rPSSnLpKxzqSCBzNsbBYoSrXTe3t4YODBRZ3t9x6Zrl65oU0+3Jc1Y/VbdOoRzedWf2qBd27YY2C6y2ttXRVnPS+VhACybE08mk2HgwJ5YmL4Ld+X6u0Qae6+Y8n6s6r0GAKNXHgZQvWcgDb1H9VGWt3OXLmgXVdPk9EoDBw5E8dHr+P7CKZ20ptTTnP0YO7bG9jXr+DYUmfjdaA4GhKi4+zl9+nS88sorWLx4MYCK7iOzZ8/GF198gZycHHTq1AmffPIJWrVST1Yql8sxdepU/Pjjj3jw4AF69+6NTz/9FPXq1TOwJyIiIvvp3bs3TpzQ7gL53HPPoXnz5njjjTd0gkGg4qJSJtPtfiWVSvVeqEkkEoMXcJWXe2nsz8ND3WpjzqAyXl6eOvmuO6n7rJTUS395NW1Lv4MXu8eoymrqhSgE3bqZwlOjztXZ3hBT8zJUxzJUb6oJqVQKL6n+S0vlfjy1zrPhfDR9u1//wEReXl5G66q/fpa1rlS1T9GI8DCm8rPoYSQvS+tiyvZ7LlQvGBRg5ufwH57VPEdSqRSensbfv2Lw8jIefhnaV1m5gJwi63RXdvtBZQwNu/3BBx9g0aJFWLp0KdLS0hAREYGkpCTk56uHnp48eTLWrl2LVatWYffu3SgoKMDgwYNRVlb9OXuIiIisJSAgALGxsVr//P39ERoaitjYWJuXR4zRRPWRK6r3nNihKzkoLRNvgveqaNa+us/tOZvqnPG3fjupd7ljTa8uLjEGWVJmUZ3P2daztywvgJ0cy7xfre3Kym3zjoqZVr3up+v+viFySdTcOiA0NOy2IAhYvHgxZsyYgaFDhyI2NhZff/01ioqK8MMPPwAAcnNz8dVXX2HhwoXo06cP2rdvj++++w4nTpzA5s3md7MgIiJyVuUiXEjJNQIiS+bBAyxrXLHRNSEA7XK+s063m5or0qyzvtNsrZsEYrFV8Q5cqn631sqqU+R/rzwk2v5t7Z11VY8eu+1sts6y7/Zfsfi7x5pu58urTlRNbt1lVHPY7ffee0+1/NKlS8jKykLfvn1Vy2QyGRISErB3716MHTsWhw8fhkKh0EoTGRmJ2NhY7N27F/366T5LYO5Iba6gqpHMnJ2r1w9w/Tq6ev0A16+jpfVz1eNiqu3bt1ucxy/VHM5e80L11yPXLS6HGGx7Oag+At/tz7Tpno2x5Jq46m3Vdb5bWGIkHVXF5NNkJCIUBMFhg3BrfhafW6k7ynLq6Vt4xIrPh1rKmufJbQNCY8NuZ2VlAQDCw8O1loeHh+PKlSuqNN7e3joT+oaHh6u2r8z0kdpcj3mjRDkfV68f4Pp1dPX6Aa5fx+rWr6ioSOSSuJ/1J26q/jbnmsVa1zcSC54Tc+QWAlsRrHgpLuY557kyjbFnCAXBtnNHOjJ3Pg5uGRCaOux25UjclLsoxtKYOlKbK6lqJDNn5+r1A1y/jq5eP8D162hp/ZS9Ncj2xLgAsyT408dWzxEBgIcbXoBWVWVzgjxHbdlyFJJK/zsdxvtarHke3TIgrGrY7fT0dAAVrYB16tRRpcnOzla1GkZERKCkpAQ5OTlarYTZ2dno0qWL3v2aO1KbK3H1Orp6/QDXr6Or1w9w/TpWt36ufEwcXbGBwV/MuQ7U25pl6yvgau7PUeMZNry5FmPvM57qStz0gLjloDLKYbePHTum+hcfH49nnnkGx44dQ8OGDREREaHV/aikpAQ7duxQBXtxcXGQSqVaaW7evImTJ08aDAiJiIhcUXUCm2/2Xca0X09UnbAaHDTOchrWvCY21n0RYKufNRhrRbdFt9vqnlI3jc3swi1bCJXDbmuqPOz25MmTMXfuXDRp0gRNmjTB3Llz4efnh5EjRwIAgoKC8Pzzz2PKlCkIDQ1FSEgIpk6ditatW6NPnz42rxMREZG9SAz8bczbv1tvVE1LggpbXoSK3d1VDA9KyrDqYPUHuKnq+UPGe7Zn72MuAYM7MVjzPLplQGiK119/HQ8ePMD48eNVE9OnpKQgICBAleajjz6Cl5cXhg8frpqYfuXKlXon9iUiIiLTOF2XxWqW194X6vq8v/EMvt6nfyJ4cs4WzOs5Dwyuc7aPmjU547kVCwPCf1QedlsikWDWrFmYNWuWwW18fHywZMkSLFmyxLqFIyIicmD2vJDS18rmLJd1jnj9uUXP/GxiqqrOHDnUdKYcqbsFcuTLS61eFmMkEkm17vLY451gzRF2LWXNrwu3fIaQiIiIXJclgVa14hEHDOwclb27yTryBb+59mdXfRl/LrvA6HpbxN/O9PEoKimzdxHsggEhERERicYRul1ZUoSbuYa714nNEY6VzYlYZTc8emZz5mNkTrBauWX5xLVcAEBRSSmeWb4fX++9XGUeOzNuY/afp80pok1Z8/uCASERERE5FHt2Gxy0dJ/5G1X3GcLqbVYlS46fpdecVe3amQMUwPnKv+bINaPrbdFiao/7HkOW7gYAfLPvCvacv4uZf1hvECt9jl29j2s5RaLmyUFliIiIyGHZ8yLZIboAOluUYEf2bBUtKS3H/ov37LZ/WxMA/HTIeEDoKvTdiDiSmYNCOzw/eeF2AR77ZA8A4PL7g2y+/+pgCyERERFZRPMa3/Zzwpu2R0ccq8RawZEldbX3M37WDBj3X7xrcR7O1MvXlKLa5hlC+xy0DX/ftMueT17PtcNeLcOAkIiIiMx2I/cBDl7SbW25W1iCT7eftyhvc69Rt6dn49jV+xbtU5PcjcaVKFa4UWXJqZjzPaAvbe4DhVhFcXkMCImIiMhsg5bsw/DP9+Hva/d11n3wV7rNynH9fhFGr0hTddEyxJyupX9cce7LI1NrejTzPpq/9Rfm/3XWquWxFnNb68Ro3bN3C6pTstMh+/mwa3WX5bQTRERE5JDEbJlTMaNp4Pr9YtF3fynfNlew9h5U5v1NGQCAZdsvqJZZe1AZIlfnjKMHMyAkIiIiC4l7AWSNibTdPVB5UFKGD/46a50A3gz2vFRm654uR/5clJYD764/i21ns6tMa/AmiBMGZwZx2gkiIiJyRI58QemuBADl5donZum2c/h0+4Uqu9Za+/LZntfnrhQbuIO92RJ8sz8Tz61Ms3dRHAK7jBIREZFDEgTBrAvt8nIBWbnidfPU3LWirByLN2fg8JUcnXSGBp0wNBH9nQI5jmbq5mOIIAgoMLFls6xcwKHL96w2oEvmvSK0fScFC1PUz3KmZxVUuV1JablVygNUHM+Zv5/EmZt5RtPdKyxB53lbsPXsLbPyn/D9EYxecdAmc1iWlJajtEzcY5VbpMBxO7TeVn62tqS0HFfuFpqXh4FjLi8tw6HL93RuTpjqnlz/F0vGrXw8KNH+7BjcQ6WyCYKA3CLLB5uZ9ccpTPjhiE7dr+UUif7eEAQBRzNzkF9svSk0OA8hERER2czLPx7F+hM3rZL3DwcysXjzOb3rSkrLMeyzvegQHYLX+zcHALSdnWIwr87zd5i17wk/HMGGE1n4a3J3NI8INJr2i50XrTqQy8KUdOQXl2LJ1vOY0rcZAP2tY5qLfj50Fa/98rfVyvTmmhPYfMa0IO9mbjH+vfKQyXO4/XfzOdV76lrOA2w9k4Xbueravb/xLDJu5ePfXWPML3glpeXl6Dh3M2rIvLDr9USznxcrlJfit2PXkdQyHLUDfFTLe3y4TfRRMavTIjr8831mdSv+4UAm/rslA9/8uxOaRQRorXt19TFsOJFlfiGM2J6ejdEr0tC4dg1sTk4we/upP/+NNUcsH2xm5d7LAIBXejdB0/CKeqddvodhn+2zOO/jV+9jUWoGpg9sgWYRAUg9fQsvfnvY4nyNYQshERERVVtWntys9GIHg5oXveezDbeCrT9xE2mXc/CpxgAqhlSnPUN54btyz2UAwO18OT7Zdh7ZeRWtoXnFCjz6yR4s33UR3+2/Uo09WJdYwaCh0Vyrahm0xEebM1R/H7h0DzP/PIOlpz1Vyz7bcQFbz2Zj74U7Fu/r6r0i3C9S4FrOAzxQlOH5lWn4dt9lrTSCIODG/Qe4eq8IOYUlKFaU4YcDmTh3Kx8z/ziFGWtPYsTn+7HpVBb6LNqBUzdy7TZFQuXGPXOfMZ2+9gRu5cnxxpqK98+Vu4UY/vk+bEvPtjwY1PNWWnv0OgDjn3VjWYgRDGpSaLQG/nzoqih5PvrJHuzIuI1nlh8AAGw8KW5QrQ9bCImIiKjaPttRdYBlK8ZaRBQid+MyRBCA5J+O4dcjFReuG0/exLqXu2P5rks4fvU+jl+9j7o1fW1SFneUea/I4Dox3gOaLYI/HryKLWezseVsNkZ1jgYAfLf/Cv7z28kq87l4pxBj/2n1eem7IxaXy97K/ukWOnn1MRzNvK93jlIxGPqIG+op7MzPON8pMO9mmyXYQkhEREQuz5YXhspgEABOXq9oGbPlBPDOfBFsTWJPB1Cg55kuU4LBygqtMKouANwyofVe7LfK3YIS0fJyhrex8rN25W4hfjok/ryHirJyozc5xMKAkIiIiGwi41a+VfMvd+BISDMUsUc5Nff/97VcfHTCE8ev5dq8HFbnwO8BspyhoN5QV2WxvLr6GH47et3g+oQPt1tlv//31UG9g2SJjQEhERER2UTfj3aKnudPaerndr7bnylKntYOKW6KOMqqqfZduKv6++mv0nC5QILSao7+aCvPrTiIbelVz0FnKjHaB60xdcXdQvFa1cylHCVTEAS8t+603cphLWIFimuPXsfk1cd0lr+6+hjOZ1vvRte+i3erTiQCPkNIRERETuuGicGVNVsQTIoRbDgHXuVGsjsFcuRrdEu05vQSYjbQbUu/jW3pt83bv7GVIp8DV5rXMO1yDpbvvmRxPmIek33Zuu1W+rIvLSu32zOE57IL8NTn+627ExtgCyERERG5lZu5D9BnkeFpJRy84cxsthycwpYkZkZ45qavKo/KwYahOS0dmbIKeXYa5dRSs/88hdhZm3Atx3bHvvLcg/Zs4RULWwiJiIjIrby/8azRYetvPXChph+IEwiZSjk/m04ZbFSEJVvPq/7Oe6DA2z+fEDV/Q/X48/gNvPzjUVH35Uys/QyfISv+mebFlNGO31xjvXk2nR1bCImIiMj1aVyvWrPLpCFyhe32Wfni3JZdG385LP5Ii9W1eMt5rP9bPe+l2MdBM7+Pt5wTN3MbUTZ2OXv3V4NdRjX+XpUmzjyBrjhukVsGhPPmzUOHDh0QEBCA2rVr47HHHkN6erpWGkEQMGvWLERGRsLX1xc9e/bEqVOntNLI5XK8/PLLCAsLg7+/Px555BFcu+Y4X4RERESky5oXv/paSj5KzTDYckbVV1Wr1K188bvKOnncZFXz/zqLK3etPEWCgRNg6L3gisGbNbhlQLhjxw5MmDAB+/fvR2pqKkpLS9G3b18UFhaq0nzwwQdYtGgRli5dirS0NERERCApKQn5+eqRhCZPnoy1a9di1apV2L17NwoKCjB48GCUldluriEiIiJybP+1cetR5Ytgdw1i3LXeZhGxhXDZ9qq7bVrKYPdngy2E4keErhhjuuUzhH/99ZfW6xUrVqB27do4fPgwevToAUEQsHjxYsyYMQNDhw4FAHz99dcIDw/HDz/8gLFjxyI3NxdfffUVvv32W/Tp0wcA8N133yEqKgqbN29Gv379bF4vIiIi0s8VL+JM5ezdAQ0xt/XHmofBVY+xs3Dnz7cY3LKFsLLc3IqJWUNCQgAAly5dQlZWFvr27atKI5PJkJCQgL179wIADh8+DIVCoZUmMjISsbGxqjRERETkeDacyLJ3EdyOPQKmTafFm8NQydUCP7Fa0GzVNdPc488uo6ZxyxZCTYIgIDk5Gd26dUNsbCwAICur4ociPDxcK214eDiuXLmiSuPt7Y3g4GCdNMrtK5PL5ZDL1f3Z8/LyAAAKhQIKhXMO91sVZb1YP+fl6nV09foBrl9HS+vnqseF3JfuNbCLRTH/sPe1vmawYcuRXB2RvQOvylNBVLXcGvtyZm4fEE6cOBF///03du/erbNOUuk2hCAIOssqM5Zm3rx5mD17ts7ybdu2wc/Pz4xSO5/U1FR7F8GqXL1+gOvX0dXrB7h+Hatbv6IiKw+CQA7BFS/iTOVqrVr25GqBn1gfi9M388TJqJrc99MtDrcOCF9++WX88ccf2LlzJ+rVq6daHhERAaCiFbBOnTqq5dnZ2apWw4iICJSUlCAnJ0erlTA7OxtdunTRu79p06YhOTlZ9TovLw9RUVFITExEaGioqHVzFAqFAqmpqUhKSoJUKrV3cUTn6vUDXL+Orl4/wPXraGn9lL01yLVpTj8gtrziUqvlTYbZI8g/dOWeev8aYQiDbvsyOO2EFd4irhh8umVAKAgCXn75Zaxduxbbt29HTEyM1vqYmBhEREQgNTUV7du3BwCUlJRgx44dmD9/PgAgLi4OUqkUqampGD58OADg5s2bOHnyJD744AO9+5XJZJDJZDrLpVKpS16kaXL1Orp6/QDXr6Or1w9w/TpWt36ufExI7UZusb2LYDOpp29pvXaEWOXqvQf2LoIoNp26VXUiJ1ImCNh97g7+vfKQvYtiEVcM0mzJLQPCCRMm4IcffsDvv/+OgIAA1TN/QUFB8PX1hUQiweTJkzF37lw0adIETZo0wdy5c+Hn54eRI0eq0j7//POYMmUKQkNDERISgqlTp6J169aqUUeJiIjIvfx+7Ia9i6CjqsddnJW5QYDYh2HxZuecjF5T/Hub7V0Ek90pkGPXudt61xl8htAK5XDF3uduGRAuW7YMANCzZ0+t5StWrMDo0aMBAK+//joePHiA8ePHIycnB506dUJKSgoCAgJU6T/66CN4eXlh+PDhePDgAXr37o2VK1fC09PTVlUhIiIiByIvLbd3EcgAa17In83KrzoRVdulO4V4ZMlu5Mv1d892wRjNptwyIDSlz7lEIsGsWbMwa9Ysg2l8fHywZMkSLFmyRMTSEREREYlj1FcH8FLPRvYuhlUIAnA7X151QnJ6iQu2V2s7sW8CnLmZh9ErDoqbqQNwy4CQiIiIyB3sOncHu87dscm+nlm+3yb7UbqVV4wnlpk+9/On2y9YsTRka4ev5Khf2KiJ8NXVx3Arz/VuQnBieiIiIiKy2J7zd226v//tvmTT/ZFj0bwZIBiICA0tr64SM7uE/3Hc8Z4p1ocBIRERERE5nUOaLUREevx86Jqo+V28U2hW+kk/HhV1/9bCgJCIiIiIiJxWuYGGuwIDg9CQNgaEREREREREbooBIREREREROS2xnxV0NwwIiYiIiIjIabniZPG2xICQiIiIiIicFuNByzAgJCIiIiIip8UWQsswICQiInIT8+bNQ4cOHRAQEIDatWvjscceQ3p6ur2LRURkIUaElmBASERE5CZ27NiBCRMmYP/+/UhNTUVpaSn69u2LwkLz5tYiIiLX4WXvAhAREZFt/PXXX1qvV6xYgdq1a+Pw4cPo0aOHnUpFRGQZdhm1DANCIiIiN5WbmwsACAkJMZhGLpdDLperXufl5ZmUt0KhsKxwREQmKjM0Mz2ZhF1GiYiI3JAgCEhOTka3bt0QGxtrMN28efMQFBSk+hcVFWVS/hs2bBCrqERERmVnZ9u7CE6NASER2ZQgCJj95yn0Xrgd9wpL7F0cIrc1ceJE/P333/jxxx+Npps2bRpyc3NV/65evWpS/gMHDhSjmEREVapVq7a9i+DUGBASBEHAu+tO44lle5FXzC4+ZF1HMnOwYs9lXLhdiIQPt0Fgx38im3v55Zfxxx9/YNu2bahXr57RtDKZDIGBgVr/TCGVSsUoKhFRlSQeEnsXwakxICTsPn8HX+2+hMNXcvD8yjR7F4dcWG6RAk8s26d6nV9cih8PmtbaQESWEwQBEydOxK+//oqtW7ciJibG3kUiIiI7Y0Do5u4VlmDUVwdVr9Mu52DIkt24nS83shU5uq1nb6HXwu04eT3X3kXRMvOPkzrLpq89gez8YjuUhsj9TJgwAd999x1++OEHBAQEICsrC1lZWXjw4IG9i0ZEVG3sbGQZBoRu7vVfjussO3E9Fx3nbnbrrnzFijJM+ek4FmxKd7rjUF4u4MVvDuPi7UIMXrIb5eWGy19eLuCt306i4bT1+G7/FauW68/jN/DbsRuq1ytGd1D93XHOFqvu2109KKl4H8/dmA4jbwNyI8uWLUNubi569uyJOnXqqP6tXr3a3kUjIiI7YUDoxlYdzMTmM+pRmaYkNVX9LQjQ6cpXXi5gUUo6Zv5+EqVlrj2873f7r2DNkWtYuu08lmw9b+/imOXVn46hVOPqP+mjHSgp1X++dp67jW/3X0G5APznt5PYkXHbKmXKfaDAyz8eVb1e81IXJDavjWbhAaplKaeyrLJvR3fmZh5GrzholdbcX45cw5oj17Bi7xWkXufzFVTRZVTfv9GjR9u7aERE1cZ7npZhQOim7hTI8eavJ1SvN77SHeMTG+P1/s1Uyyp35Us9cwsfbz2Pr/ddwdSfdVsWXcWN+w/w3vozqteLUjOQ4wCjYeY+UOD1X47j92PXDabZlp6N3zVa4QDgwu1CNP3PRuQWaQ8YdL+oBKNXaD8z+uz/DqJQXipeoVHR2tp2dorq9biERohrEAwA+PL/4lXLX/z2MK7lFIm6b2eQ/NNxbE+/jcFLdiP3gXiDOmXlFuOt39RddDdc9cSKvVdQxqZCIiIi0sCA0A3JS8vQ96OdqtdTkpqiRZ1AeHpIML5nYywc1la1ruOcLVCUleN+UQnGfntYtfy3YzeQnpVv03LbStf5W3WWtX83FQo7t4ou3XoOPx26hldWHcPm07d01mflFuM5jQBv/hOttda3fSdFqw4Tf1C32DWpXUP19+Of7hGz2PjhQKbqb39vT7zeT33ToX6oHz5+ur3qdbf52yAvLRN1/9YmLy3DW7+dRNMZG/Ho0t3IzjP9echVBzNx5qZ6ku8+i3aIVq6kj3TzmrsxHQtS0kXbB5Ex9v7OJCL34WyP9zgaBoQi+PTTTxETEwMfHx/ExcVh165d9i6SUV/suKia/81X6okJiY211g9pG6n1eunW83j+60M6+fRbvNPlfvBnrD2h9WBym3pBqr/nbzxrhxJVuHK3EF/uuqR6/cI3h3Raeh77RB3IDWkbiac61Mecx7Unm35lVUUQ+NfJLOw+f0e1fNPkHqq/M24V4N11p0UJzK7lFOGddadVrw/M6AOPSkND928VgQCZl+r17D9Pw5n8euQ6vt1/BSVl5Th+LRc9F2w36Ycp41a+Vis9ANzOl2PN4WsWl+nDTWeRX6xu6e3SMET197LtF3CngINGkfV9u8+6zyUTEZE4GBBaaPXq1Zg8eTJmzJiBo0ePonv37hgwYAAyMzOr3tgOTt/Iw8LUDNXrgzN661yge3t54MJc9YTC/91yDoev5Khej+gQpfr7jTV/i1a2MzfzMGf9abuNcJp2+R6+12jN2j+tN34e11n1evnuS1bvOppbpMDcDWew94I6WCsrF5Dw4XadtI8s3Q1BEKAoK8fizRnI0miZ+nhEOwDAM50a4Mw7/VXLN5zIwqHL9zDuO3Vr74ZJ3eHhIcHBGb1Vy77afQkjvthvcX26zd+m+vvzUXGooRH4KXl7eeDvWX1Vr384kImbuc4x4uGdAjmmVQrqikrKMH3tCQNbVMgvVmi10mt21Z7y83HctSBgO3EtF59su6B6vffNXlj6dFs0DVLfvIl/b7PL3cwhx3MkM6fqREREZHcMCC20aNEiPP/883jhhRfQokULLF68GFFRUVi2bJnJedhqgBZBEDDwY3Xr5buPtkKAj/6Jgz09JPhiVJzO8r8md8f7T7RRvf71yHVcvlMoStn+vTINX+66hA5zNtv8Oae7BXIM+0w9P96K0R0QEeQDmZcn/vtPcAVUdB01NmqnpeZsOI0vdl7EyC8P4Pr9BygvFzDqqwOq9fWCfVV/n7qRh79OZqHXwu1YvPmcavnBGb0hkaiDfF9vTyzXeFbvSY16jktohJaRFZNM1w7wwYyBLVTrjmbex7Z09aBD5lqo0TWxhswL/VpFGEwrkUi0Rh3tPG+rUwxc1FMjUH9NoyvsjwevIuOW4S7V09eqn+2rHSDDSwmNMPdxdRffZ1cc1LdZlYpKSjFk6W7V6yVPt0dkTV8E+EgxoWU5nu6gnoD8xW90W/2JxOTJiaKJiJwCA0ILlJSU4PDhw+jbt6/W8r59+2Lv3r066eVyOfLy8rT+AcDAJXtQVCyHQqGw6r8Fm9RdHhvX8seI+LpG0yc2DcVT8XVV27yc2BCNQn2hUCjwxb/Uz331XLAdxfISg/kAqLJsK/dcxM1cdQvX9F+PW/14aP6bvEr9PF1Si9ro1ihYtW5gq9oY2l7djXbSj0fMrp8p/9Jv3MdPh9TdBf+z9m+sO34Ney/cVS1bM7YTtiZ3U71+6fsjuHpP3Zo2NakJgn08dfJOaBKC6QPUAQsA+Eo9MLlXQ610IzvUxeDW6sDtuRVpuH6vwOw6HrhwW2t01r8mdalym26NgvHvLg1U2zyydDdKSgy/r8T8V51zuPdcNgo0BuAZ07U+lo9Sfy76frRT73ZpF2/jz+PqgX+2JXdHaWkpHmkTrlp28noefk67YnaZ3vxF3WLfKSYY/VvW0qrj6IfVAeG29Nv489g1mxxfRz2HlbcncTEcJCJyDhKBT2FW240bN1C3bl3s2bMHXbp0US2fO3cuvv76a6Snaw/eMGvWLMyePVsnn6jJP6FWoC+mtimDn26POlGczwWWnFZn/mHHUnh7Vr3dnWLg3aNeqOsn4NXWZZBq3EJYn+mBlOsVCzrXLseIRtVr0bmcD3x0Urfir7UpRT3/amVplmuFwId/q/e/sFMpvCrdKrn1AJh7TJ1mYssyNAkS76MjLwNeP2j85GsejzWXPLAzS7uQvSPLMbh+OQzdlC8rB5IPqPexoFOp1vnUdPSuBCsz1G+Qjx4uNZhvZSVlwGsadXm+WRnahJh2rO7JgdlH1NsOiylDtwjH+4rKKwHeOqwu59vtSxHqU/H3D+c9cOB2xYHtFVmORxuoPxfFpcAbaertprQuRX31eD465+jduFIEeptWpisFwKITxt/HAFCoAKYfUqf7oGMpZCZ8F7iyoqIijBw5Erm5uQgMDLR3cRxeXl4egoKCEDX5J3jI/Ayme7RdpM6ox0RE1tCwlj8u3ra8x5ozKZcX4eri4aL8dlkp/HAvmt3zgIruj5WXAcC0adOQnJysep2Xl4eoqIrn8e7KJZiW5oWMd5L0bmuJ/OJSvDJHPXLmimfj0K1xqMnb/99Q/cs7FsiRMr9iJMN92R4Y0z8e3ZuEaaVRKBRITU1FUlISpFLd7qkPSsrQ5l31pOTjesTgs50Vg6d8+LcXTs/qA6mn9Rqy7xcp0GGe+jm3va8noFaATG/a/n2K0WNBxXNfS097Ysur3VAnQGq0fqYoKxcw7IsDACpajOMb1MShK/e10ox6uD5eHNRc9XoggKe+PIgjmRXp5g9thaHt66Iqd0KuYO7GdLw1qDkefbi+wXRJZeVYOWuz6vW6TA8seaG3SXV88bsjACqegXyofk28+a+OVW6jaXA/9Tn5+ZIn/vOvXvDztt5XVVXv0Ut3CrH3wl080raOqot1k7fU02i892hLPBWvbnkbqLF+6w0PjBv0MNrXr4m0yzkY+ZV6FNj+rcIxbrh6RF+li77nsXT7RQAVQee5d/vqpKms8mf82+fi8bDGQDKV65jpd071Ofs4owa2Temhk6czqeocVkXZW4OIiJyTuwWDYmOXUQuEhYXB09MTWVnaE2pnZ2cjPDxcJ71MJkNgYKDWv8pe+/UUpFIpbuSV4NMdl5F2JReenl6QSqWQSqXw8PTCH3/fwrHr+aplVf17dqV6AJF2UTWR2CLC5G2N/asTXANpM/qo8v73N0dQqBAglUrxoAw4lVWIwn96YhnK44Vv1V01o0P98MaAFni6ozpQmbXurChl1ffPw9MLL3yn3v+g1nUQGVLDYPr6YQF4trO6S2Pvj3Zj+7kco/Uz5d+aYzdx4rr6gvR/z3XEtAHq4A8AZj0Sq7Pd5D5NAQB9WoRjeIcGJu3rxYTGuPz+IDzfvZHRdH4+Mlyapx5YaMsND9wpKqsy//TsImxLVw+I8+OLD5t9PGoF+eHdx9Sjo/ZatNtq7wHlP0Pn0MvLC08vT8OsdWcxcMk+SKVS/G+v9oBRIztF62z34ZPq52yHf3kQ6dlFWsGgt6cHPnkmTu8+p/ZvgSceUgeYH6ScM1p2Ly8vvLH2lCp9nxa10b1ZuNE6vt6/Bfz+6SJw7X4x/jxxy+rH2F7n0JztiYiI3BEDQgt4e3sjLi4OqampWstTU1O1upBW5acx6sE0fj92A/sv3sWorw7io80ZGLn8AMZqjAi5cu9lTPn5OIZ9tg8nr+cazFNeWoYfD2bird9O4oRGutVjHza5XKaoFSDD4xotU/HvbUba5XtoMysFj32yBx3mbUOBgcdz0i7fw8HL91SvU5MTIJFIMKVvU9Wynw5dQ5pGGjGt2HMJx6/eV71eqKe1prJZj7TSej3+x2MotWDsk0J5KWZoDDCy6/VEBPpIMTahEc6+2x8fPtkGR99K0js4Q4+mtXD5/UFY/my86K3KQEXL9+Kn2qn3t2Cn0ekUcgpLMHiJekCTNS91hsyren0RRz3cQNXCdbewROuZO1ta9/dN3P1nZNmsvGK89N1hzNOYfuTwf3Sn0QCAYfFR+JdGC6zmcQGAHa/3NDrgRrLGZ+DLXZdw+Irhz8CqtKtI1ZiXcsnTDxmpUQUPDwn2TVOPKpv803E8KLHu/I9FJaX4+dBVXLxdYNX9EBERkXkYEFooOTkZy5cvx//+9z+cOXMGr776KjIzMzFu3DiT82gSHoCtUxJUr0d8sR+Z94pUr1NP30La5XsQBAHvaszp9oKeuQGVPtl6HtN+PYFv96vngdr1emK1L9CN+eipdogJq3i4rbRc0BqtEwA+Pa27z+y8Yq10qa/2UHUNDashw36Ni9Vhn+1DfrG4gz7kFSvw3vozqtf7pvWCj7TqYyORSLA5OUFr2cenqn9MW83cpPr7tX7NEBWifh7HR+qJYfFRCPY38SEyK3isfV2tkSk/2GR4UvOPNqunMxkQG4G4BiEG05riP4Naqv5++cejuHHftlNR/H3tPl7+8ajWso0n1b0B/juiHUJr6O9eDABv9G+ud/mqFx9GnSBfveuU6tb0xcZXuqteP7Fsn95g/F5hida0Fzte6wlfUx4OBhDkK8XYHg1Vr1u8/RcuiTBisCHzN57Fa7/8jV4Ld+CqxvcbuS4OKkNE5BwYEFroqaeewuLFi/HOO++gXbt22LlzJzZs2IAGDRpUvbGGhrVqYECs4WH5p/96Ah3nbtFalpVXjP9qTDeglFNYgo81RngEgNFdorWCDbF9MtJwq8T1Igm2pt9WvRYEAW/9rm4VG90lGk3CA7S2iQjyQcdodUDRelYKxCIIAtpo5Pd6/2ZVXqBraly7Bi6/PwjNIyrKfKVAgk//eebLHL8fu671enzPRmbnYQtje8So/l62/YLeucX2nr+DbzQmof5Io2WxumLrBuGjp9SttkmLdlicp6lKSsvxyNI9qtc9m9XSSfNoO+PPbAb4SHHkrSStZWfe6Y+HG5r2/G7ziAC0i6qpej1GzzQRD72r7p0wuks0GoSaNwrTtIEt0CE6WPU6ccF2oz0PqqtQXoqvNd4f3T/YZiQ1uYo9GiMkExGR42JAKILx48fj8uXLkMvlOHz4MHr0qN4ADcv+FYcGoeqg7b8j2uH7FzoBAM5lF+idsP2jzRk4m6V+/mzp1nNor3GR2KR2DbzSuwn+M6iFzrZiahkZiK//rT14yMnZ/VR/j/3uKO78M9n2V7svYdOpii5u3p4eeGtwS+jz07jO6NZYPUjNN/sui1LWlXu18xnfs3G18tF8zu2jLee1JpOvyvGr9/HKqmOq19un9rRKt08x1K3pi5kPqadXGPrpXhQr1N0LC+SlGLlcPVfi7jcSTWptNcWg1urpPgpLyvDxFt0bINYw8sv9qr9D/L3xv2c7YESHigGgagXIdAI9Q0L8vfFou4o6TBvQ3OTWO6CiNfq3CV1VrzefycbucxXvsfJyAavTtJ9lfNvA56gqlVsyBy/ZjaKSivNdUlqOC7cLcLdA97vHVPLSMq2WcKX3NbrekmvS95tFRESOhwGhg3n1n4FC6tb0xeA2kejaOEwnzV+Tu+MDjcnh+y/ehaKSUtzOl2NBSoZW2tTkBLya1BReVhypU6lzw1DU/6cV8scxD6OGzEtr/r749zZDUVau1VVz1xuJRp+l0gwW3/79lMVdzfZfvIvZf6q73e5+I7HaeXWIDsFPY9RB8MgvDyC3yHjXVkEQcCQzB49+om59eu+xWESH2WB+DQuEyCpGP1Xq8U8LT2lZOSZ8f0S1/LF2kagXLF5LtLeXh9bgNotSM3Atx7rdDW/lFePQFXUr6N43e8HDQ4L3n2iDy+8PQtqMPggxoxvvf0e0x+X3B2FsQvVagP83Ol7197++OoDr9x+g4fQNeGONuquooWcZTREfHYLL7w/CmO7qluCnv9iP/Rfvoul/NqL3wh2Ie28z5m08YyQXwxZpfCeF1VAft892XMBlK3ZRJSIiItMwIHQwj7Wvi8vvD8KeN3upAqXZGgOZvD+0NZpHBGJ4hyg8FR+lWj7uuyN4ZKn2wBW7Xq9+sFMd3l4e2Pl6Ii6/PwidG1V0i5s/NBahMvWzT01mbFT9/XKvxggP9DGaZ7OIAPzwTyspYFlXM0EQtJ67/O+IdhYHL+2igtA4UF2/tu+k4MBFw92kNpzIwtBP96pet64bhH89bF73Ynv58YWOqOlXMRpjdr4cW87cwsw/TmFHhro78MLh7UTfr0Qiwcwh6hsD3eZvg6LMgpF8jMgpLEEnja7Zf0zsKlprZ3X1ah6O6QPVrXhd39+qtX72I62MPstoqom9mqj+Pn4tFyO+2K+1/vMdF3E+O1/VemiKdX/fwOc71d2pN77SA+8Pba163XPBdqMDFVWXoqwc6Vn5VnufEBERuRIGhE7g2S7ROD9nAM7NGYARGlMyTB+o7ga6M+M2buYWAwDaRtXE5fcHWfWZQXO81EL/6IVT+jYzafuOMdqDk6w9eq1a5fj3yjQUyCsuZjs3DK3yGTBTSCQSvNyqDE8+pM7rqS/2o6xc/0Xuqz8d03r987jOFpfBlr56Vt1a9fzXh/D9AXW3xc3JCUZbey3xXNcYDG5TR/X6rd9OGkldPYIgYP5f6m6MvZvXRpt6NUXfT3X8X+dovcvHJTTCs130rzNXkK8UF+cOhJeRc9hn0U60fHsTot9cjzwjAz0VyEuRnVeMiT+oB+VZO74LagXIMKJjfUzuow4+Z/1xSl8WFlmwKR39Fu9EkxkbIS+17uipREREzo4BoZPw8vTQmaA9yE+KY2/rPsv0P42LdkdQyxf46UXt5wt3vNbT5O29PLW7Db66+rjZXUfvFMixTWNgmxXPdTCS2nxzH2uJCI3WzuRKgR8ADPzvLpRozFHx58Rudm99MldcgxB8/HR7neU/j+uMxrVrWHXfmjdAVqVdNeuZTVN8sesyVqVdVb1eamSgJFvzkXri/JwBWsu+f6ET3hygfyTT6vLwkGCMxsijAHB+zgCtAE6p+3zd1npBENB74XbEztykNQjWoDZ10L6+evCa57upu6d+ve8KjmlM/2Kp0rJyrVbJ4ZVGPSYiIiJtDAidXE0/b/Roqh4B8eD03qJ0HxNbm7pBaPbPSKILhrU1ezREiUSCiYnqwV+6f7DNYCtcZXcK5Ih/b7Pq9crnOogeiEkkEuyf3lvVpfL3YzdwSGP+xCt3C3H6pnrwn/NzBqB1vSBRy2ArSS3CtV7LvDzQIdqyKSZMEVnTV+uZz5FfHtAKsKvrVl4xckuABanqAWs2JyeYNQCMLXh5euC5rtEAgE4xIXqfLxbD0x3UvRDWju8CL08PDNfonq6U+0CB345qj5S7Ou0qLtzWfS7wv5VGnQ3wkWLVi+o5UR/7ZA/KTfw8GyNXlKGxRrd0oKL769/X7lucNxERkavysncByHLf/LsjBEFw2FEqAcDTQ4JNr1Zv9FWlqf2a4W6hHD8erGjFmf7rCcx/sk0VWwELNQa16NG0Fno2q21ROYyZ93hrvPTPICtPfrYPaTP6QF5ahoQPt6vSrH7xYZsM8mMtvt6euPz+IPxv9yUcuHQXcx5vXfVGIqkX7IeH6tfEkcz7AIDHP92D9ZO6G9/IiO3p2Ri9Ig2aX4UfPNnG6q2d1TVzSCu8PbilVT/r9UP9cGneQK19RNb0xaV5AyEvLYfMywMx0zYAACavPoYujUJRO9AH94tK8KbGnIhKm5N76H2/P9wwFH1bhiPldMWIww2nb0DziACseakL/GXV+2n69sBVvcsfWboHx95OQk0/+83pSURE5Kic96qUtDhyMCgmzSkiVh+qutvgmsPX8ONB9XNuX4yKs1rZAGBA6zqYptGN7/FP92hNHP5UfBQ6mTgPnaP7d7cYfD4qHmE2bpH+dbx6KoZTN/Kw5cytauf15hrdAEZfa5gjscVnXd8+JBIJfKSekEgkqpZKAOg4dwvuFZag3Tvq6W4+fLJiRNbL7w9C49oBOnkpfV7p83g2Kx/Pf51WrTIfvyvB/E3qmz/7pvXChET1yK5PsusoERGRXgwIyalEhfjhwPTeqtcjvzxgcCRBQRAw5efjqtfbpva0yTN7mgOAXMt5gF3n1EHrnMdj9WxB5vr2efUzqc9/fQg37j8wO48Xvj6ErLxirWVbpyRYXDZ3MHNIK7SvX1P1WnPk00a1/DHMxKBaIpFoTasBAPsv3sM+Myc0FwQB/8tQf7Z/GtsZdYJ8MU5jqo/z2QXYb2QEYCIiInfFgJCcTnigD9pqPH/3zJcHdNKUlwuqbm0AMLpLNGJsNNefr7cnzlUaAAQA9k/r7dRdRR1J9ya1MP8JdVfVLpWmYqjKnQI5Nmu0LC7oVIpz7/ZFw1qO2VXUEWkOuvNAUTGSZ9fGodgypadZ+fRqHo4Lcwfi0H/6qJY9/eV+3CssMTmPVrPVzwgPal1HNTJxgI8UZ9/tr1o34ov9uF9ker5ERETugFen5JR+n9hN9ffBy/ew7Wy21vrKLQGa89jZgtTTAyM6qFtJ/juiHSKCjM+5SOZ5vH09rdeVBzgxRF5apjXI0Gcj20HKb0Kz1a3pi21Te2otm5ioOxqpKTw9JAirIcPQ9urpWx56N9WkOQrPZxdAUaZO91GlAWx8pJ7oozEQUqe5W7TyzbxbhNiZm6pVbiIiIlfAyyByWl//W91t8LmVaci8W4RPtp1H9JvrMXK5utVw37RednnGct7Q1jj+dl+cnzNAlDkPSZu3lwcuzFVPRzJ59THcqtQFVJ9fj6gDx97Na6N3C+sNMuTqYsL80bpuRWt9fINgdG5k2fOxi55qh1aRgarXn26/YDR9frECfRbtUL3e8mo3eHvp/qwtfzYeDUIr5mWVl5bjy13qaSn+87v4c1oSERE5EwaE5LQSmmp3G+zx4TZ8uCldK827j8WiTpCvrYsGoOL5qCA/KbuJWpGnhwRjuqvntOs0d4vRqSh2ZtzWGuRH35yKZJ41L3XB2Xf74+dxnUXJb9Hwdqq/P9yUjhPXcg2mHfHFftXfPeuUo36In8G0X4xSP6s4d8NZnLyei3kbz2Bnxm2D2xAREbkDXqmSUxv6UD2D6x5vXxejHm5gw9KQPcwY1BLxDdSTnr+z7pTBtOP/mRIEAFa9+HC1pzcgNW8vD9Xoo2Jo9s/UE0pDlu7W23V006ksnLqhntvzkfrG56RsFhGAtePV+Q5eshuf77hoZAsiIiL3wICQnJrU0wMXNboNAkBs3UBkvDdA51kicl2a5/q7/ZlIz8rXWi8IAoZ/vg8F8lIAQM9mtfCwi0z/4YriGgSjhkawHjNtA/aeV4/We7+oBGO/Pax6nTq5K0xpiG9fPxgBem4CfGDCfKZERESuigEhOT0PDwle7dNU9XrVi531PkdErisqxA+7Xk9Uve63eKfWdCTpt/Jx8NI91esVozvYtHxkvhOz+mq9Hrn8gGp6kSVbz6uWJyc1RXSo6SMI/10p39i6gRjYuo4FJSUiInJuvGomlzCxV2NsTu6B9Pf6a7UskPuICvFDWA2Z6vWgj3ehrLyiZbD/4l2q5X9M7GqXQYbIPBKJRGfezuSfjuG7/Vfw1e5LqmWTeps3sqlEItF69njJ0w8ZSU1EROT6eOVMLsHTQ4LGtQPsXQyys/3TeqHxjI0AgIxbBRj++T4cvpKjWj8xsTHa1Ktpp9KRuZ7uUB/NIwLxwV9nceDSPey/WPFPad+0XtXKd3h8FNrUq4laATKE1ZAhLy+v6o2IiIhcFFsIichleHl64IcxnVSvNYPBGjIvTO3XzB7Fomry8JAgrkGw1hQzSq/1a1btEYQlEgla1AnUalEmIiJyVwwIicildGkUhnlDW2stmze0NY69nWSnEpGlfKSeeKZTfdXr1nWDML5nIzuWiIiIyHWwyygRuZxhcfVU8w32bl4bT3esX8UW5OjeGtyyYpRQHy/0bRnO50CJiIhEwoCQiFyOl6cHtk3tifSsfCQ2r2Xv4pAIfKSeeDLO8LyjREREVD1u12X08uXLeP755xETEwNfX180atQIM2fORElJiVa6zMxMDBkyBP7+/ggLC8OkSZN00pw4cQIJCQnw9fVF3bp18c477+idQJmIbC8mzB/9YyMg8/K0d1GIiIiIHJbbtRCePXsW5eXl+Pzzz9G4cWOcPHkSY8aMQWFhIRYsWAAAKCsrw6BBg1CrVi3s3r0bd+/exbPPPgtBELBkyRIAQF5eHpKSkpCYmIi0tDRkZGRg9OjR8Pf3x5QpU+xZRSIiIiIiIpO4XUDYv39/9O/fX/W6YcOGSE9Px7Jly1QBYUpKCk6fPo2rV68iMjISALBw4UKMHj0ac+bMQWBgIL7//nsUFxdj5cqVkMlkiI2NRUZGBhYtWoTk5GQ+30JERERERA7P7bqM6pObm4uQkBDV63379iE2NlYVDAJAv379IJfLcfjwYVWahIQEyGQyrTQ3btzA5cuXbVZ2IiIiIiKi6nK7FsLKLly4gCVLlmDhwoWqZVlZWQgPD9dKFxwcDG9vb2RlZanSREdHa6VRbpOVlYWYmBidfcnlcsjlctVr5WTICoUCCoVClPo4GmW9WD/n5ep1dPX6Aa5fR0vr56rHhYiIyBQuExDOmjULs2fPNpomLS0N8fHxqtc3btxA//79MWzYMLzwwgtaafV1+RQEQWt55TTKAWUMdRedN2+e3jJu27YNfn5+Rsvu7FJTU+1dBKty9foBrl9HV68f4Pp1rG79ioqKRC4JERGR83CZgHDixIkYMWKE0TSaLXo3btxAYmIiOnfujC+++EIrXUREBA4cOKC1LCcnBwqFQtUKGBERoWotVMrOzgYAndZFpWnTpiE5OVn1Oi8vD1FRUUhMTERoaKjxCjophUKB1NRUJCUlQSqV2rs4onP1+gGuX0dXrx/g+nW0tH7K3hpERETuyGUCwrCwMISFhZmU9vr160hMTERcXBxWrFgBDw/tRyk7d+6MOXPm4ObNm6hTpw6AioFmZDIZ4uLiVGmmT5+OkpISeHt7q9JERkbqdCVVkslkWs8cKkmlUpe8SNPk6nV09foBrl9HV68f4Pp1rG79XPmYEBERVcXtBpW5ceMGevbsiaioKCxYsAC3b99GVlaWVmtf37590bJlS4waNQpHjx7Fli1bMHXqVIwZMwaBgYEAgJEjR0Imk2H06NE4efIk1q5di7lz53KEUSIiIiIichou00JoqpSUFJw/fx7nz59HvXr1tNYpnwH09PTE+vXrMX78eHTt2hW+vr4YOXKkaloKAAgKCkJqaiomTJiA+Ph4BAcHIzk5WatLKBERERERkSNzu4Bw9OjRGD16dJXp6tevj3Xr1hlN07p1a+zcuVOkkhEREREREdmW23UZJSIiIiIiogoMCImIiIiIiNyUaAHhxo0bxcqKiIjIZfD3kYiIHJloAeGgQYPQuXNnpKSkGEzz4MEDsXZHRETkFBzx9/HTTz9FTEwMfHx8EBcXh127dtl0/0RE5DhECwhTU1Ph6+uLAQMGoGvXrti8ebNOmrlz5yI4OFisXRIRETk8R/t9XL16NSZPnowZM2bg6NGj6N69OwYMGIDMzEyb7J+IiByLaKOM9u7dG6Ghofjggw+watUq9OvXD126dMGgQYPg5eWF7OxsLF++XDWJOxERkTtwtN/HRYsW4fnnn8cLL7wAAFi8eDE2bdqEZcuWYd68eTYpAxEROQ7RAsLly5dj3LhxKC8vB1Axp9+ePXuwZ88e1UTtvr6++Oijj8TaJRERkcNzpN/HkpISHD58GG+++abW8r59+2Lv3r16t5HL5ZDL5arXeXl5Vi0jERHZlmhdRufPn49atWohNTUVOTk5KCwsREFBAVavXo3o6GgIgoBp06bh2WefFWuXREREDiE9PR0eHh7w8tK9z+pIv4937txBWVkZwsPDtZaHh4cjKytL7zbz5s1DUFCQ6l9UVJTVy0lERLYjWkB47do1PPPMM+jduzeCgoLg6+sLPz8/DBs2DKdPn8bYsWPx9ttv45NPPhFrl0RERA7Bz88PPXr0QPfu3XXWOeLvo7JlUkkQBJ1lStOmTUNubq7q39WrV21RRCIishHRAsIGDRrg1q1betfJZDIsW7YMCQkJ+OCDD8TaJRERkUOIiorC9u3bsW3bNp11jvT7GBYWBk9PT53WwOzsbJ1WQ80yBgYGav0jIiLXIVpAOGLECPz0009Yv369wTRt2rQx+KNIRETkihzp99Hb2xtxcXFITU3VWp6amoouXbpYff9EROR4RAsIX3vtNcTExOCRRx7BM888gwMHDmitv3r1KtauXYvQ0FCxdklEROTwHO33MTk5GcuXL8f//vc/nDlzBq+++ioyMzMxbtw4m+yfiIgci2ijjPr7+2PLli0YOnQofvzxR6xatQrBwcFo1qwZPD09ceTIETx48AATJkwQa5dEREQOz9F+H5966incvXsX77zzDm7evInY2Fhs2LABDRo0sMn+iYjIsYgWEAJA3bp1sX//fvz+++/44YcfsGvXLuzbtw8A4OPjg3//+9+YP3++mLskIiJyeI72+zh+/HiMHz/eZvsjIiLHJWpACFSMXPbYY4/hscceA1AxX1FRURFq1aoFT09PsXdHRETkFPj7SEREjkj0gLAyjkhGRESki7+PRETkCEQbVIaIiIiIiIicCwNCIiIiIiIiN8WAkIiIiIiIyE0xICQiIiIiInJTDAiJiIiIiIjcFANCIiIiIiIiN+XWAaFcLke7du0gkUhw7NgxrXWZmZkYMmQI/P39ERYWhkmTJqGkpEQrzYkTJ5CQkABfX1/UrVsX77zzDgRBsGENiIiIiIiIqs/q8xA6stdffx2RkZE4fvy41vKysjIMGjQItWrVwu7du3H37l08++yzEAQBS5YsAVAxoXBSUhISExORlpaGjIwMjB49Gv7+/pgyZYo9qkNERERERGQWtw0IN27ciJSUFKxZswYbN27UWpeSkoLTp0/j6tWriIyMBAAsXLgQo0ePxpw5cxAYGIjvv/8excXFWLlyJWQyGWJjY5GRkYFFixYhOTkZEonEHtUiIiIiIiIymVsGhLdu3cKYMWPw22+/wc/PT2f9vn37EBsbqwoGAaBfv36Qy+U4fPgwEhMTsW/fPiQkJEAmk2mlmTZtGi5fvoyYmBidfOVyOeRyuep1Xl4eAEChUEChUIhZRYehrBfr57xcvY6uXj/A9etoaf1c9bgQERGZwu0CQkEQMHr0aIwbNw7x8fG4fPmyTpqsrCyEh4drLQsODoa3tzeysrJUaaKjo7XSKLfJysrSGxDOmzcPs2fP1lm+bds2vYGpK0lNTbV3EazK1esHuH4dXb1+gOvXsbr1KyoqErkkREREzsNlAsJZs2bpDbY0paWlYe/evcjLy8O0adOMptXX5VMQBK3lldMoB5Qx1F102rRpSE5OVr3Oy8tDVFQUEhMTERoaarQ8zkqhUCA1NRVJSUmQSqX2Lo7oXL1+gOvX0dXrB7h+HS2tn7K3BhERkTtymYBw4sSJGDFihNE00dHReO+997B//36trp4AEB8fj2eeeQZff/01IiIicODAAa31OTk5UCgUqlbAiIgIVWuhUnZ2NgDotC4qyWQynf0CgFQqdcmLNE2uXkdXrx/g+nV09foBrl/H6tbPlY8JERFRVVwmIAwLC0NYWFiV6T7++GO89957qtc3btxAv379sHr1anTq1AkA0LlzZ8yZMwc3b95EnTp1AFQMNCOTyRAXF6dKM336dJSUlMDb21uVJjIyUqcrKRERERERkSNyu3kI69evj9jYWNW/pk2bAgAaNWqEevXqAQD69u2Lli1bYtSoUTh69Ci2bNmCqVOnYsyYMQgMDAQAjBw5EjKZDKNHj8bJkyexdu1azJ07lyOMEhERERGR03C7gNAUnp6eWL9+PXx8fNC1a1cMHz4cjz32GBYsWKBKExQUhNTUVFy7dg3x8fEYP348kpOTtZ4RJCIiIiIicmQu02W0uqKjo1WDwWiqX78+1q1bZ3Tb1q1bY+fOndYqGhERERERkVWxhZCIiIiIiMhNMSAkIiIiIiJyUwwIiYiIiIiI3BQDQiIiIiIiIjfFgJCIiIiIiMhNMSAkIiIiIiJyUwwIiYiIiIiI3BQDQiIiIiIiIjfFgJCIiIiIiMhNMSAkIiIiIiJyUwwIiYiIiIiI3BQDQiIiIiIiIjfFgJCIiIiIiMhNMSAkIiIiIiJyUwwIiYiIiIjI7XSKCbF3ERwCA0IiIiIiInI7PZvVtncRHAIDQiIiIiIiIjfFgJCIiIiIiMhNMSAkIiIiIiK3I5HYuwSOgQEhERERERGRm2JASEREREREbkcQ7F0Cx+C2AeH69evRqVMn+Pr6IiwsDEOHDtVan5mZiSFDhsDf3x9hYWGYNGkSSkpKtNKcOHECCQkJ8PX1Rd26dfHOO+9A4DuLiIiIiIichJe9C2APa9aswZgxYzB37lz06tULgiDgxIkTqvVlZWUYNGgQatWqhd27d+Pu3bt49tlnIQgClixZAgDIy8tDUlISEhMTkZaWhoyMDIwePRr+/v6YMmWKvapGRERERERkMrcLCEtLS/HKK6/gww8/xPPPP69a3qxZM9XfKSkpOH36NK5evYrIyEgAwMKFCzF69GjMmTMHgYGB+P7771FcXIyVK1dCJpMhNjYWGRkZWLRoEZKTkyHhU6pEREREROTg3K7L6JEjR3D9+nV4eHigffv2qFOnDgYMGIBTp06p0uzbtw+xsbGqYBAA+vXrB7lcjsOHD6vSJCQkQCaTaaW5ceMGLl++bLP6EBERERGR+dh+U8HtWggvXrwIAJg1axYWLVqE6OhoLFy4EAkJCcjIyEBISAiysrIQHh6utV1wcDC8vb2RlZUFAMjKykJ0dLRWGuU2WVlZiImJ0dm3XC6HXC5Xvc7LywMAKBQKKBQK0eroSJT1Yv2cl6vX0dXrB7h+HS2tn6seFyIiMo7xYAWXCQhnzZqF2bNnG02TlpaG8vJyAMCMGTPwxBNPAABWrFiBevXq4eeff8bYsWMBQG+XT0EQtJZXTqMcUMZQd9F58+bpLeO2bdvg5+dntOzOLjU11d5FsCpXrx/g+nV09foBrl/H6tavqKhI5JIQEZEzYAthBZcJCCdOnIgRI0YYTRMdHY38/HwAQMuWLVXLZTIZGjZsiMzMTABAREQEDhw4oLVtTk4OFAqFqhUwIiJC1VqolJ2dDQA6rYtK06ZNQ3Jysup1Xl4eoqKikJiYiNDQUFOq6XQUCgVSU1ORlJQEqVRq7+KIztXrB7h+HV29foDr19HS+il7axAREbkjlwkIw8LCEBYWVmW6uLg4yGQypKeno1u3bgAqLiYuX76MBg0aAAA6d+6MOXPm4ObNm6hTpw6AioFmZDIZ4uLiVGmmT5+OkpISeHt7q9JERkbqdCVVkslkWs8cKkmlUpe8SNPk6nV09foBrl9HV68f4Pp1rG79XPmYEBERVcXtBpUJDAzEuHHjMHPmTKSkpCA9PR0vvfQSAGDYsGEAgL59+6Jly5YYNWoUjh49ii1btmDq1KkYM2YMAgMDAQAjR46ETCbD6NGjcfLkSaxduxZz587lCKNEROSQLl++jOeffx4xMTHw9fVFo0aNMHPmTJ05domIyL24TAuhOT788EN4eXlh1KhRePDgATp16oStW7ciODgYAODp6Yn169dj/Pjx6Nq1K3x9fTFy5EgsWLBAlUdQUBBSU1MxYcIExMfHIzg4GMnJyVpdQomIiBzF2bNnUV5ejs8//xyNGzfGyZMnMWbMGBQWFmr9vhERuYsujaruXegO3DIglEqlWLBggdEfwPr162PdunVG82ndujV27twpdvGIiIhE179/f/Tv31/1umHDhkhPT8eyZcsYEBKRW4qtG4RaATLczpdXndiFuWVASEREREBubi5CQkKMpjE0ZRIRkTOLDPKBQqFARCADQrd7hpCIiIiACxcuYMmSJRg3bpzRdPPmzUNQUJDqX1RUlI1KSERkPQ8ePMCGDRtw/36uvYtidwwIiYiInNisWbMgkUiM/jt06JDWNjdu3ED//v0xbNgwvPDCC0bznzZtGnJzc1X/rl69as3qEBHZhK+vLwYOHIiaNYPsXRS7Y5dRIiIiJ2bqPLxKN27cQGJiIjp37owvvviiyvwNTZlEROTMJBIJpFIpZwcAA0IiIiKnZuo8vABw/fp1JCYmIi4uDitWrICHBzsKEZF7EwR7l8D+GBASERG5gRs3bqBnz56oX78+FixYgNu3b6vWRURE2LFkRERkTwwIiYiI3EBKSgrOnz+P8+fPo169elrrBN4iJyJyW+wrQkRE5AZGjx4NQRD0/iMiIvfFgJCIiIiIiMhNMSAkIiIiIiJyUwwIiYiIiIhIS8s6gfYuglWxu7waA0IiIiIiIiIrWzu+i72LoBcDQiIiIiJyKg3D/O1dBCKzta8fbO8i6MWAkIiIiIicyuC2kfYuApHLYEBIRERERETkphgQEhEREZFTkVi4/fD4eqKUg5yfAA4uw4CQiIiIiNzKB0+2tXcRbO7fXWPsXQRyUAwIiYiIiMjtvN6/mb2LYFNvDW6B1/q5V53JNAwIiYiIyG7G9mho7yKQmxrfszECfLzsXQybkUgkCPX3Vr1ObFbLaHp2pHQfDAiJiIjILmr6SfFou7r2LkaVhrZ3/DJS9Vj6LKItJTQ1HsCZa8VzHUXNj0zz0VNt0blhKFa90MHeRVFxn9siRERE5HCcYUAHTw9nChvIVcU3CMaOjNv2LobLUH7zCDb+Cnq8fT083r4eFAqFbXdsBFsIiYiIyG5sfTFG5KwkvC9hFfwOctOAMCMjA48++ijCwsIQGBiIrl27Ytu2bVppMjMzMWTIEPj7+yMsLAyTJk1CSUmJVpoTJ04gISEBvr6+qFu3Lt555x0IfFcRERERkcgkjAjJStwyIBw0aBBKS0uxdetWHD58GO3atcPgwYORlZUFACgrK8OgQYNQWFiI3bt3Y9WqVVizZg2mTJmiyiMvLw9JSUmIjIxEWloalixZggULFmDRokX2qhYRERFZWf0QP3sXgcABT2ztiYdcd95GvpfcMCC8c+cOzp8/jzfffBNt2rRBkyZN8P7776OoqAinTp0CAKSkpOD06dP47rvv0L59e/Tp0wcLFy7El19+iby8PADA999/j+LiYqxcuRKxsbEYOnQopk+fjkWLFrGVkIiI6B8LhrXFpF6NDa53tp/MpzpE2bsIBIj2xjGWS8eYEFH24Uiqe9TCAryrTkROy+0GlQkNDUWLFi3wzTff4KGHHoJMJsPnn3+O8PBwxMXFAQD27duH2NhYREZGqrbr168f5HI5Dh8+jMTEROzbtw8JCQmQyWRaaaZNm4bLly8jJkZ38k+5XA65XK56rQwuFQqFQz1YKiZlvVg/5+XqdXT1+gGuX0dL6+eqx8VRPBlXDz8fumpwfbkTRISaJbR2r70hbSPx5/Eb1t2JK2D3SZuSiDge65sDmuP9jWdFy89SbMhxw4BQIpEgNTUVjz76KAICAuDh4YHw8HD89ddfqFmzJgAgKysL4eHhWtsFBwfD29tb1a00KysL0dHRWmmU22RlZekNCOfNm4fZs2frLN+2bRv8/Fy7C0pqaqq9i2BVrl4/wPXr6Or1A1y/jtWtX1FRkcglIaq+j0e00xsQ9mkRjs1nbtmhRNqahtdAxq0CexdDPE4UC9gzBhZz3+MSGjlYQGjvEpinXVRNHLt6X9Q8XSYgnDVrlt5gS1NaWhri4uIwfvx41K5dG7t27YKvry+WL1+OwYMHIy0tDXXq1AGg/8FdQRC0lldOo7zDYOih32nTpiE5OVn1Oi8vD1FRUUhMTERoaKhpFXUyCoUCqampSEpKglQqtXdxROfq9QNcv46uXj/A9etoaf2UvTXIPky5FrPGBZCjMnQNEeyn/70dVkOGOwVyveusoWez2i4VEDpZLGA3bI+1TJdGoXikbaTOcg+JgHLBvKO7dnwXxEzbIFbRALhQQDhx4kSMGDHCaJro6Ghs3boV69atQ05ODgIDAwEAn376KVJTU/H111/jzTffREREBA4cOKC1bU5ODhQKhaoVMCIiQtVaqJSdnQ0AOq2LSjKZTKuLqZJUKnXJizRNrl5HV68f4Pp1dPX6Aa5fx+rWz5WPiTNgdy3L/DahCx77ZA/uFJRUnVgEply6fvhkG7z2y99WL4sYnOn9J0a3TXOqq3lswmroXr+6ClvMhfrDmIf1Lp8TX4ZpaeaFY9YYbdZlBpUJCwtD8+bNjf7z8fFRdQ3y8NCuuoeHB8rLywEAnTt3xsmTJ3Hz5k3V+pSUFMhkMtVzhp07d8bOnTu1pqJISUlBZGSkTldSIiIi0q9VZJC9i2CWujV97bJfQ5es9YL9MC6hke0KYsK16LD4KPRvFWHdcthgUJmZQ1rC28u+l8pPxUehTpAPmkcEwMvD9u10n4x8CE/G1cMzD9e3+b5txZ73BPy8AD9vT/sV4B8uExCaqnPnzggODsazzz6L48ePIyMjA6+99houXbqEQYMGAQD69u2Lli1bYtSoUTh69Ci2bNmCqVOnYsyYMapWxZEjR0Imk2H06NE4efIk1q5di7lz5yI5OZnzxBAREZnI28sDDzd0ntEcA32k2PFaT3sXw240W6kahBoe/8AWrS7W1ioyCKdn97P5fhuG+av+bhtVE7vf6IUNk7rb5RnCQW3qYMGwtpB5eeLb5ztadV9Nw2tYNX9DOjdyzce2zOF2AWFYWBj++usvFBQUoFevXoiPj8fu3bvx+++/o23btgAAT09PrF+/Hj4+PujatSuGDx+Oxx57DAsWLFDlExQUhNTUVFy7dg3x8fEYP348kpOTtZ4RJCIiIsOUd+Y9zWj5MDaFha00CPWvOpEbcKLelgZVVQcvT9tfKterNNelp4cEHh4SUY63JYF69ya1LC+AEf1j61icR6vIQLO3eXNAc4v3awlH6LbsMs8QmiM+Ph6bNm0ymqZ+/fpYt26d0TStW7fGzp07xSwaERGRW0tsVgvb0m8jtm4gTl633YA/dWv64vr9Bzbbn5isdT35r4fr47v9mdXaVuwyeXt6YOvUBHSbv03UfBvXroET13NFzdNSjhAg2IMYDaD9WkXg1A3TvjeUh9nPWzccqh/ih8x77jMCtdu1EBIREZFtmXN5u/ip9pg5pCVWjFZ3T/PWaKWJDrNO69zQh+paJd/q6BAdjPohfvj46faqZSM7VTzD9XDDEMhs8Fxb49o1UCdI/bzksbeTcGJWX9QJ8hEl/7gGwQCAaCPdTm1h2b8ewsDW6ucd3+hv39aiykzpJvrjmIfRsJY/fjQwcIkjmpjYGI1q+eP9oa1Vy2RSy9/XYgSVbw1uKUIuzsUtWwiJiIjIhsyICIP8pHiua8VcvvOGtsbSrecxd2hr5BSV4O9ruejTUv9I3rZSN9j6g8r8NLYzygWgoLgUAFA7QIaH6gcjbUYfhPh7Y+rPx7H26HU0jwiwWhk2Te6BHw6qWwdr+nkDAJ7uWB/nsvPRo0ktfLL9QrVbUZb96yF8t+8KRnSsjy7vbzVpGx+pevANscZrqBfsh0+fiUNOYQk8PCS4eq8I8/8SJWub6dwoFFun9DQprZgTzFtiar9mmNqvGQAgp0iBB4oy0W42WKpdVE38IrNdiOTp4QGg3KxtfpvQFav3pON9kcrAFkIiIiJySE93rI89b/ZC49o10CE6BM93i0GAzAtJLcPRo6m4zzMZ66UnCMDP4zpjydPt0TS8Iggb39N6I3tKJBJ4ekgQ5CfF37P6YvcbvQAAtQJk8PSQ4L3HYvH+0Nb47oVOAIAn4+ohyFcqaoDo6SHB8Ph66NcqHHMfV7fieHt54L3HWqNvqwgsfqodOkQHI8TfW2f7Sb2bGM2/doAPkvs2Q2RNX8x5PNak0VvDasjwWr9mmDGwhSitSZqC/b0R5CtFbN0gbJjUHUfeSlKtaxUZiFA9dbS1R9pVzGNX08CclEDFTRRjra6PtotE/RA/PN2xeqOGzhxiWeuZvqDvpZ6NkJzUFANi66BlnUD0bGbdZxVN8fGIdmgWHoAAH+sHhl+Oam/2tB7tompi2sAWopWBASERERFZVVUDWZjzyJREIsGX/xePb/5d9YiHHz7ZBguHtTU9cyM6RIdgiMbE0q/3b46z7/YXJW9jAn2kOlMf+Mu8MKJjfdVFZLC/Nw7/pw8WDhenrkoyL098Pipe1V21spgwf/w8rgt66gnOY+sG4fQ7/TDDhIvWZzo1wJ43e5lUpgmJjTGmR0OT0lZXy8hArSD3z4ndsH96b6vu0xThgT44805/fP/PjQB9nu5YH9tfSzS43l/mhR2v9cQ8ja6a5niuawzOvtsfQb7mz9+6+Kl2+H1iV4PrfaSe2PBKd8wc0qpaZRNTk/AAbHq1h/WnTwEQ3yAYaTN6o0+L2lbflyHsMkpEREQuaVh8FPKLFcDPVaetzuiLml0Y7c0eo2EqGTpyft5eVpsqwZbjrnh4SOBhp66Wlffq6+2p1e2zTT3zR9W0tLutj9SzWgPfPNbetOd03XFQHYlEnFFkq4sthEREREQuwF4XlMYu4B3x2v6DJ9rYuwgW0bx58d1zHexUBhKbPY8pA0IiIiKyq3o2GKilKo4YuJD4pg9sjuEdouxdDNHYYsRZvRz08yJGi7S1WrWrYs+WUXYZJSIiIquq6jpn2oAWKCktx7B48S/UxRqNkqrHkonQrZGPs4mtG2R0vd2CFyfN21y2LIs9682AkIiIiOwq2N8bi0e0rzohkZvYNrUnruc8qDIgNNXa8V1EyYdcE7uMEhERkVXZ8863qQ0o9izj/CcqRnzUnN6hOuz2DKGxdY7U3ONEYsL80a1JmN51msfU1Bbw9vWDxSiWRhkc88RKzRhcyVCrcy2NKSBsWU0OKkNEREQuy9CFjiNdVPp42W/E0Kc61Mfpd/oZnN7BVI7YrdJaJXKk9447smqXUQsy79nM9KkbNEdrXfFcB3h5SPCfQS0QFWJ4Hkdr4qAyRERERHbkLzMcENoi0PLztvwpHvuNMuoe+yQ1Rz3+Xp4SbJ2SYPZ2ic1q4/zcgXihu3XnuDTGnjc5GBASERGRyzJn0I3ezfW3LkjsNAeduex1Ockuo7ZVJ8jHrPSv9mkqehmse5PEsrwb1qqh9XqoifMf6i+Je7yBGRASERERkVNxj8t0/UJryPDzix3xRttSk9J7W2FqCmsG+mLn/WpSU/h5269LuKn4DCERERE5vaSW4XqX2/Muuzmte28OaG7FklifvbqcGZ2Y3sFCN1dpsWwXVRORJj7q5mjnoCpilPZfD6ufxzXUS8Ck42LLQWXseJ4YEBIREZEo/juiHYY+ZHr3LEe6TJVIJGgSHmDvYrgcVwnASJujDiqj3HZS7ybiFKYKXh7idSdnCyERERE5PT9vL/RpodtKaOhCxxZP5pn6DKErjFrp/DUwnQucLpuxyrGyZpdRETLX7Blg6tQc7owBIREREVmVs1+7O0uXO3cKkpzlnLgqax5/y97HFRs7YwzIFkIiIiJyKg1CfO1dBKrEbs8Q2mGf5YwHTWaN94Wz3XzQFx+a8nxxVdUUM/As57QTRERE5EwMdcNytgtFV2K3IMnIfq0WpFYzX3d8e1qjy6SjP0Mo0VqmP0NTWjkja5o3xYclODE9ERERORURx1IgkdizhcEQawWpjldT92LN95oleSu3FCsInpDYWJR8TMIuo+KZM2cOunTpAj8/P9SsWVNvmszMTAwZMgT+/v4ICwvDpEmTUFJSopXmxIkTSEhIgK+vL+rWrYt33nlH5w7Djh07EBcXBx8fHzRs2BCfffaZtapFRETkUKSeZlxCGLjAs8VgD2LswmkmpjfzgnJEh3oWTdqt2q+RK1kHayB0kjPp+Gx17yHI10uUfKr7XePnbXz/Yn43sMuoiEpKSjBs2DC89NJLeteXlZVh0KBBKCwsxO7du7Fq1SqsWbMGU6ZMUaXJy8tDUlISIiMjkZaWhiVLlmDBggVYtGiRKs2lS5cwcOBAdO/eHUePHsX06dMxadIkrFmzxup1JCIisjcvT/0XQq3rBpmch1jdCaf2bSpKPs6uquM5okOU1uvm4TXgKUJTb4NQf4PrxLrIrZwNB5VxD8l9zJs+Qn+XUfHKY032LKY4YbcDmT17NgBg5cqVetenpKTg9OnTuHr1KiIjIwEACxcuxOjRozFnzhwEBgbi+++/R3FxMVauXAmZTIbY2FhkZGRg0aJFSE5OhkQiwWeffYb69etj8eLFAIAWLVrg0KFDWLBgAZ544glbVJWIiKha5HI5OnXqhOPHj+Po0aNo166d2Xl4eXgAKNNZXj9Ud7Zsa1/ohAcafs7HWVr3xGDsOL/zaCtcvVdklf1OTGyMZdsvmF0mSzjLRb4j+FenBvYuglnEOLfOOMooWwhtaN++fYiNjVUFgwDQr18/yOVyHD58WJUmISEBMplMK82NGzdw+fJlVZq+fftq5d2vXz8cOnQICoXC+hUhIiKqptdff13rd7A6jLUsRVcKCmvI9N9/dpb5wZylNarMyAN7EolE53iLdfz9DZxfQLxW4MpFdY4zYn81/aQI8pPauxhmscbnTcxvGq1u1iJmbM+bHC7XQliVrKwshIdrT5obHBwMb29vZGVlqdJER0drpVFuk5WVhZiYGL35hIeHo7S0FHfu3EGdOnV09i2XyyGXy1Wv8/LyAAAKhcJlg0hlvVg/5+XqdXT1+gGuX0dL6+eqx8WQjRs3IiUlBWvWrMHGjRurnU+/lrVw7NZ1k9IOaRuJ5J+OV3tfVRGj26MrMNbCoO8QeUgkVm9JMecid1LvJvh4yzmT0la3NcVJ7kGIpkGIbou9oxOlhdABegZEhfji6r0HJqe317QxgJMEhLNmzVJ1BTUkLS0N8fHxJuWn746YIAhayyunUZ4kc9Nomjdvnt56bNu2DX5+zveBNUdqaqq9i2BVrl4/wPXr6Or1A1y/jtWtX1GRdbrROaJbt25hzJgx+O2330z+3TF0M/OR1uGYv007INQXXCuXRQTKkJUnr7RWsCggf/Khuki/lY9O0TX1rlcoFCgpLTcpr/LycoNlEYysE4NYeZeWlhpcV15WjrIy7S6+5eVlKDfQqmhJmTS3rbxPY/m/3DPGaECouc3AVrXx+Y6LqBfsi2s5pl90l5aVOfxNIEGo+nNR1Y2w1WM6Yvnuy5g2oGn162tCOcxhal5Na/miYZgfvBQFBt8/xvahUChQWqrel6JUob/NUaje+1wQTPtOCfHzVgWExr4blf+bepPDGjd5nSIgnDhxIkaMGGE0TeUWPUMiIiJw4MABrWU5OTlQKBSqFr+IiAhVa6FSdnY2AFSZxsvLC6GhoXr3PW3aNCQnJ6te5+XlISoqComJiQa3cXYKhQKpqalISkqCVOpcXRZM4er1A1y/jq5eP8D162hp/ZQBjqsTBAGjR4/GuHHjEB8fr3oEoiqGbmbu3LEdQKDWsg0bNgAACgs9oexLpVxWXKxepqQoUajWV0d3GdC9PrB96xbou6TZsGEDysqhd11lp0+fxob7p/SmvXb9OjZsuKp3O0+JJ8oEy1ojLDkGmi7kAYbqevLkCdx+IIHm00IZZ0/jaq72suqXSb1fzW1vZ0kAeJqRv/7yl5WX62wz+yGghjQfRaUVLaAzDlV9ns+eOYsNeWeqTGdO2cR25/Ztk4+/sRthg2sCJ/bdwAmjORiuU15+vsFy1PXzxPUi89735rynXm5c8W2x58wZ6Hv/GLJr1y5c8AeKSgFl3bZv246yUt3vn+LiYhPLpH2MCm9fh/IzU15WppOv0v3791H5e1Af5TkMLfeAKU/zKfMS82amUwSEYWFhCAsLEyWvzp07Y86cObh586aqW2dKSgpkMhni4uJUaaZPn46SkhJ4e3ur0kRGRqoCz86dO+PPP//UyjslJQXx8fEGL0hkMpnWc4lKUqnUJS/SNLl6HV29foDr19HV6we4fh2rWz9nPyam9qLZu3cv8vLyMG3aNLPyN3YzE8cPa6UdOHAgAOCjjN24XVyktWzeqR1AiXYLodRbioED+5lVHn3uFZZgxqHtOsuV+y6JvI43154ymkfLli0xsEsDvLIvRWddvbp1MXBga73bNYkrwMurj+PC7ULzC16pnJYSBAF3153F9wd1g9feXeJx4NI94OYV1bKEju0hP3sXB27rdv01t0yax01z26Sycvj+lYFv92ealH/LToXIuFWACT9qdzH2kHhU+V6ZcUj33FXWokULDOwWXWU6fST1szBp9d/V2tYcYbVqYeDAOKNpxLrRF9DkDr4/eBVbzt7WWRcYEICBA7vo3a5dlwdYvPUC1h69YfK+zHlPKevXokUL4FKGwXQDWoWjZZ0ALNx8HgDQrXt3NI8IQH6xAtPStgEAEnr2xEdn9gNl2i3oPj4+GDgwocqyVP5O+PDffVBj3Vn0axWOl1cdBwz0QqhZsyauFOQC0F/3yucwsaQMP6Rdxft/Ga6vZl5i3sx0ioDQHJmZmbh37x4yMzNRVlaGY8eOAQAaN26MGjVqoG/fvmjZsiVGjRqFDz/8EPfu3cPUqVMxZswYBAZW3OkcOXIkZs+ejdGjR2P69Ok4d+4c5s6di7ffflvVHXTcuHFYunQpkpOTMWbMGOzbtw9fffUVfvzxR3tVnYiI3JCpvWjee+897N+/X+fGZHx8PJ555hl8/fXXerc1djPT0DLNRyeUyzz0Pk4hESUg95bq72qlzHtEp+gqA0IPDw+DZZEYWdeyXjDefSwWI788oHe9KcS8KTFnaBusOnRNa4CZl3s1RlKrOki7cl+1rGOtciQ0C8eWjBzRy6S5rVQKvPtYa52A0FD+TSJqoklETdzMK8Evh6/hbFa+KGVS8vQ0fC6r8kj7KCzZdhHnsgssLocxEonpnwtLb/T1alkHvVrWQfSb6/UVxGDeDWpJMfvRWLMCwuqU08NT3Tq4flI3DPp4t9b6ZaPiUVJargoIvby8Ko6JRk9TqZeB/UpMK1OIvzfuFVbMVz5tQHME+fti0VPtK1YKhp+N1vc9qI/yHEqlUozr2aTKgFCZl5jfGy4XEL799ttaP2rt21ecsG3btqFnz57w9PTE+vXrMX78eHTt2hW+vr4YOXIkFixYoNomKCgIqampmDBhAuLj4xEcHIzk5GStO6QxMTHYsGEDXn31VXzyySeIjIzExx9/zCkniIjIpkztRfPxxx/jvffeU72+ceMG+vXrh9WrV6NTp07WLCIA1x4V0tvTsQZt3zS5B5I+2qEanGNK32Y6aZ5pXA4PD4nNRlD19vIw+XlOAHihe0O80L2h/kDFjvy8DXdffOKhelhz5JoNS2Nfth62pVWk/jlONe81GXoMz5Ky/j6hKzacuIlnHm5gcMRkfZzpO8+xvsFEsHLlSgiCoPOvZ8+eqjT169fHunXrUFRUhLt372LJkiU6dz9bt26NnTt3ori4GDdv3sTMmTN1BotJSEjAkSNHIJfLcenSJYwbN84WVSQiIjJb/fr1ERsbq/rXtGnFZO6NGjVCvXr1qpXnupe76V2u7+LLVgPoPd0xSu/ymUNaWm2f7esHo3sTdVDeKSbEavsyRePaNTAlqaldy1DZrtcT7V0EUSwY1hb1DYzc6W4jmNaQeaFx7Ro23ecPL+jevNLb90DjZFh60yMqxA9jExqZFQw6G5cLCImIiMg2YusGIb5BsElprdkSpXkhHuLvrTfNc11j8Pko7eeyWkUG6k0LVLRomcrTQ4JvnzevlVUzgLQVfUG5rQL18EAfu9RZbE3CA7B9ak97F8MhSCQSbJrcw7o7qfQG7dI4TOdmh77gz16x+biERhbncfztvjrLXundxOJ8jWFASERE5Iaio6MhCALatWtnUT6mtoosfqo9vDwkmP1IK7O3rYrmNaOx+ccqB4vGgj43a+wBAPhKTR/N0ZFNStS+KG9fv6bNyzCmewxe6BaDoe3rYnSXaCQnNUWAjxdGdqpvl/JUJbFZLQBA03DzWvwcYQ5QzRIYusFhq+6bPlLLQ6sgP6nNW5sZEBIREZG49FzMdG4UirPv9sezXaJVy6zROmXsQsqW8z4fmN5bZ9mu1xPRKSYEL/dqbPX9651zWU86Z3rOyVRlVj7Rmof21T7q1irNgHrGoJb4z+CWWPRUO8x6pBUm9W6C42/3xdzHW0OmcSPihzGd0KiWP1a/+LBVy1yVj55qhxkDW+A7M1u69Tn6VhL6tgzHl/9n2vzgxpjyntX3mdd5rtBGb3RzehYYE1Cpe6r+QbnEw4CQiIiIbMLLSoOvmHqtF+CjfZEVEehjMK2l11/hgT6oW9NXa5nU0wOrx3bWO8gLWa5/qwg0rOWPhKbaXVNNbUE2lb5gGwBe6dMELeoEarWCa/L4pzVtzuOt0SDUD/OfaI0ujcKwZUpPdGpo3/moa/p5Y0yPhqht5DNhqmB/b3zxf/FIahkuQsmqpu98iHGeTdu3+u/D/+kDT5ECt1f/6RZbJ8gHmyb3gLUbYhkQEhERkV2IddNbs8VFaiTobFEnEBMSG6Ffq3AktQw3eOFuqYa1KrrdffavOAT5qoeGt/egI16e1iuA8vnAYXHVG6BIDMv+9RA2v5qAdvWC0KmWekTTcQkNrbbPBqHqAWbCasiw8ZXuWq3g+jSqVQM7XkvEUx3qW61ctvTmgOb2LoJREgms1gdc2f23hswLoTW0B6hMalEbAFArQHfanqo83bE+lv9fPLZN7YlmEQFW/+5w3eFyiIiIyOps2Q3TEH+ZFxYMa4uy8nIUlZQZTftaP+MXr75SDzxQlCM2MhCHNObtM8Walzpj7dHrqn20rheEY28n4aXvjqCkrBy1q3FhKKaxPRoh9fQtPNqmDlB0FgBEGznx02cewu5zd9CzWW1R8lPy8pCgtFxAk/CAKtNKJBJIJBX/j2xcjm8m9sPdB2WIrOmLp+KjsOXsLQyLFydg/e+IdiiUl+HRdpE4m5WPJjYebdORjEtohKHt66Lv4p2ij7A7oFU4Zq87iy6N1C2oj7aLxKLUDLSLqmlwu8oB1MwhrTD15+MY26MhPt95UbTyfTyiPT7bcREjO1UE95rPVI5NaIToMH90rMYx8ZF6oo+NWlgBBoRERERkgerEg6O7RGPl3st4o794LQtP/tMy9b/dl6q1vdc/F3K/jnsYc37ajXnD26D7hzvNyiOuQQjiGmhf/EkkEnxWaXRTzf3ZUoi/N7ZO6QmFQoENGyoCwkm9m+BoZg6ejKuHID9vTPrxKKb2NX/KigAfKQa0riN2kfHny93w5a6LWs/qmcrDQ4LIf7rtzn+yDcrLBVW3TUs92q6u6m+xW8is/bxYVXykHihWlONhM7qx1g70waEZfXQGmQnw8UJ+cWm1yxJaQ4az7/bX6gXQINQfx2f21XszQ3mDqnI34Sfj6qFns1oI9ffGlrPZOJ9dgAGxlr9fawf64G2NKW2e6hCFHw5kok/LcEg9PTC4TaTF+wCA+qH+ouRjCANCIiIiqjZBTxNhVZezM4e0xNiEhqgT5FtFSusb37MRtqXfxrD4ivkLG9eugWENy7WeL6w8wIMYZg5phfSs/Xixh3W6MxqafkNfut8nqueT7NW8ttXmW5sxqAUeXboHL/U0fWj+FnUCsWh4O1H2L1YwaC1vDW6Jz3dcsOqcmaZIfTUBKadvGZzT0xB9zwj/OOZhvLvuNN6wIGj20TP6rWZXbE3RYRVdePXF1GH/dOlc/eLD2HXuDvrHRlS7TIYE+Eix1QrTkgxuXQdX7xXhofqmTfNjLgaEREREVG3x0SE4knlfa1lVrYYSicRqwWDdYPPyfb1/c7xuoKXywyfbYM2Ra5hcjdapqkSH+WPvNN2RSMXyZFw9HM3MQdfG5s39Z83Jt5tHBOLU7H5WG1zI2T3fLQb/7hptcNAaW4kK8cPz3WJEySu2bhBWj+0sSl7GHJ/ZFyWl5QjwqQgUZV4e6NMiHAVyBaJCtL8TQmvI8Fj7uvqycVgeHhJMSLTe6MQMCImIiKjaXu3TFCH+3ujTQv28S9dGYbh4uxCBPra/zOjbMhyT+zRB23o1Lc5rWHyUquXQ2Ug9PfDBk23tXQwdDAaNs3cw6KwqtxhKJBIsf9byaS/cBQNCIiIiqjZfb0+MS9DuAjhtYHM0CPVDv1bid8mqikQisUqLHhGRq2JASERERKLy8/bCC92tN9Q/ERGJh+32REREREREbooBIRERERERkZtiQEhEREREROSmGBASERERERG5KQaEREREREREbooBIRERERERkZtiQEhEREREROSmGBASERERERG5KQaEREREREREbooBIRERERERkZvysncB3JkgCACA/Px8SKVSO5fGOhQKBYqKipCXl+eSdXT1+gGuX0dXrx/g+nW0tH55eXkA1N/JZJyr/3a5+ucFcP06unr9ANevo6vXD3Cs3y4GhHZ09+5dAEBMTIydS0JERPn5+QgKCrJ3MRwef7uIiByHGL9dDAjtKCQkBACQmZnpshcheXl5iIqKwtWrVxEYGGjv4ojO1esHuH4dXb1+gOvX0dL6CYKA/Px8REZGWqF0rsfVf7tc/fMCuH4dXb1+gOvX0dXrBzjWbxcDQjvy8Kh4hDMoKMhl3+xKgYGBLl1HV68f4Pp1dPX6Aa5fR0vq54qBjbW4y2+Xq39eANevo6vXD3D9Orp6/QDH+O3ioDJERERERERuigEhERERERGRm2JAaEcymQwzZ86ETCazd1GsxtXr6Or1A1y/jq5eP8D16+jq9XM0rn68Xb1+gOvX0dXrB7h+HV29foBj1VEicJxtIiIiIiIit8QWQiIiIiIiIjfFgJCIiIiIiMhNMSAkIiIiIiJyUwwI7ejTTz9FTEwMfHx8EBcXh127dtm7SCaZNWsWJBKJ1r+IiAjVekEQMGvWLERGRsLX1xc9e/bEqVOntPKQy+V4+eWXERYWBn9/fzzyyCO4du2arasCANi5cyeGDBmCyMhISCQS/Pbbb1rrxapPTk4ORo0ahaCgIAQFBWHUqFG4f/++lWtXoao6jh49WuecPvzww1ppHLWO8+bNQ4cOHRAQEIDatWvjscceQ3p6ulYaZz+HptTRmc/hsmXL0KZNG9VcTJ07d8bGjRtV6539/LkS/m45xu8W4Pq/Xa78uwW4/m+Xq/9uAS722yWQXaxatUqQSqXCl19+KZw+fVp45ZVXBH9/f+HKlSv2LlqVZs6cKbRq1Uq4efOm6l92drZq/fvvvy8EBAQIa9asEU6cOCE89dRTQp06dYS8vDxVmnHjxgl169YVUlNThSNHjgiJiYlC27ZthdLSUpvXZ8OGDcKMGTOENWvWCACEtWvXaq0Xqz79+/cXYmNjhb179wp79+4VYmNjhcGDBztEHZ999lmhf//+Wuf07t27WmkctY79+vUTVqxYIZw8eVI4duyYMGjQIKF+/fpCQUGBKo2zn0NT6ujM5/CPP/4Q1q9fL6Snpwvp6enC9OnTBalUKpw8eVIQBOc/f66Cv1uO87slCK7/2+XKv1uC4Pq/Xa7+uyUIrvXbxYDQTjp27CiMGzdOa1nz5s2FN998004lMt3MmTOFtm3b6l1XXl4uRERECO+//75qWXFxsRAUFCR89tlngiAIwv379wWpVCqsWrVKleb69euCh4eH8Ndff1m17FWp/KMjVn1Onz4tABD279+vSrNv3z4BgHD27Fkr10qboR/WRx991OA2zlTH7OxsAYCwY8cOQRBc8xxWrqMguNY5FARBCA4OFpYvX+6S589Z8XfLMX+3BMH1f7tc/XdLEFz/t8sdfrcEwXl/u9hl1A5KSkpw+PBh9O3bV2t53759sXfvXjuVyjznzp1DZGQkYmJiMGLECFy8eBEAcOnSJWRlZWnVTSaTISEhQVW3w4cPQ6FQaKWJjIxEbGysw9VfrPrs27cPQUFB6NSpkyrNww8/jKCgIIep8/bt21G7dm00bdoUY8aMQXZ2tmqdM9UxNzcXABASEgLANc9h5ToqucI5LCsrw6pVq1BYWIjOnTu75PlzRvzdcp7fLcA1v/f0cYXvPCVX/+1y5d8twPl/uxgQ2sGdO3dQVlaG8PBwreXh4eHIysqyU6lM16lTJ3zzzTfYtGkTvvzyS2T9f3v3HxN1/ccB/HkIBwjnDwIDJH4J0vLIFihCBWQLtbGFpjChdmq1bINFMZc6m7bpMhdu6b6un/za/NEfkLZYhoJgDtRaFGA/RgUiJGLHDwnwsO71/aN5dR2/jg65z93zsd3Ez+f9/nzer73x8/R9Pz7X2YmEhATo9XrT+MeqrbOzE2q1GnPnzh21jb2wVT2dnZ2YN2+exfHnzZtnFzWvWrUKhw8fRlVVFfLz8/Hll19i+fLlMBgMAJRTo4jglVdewcMPPwytVmsa1+2x/pNS53CkGgHlz2FjYyO8vb3h7u6OzZs34+OPP8Z9993ncPOnVMwt5eQW4HjXvZEo/Zr3T46eXY6aW4DjZJerzY5EVlOpVGZ/FxGLbfZo1apVpp+jo6MRHx+PBQsWoLi42PRh4MnUZs/126KekdrbS80ZGRmmn7VaLWJjYxESEoLy8nKsWbNm1H72VmN2djYaGhpw7tw5i32OMoej1aj0OYyKisI333yD3t5elJaWQqfToaamZtRxKXX+lI65BavbTCdH/nej9GvePzl6djlqbgGOk118hXAa+Pr6YsaMGRYr+66uLotnEpTAy8sL0dHRaG5uNt21baza/P39MTw8jJ6enlHb2Atb1ePv749r165ZHP/69et2VzMABAQEICQkBM3NzQCUUWNOTg4++eQTnDlzBkFBQabtjjSHo9U4EqXNoVqtRkREBGJjY/HGG29g8eLFePvttx1q/pSMuaWc3AIc67o3UUq75t3m6NnlyLkFOE52cUE4DdRqNWJiYnDq1Cmz7adOnUJCQsI0jWryDAYDvv/+ewQEBCAsLAz+/v5mtQ0PD6OmpsZUW0xMDNzc3MzaXL16FU1NTXZXv63qiY+PR19fHy5evGhqc+HCBfT19dldzQCg1+tx5coVBAQEALDvGkUE2dnZKCsrQ1VVFcLCwsz2O8IcjlfjSJQ0hyMRERgMBoeYP0fA3FJObgGOcd2zltKueY6eXc6YW4CCs8tmt6chq9y+ffeHH34o3333neTm5oqXl5e0trZO99DGlZeXJ9XV1fLLL7/I+fPnJTU1VTQajWnse/fuldmzZ0tZWZk0NjbK+vXrR7zNblBQkJw+fVq+/vprWb58+bTdvru/v1/q6+ulvr5eAMj+/fulvr7edCt1W9WzcuVKuf/++6Wurk7q6uokOjr6jt3yfqwa+/v7JS8vT2pra6WlpUXOnDkj8fHxMn/+fEXU+OKLL8rs2bOlurra7NbVg4ODpjZKn8PxalT6HG7btk3Onj0rLS0t0tDQINu3bxcXFxepqKgQEeXPn6NgbtlPbok4fnY5cm6JOH52OXpuiThWdnFBOI3+97//SUhIiKjVannwwQfNbsVrz25/j4qbm5sEBgbKmjVr5NKlS6b9RqNRdu7cKf7+/uLu7i6JiYnS2NhodoyhoSHJzs4WHx8f8fT0lNTUVGlra7vTpYiIyJkzZwSAxUOn04mI7erR6/WSlZUlGo1GNBqNZGVlSU9Pz7TXODg4KCkpKeLn5ydubm4SHBwsOp3OYvz2WuNIdQGQwsJCUxulz+F4NSp9Djdt2mS6Fvr5+cljjz1mClQR5c+fI2Fu2UduiTh+djlybok4fnY5em6JOFZ2qUREbPd6IxERERERESkFP0NIRERERETkpLggJCIiIiIiclJcEBIRERERETkpLgiJiIiIiIicFBeERERERERETooLQiIiIiIiIifFBSEREREREZGT4oKQiIiIiIjISXFBSEQAgOTkZKhUqukeBgDgrbfegru7O65cuWJ1359++gmurq44dOjQFIyMiIjsBXOLyDa4ICSyc6GhoVCpVBN6VFdX2/TcRUVFUKlUKCoqsqrfhg0boFKp0NraavU5u7u7sWfPHjz33HO45557rO4fERGBrKws7Nq1Czdu3LC6PxER/TfMLeswt2i6uU73AIhobLm5uejt7R11f1NTE0pLS+Hl5YWQkJBJn6ekpASDg4OT7m8r+fn56OvrQ15e3qSPsWXLFpSUlODAgQPYsWOHDUdHRETjYW5Zj7lF04kLQiI7l5ubO+o+vV6P2NhYAEBBQQHCwsImfZ7g4OBJ97WVW7duoaCgAA899BDCw8MnfRytVovFixfj/fffx/bt2+HiwjdDEBHdKcwt6zG3aDrxt41Iof78809kZGSgtbUVW7duRXp6ukWbrq4uvPzyy4iIiIC7uzt8fX3x1FNPoampyaLtvz+LsWHDBmzcuBEAsHHjRrO3+IwlNDQUxcXFAICwsDBTn+Tk5HFrOnnyJDo7O7Fu3TqLfUajER988AGWLl0KHx8fzJw5E6GhoUhLS8PZs2ct2qenp6OtrQ2VlZXjnpeIiKYec4u5RfaJrxASKVReXh4qKyuxcuVK7Nmzx2L/zz//jOTkZHR0dCAlJQVpaWno6upCaWkpPv/8c1RWViIuLm7U46elpaG3txcnTpzAk08+iQceeGBC48rNzUVRURG+/fZbvPTSS5gzZw6AvwJ3PLdDcNmyZRb7tm3bhn379mHBggXIzMyERqNBR0cHvvjiC1RVVSExMdGsfXx8PACgqqoKjz/++ITGTkREU4e5xdwiOyVEpDjFxcUCQCIiIqSnp2fENgkJCeLq6ioVFRVm23/88UfRaDQSHR1ttj0pKUn+fUkoLCwUAFJYWGjV+HQ6nQCQlpYWq/otWbJEXFxcxGAwWOzz8fGR+fPny8DAgNl2o9Eoer3eov2NGzcEgCQmJlo1BiIisj3m1t+YW2Rv+JZRIoX56quv8MILL8Db2xvHjx83PZP5T/X19aitrYVOp7N4lnHhwoV4/vnn0djYOOJbcKZTe3s75syZA7VaPeJ+tVoNV1fzNzaoVCr4+PhYtNVoNPDw8EB7e/uUjJWIiCaGucXcIvvGt4wSKci1a9ewevVqGAwGHDlyBIsWLRqx3fnz5wEAnZ2d2LVrl8X+H374wfSnVqudsvFaS6/Xj3rL7vT0dLzzzjvQarXIyMhAUlIS4uPj4eXlNerxfHx88Ntvv03VcImIaBzMLeYW2T8uCIkU4tatW1i7di3a29vx2muvYfXq1aO27e7uBgCUl5ejvLx81HYDAwM2H+d/4enpiaGhoRH3HThwAOHh4SgqKsLu3buxe/dueHh4ID09Hfn5+fD19bXoMzQ0hJkzZ071sImIaATMLeYWKQPfMkqkEDk5OTh37hxSU1Px+uuvj9l21qxZAICDBw9CREZ96HS6OzH0CfPz8zP9p+Df3NzcsGXLFly6dAkdHR04cuQIHnnkEZSUlCArK8uivdFoRF9fH/z8/KZ62ERENALmFnOLlIELQiIFeO+99/Duu+8iKioKhw8fHvcW2rfvwlZXV/efzjtjxgwAf90q/E70i46Oxs2bN8f9/ERgYCDWr1+PkydPIjIyEqdPn7Z4hra5uRlGoxHR0dFWjYGIiP475pY55hbZMy4IiexcbW0tcnJyMGvWLBw/ftz0LOpYli5diri4OBw9ehQfffSRxX6j0Yiamppxj3P7Q+/WfsB9sv2SkpIAABcvXjTbbjAYUFVVBREx2z4wMID+/n64ubmZwvy2CxcumB2TiIjuDOYWc4uURSX//k0lIrvR39+PhQsXorOzE8nJyeOGRHJysumLdFtaWvDoo4/i8uXLWLZsGWJiYuDh4YG2tjbU1dXh+vXruHnzplnfmpoas/Dq7u5GUFAQ3N3dsWnTJtPbWLZu3TrmOD777DM88cQTiIqKwrp16+Dl5YXg4GBkZmaO2a+1tRXh4eHYvHkzDh06ZNre29uLuXPnIjw8HHFxcQgODsbvv/+OTz/9FJcvX8arr76KvXv3mh3rmWeewdGjR9HW1obAwMAxz0tERLbB3PoLc4sU5c5+ywURWaOlpUUATPixc+dOs/7d3d2yY8cO0Wq14unpKd7e3hIZGSmZmZlSVlZm1nak73MSESkvL5clS5aIp6en6TwTsW/fPomMjBQ3NzcBIElJSRPqt2LFCrnrrrtkeHjYtG14eFjefPNNSUlJkaCgIFGr1XL33XdLUlKSHDt2zOIYAwMD4u3tLWlpaRM6JxER2QZz6y/MLVISvkJIRHaloqICK1aswLFjx5CRkTGpYxQUFODZZ59FTU0NEhMTbTxCIiKivzG3SOm4ICQiu5OSkoJff/0VDQ0NcHGx7qPOf/zxB+69914sWrQIJ06cmKIREhER/Y25RUrGm8oQkd05ePAg1q5di6tXr1rdt729HU8//TT2798/BSMjIiKyxNwiJeMrhERERERERE6KrxASERERERE5KS4IiYiIiIiInBQXhERERERERE6KC0IiIiIiIiInxQUhERERERGRk+KCkIiIiIiIyElxQUhEREREROSkuCAkIiIiIiJyUlwQEhEREREROSkuCImIiIiIiJwUF4REREREREROigtCIiIiIiIiJ8UFIRERERERkZPigpCIiIiIiMhJcUFIRERERETkpP4P5SkJVZcu6wwAAAAASUVORK5CYII=", "text/html": [ "\n", "