{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "f7103e0f-bcae-4297-b550-31fe911dffa1", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 56, "id": "88baf7ed-203d-4960-b314-413828ce29b1", "metadata": {}, "outputs": [], "source": [ "def function_2d( x, y, sigma ):\n", " return (x+y)*sigma" ] }, { "cell_type": "code", "execution_count": 57, "id": "32ec6b94-fbb5-4994-8d96-e8b3d1900299", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD8CAYAAACB3pQWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAAAt9UlEQVR4nO2df7BkZ1nnP9975/YdkkAySTAmmdkkrFkhCg44G3GpUgkBBtfKRI062WUd1lCzqKw/UCHZVIEbpTZo1cZyZVdnAxKFSsAoxSjBOCRhqV0JMkp+x5BJYDcZAzE/kSRzf/Wzf5zTfc69c/t2v2/3nPue9z6fqlO3z4/nPG+f7vvtt7/Ped+WmeE4juO0k6n1boDjOI4Tj4u44zhOi3ERdxzHaTEu4o7jOC3GRdxxHKfFuIg7juO0mImIuKQPS3pc0j0D9kvS70o6JOkuSa+p7dsj6cFy2TOJ9jiO46SMpGlJX5b0F+Oea1I98Y8AO9fY/xbg3HLZC/wPAEknA+8Dvg84H3ifpC0TapPjOE6q/CJw/yRONBERN7PPA0+tccgu4I+s4HbgJEmnA28GDpjZU2b2NHCAtT8MHMdxWo2krcC/Bq6dxPk2TeIkI3Am8Eht/dFy26DtRyFpL0UvHnU63ztz2reFtUARI1NjP+IickkRaWKeEzAVETc11VyuaXUjYuLaF5WL8JjoXBExm1gKjonPFfP6BocUccQFfvmu+SfM7KVxWeGNr3+RPfnUaNfmy3fN3wscqW3aZ2b7Vhz2O8C7gRfHtqlOUyI+NuWF2Acw+8+22Rnv/qXwc3Qi/vlmw2OmZuL+iTZ1wuNmO4tRuTbPLATHHN+ZD4+ZCY8BOCEi7sSZF6JyvWTmyPCDVrBl03PBMSdOPx8cExt3yqZvBcecNBXXvlOmwq/fiZEdpBOnZoNjjjvja/83LlvBk091+T9/ecaouY6Y2Y5B+yX9CPC4mf2tpB8ap109mro75TCwrba+tdw2aPvaRE73ovmIpzsXHtNdmKa7MB0ctzgfHjM3H/c5fGRhJjjmuflOeMxCh+cWwuO+FRHz7MKLgmMAvrmwOTjm6cXjg2OeXTqOZ5eOi4oL5cnFE4JjnukexzPdiFzd8Ov3bNyXGZ7tzsUFpsPrgIskfQ24AbhA0kfHOWFTIr4f+OnyLpXXAs+a2WPAzcCbJG0pC5pvKrcNZWpeTM2Hf71qSsiBRoU8RsybEnKgUSGPEfOmhBziRDlWyGPFPDhXpJDHiHmbhdzMrjCzrWZ2NrAbuNXM3jrOOSd1i+H1wBeA75T0qKTLJL1D0jvKQ24CHgYOAf8T+DkAM3sK+A3gS+VyVblt9CfQpJBH9spDiRFyiOuVxwp5bK88lBghh7heeayQx/bKm4iB+F55cJ7u5sZ65W0W8kmjNk5FO7ttm2395V9etq3biXse7pMXxHjkkKdPHuORg/vky3Il5JMfd8bX/nYtn3oYr/meWQvwxMfKFUM2IzZjeuTgPnmPIwsz7pOXfHNhc6M+eQzuk9fjjm2vfAnj2e7cSMt6kI2Ig/vkddwnr0jdJ0+94Anuk6dMViLew33yCvfJK9wnL0i94Aku5CFkKeLQoJBDo0LepL0SQ5NC3qS9EkOTQt6kvRKcp+GC50YT82xFHOKFvEmfPIZcffIY3CcfL8598vaTtYhD+j556gVP8IFBddwnr9goPvmSVW0YtqwH2Yt4D/fJC5oueKbsk6de8AT3yeu4T746rRRxWZwou09e4T55hRc8K3L0yXOnlSLeo0khd5+8wH3yitR98tQLntCsT54rrRZxaE7IwX3yOu6TV7hPXtB0wdPFvKD1Ig7xQp5ywRPy9cljcJ+8wn3yChfyTEQc4kXZC54VXvCscJ+8YqP75Iuo37Zhy3qQjYj3cJ+8oOmCZ8o+eeoFT3CffFmuBIU8ZbITcXCfvI775BVe8Bwvrg0++UYkSxEH98nruE9ekaNPnnrBE9IfGNRmshVxiO9du09e4T55hfvkBU0XPL1XvjZZizi0oOAJ2frkMbhPXuE+eS3XOgr5kk31baFhy3rQThGP+BEfL3hWeMGzwn3y8eLcJ19/JvUbmzslPSDpkKTLV9l/jaQ7yuUrkp6p7Vuq7ds/csMjfk0sR5+86YJnyj556gVPcJ+8TpP3k6eCpM2S/kbSnZLulfSfxz3n2CIuaRr4IPAW4DzgUknn1Y8xs182s+1mth34b8Cf1Xa/0NtnZheF5G5KyGPj3CevyNEnT73gCfn65C1mDrjAzL4H2A7slPTacU44iZ74+cAhM3vYzOaBG4Bdaxx/KXD9BPIC8ULuPnmB++QVqfvkqRc8If2BQeuNFfR+sXqmXMb6tfpJiPiZwCO19UfLbUch6SzgHODW2ubNkg5Kul3SxTENiBFycJ+8jvvkFe6TVzE5+uTrjaRpSXcAjwMHzOyL45yv6cLmbuBGM1uqbTvLzHYA/wb4HUn/fLVASXtLsT+49NxzR+2fWmjWJ48hV588BvfJK9wnr0hRyBeZ7ttFwxbg1J5Olcveleczs6XSWt4KnC/pu8dp3yRE/DCwrba+tdy2GrtZYaWY2eHy78PA54BXrxZoZvvMbIeZ7Zg+fvAb2AueFV7wrMW5T97HffJjyhM9nSqXfYMONLNngNuAneMknISIfwk4V9I5kjoUQn3UXSaSXg5sAb5Q27ZF0mz5+FTgdcB94zYoS5+84YJnyj556gVPcJ+8jvvkFZJeKumk8vGLgDcCfz/OOccWcTNbBN4J3AzcD3zCzO6VdJWk+t0mu4EbzKxu4r8COCjpTopPpKvNbGwRB/fJ67hPXovJsOAJ+frkMSQu5KcDt0m6i6IDfMDM/mKcE8YZmisws5uAm1Zse++K9V9fJe6vgVdOog2r0RPybqA+TM2LbiesYBwTA4WYWydwRMLcFMyGxfSEfGpmaciRy1mcn2ZTJyxmbn4Ts53FoBgoxHzzTNin73PzHY7vzIfFlIJ8/ExY3LcWOpwQGPPswos4ceaFoJiekL9k5khQ3NOLx7Nl09H1orV4duk4Tpx+PigmNu7JxRM4ZdO3hh9YoyfkJ00F5upu5pSpsOvXBGZ2FwMs41gmIuKpM7XQnJADwXFNCTkUYt6UkAPBYt6UkEMh5k0JORAl5k0JORAsyrFCDkSJeYyQT4Ilm4q2kpqglcPuFTGU1gcGVfjAoFqc++R9cvTJNwKtFHGA6bnwmCwLnuAFzxruk1e4T74xaK2IQ7yQp3w/edMFz5TvJ0+94Ak+MGjcuCYHBuVKq0Uc4oQc/H7yOn4/eRnjA4P65DowKEdaL+JQCHmT9koM7pNXuE9e4AODKpocGBRKr7A5yrIeZCHiPdwnr+E+eR/3yQuaLni6T94MWYk4NCfkkK9PHoP75BXuk48X5z55GNmJOORZ8ASfQKuO++QV7pNXbEQhz1LEIX2f3AueFakXPMF98jruk6dFtiLew33yEp9Aq0/qBU/I1yePwYV8bTbEsPvpOViaDYuJGaoPzc270hPypuZdCR2qD83Nu9IT8qbmXYkZqg80Nu9K6FB9aG7eldgh/uPMuzIuS0xFf2tpgnb2xCN+zMh98hruk/fJ0SdvuuCZuk+eO+0UcWAqfL4jHxhUx33yPu6TV+Tqk+dMa0Uc4oU85YJnbFwbfPIY3CevcJ+8woW8otUiDoWQN9Urz7LgCV7wrOEDgypyHBiUI60X8R5NCnnKPrlPoFXhA4MqfGBQPEs21b9+w5b1IBsRB/fJ67hPXuEFzwoveOZHViIO7pPXcZ+8IkefvOmCZ8o++UYueE5ExCXtlPSApEOSLl9l/9sk/aOkO8rl7bV9eyQ9WC57JtGeGCEH98mX4T55H/fJK9wnHw9J2yTdJuk+SfdK+sVxzzm2iEuaBj4IvAU4D7hU0nmrHPpxM9teLteWsScD7wO+DzgfeJ+kLeO2CdIveEK+PnkM7pNXuE8+XlziQr4I/IqZnQe8Fvj5AXo5MpPoiZ8PHDKzh81sHrgB2DVi7JuBA2b2lJk9DRwAdk6gTX284FnhBc8K98kr3CdvDjN7zMz+rnz8T8D9wJnjnHMSIn4m8Eht/VFWb9SPS7pL0o2StgXGImmvpIOSDi69EDY8OEefvPGCZ8I+eeoFT8jXJ4+hbT75kql/XYctwKk9nSqXvYPOK+ls4NXAF8dpX1OFzT8HzjazV1H0tq8LPYGZ7TOzHWa2Y9Pm8DeP++QV7pNX5FjwBB8YtI480dOpctm32kGSTgD+FPglM/vmOAknIeKHgW219a3ltj5m9qSZ9eTwWuB7R40dxHSEKLtPXuE+eUXqPnnTBc+UffL1/Bm0SSFphkLAP2Zmfzbu+SYh4l8CzpV0jqQOsBvYXz9A0um11YsofCCAm4E3SdpSFjTfVG4biRghB/fJ67hPXuE+eUWOPnkKSBLwIeB+M/uvkzjn2CJuZovAOynE937gE2Z2r6SrJF1UHvYL5e00dwK/ALytjH0K+A2KD4IvAVeV20Zmej6+Vx6KDwyq4QOD+rhPXpG6T54ArwP+HXBB7ZbrHx7nhBOZT9zMbgJuWrHtvbXHVwBXDIj9MPDhcdswPQ9Lge/vqXnoBsb0hLyJ+clj5hmPjdP8VNzc5NDI/OQxc5ND/PzkMXOTA43NTx46Nzk0Nz95T8ibmp88NCaUJZuKrk2sxMz+NxD3tXkAWY3YzNEnb7rgmbJPnnrBE/L1yWNwn7wZshJxcJ983Bhwn7xH6gVP8IFBk4hrO9mJOLhPvjLGffKC1H3ypgueKfvkG63gOQ5ZiniPJoU85YFBsXE5DgwCv5+8jt9P3n6yFnFoTsghX588CvfJ+7hPXuE++eTJXsQhz4In+MCgOu6TV7hPPn5cna6pb3UNW9aDdop4zK/dJ+6TN13wTNknT73gCfn65DGk7pPnTjtFnDEsD/fJx4rL0SdPveAJPjCojgv5clor4jCG5eE++bK4UNwnr2hDwTNln7zJgmeutFrEezQp5O6TF7hPXuE+eUUbfPLcyELEoTkhj87VAp88BvfJK9wnr8jJJ+921f/2NGxZD7IRcYgX8pQLnuAFzzruk9fi3Cfvs5F75VmJOKTvkzdd8EzaJ0+84An5+uQxuE+eJtmJeA/3yWtx7pMD6Rc8wQcG1XEhH41sRRzcJ18W5z55n1wLnin75F7wPHZkLeLgPvmyGPfJ+7hPXpGjTz7JgmfX1P9AHrasB9mLOPjAoGUxPjCoj/vkFe6Tt5dWirgiht2nXvAEL3guw33yPu6TV8TevZIzExFxSTslPSDpkKTLV9n/Lkn3SbpL0i2SzqrtW6r91tz+lbGDmJ43pudjfrosOKQVBc+UffLUC56Qr08eQ44+eSpI+rCkxyXdM6lzji3ikqaBDwJvAc4DLpV03orDvgzsMLNXATcCv1Xb94KZbS+XiwikSSF3n7yKSdknT73gCT4wqM4GE/KPADsnecJJ9MTPBw6Z2cNmNg/cAOyqH2Bmt5lZ79dMbwe2TiBvn6aEvMgVHuM+eUWOPnnTBc+UffLUC57rjZl9HnhqkuechIifCTxSW3+03DaIy4DP1NY3Szoo6XZJFw8KkrS3PO7g4gtH/4p2rJC7T17GuE/ex33yitR98tiCZwhm6n9QD1uAU3s6VS57j2njgLjvgpFIeiuwA/jB2uazzOywpJcBt0q628weWhlrZvuAfQDHv3Tbqoo9PW8sdWKECLqB79PpeVgKjOkJeXCuOViaDcy1AN0IfZiaF91O2AdiTExPyK3TDYpjbgpmw2K6C9NMzSyF5aEQ802dsLi5+U3MdhaDYnpCvnkm7NP3ufkOx3fCegfPLXQ4fia8R/GthQ4nBMY9u/AiTpx5ISimJ+QvmTkSFPf04vFs2XR0524deMLMdjSZcBI98cPAttr61nLbMiRdCFwJXGRm/f6lmR0u/z4MfA549TiNSb3gGZ0rw4InuE9ex33yio1ir0yCSYj4l4BzJZ0jqQPsBpbdZSLp1cAfUAj447XtWyTNlo9PBV4H3DeBNmVb8EzZJ0+94An5+uQxuE+eB2OLuJktAu8EbgbuBz5hZvdKukpS726T3wZOAP5kxa2ErwAOSroTuA242swmIuLgPvmyXDn65IkXPMEHBtXJySePRdL1wBeA75T0qKTLxj3nRDxxM7sJuGnFtvfWHl84IO6vgVdOog2DcJ+8lst98j4xPnlPyJvyyUM9cmjOJ+8JeVM+eahHDpPzyc3iP8SPPpddOpET1WjliM1Q3Cev5XGfvE/qPrlPoFWxEQcGjUo7RTywo9YjV588BvfJK9wnr8Vl6JPnTjtFnPginw8MquXygUF93CevxWXok+dMa0W8R5NCnuu8K8ExqRc8wQcG1fCBQXnTehGHeCF3n7zMk7hP7hNoVfgEWhWxPnluZCHiEO8Nu09ey+U+OZB+wRN8YFCdYy7kpv57YtiyHmQj4uA++bI87pNXJO6T+wRaFV7wDCcrEe+Rq08eg/vkNdwn7+M+eT5kKeLQnJCDFzyXxblP3sd98gr3yY8d2Yo4tKPgmbJPnnrBE9wnr+M+ecVGEvKsRRzcJ1+WJ3GfPPWCJ+Trk8ewYXzyLlVdZdiyDmQv4j3cJ6/lcp+8IPGCJ/jAoDruk69OK0VcBtNz4QLrPnktl/vkFZkWPFP2yZsseOZOK0W8R5NC7gODyjzuk/dxn7wW0wKfPFdaLeLQnJCDDwxalst98j7uk9fiEvfJc6T1Ig7xQu4+eZkn8YJnbJz75BXuk+dLFiIOhZC7T17lSdknT77gCdn65DFseJ/c1K+3DFvWg2xEvIf75GPmytAnT73gCT4wqE6SQp4wExFxSTslPSDpkKTLV9k/K+nj5f4vSjq7tu+KcvsDkt48ifa4Tz5mLvfJK1pQ8EzZJ/eC59EM08tQxhZxSdPAB4G3AOcBl0o6b8VhlwFPm9l3ANcAHyhjzwN2A98F7AT+e3m+sWmDTx6D++TjxblPXpGjT556wXNEvQxiEj3x84FDZvawmc0DNwC7VhyzC7iufHwj8AZJKrffYGZzZvZV4FB5vokQI+RFXERMhgVPcJ98Ge6T99nwPnk8o+hlEJMQ8TOBR2rrj5bbVj3GzBaBZ4FTRowFQNJeSQclHVyYG/0XrL3guTxPygVPcJ+8jvvkFevaK7eqkzFsAU7t6VS57F1xtpE1b1TiRhCsA2a2D9gH8OKTtgar5fScsTQb9s8+PQdLs4F5SiFf6oTlmpqHbuD7tCfkS4FxUbkirkVPyLuB+jA1L7qdsJc4JgYKMbdO4C9vz03BbFhMT8inZpaC4hbnp9nUCYuZm9/EbGcxKAYKMd88E/bp+9x8h+M7YT2DnpAfPxMW962FDicExqwDT5jZjiYTTqInfhjYVlvfWm5b9RhJm4ATgSdHjF2VTXPhP3nvPvl4uVL3yVMveIIPDFoW1+D95AkRrXmDmISIfwk4V9I5kjoUhcr9K47ZD+wpH18C3GpmVm7fXd69cg5wLvA3oyZuSsiLuIgY98mrXDn65A0XPFP2yVMveCbEKHoZxNgiXnrc7wRuBu4HPmFm90q6StJF5WEfAk6RdAh4F3B5GXsv8AngPuAvgZ83s6DvjrFC7j55lcd98gL3yStS98ljC57rzSC9HOecE/HEzewm4KYV295be3wE+IkBse8H3j9O/k1zXRZnw/+RcvXJQz3y6Fzuk1e4T97HffK1WU0vxyGbEZub5rruk/fz+MCgeoz75AXuk8ehsLtTGicbEe/hPnk9V3hMjgXP2Lg2+OQxuE+eF9mJOLhPvjxXXJ6UffLkC57gBc8a7pMfW7IUcYgTcvAJtMbO5RNoVbRg3pVQUi94wsbrlWcr4tC8Tx6D++S1XO6T93GfvIxpcAKttpK1iPfwgmc9V3iM++QV7pNXtMEnn4iYW/VtcdiyHrRTxCMsZS941nOFx/jAoAr3yStS98k3Au0UcWAqQpTbUPBM2SdPveAJ+frkMbhPvjForYhDvJC7T97Lk7ZPnnrBE/L9oYkYUvfJc6XVIg5xQg7uky/PFR6To0/eeMEzYZ889YIneK+8R+tFHAohb9JeicF98lou98kr3CcHmi14hqJu1QEZtqwHWYh4j1x98hjcJ6/FuU/ex33y/MhKxKE5IQcfGDR2LvfJK9wn7+M+eRjZiTi0o+CZsk+eesETMvbJI3CfvBa3AYU8SxEH98nrpO6Tp17wjI3LseAJ7pOnRrYi3sN98gr3ycuYhgueKfvkqRc8wX3yYWQv4uA+eR33yWtx7pP3ybXgORExt6pjMmxZD1op4orQ1zb45DG4T17L5T55H/fJNw5jibikkyUdkPRg+XfLKsdsl/QFSfdKukvST9X2fUTSVyXdUS7bR809HSGuPjCowgcG1WLcJ++Tq0/eBiT9RKmTXUk7Ro0btyd+OXCLmZ0L3FKur+R54KfN7LuAncDvSDqptv/XzGx7udwRkjxWyN0nL0i94An5+uRRuE/eJ1Mhvwf4MeDzIUHjivgu4Lry8XXAxSsPMLOvmNmD5eN/AB4HXjpm3j7Tc93GeuXuk9dzhcekXvAEHxhUJ0efPGXM7H4zeyA0blwRP83MHisffx04ba2DJZ0PdICHapvfX9os10ga+NvpkvZKOijp4PzCc0ftb1LI3Sfv5UnbJ/eCZ0XqBU9I1yeXVe/1YQtwak+nymXvsW7f0Kst6bPAt6+y68r6ipmZpIHqIel04I+BPWbWU8ErKMS/A+wD3gNctVq8me0rj+ElL966ap7puS5Ls2Fv8Km5Lt3AGCjEfDEwbnrOWJoN+2fvidfSwI+3AXHzxlInLNfUPHQj/iem52EpMC4mV+y1mFqAbqA+TM2Lbifsw7An5KFxmp/COoEdg56Qz4bFdRemmZpZCopZnJ9mUycspifks53FoLgjCzNsngn75H1uvsPxnXW6NeRonjCzgX72WnpqZp+KSThUxM3swjUa9A1Jp5vZY6VIPz7guJcAny4benvt3L1e/JykPwR+Naj1qxAr5ECwmDcl5EVcc0IOEQLbkJBD3LWIFXIIF+WYD4AoIYdCzBsSciBKzJsSciAlMV+VtfQ0lnHtlP3AnvLxHuCoTxJJHeCTwB+Z2Y0r9p1e/hWFn37PmO0B4qwV8IFBddwnr8W5T97HffL0GFfErwbeKOlB4MJyHUk7JF1bHvOTwA8Ab1vlVsKPSbobuBs4FfjNMdvTp+mCZ8o+eeoFz+hc7pNXuE/ep61CLulHJT0KfD/waUk3jxIXd2VLzOxJ4A2rbD8IvL18/FHgowPiLxgn/yi4T16La8gn7wl5Uz556HWAjH3yQGsF3CdPBTP7JIVrEUQrR2yG0ob7yWPw+8nLPD4wqMIHBvWZ2MAgH3Z/DLAYG8J98n6M++RVrhYMDErZJ2/DwKDcaaeIA9NHwr6SgQ8MWhbjPnmVx33yPqn75LEFz5xprYhDnJCDDwxaFucDg6pcPoFWnxwn0MqVVos4FEIe2ysPJXWf3CfQquVxn7zCffKsab2I92hKyMF98h6pFzwhX588CvfJoyiG3dtIy3qQjYiD++TLYyLyJO6Tp17wBB8YVMd98mbISsTBffLlMcEhRZz75EWehgueKfvkqRc8YePaK9mJODTvk8fgPnk9V3iM++QVOfrkXvAcnSxFvIcXPOtxETHuk1e53Cfv4z55WmQt4pCnT556wRPcJ18W5z55H/fJJ0/2Ig7uky+PCQ5JvuAZnasFPnkM7pNXTETIu5UVN2xZD1op4upGiJf75LWYtH3y1Aue4AXPOqn75LnTShEHUGzv2n3yWlxETIY+edMFz6R98sQLnhDfK8+V1oo4FEIeI+Y+MKgeFxziPnk9l/vkfVIveOZKq0W8R5NCnnLBE9wnHzuX++QVmfrkuZGFiEO8kKfsk6de8AT3yZflcp+8T04+uaz6pjtsWQ+yEXFwn7xOjgXPIld4TBt88hjcJ6/YyL3ysURc0smSDkh6sPy7ZcBxS7Xf19xf236OpC9KOiTp4+WPKo+F++QVqfvkqRc8wQuey3Cf/Jgi6bcl/b2kuyR9UtJJo8SN2xO/HLjFzM4FbinXV+MFM9teLhfVtn8AuMbMvgN4GrhszPb0cZ+8wn3yKo/75AWpFzxhQ/rkB4DvNrNXAV8BrhglaFwR3wVcVz6+Drh41EBJAi4AboyJHylHQ0IO7pMvi3OfvMrlPjngBc9RMLO/MrOeAN0ObB0lblwRP83MHisffx04bcBxmyUdlHS7pIvLbacAz9Qa/Shw5qBEkvaW5zg4v/j8yA3MseAJ7pMvzxUe4z55RY4++SQLnupav/M0bAFO7elUueyNTPszwGdGOXDos5T0WeDbV9l1ZX3FzEzSoP/cs8zssKSXAbdKuht4dpQG1s6/D9gHcOJxZwQpRE/IbXPYizp9ZJGl0Ji5LkuzYW/unpB3A+M2zXVZDIyZnjOWZsP/0afnYGk2MGbeWOqE5eqJazewOjI9D0uBMVPz4Xkg7lpMLUA3cAR4T5C7nbAPxKl5BcdofgrrRHQo5qZgNiyuuzDN1MxSUExPyDd1wuLWoVf+hJntGLRzLT01s0+Vx1wJLAIfGyXh0GdoZheu0aBvSDrdzB6TdDrw+IBzHC7/Pizpc8CrgT8FTpK0qeyNbwUOj9LomF+7h0LMmxJyIErMmxJyIFjMmxJyiBPYWCGHiFwNCTnEiXKskAPhYt6QkEMh5qFCnhJr6SmApLcBPwK8wWw0oRvXTtkP7Ckf7wE+tUqjtkiaLR+fCrwOuK9s4G3AJWvFD2LqyDxTR8K/E7tPXuEFzzFzZVjwhDx98jYgaSfwbuAiMxvZMx5XxK8G3ijpQeDCch1JOyRdWx7zCuCgpDspRPtqM7uv3Pce4F2SDlF45B8KbUCTQu4+eS8mbZ+86YJnyj556gVPaPZ+8sT5PeDFwIHyduzfHyVoLMPIzJ4E3rDK9oPA28vHfw28ckD8w8D547QBCiHvbg77PhxjrYD75Mvj3Cfv53KfvKAn5A355G22VlZS3modTDYjNmN75D4wqCD1gUGQ7/3kMfj95AWxA4OCsGq09bBlPchGxCF9n9wHBtVi3Cev8rhP3sd98nCyEvEe7pMXpF7whHx98hjcJ69wIR+dLEUcmhNy8Am0qpi0C55FrvCYHAuesXE5DgxqO9mKOLhPXidHn7zpCbRS9sl9Aq2KRnzyhMhaxCFOyMF98jruk4+ZK0OfPPWCJ0yuV65u9X86bFkPshdxSL/gCe6TL4tzn7zK5T454AXPtWiniHe7cCT8v8ILnhXuk9dzhce4T16Ruk+eO+0U8R4NCnnKPnnqBc8iLiKmBT55DO6T13AhH5t2izg0JuTgPnmP1Aue4AXPZXHuk2dN+0UcooXcffKC1H3ypgueKfvkqRc8IX2fPDfyEHGIEnJwn7yO++T1XOExOfrkqRc8oYFeuVn//3fYsh7kI+JQCHnCBU9wn3x5XESM++RVrhx9ci94BpOXiPfwgmcf98kr3CevxblPng15ijhk6ZOnXvCEfH3yGNwnr3Cf/NiRr4iD++Q1cix4gg8MWpbLffI+G0nI8xZxcJ+8Ruo+edMFz5R98tQLnrFxbfTJ1bW+dTpsWQ/yF/Ee7pP3cZ+8wn3yMib1gie4Tz6AsURc0smSDkh6sPy7ZZVjXl/+XlxvOSLp4nLfRyR9tbZv+0iJuxZnlfjAoD7uk1e4T16Ly7Dg2RYk/Yaku0ot/CtJZ4wSN+4VuRy4xczOBW4p15dhZreZ2XYz2w5cADwP/FXtkF/r7TezO4KyNyjkKRc8wX3yZXHuk1e53CdvE79tZq8qtfIvgPeOEjTu1dgFXFc+vg64eMjxlwCfMbPnx8xbESvkCfvkqRc8IV+fPAb3yceLa9InTxkz+2Zt9XhgpDfxuFfhNDN7rHz8deC0IcfvBq5fse395VeIayQF/l54SeRdKO6TF6Re8CziImIyLHiC++TLyEzIJb1f0iPAv2VSPXFJn5V0zyrLrvpxZmas8ckh6XTglcDNtc1XAC8H/iVwMvCeNeL3Sjoo6eB894WjD4jsXbtPXpFrwTNlnzz1gie4T45Z31IdtgCn9nSqXPbWTzVMT83sSjPbBnwMeOcozds0vP124aB9kr4h6XQze6wU6cfXONVPAp80s/5bqdaLn5P0h8CvrtGOfcA+gBNnvm3wf+WROdgc2KGPiOkJeXdzJyhORxaxzUMv+zKmjyyyFBgDhZgvzYa9wafmunQDY3pCvhgYNz1nLM2G/bNPz8FSxPe16XljqROWa2oeumEvb1/IlwLjonJFXIuekHdnAuPmRbcT9mEYEwOFmFsnsHMwNwWz6/PLOit4wsx2DNq5lp6u4GPATcD7hh047kfYfmBP+XgP8Kk1jr2UFVZKKfxIEoWffs+Y7SloqEcO7pPXcZ+8nis8Jkef3AueoyPp3NrqLuDvR4kb91lfDbxR0oPAheU6knZIurbWuLOBbcD/WhH/MUl3A3cDpwK/OWZ7KjIseIL75MvjImLcJ69y5eiTt7vgeXVprdwFvAn4xVGCwr+j1zCzJ4E3rLL9IPD22vrXgDNXOe6CcfIPpSfIDdkrMdYK0Ii9EmOtQLy9EmOtAI3YKzHWCsTbKzHWCjRnr4RaK9CcvdIT8hbbKyNjZj8eE9faj6wg/H7yIibxgif4wKCxc2U4MAjWuVfe+03fUZZ1oJ0i3o0QCPfJq7hMBwal7JP7wKDlMY3ehpg5rb0q9vwqtxkOw33yKsZ98iomQ5889YJnbJwL+dG0+oo0JuSRcTkODIJ87yePwe8nL2NSL3hmTOuvRrSQ+8CgIsZ98irGffIqT+I+efTAoAzJ4irY8y80a68EknrBE/L1yWNwn7yWy33yatZUL2wee9wnL0i94Ak+MGh5rvAY98krNnqPPLtn7z55Ra4Fz5R98tQLnuA+eW5k+czdJ69wn7weE5EncZ889YInuE9+rMn2GUcJObhPXo9zn7yKc5+8yJN4wRM2Xq8862ebesET3Cev4z55PVd4TI4+edIFz0QYa+6UtmDPv4COe1FYUOyUttDYvCuhc65Ac/Ou9IS8qXlXQudcKeKamXclei6UyHlXQvNAc/Ou9AS5yXlXxqbbjf9m3wCt/Lgqfn8iMCZDnzz1gif4wKA67pPX4hq0V3KnlSIO0H3hSHCM++QVbSh4puyTp17wjM6VqU+eM60VcYgXcvfJC9wnr8ek7ZOnXvCE9H3yXGm1iEOckIMPDKqT6/3kMfj95GWexAue48TlRutFHAohb8xe8YFBVYz75FWM++RVrsQHBoViZn2NGbasB1mIeI9GhTzhgifk65PH4D75mLncJ0+arEQc8vTJUy94gg8MWhbnPnmVy33yY85YIi7pJyTdK6kraccax+2U9ICkQ5Iur20/R9IXy+0flxRxh+vRuE9e0YaCZ8o+eeoFzyJXeIz75Oki6VckmaRTRzl+3J74PcCPAZ9fo0HTwAeBtwDnAZdKOq/c/QHgGjP7DuBp4LIx29PHffIK98krUvfJUy94gvvkxxJJ2yh+6f7/jRozloib2f1m9sCQw84HDpnZw2Y2D9wA7JIk4ALgxvK464CLx2nParhPXuE+eYX75FWelAuesOF88muAdwMjv2maGHZ/JvBIbf1R4PuAU4BnzGyxtv3MQSeRtBfYW67OHVi4/p6RWxDz5vnm0CNOBZ6IOPOkSaEdKbQB0mhHCm2ANNqRQhsAvnOc4H+yp24+sHD9SNYGsFnSwdr6PjPbN0qgpF3AYTO7s+jjjsZQEZf0WeDbV9l1pZl9auRMY1JeiH1lmw6a2UAPvglSaEMq7UihDam0I4U2pNKOFNrQa8c48Wa2c4JtGainwH+isFKCGCriZnZh6ElXcBjYVlvfWm57EjhJ0qayN97b7jiOkyWD9FTSK4FzgF4vfCvwd5LON7Ovr3XOJm4x/BJwbnknSgfYDey3Yhar24BLyuP2AI317B3HcVLBzO42s28zs7PN7GwKe/k1wwQcxr/F8EclPQp8P/BpSTeX28+QdFPZuEXgncDNwP3AJ8zs3vIU7wHeJekQhUf+oRFTj+QxHWNSaAOk0Y4U2gBptCOFNkAa7UihDZBOO44JipnW1XEcx0mD7EZsOo7jbCRcxB3HcVpMsiKewpB+SSdLOiDpwfLvllWOeb2kO2rLEUkXl/s+IumrtX3bQ9swajvK45ZqufbXtjd1LbZL+kL5ut0l6adq+6KvxaDXuLZ/tnxeh8rneXZt3xXl9gckvTn0eQe2412S7iuf+y2SzqrtW/W1OQZteJukf6zlentt357y9XtQ0p7YNozYjmtqbfiKpGdq+yZ1LT4s6XFJq44ZUcHvlm28S9Jravsmdi3WHTNLcgFeQXGT/ueAHQOOmQYeAl4GdIA7gfPKfZ8AdpePfx/42Yg2/BZwefn4cuADQ44/GXgKOK5c/whwyQSuxUjtAL41YHsj1wL4F8C55eMzgMeAk8a5Fmu9xrVjfg74/fLxbuDj5ePzyuNnKW7fegiYjnwNRmnH62uv/c/22rHWa3MM2vA24PcGvDcfLv9uKR9vOVbtWHH8fwQ+PMlrUZ7nB4DXAPcM2P/DwGcAAa8Fvjjpa5HCkmxP3NIY0r+rjB31HJcAnzGz5yNyTbIdfZq8Fmb2FTN7sHz8D8DjwEsjctVZ9TVeo203Am8on/cu4AYzmzOzrwKHyvMdk3aY2W211/52int9J8ko12IQbwYOmNlTZvY0cACIHcQS2o5Lgesjcw3EzD5P0WkaxC7gj6zgdopxKacz2Wux7iQr4iOy2pD+Mwkc0r8Gp5nZY+XjrwOnDTl+N0e/Wd9ffpW7RlLg74kHt2OzpIOSbu9ZOqzTtZB0PkUv7aHa5phrMeg1XvWY8nk+S/G8R4kdldBzXUbRC+yx2mtzrNrw4+V1vlHFhEohsZNsB6WldA5wa23zJK7FKAxq5ySvxbrTxNwpA1ECQ/rXakN9xcxM0sD7MctP+FdS3A/f4woKwetQ3Kv6HuCqY9iOs8zssKSXAbdKuptC0EZiwtfij4E9ZtaboWrka9F2JL0V2AH8YG3zUa+NmT20+hnG4s+B681sTtJ/oPiGcsExyDMqu4EbzWyptq2pa7EhWFcRtwSG9K/VBknfkHS6mT1WCtPja7TlJ4FPmll/uq1az3VO0h8CvzooeBLtMLPD5d+HJX0OeDXwpzR4LSS9BPg0xQfx7bVzj3wtVjDoNV7tmEclbQJOpHgPjBI7KiOdS9KFFB96P2hm/bn+Brw2ocI1tA1m9mRt9VqKWkYv9odWxH4uMP/I7aixG/j5FW2cxLUYhUHtnOS1WHfabqcc6yH9+8vYUc5xlO9Xil3Pl76YYv71GIa2Q9KWnkWhYjL51wH3NXktytfgkxQ+5I0r9sVei1Vf4zXadglwa/m89wO7Vdy9cg5wLvA3I+YNboekVwN/AFxkZo/Xtq/62hyjNpxeW72IYpQ0FN8Q31S2ZQvFREv1b40TbUfZlpdTFA6/UNs2qWsxCvuBny7vUnkt8GzZmZjktVh/1ruyOmgBfpTCq5oDvgHcXG4/A7ipdtwPA1+h+CS/srb9ZRT/sIeAPwFmI9pwCnAL8CDwWeDkcvsO4NracWdTfLpPrYi/FbibQrA+CpwQeS2GtgP4V2WuO8u/lzV9LYC3Ukz8e0dt2T7utVjtNaawYi4qH28un9eh8nm+rBZ7ZRn3APCWMd+Tw9rx2fK92nvu+4e9NsegDf8FuLfMdRvw8lrsz5TX6BDw74/ltSjXfx24ekXcJK/F9RR3QC1QaMVlwDuAd5T7RfGDNA+VuXbUYid2LdZ78WH3juM4LabtdorjOM6GxkXccRynxbiIO47jtBgXccdxnBbjIu44jtNiXMQdx3FajIu44zhOi/n/EO+kpWGUo4IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x = np.linspace(-1, 1, 50)\n", "y = np.linspace(-1, 1, 50)\n", "X, Y = np.meshgrid(x, y) # erstellt ein grid, auf dem die 2d - funktion ausgewertet wird\n", "plt.contourf( X, Y, function_2d(X, Y, 2), 40) # erstellt einen \"filled\" contourplot\n", "plt.colorbar()" ] }, { "cell_type": "code", "execution_count": null, "id": "44a62d3c-d6ef-4ba3-b7ca-e55e54ee8329", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 5 }