Institute for Theoretical Particle Physics Classical Theoretical Physics I WS 2023

Karlsruhe Institute of Technology

Prof. Dr. U. Nierste Dr. L. Chen, Tim Kretz

Please upload your solution on

Exercise Sheet 1 Start: 24.10.2023, 12:00 Due: 2.11.2023, 12:00

 $https://ilias.studium.kit.edu/goto.php?target=crs_2215325\&client_id=produktiv.$

Please put your name on each sheet of your solution. Please put your tutoring session information on the first page (location, time, name of the tutor, etc.).

Problem 1: Calculate the first derivative $f'(x) \equiv \frac{df}{dx}$ of the following functions (for any $\alpha \in \mathbb{R}$): a) (1 point) $f(x) = x^{\alpha} \sin x$,

- **b)** (1 point) $f(x) = \sin x^{\alpha} := \sin(x^{\alpha}),$
- c) (1 point) $f(x) = \sin^{\alpha} x := (\sin x)^{\alpha}$,
- **d)** (2 points) $f(x) = x^{\alpha} \sin \frac{1}{x}$ for $\alpha > 1$ and $x \to 0$.

Problem 2: An antiderivative F of a given function f is understood to be a function that satisfies $\frac{dF}{dx} = f(x)$. Two different antiderivatives only differ by an additive constant. **a)** (1 point) Calculate all antiderivatives of $f(x) = x^{\alpha}$ for $\alpha \in \mathbb{R}$, $\alpha \neq -1$.

- **b)** (1 point) Calculate all antiderivatives of $f(x) = x^2 \cos x$.
- c) (3 points) For x > 0 we define the function L(x) by the following properties:

$$\frac{dL}{dx} = \frac{1}{x} \qquad \text{and} \quad L(1) = 0. \tag{1}$$

Use only eq. (1) to derive the following properties:

- i) (0,5 point) L(x) + L(y) = L(xy).
- ii) (0,5 point) $L(x^{\alpha}) = \alpha L(x)$ for $\alpha \in \mathbb{R}$.

The inverse function f^{-1} of a function f satisfies the properties $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$. (for example, for x > 0: $f(x) = \sqrt{x}$ has the inverse function $f^{-1}(y) = y^2$.)

iii) (1 point) Show that $\frac{df^{-1}}{dy} = \frac{1}{df/dx}$, where y = f(x).

iv) (1 point) Express
$$\frac{dL^{-1}}{dy}$$
 by $L^{-1}(y)$.

Do you recognize L and L^{-1} from the Mathematik-Vorkurs?