Institute of Theoretical Particle Physics

Classical Theoretical Physics I WS 2023

Prof. Dr. U. Nierste Dr. L. Chen, Tim Kretz

Exercise Sheet 3 Start: 10.11.2023 Due: 17.11.2023

Please put your name on each sheet of your solution. Please put your tutoring session information on the front page (location, time, name of the tutor, etc.)

Problem 5: At time t=0, an ant is at the location $x_0 \geq 0$ of a rubber band clamped at x=0. The length of the band is $L(t)=L_0+v_Gt$, i.e. it is stretched at the constant speed v_G . The ant runs towards the end of the rubber band at v_A . Parameters included in the competence of other KIT faculties (lifespan of the ant, length of the rubber band) are set to ∞ .

- a) (1 point) Verify that in the time interval [t, t+dt], the displacement traveled by the ant is $dx = v_A dt + v_G \frac{x(t)}{L(t)} dt$. Consider r(t) = x(t)/L(t) and express \dot{r} in terms of L_0 , v_G , and v_A .
- **b)** (1 point) Calculate r(t). (Pay attention to the initial condition $r_0 = x_0/L_0$.) Specify at what time t = T the ant reaches the endpoint x = L
- c) (1 point) Consider the case $L_0 = 1 m$, $v_G = 1 m/s$, $v_A = 1 cm/s$. When does the ant, starting from $x_0 = 0$, reach the end? Provide T in multiples of the age of the universe, which is 13.8×10^9 years.

To what extent does the situation improve if the ant starts from $x_0 = L_0/2 = 0.5 \, m$?

d) (1 point) For $x_0 = 0$, we now consider a discretized version of the problem: In the interval $[(n-1)\Delta t, n\Delta t]$, $n \in \mathbb{N}$, the ant first moves by a distance of Δx , and then (at time $n\Delta t$) the rubber band is instantly stretched from length nL_0 to $(n+1)L_0$. Let x_n denote the position of the ant after the n-th step (but before the subsequent stretching of the band), and we consider $r_n = x_n/(nL_0)$, i.e., after the first step, $r_1 = \Delta x/L_0$. What progress $\Delta r_k = r_k - r_{k-1}$ (for $k \geq 2$) does the ant make in the k-th step? Show that r_n is proportional to the harmonic

$$sum: r_n = \frac{\Delta x}{L_0} \sum_{k=1}^n \frac{1}{k}.$$

e) (1 point) While integrals come easily to physicists, sums often pose difficulties for them. The *Euler-Maclaurin formula* allows one to approximate a sum through an integral:

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} dx f(x) + \frac{f(n) + f(1)}{2} + \sum_{k=1}^{l} \frac{B_{2k}}{(2k)!} \left(f^{(2k-1)}(n) - f^{(2k-1)}(1) \right) + R_{2l}, \quad (1)$$

where the remainder term R_{2l} is neglected in the approximation. $f^{(j)}$ represents the j-th derivative of f, and the Bernoulli numbers B_j are $B_2 = 1/6$, $B_4 = -1/30$, and so on. We consider $r_3 = \frac{11}{6} \frac{\Delta x}{L_0}$ and $r_{20} = 3.59774 \frac{\Delta x}{L_0}$. Compute the approximations from Gl. (1) for both values, considering the cases l = 0, l = 1, and l = 2.

Note: You can solve parts (d) and (e) even if you haven't worked on (a)-(c).

Problem 6: We consider a vehicle with mass m that, at time t = 0, is moving with velocity v_0 and is decelerated by air friction for $t \ge 0$. The velocity v(t) satisfies the differential equation

$$\dot{v} = -\alpha v - \beta v^2, \qquad \alpha, \beta \ge 0. \tag{2}$$

 $m\alpha v$ and $m\beta v^2$ are the magnitudes of the Stokes's and the Newton's friction forces.

- a) (1 Point) Compute the partial fraction decomposition of $\frac{1}{\alpha v + \beta v^2}$ for $\alpha \neq 0$.
- **b)** (2 Points) Determine v(t). Take care when integrating to ensure that the argument of the logarithm is dimensionless. Express the integration constant in terms of v_0 .

Draw v(t) for $0 \le t \le 20$ s for the case $v_0 = 36$ m/s, $\alpha = 2.5 \cdot 10^{-2}$ s⁻¹, $\beta = 4 \cdot 10^{-3}$ m⁻¹. Include in the same plot the solutions for the cases when $\alpha = 0$ and $\beta = 0$.

Note: You can proceed similarly to Eq. (10) in the lecture. Consider the cases $\alpha=0$ and $\alpha\neq 0$ separately.

c) (2 Points) Determine x(t) with the initial condition $x(0) = x_0$.

Draw the distance $x(\infty) - x_0$ that the vehicle needs to roll out as a function of α for $0 < \alpha \le 2.5 \cdot 10^{-2} \text{ s}^{-1}$ for the values of v_0 and β given in b).

Note: Substitute $z = e^{-\alpha t}$ to solve the integral over v(t).