
Exercise 4: Hamiltonian mechanics 22 points

A relativistic free particle of rest-mass m in a one-dimensional space is described by
the Lagrangian

L = −mc2

√
1− v2

c2
, (1)

where v = ẋ.

(a) 4 pt Show that the Hamiltonian for the relativistic Lagrangian in Equation (1)

is given by H = c
√
p2 +m2c2.

(b) 5 pt Calculate the Poisson brackets {p,H} and {x,H}. Use these results to
find the explicit time dependence of x(t).

The expansion of the Hamiltonian in question (a) around the non-relativistic limit
allows for the computation of relativistic corrections. After the addition of a potential,
it is similarly possible to study relativistic corrections to the harmonic oscillator.
After an intricate canonical transformation, the resulting Hamiltonian is written as

H(x, p) =
p2

2m
+

1

2
mω2

0x
2 + λ

(
p2

2m
+

1

2
mω2

0x
2

)2

. (2)

(c) 3 pt Derive the Hamilton equations of motion for the Hamiltonian in Equa-
tion (2).

(d) 3 pt Show with the help of Poisson brackets that

H0 =
p2

2m
+

1

2
mω2

0x
2 (3)

is a conserved quantity.

(e) 3 pt Using the result of the previous question, show that x satisfies

ẍ+ ω2x = 0 , (4)

where ω = ω0 (1 + 2λH0).

(f) 4 pt Solve the differential equation in Equation (4). Express ω in terms of
λ,m, ω0 and the amplitude of oscillation A.
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Solution of exercise 1: Questions

(a) 1 pt Independent of time
The energy is conserved

(b) 1 pt px conserved
The Lagrangian is independent of x. Or:
The Lagrangian is invariant under translations in the x direction.

(c) 1 pt Force with ω ≈ Ω
The amplitude will grow, as the system is close to resonance.

(d) 1 pt What is described by L = 1
2
m~̇x+ k

r

Kepler problem, Coulomb problem, Planet around sun, classical electron
around nucleus, . . .

(e) 2 pt What is Liouville’s theorem
Areas in phase-space are conserved in time.

(f) 2 pt Variation of action is zero
The Euler-Lagrange equation

d

dt

∂f

∂q̇
=
∂f

∂q
(5)

(g) 2 pt Canonical transformation with F = qQ
When F is a function of q and Q, we have

p =
∂F

∂q
, P = −∂F

∂Q
(6)

so the transformation is

Q = p , P = −q (7)

(h) 3 pt The square plate

I =
∑

mr2 (8)

so with respect to the two axes we get

Iz = 4(m(
√

2a)2) = 8ma2 (9)

Idiag = 2(m(
√

2a)2) + 2× 0 = 4ma2

(i) 3 pt Derive t(x)

E =
1

2
mẋ2 + U(x)⇔

dx

dt
=

√
2

m

√
E − U(x)⇔

dt =

√
m

2

1√
E − U(x)

dx⇔ (10)

t =

√
m

2

∫ x2

x1

dx√
E − U(x)
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(j) 4 pt Solve the oscillator with constant force
The equation of motion is

mẍ+mω2x = F0ϑ(t) (11)

For t > 0 the general solution is

x = A cos(ωt+ θ) +
F0

mω2
(12)

which corresponds to

ẋ = −ωA sin(ωt+ θ) (13)

The boundary conditions are x(0) = ẋ(0) = 0 implying

θ = 0 , A = − F0

mω2
(14)

and inserting gives

x =
F0

mω2
(1− cos(ωt)) (15)
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Solution of exercise 2: ParticleCapture

(a) 4 pt What are the symmetries of the Lagrangian and what are the conserved
quantities
The symmetries are invariance under time-translations and under rotations.
The corresponding conserved quantities are the energy and the (three com-
ponents of the) angular momentum.

(b) 3 pt How to reduce to a 2d problem

Since ~M = ~r × ~p, ~r will always be perpendicular to ~M . We can pick the
coordinate system such that the conserved ~M points along the z-axis, and
then we get that ~r is confined to the two-dimensional xy plane.

(c) 3 pt Express E using Ueff

E = 1
2
m~̇r2 + U(r)

= 1
2
m(ṙ2 + r2θ̇2) + U(r)

= 1
2
mṙ2 +

M2

2mr2
+ U(r) (16)

= 1
2
mṙ2 + Ueff(r) with Ueff(r) =

M2

2mr2
+ U(r)

along the way we used

~M = mr2θ̇~uz (17)

(d) 3 pt Re-express Ueff using ρ and E

Having energy E at infinity, corresponds to the momentum p∞ =
√

2mE.
That gives the angular momentum M = p∞ρ =

√
2mEρ. Inserting this in the

expression for Ueff gives

Ueff(r) =
M2

2mr2
+ U(r)

=
Eρ2

r2
+ U(r) (18)

(e) 4 pt Sketch the potential and describe the types of motion
We now have

Ueff(r) =
(
Eρ2 + b

) 1

r2
− c

r4
(19)

The sketch is shown in Figure 3. The types of motion are scattering, circular
orbit, capture (from infinity), capture (while bound).

(f) 4 pt Calculate the maximum of Ueff

The maximum is where the derivative is zero.

dUeff

dr
=
(
Eρ2 + b

) −2

r3
− −4c

r5
(20)
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and that is zero when

−4c = −2
(
Eρ2 + b

)
r2 ⇔

r = ±
√

2c

Eρ2 + b
(21)

Inserting this point gives

Ueff|max = (Eρ2 + b)
Eρ2 + b

2c
− c

(
Eρ2 + b

2c

)2

=
(Eρ2 + b)2

4c
(22)

(g) 7 pt Calculate the cross section for capture
We derive an upper bound on ρ:

E > Ueff|max ⇔ E >
(Eρ2 + b)2

4c
⇔
√

4cE > Eρ2 + b ⇔

ρ2 <
2
√
cE − b
E

≡ ρ2
max (23)

Since ρ is by definition positive, we get the refined condition on the minimum
energy in terms of the parameters in the potential:

0 <
2
√
cE − b
E

⇔ E >
b2

4c
(24)

The lower bound ρmin is zero. The capture cross section is then πρ2
max if the

energy is large enough, and zero otherwise:

σcapture =

{
π 2
√
cE−b
E

for E > b2

4c

0 for E < b2

4c

(25)

x

U_eff

Figure 3: Sketch of Ueff.
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Solution of exercise 3: SpringPendulumSystem

(a) 4 pt Give a Lagrangian

L = 1
2
Mẋ2 + 1

2
m
(
ẋ2 + `2θ̇2 + 2` cos(θ)ẋθ̇

)
− 1

2
kx2 −mg`

(
1− cos(θ)

)
.

(26)

(b) 4 pt Construct Euler-Lagrange equations
Derive with respect to x and ẋ:

(M +m)ẍ+m` cos(θ)θ̈ + kx−m` sin(θ)θ̇2 = 0 . (27)

Derive with respect to θ and θ̇:

m`2θ̈ +m` cos(θ)ẍ+mg` sin(θ) = 0 . (28)

(c) 3 pt Expand Lagrangian
Set M = m and g = k`/(2m). Replace (1 − cos(θ)) = θ2/2 and cos(θ) = 1
(because the latter is already multiplied by something small). The Lagrangian
becomes

L = 1
2
m
(

2ẋ2 + `2θ̇2 + 2`ẋθ̇
)
− 1

2
kx2 − 1

2
k`2 θ

2

2

= 1
2
m
(

2q̇2
1 + q̇2

2 + 2q̇1q̇2

)
− 1

2
k
(
q2

1 + 1
2
q2

2

)
≡ 1

2

(
m11q̇

2
1 +m22q̇

2
2 + (m12 +m21)q̇1q̇2

)
− 1

2

(
k11q

2
1 + k22q

2
2

)
. (29)

From this we read of that

m̂ =

[
m11 m12

m21 m22

]
= m

[
2 1
1 1

]
, k̂ =

[
k11 k12

k21 k22

]
=
k

2

[
2 0
0 1

]
. (30)

(d) 4 pt Derive eigenfrequencies

Method 1: Set det(k̂ − ω2m̂) = 0. This gives quadratic equation for ω2,

m2(ω2)2 − 2kmω2 +
k2

2
= 0 , (31)

whose solutions are

ω2
1 =

k

2m

(
2 +
√

2
)
, ω2

2 =
k

2m

(
2−
√

2
)
. (32)

Method 2: Calculate eigenvalues of the matrix

m̂−1k̂ =
k

2m

[
2 −1
−2 2

]
(33)

since the Euler-Lagrange equations with harmonic ansatz gives (k̂−ω2m̂)~a = ~0,
which can be written as (m̂−1k̂)~a = ω2~a, for invertible mass matrix.
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(e) 4 pt Derive eigenvectors

Method 1: Solve (k̂ − ω2
1,2m̂)~a1,2 = ~0 for constant vectors ~a1,2. For instance,

(k̂ − ω2
1m̂)~a1 =

[
k − 2mω2

1 −mω2
1

−mω2
1

k
2
−mω2

1

] [
a1,1

a1,2

]
=

[
0
0

]
(34)

Solve the first equation, (k − 2mω2
1)a1,1 −mω2

1a1,2 = 0,

a1,2 =
k − 2mω2

1

mω2
1

a1,1 =
( k

mω2
1

− 2
)
a1,1 =

( 2

2 +
√

2
− 2
)
a1,1

=
( 2(2−

√
2)

(2 +
√

2)(2−
√

2)
− 2
)
a1,1 =

(
(2−

√
2)− 2

)
a1,1 = −

√
2a1,1 (35)

Thus ~a1 = a1,1(1,−
√

2) is determined up to an overall constant. Similarly,

~a1 = A1

[
1

−
√

2

]
, ~a2 = A2

[
1√
2

]
, (36)

with undetermined prefactors A1,2.

Method 2: Compute the eigenvectors for the matrix m̂−1k̂.

(f) 3 pt Describe and sketch eigenmodes
The eigenvalue ω1 and eigenvector ~a1 correspond to the motion where the two
masses move in opposite directions.
The eigenvalue ω2 and eigenvector ~a2 correspond to the motion where the two
masses move in the same direction.

(g) 4 pt Explain how to find general solution

Method 1: Decompose ~q in the basis of eigenvectors: ~q =
∑2

s=1 rs~as. The
eigenvectors in eq. (36) should be properly normalized:

~as · m̂ · ~as′ = δss′

~as · k̂ · ~as′ = ω2
sδss′

} (
⇒ As =

ωs√
2k

)
. (37)

Then the Lagrangian is, in terms of the normal coordinates rs, guaranteed to
be diagonal and “canonically” normalized:

L =
2∑

s=1

Ls , Ls = 1
2
ṙ2
s − 1

2
ω2
sr

2
s ⇒ rs = Cs cos(ωst+ φs) . (38)

Inserting this into ~q =
∑2

s=1 rs~as gives the final result for ~q.

Method 2: Construct the matrix Â, whose columns are comprised of the two
eigenvectors with the normalisation factors A1,2 set to 1:

Â =

[
1 1√
2 −

√
2

]
. (39)

Insert ~q = Â · ~Q into the Lagrangian, which diagonalises: L = L1 + L2, with

L1 = m(2−
√

2)Q̇2
1 − kQ2

1 ,

L2 = m(2 +
√

2)Q̇2
2 − kQ2

2 . (40)
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Find the corresponding Euler-Lagrange equations,

m(2−
√

2)Q̈1 + kQ1 = 0 ⇒ Q̈1 + ω2
1Q1 = 0 . (41)

m(2 +
√

2)Q̈2 + kQ2 = 0 ⇒ Q̈2 + ω2
2Q2 = 0 . (42)

Solve these equations by

Q1 = C1 cos(ω1t+ φ1) , Q2 = C2 cos(ω2t+ φ2) . (43)

Insert these solutions into ~q = Â · ~Q to find ~q. Finally, use q1 = x and q2 = `θ
to obtain the general solution for x and θ.

(h) 4 pt Imposing boundary conditions
The conditions x(0) = 0 and θ(0) = 0 produce

C1 sin(φ1) + C2 sin(φ2) = 0 , (44)

−C1 sin(φ1) + C2 sin(φ2) = 0 , (45)

which have the solution

φ1 = φ2 = 0 . (46)

The velocity conditions ẋ(0) = 0 and θ̇(0) = v0/` yield

C1ω1 cos(φ1) + C2ω2 cos(φ2) = 0 , (47)
√

2

`
(−C1ω1 cos(φ1) + C2ω2 cos(φ2)) =

v0

`
, (48)

Inserting φ1 = φ2 = 0, this becomes

C1ω1 + C2ω2 = 0 , (49)
√

2

`
(−C1ω1 + C2ω2) =

v0

`
, (50)

which have the solution

C1 =
−1

2
√

2

v0

ω1

, C2 =
1

2
√

2

v0

ω2

. (51)
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Solution of exercise 4: HamiltonianMechanics

(a) 4 pt Compute Hamiltonian
First calculate the conjugate momentum

p ≡ ∂L

∂ẋ
= −mc2 ∂

∂v

√
1− v2

c2
=

mv√
1− v2

c2

.

Note: this clearly gives the correct value mv in the non-relativistic limit.
Solve this for v = ẋ, in order to substitute that later into the Hamiltonian:

v =
cp√

p2 +m2c2

The Hamiltonian is then given by

H ≡ pv − L = pv +mc2

√
1− v2

c2
=

cp2√
p2 +m2c2

+mc2

√
1− p2

p2 +m2c2

= c
√
p2 +m2c2

(b) 5 pt Calculate the Poisson brackets. Find x(t)

{p,H} =
∂p

∂p

∂H

∂x
− ∂p

∂x

∂H

∂p
= 0 , this means that p is conserved! (52)

{x,H} =
∂x

∂p

∂H

∂x
− ∂x

∂x

∂H

∂p
= −∂H

∂p
=

−cp√
p2 +m2c2

. (53)

Combining this with the Hamilton equation ẋ = ∂H
∂p

we get

ẋ =
cp√

p2 +m2c2
= constant . (54)

Therefore

x(t) =
cpt√

p2 +m2c2
. (55)

(c) 3 pt Derive the Hamilton equations of motion
Note: From here on H = H0 + λH2

0 . Note: The parameter λ is not small.
The Hamilton equations are

ẋ =
∂H

∂p
= (1 + 2λH0)

∂H0

∂p
= (1 + 2λH0)

p

m
,

ṗ = −∂H
∂x

= −(1 + 2λH0)
∂H0

∂x
= −(1 + 2λH0)mω2

0x . (56)
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(d) 3 pt Show H0 is conserved
In general we have that

df

dt
=
∂f

∂t
+ {H, f} . (57)

Inserting f = H0 we find

dH0

dt
=
∂H0

∂t
+ {H,H0} . (58)

H0 does not depend on time explicitly, so ∂H0/∂t = 0. The Poisson bracket
is also zero:

{H,H0} = {H0 + λH2
0 , H0} = {H0, H0}+ λ{H2

0 , H0} = (1 + 2λ){H0, H0} = 0
(59)

due to antisymmetry of the Poisson bracket. We conclude that dH0/dt = 0,
in other words that H0 is conserved.

(e) 3 pt Show x satisfies harmonic differential equation
Use the Hamilton equations in eq. (56) and the fact that H0 is constant. Take
the time derivative of the first equation and insert the second equation.

ẍ = (1 + 2λH0)
ṗ

m
= −(1 + 2λH0)2ω2

0x ≡ −ω2x , (60)

where ω ≡ ω0(1 + 2λH0).

(f) 4 pt Solve the differential equation. Re-express ω.
The general solution is

x(t) = A cos(ωt+ φ) . (61)

From this one can calculate p, upon inverting the first Hamilton equation,

p =
mẋ

1 + 2λH0

=
−mωA sin(ωt+ φ)

1 + 2λH0

= −mω0A sin(ωt+ φ) . (62)

Now one can calculate H0

H0 =
(−mω0A sin(ωt+ φ))2

2m
+ 1

2
mω2

0(A cos(ωt+ φ))2

= 1
2
mω2

0A
2 (63)

Inserting this into the definition of ω yields

ω = ω0(1 + λmω2
0A

2) . (64)

We see that the frequency receives anharmonic corrections that scale as the
amplitude squared, as usual.
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