Solution of exercise 1: Questions

(a)
(b)

2 pt| Which Lagrangians are equivalent?
L, and L3 are equivalent to L, but L is not.

Incorporate constraint
e Method 1: Eliminate one of the three spacial coordinates from the Lagran-

gian, e.g. by using spherical coordinates (r = R, 0, ¢).

e Method 2: Include a Lagrange multiplier term L — L + Af(z,y, z), with
flz,y,2) =2 +y*+ 22— R*=0.

Invariance under spacial rotations

The angular momentum is conserved.

1 pt| Virial theorem
n
(1) =5{U)

1 pt| Value of the total cross section for Rutherford scattering
The total cross section is infinite (due to contributions from small angle
scattering)

Property Poisson bracket
The Poisson bracket {I, I} is also time independent.

Path in phase space

p

3

> 9

Number of different principal moments of inertia
A symmetric top has 2 different principle moments of inertia: (I, I, I3).

Bracket after canonical transformation

A set of coordinates ¢ and their conjugate momenta p satisfy by definition
the Poisson bracket relation {¢;,p;} = 0;;.

The Poisson bracket is conserved under canonical transformations. Hence,

{Qi, P} = 0y . (4)

Moment of inertia thin rod

The mass is m = pf. The moment of inertia around axes through middle is

¢/2 3
I = u/ dr r* = ry
—¢/2

r=£/2 B Iugg B m€2

2 12 (5)

r=—~0/2
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(k)

4 pt| Oscillator with friction
Inserting the ansatz into the differential equation gives the equation

N4 2kA+ W =0 = A=kt Vw?—K2=irktw . (6)
The general solution is

r=A ™M 4 A et (7)
— A+efnteiw0t 4 A,e*“te*i“’ot ) (8)

Moreover x must be real, so we get
x = Ae " cos(wot) . 9)

The sketch is
X(t)

4 pt| Two-particle system

The symmetry transformation x; — x; + € leads to conservation of the center-
of-mass momentum (mtotR).

To rewrite the Lagrangian, first solve the definitions R = (myx1 +maoxs)/(mq+
msg) and r = x; — xo for x1 and xs:

azlzR—i-&r, (10)
my + Mo
my
To=R— ————1. 11
2 my + Mo (11)

Inserting this into the Lagrangian gives

omp+mg oo 1 mymg

L 72 —U(r) (12)

2 2m1+m2

The motion of the center-of-mass is trivial and one can focus on the equations

of motion for the relative position 7 with associated reduced mass p = 52
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Solution of exercise 2: KeplerProblem

(a)

Demonstrate reduction to one-dimensional problem
The Lagrangian has a central potential and is thus symmetric under rotations
ri — 1 + € €;5,n,7;. Hence, angular momentum M is conserved.

From the expression M =7 x p we see that 7 is always perpendlcular to the
constant vector M. If we pick the coordinate system such that M points along
the z-axis, then 7 is confined to the two-dimensional z, y-plane. Thus z = 0.

With polar coordinates (r,6) in the x, y-plane, the Lagrangian reads

L=1m@?+r%0%) - U(r) . (13)

2
Using the expression M = mr26, the energy of the particle can be written in
terms of the coordinate r only:

2

+U(r) . (14)

E = Lms?
UL 2mr?

This can be solved for either ¢ or # as an integral over 7:

1

dr , 15
V (2/m)(E = U(r)) — M?/(m*r?) )
o= [ M/ ’ , (16)
\/Zm (r)) — M?2/r?
5 pt| Give and sketch Ueg(r). Discuss orbits.
From eq. (14) we see that
M2
Uet(1) = ST +U(r) . (17)

With U(r) = —k/r, we have a negative 1/r plus a positive 1/r?. For large
values of r the 1/r dominates, so the potential is negative there. For small
values of r the 1/r* dominates and the potential goes to +o00. The sketch is

Ugff

The orbits are:

(i) £ = Upin < 0: circular orbit (closed)
(i) Umin < £ < 0: elliptic orbit (closed)
(iii) £ > 0: hyperbolic orbit (open)
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(c) [5pt| Compute {H,A;} and give interpretation
The Runge-Lenz vector is conserved if {H, A;} = 0 (since A; is not explicitly
time-dependent). So let’s show that:

2
p k r;
(H, A} = {—2m — = e My - mk‘?} (18)
zeijk{Q ,M}_E{2ﬁ}_k., {1 M} /{;2{1 Q}
om D, P My 2 p77’ €ijk 717p] k +m 7“’7“

Calculate the four brackets in turn:

{p*,pi My} = pi{p*, My} = 2p;pe{pe, My} = 2p;pe€renpn =0

T T 2py, 1 2p; 273 kP
{pz, —} = 2pk{pk, —} = —{pk,n} + 2pm{pk, —} =———>3
T T T r T r

1 1 1 1 17r;
{_7ijk} :pj{_7Mk} + Mk{_7pj} :pj{_aekﬁmrépm} + Mk_Q_]
T T T T rer

1 1r; 1r, .M
ij%emré{_apm} + My~ =M=~ =~ :
T r2r

1 T
{_7 _} - 0 '
ror
Inserting these results gives

k/2p; 2r M,
{H,Ai}:——< Di T?"kpk;) _keijkrj_k

2\ r 3 3
_ o (Pi _ TiTRP k
A - ﬁeijijGkémTme
Pi  TiTkDk k
= —k(; - ) — 3 (rirkpk - rkmpi> =0. (19)

(d) Argue RL-vector lies in orbital plane

The Runge-Lenz vector is

By . mk
A=pxn - "0 (20)
T

The second term is proportional to 77 and therefore obviously lies in the plane
of the orbit. The first term is perpendicular to M. Also the orbital plane
is perpendicular to M. Hence, the first term is also in the orbital plane.
Conclusion is that A lies in the orbital plane.

(e) Sketch sun, planet, elliptic orbit, and RL-vector at various locations
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The first term of the RL vector, p x M , points towards the outside of the orbit.
Contrary, the second term, —mk7, points towards the inside of the orbit. At
the perihelion (point 1) and aphelion (point 3), these two vectors are paralel.
At the perihelion, p'is large and 7 is small, so the first term dominates and
the vector sum is in the direction from aphelion to perihelion.

Determine the shape of the orbit r(¢) and eccentricity e
Compute A - 7 in two ways:

A7 = Arcos(¢) , (21)

]

- k
7= (ﬁxM—m—F)~F:M2—mkr7 (22)

r

where we used the cyclic symmetry of the triple product (p’ X M )T =
(Fxp) - M = M?. Hence,

M? i
rcos(¢) mkr = r kT Acos(d) 14 2 cos(9) (23)

Comparing this to the general formula r = r¢/(1 + € cos(¢)) we identify

A
= - 4
€ — (24)
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Solution of exercise 3: CoupledPendulums

(a)

Construct Lagrangian

Let the origin of the coordinate system coincide with the equilibrium position
of mass m;. Then the positions of the masses m; and my are, respectively

(x1,y1) = (€sinfy, £(1 — cosby)) , (25)
(9, y2) = (x + €sinby, £(1 — cosby)) . (26)

The two pendulums thus have kinetic and potential energies

T, = %mlﬁﬁf . Uiy =m;gl(1 — cosb;) . (27)

The spring has potential energy
Uspring = k(d — $)2 ) (28)
where d is the length of the spring

d=/(z3—21)2 + (12 — )2
= /(z + {sinfy — (sin6;)2 + (Lcos by — L cosby)? (29)

The Lagrangian is

L= T1 + T2 - U1 - U2 - Uspring (3())

Construct E-L equations

mi0?0; = —m;glsin 6; — 2k(d — x) gg fori=1,2 (31)
with
od 1 . . .
0 = 3 [(:1: + (sinfy — £sinBy)(—C cosby) + (£ cos By — £ cosby)(—L sin 91)}
1
1
=7 [ — lxcos by — (*sin b, cos By + (2 sin b, cos 92]
= g [ — xcos by + {sin(6, — «92)] , (32)
Similarly,
od / .
%, =~ [x cos by — (sin(6; — 6’2)} . (33)

Approzimating Lagrangian
When the angles are small, d ~ x 4 {(fy — 61), so

Uspring ~ k£2(62 - 01)2 ) Uz ~ %mlgfgf : (34)
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(d)

FEigenfrequencies

wi = or wy=7=(1+2n). (35)

~|Q

Z ’
With 1 = 2kf/(mg) the eigenfrequencies may also be written as

k
+—(2+2). (36)

wi =
m

~Ie

Figenvectors
i = A H = A {_11] | (37)

Sketch eigenmodes

Even without the explicit calculation of eigenvectors, one can easily guess
that the modes are:

Pendulums move in phase (same direction) <  w? = g/{

Pendulums move out of phase (opposite directions) < w2 = g/¢(1+ 2n)

Explain how to find general solution

e Method 1: Decompose ¢ in the basis of eigenvectors: ¢ = Zi:l rsas. The
eigenvectors should be properly normalized:

To- 1~ Gy = Oau .
Gy k- Gy = w2,y
s s’ — WgUss

Then the Lagrangian is, in terms of the normal coordinates r, guaranteed to
be diagonal and “canonically” normalized:

\}

L= Z L,, L,= %ri —1wkr? = r, = Cycos(wst + @) . (39)

Inserting this into ¢'= Z§:1 rsas gives the final result for ¢.
e Method 2: Construct the matrix A, whose columns are comprised of the
two eigenvectors with the normalisation factors A 5 set to 1:

P 1 1
a1 ”
Insert §= A - Cj into the Lagrangian, which diagonalises: L = L; + Lo, but
the L; are not necessarily “canonically” normalized. Find the corresponding

Euler-Lagrange equations, and solve them. Insert the solutions into ¢= A - Q
to find ¢.
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Solution of exercise 4: Hamiltonian

(a)

Derive Hamiltonian equations
It is useful to write the Hamiltonian in index notation

2

H = 5—72 — Y€kem Brrepm (41)

The Hamilton equations are then

OH i i L=
T = o = % — Yeékei Brre = % +7(Fx B); , (42)
. OH . B
Pi="%"= YekimBrpm = 7(D' X B); (43)

)

6 pt| Compute time derivative ofM

]\2 can be computed with the EOM or with Poisson brackets.
e With EOM:

(
=9 |7 §) x B| =401 x B . (44)
Here we used the Jacobi identity for the cross product,
Ax(bx)+Ex (@xb)+bx (E@xad) =0,

Alternatively, we could have written out the cross products in index notation:

(7 x B) x pl; = eiu(F x B);px

= €jk€jemTeBmDi
= ijiEjzmT‘eBmpk
= (5kz5im - 5km5i£)7’£Bmpk
= (7-p)B; — (- B)ri , (45)
and similarly
[7x (Fx B); = (7 B)p; — (7 P)B; . (46)

Adding the two terms gives what we claimed:
(7Fx B) x g+ 7 x (px B)|; = (¥ B)p; — (- B)ry
= (5iz5mk - 5zk5m£)7’kp£Bm
= eximexékrkpéBm
- Exim(ﬁx 7:‘)acBm
= [(Fx p) x Bl; . (47)
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e With Poisson brackets:

5 M M
M:d _8

— = S+ {H, My = {H, )1} (48)

The Poisson bracket is
{H.M} = {5;; B M. M} = o, M) = yBi{ My, M} (49)

Calculating and inserting the following results

{Mi, p;} = —€ijupe , {Mi, Mj} = =€ My, (50)

gives
{H, M;} = (€zk£pz) VB (€meMy) = 4(M x B); . (51)

Thus
]\jj = ”yﬂ X é . (52)

(c) Sketch the vectors and argue for precession
Sketch must have M along the positive z-axis (assuming v > 0).

zZ

B

dMydre

x

Argue that M precesses around B by noting that

(i) The length |M] is constant (M is perpendicular to M); and

(ii) The component of M along B is constant (M is perpendicular to B).
Therefore, in general M will rotate around B.

(d) Solve for M

The equations are

MQ +’YB M1 s (54)
My=0. (55)

Decoupling the differential equations gives M; = —(yB)*M; = —w*M; for
1 = 1,2. The solution is, after imposing the boundary condition,

M1 = (M())l COS(Wt) + (M())Q sin(wt) ) (56)
My, = —(Mpy); sin(wt) + (Mp)2 cos(wt) , (57)
Mz = (My)s . (58)
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(e) [6 pt| Construct Lagrangian and EOM
With B along the z-axis, the Hamiltonian becomes

P
H = o ~vBMj . (59)
The Lagrangian is then
L=p-7—H
:ﬁ~?—ﬁ+7BM3 (60)
2m

We must substitute the canonical momentum in terms of 7. Using the first

Hamilton equation we find

) ) 7'"1 — ’}/BTQ
p=m[F+vB x 7] =m[F+yB(riés — r2é1)] = m |y +yBry (61)
T3
With this the three terms in the Lagrangian become
ﬁ- F: mT"Q + m*}/B(’f’lT"Q — 7"27.‘1) , (62)
2 m., m . .
o =5 g OBPO ) —mBlrts i) (63)
yBMs = myB(rif9 — ro11) + m(yB)?(r? +13) . (64)
Adding these terms up gives
R T o m 2.2 .2
L= 5 + myB(rire — ror1) + 5 (vB)“(r{ +r3) - (65)
The Euler-Lagrange equations are
i1 — yBry = YBiy + v2B?ry | (66)
iy — yBri1 = yBiy +*B°ry (67)
(68)

r3 =10 .
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