
Solution of exercise 1: Questions

(a) 2 pt Which Lagrangians are equivalent?
L1 and L3 are equivalent to L, but L2 is not.

(b) 2 pt Incorporate constraint
• Method 1: Eliminate one of the three spacial coordinates from the Lagran-
gian, e.g. by using spherical coordinates (r = R, θ, φ).

• Method 2: Include a Lagrange multiplier term L → L + λf(x, y, z), with
f(x, y, z) = x2 + y2 + z2 −R2 = 0.

(c) 1 pt Invariance under spacial rotations
The angular momentum is conserved.

(d) 1 pt Virial theorem

〈T 〉 =
n

2
〈U〉

(e) 1 pt Value of the total cross section for Rutherford scattering
The total cross section is infinite (due to contributions from small angle
scattering)

(f) 1 pt Property Poisson bracket
The Poisson bracket {I1, I2} is also time independent.

(g) 1 pt Path in phase space

x�

y�

z�

M�

dM/dt�

B�

x�

y�

z�

M�

dM/dt�

B�

p�

q�

(h) 1 pt Number of different principal moments of inertia
A symmetric top has 2 different principle moments of inertia: (I, I, I3).

(i) 1 pt Bracket after canonical transformation
A set of coordinates ~q and their conjugate momenta ~p satisfy by definition
the Poisson bracket relation {qi, pj} = δij.
The Poisson bracket is conserved under canonical transformations. Hence,

{Qi, Pj} = δij . (4)

(j) 3 pt Moment of inertia thin rod
The mass is m = µ`. The moment of inertia around axes through middle is

I = µ

∫ `/2

−`/2
dr r2 = µ

r3

3

∣∣∣∣r=`/2
r=−`/2

=
µ`3

12
=
m`2

12
. (5)
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(k) 4 pt Oscillator with friction
Inserting the ansatz into the differential equation gives the equation

−λ2 + 2iκλ+ ω2 = 0 ⇒ λ± = iκ±
√
ω2 − κ2 ≡ iκ± ω0 . (6)

The general solution is

x = A+e
iλ+t + A−e

iλ−t (7)

= A+e
−κteiω0t + A−e

−κte−iω0t . (8)

Moreover x must be real, so we get

x = Ae−κt cos(ω0t) . (9)

The sketch is

t

xHtL

(l) 4 pt Two-particle system
The symmetry transformation xi → xi + ε leads to conservation of the center-
of-mass momentum (mtotṘ).
To rewrite the Lagrangian, first solve the definitions R = (m1x1 +m2x2)/(m1 +
m2) and r = x1 − x2 for x1 and x2:

x1 = R +
m2

m1 +m2

r , (10)

x2 = R− m1

m1 +m2

r . (11)

Inserting this into the Lagrangian gives

L =
m1 +m2

2
Ṙ2 +

1

2

m1m2

m1 +m2

ṙ2 − U(r) (12)

The motion of the center-of-mass is trivial and one can focus on the equations
of motion for the relative position r with associated reduced mass µ = m1m2

m1+m2
.
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Solution of exercise 2: KeplerProblem

(a) 4 pt Demonstrate reduction to one-dimensional problem
The Lagrangian has a central potential and is thus symmetric under rotations
ri → ri + ε εijknjrk. Hence, angular momentum ~M is conserved.

From the expression ~M = ~r × ~p we see that ~r is always perpendicular to the
constant vector ~M . If we pick the coordinate system such that ~M points along
the z-axis, then ~r is confined to the two-dimensional x, y-plane. Thus z = 0.

With polar coordinates (r, θ) in the x, y-plane, the Lagrangian reads

L = 1
2
m(ṙ2 + r2θ̇2)− U(r) . (13)

Using the expression M = mr2θ̇, the energy of the particle can be written in
terms of the coordinate r only:

E = 1
2
mṙ2 +

M2

2mr2
+ U(r) . (14)

This can be solved for either t or θ as an integral over r:

t =

∫
dr

1√
(2/m)(E − U(r))−M2/(m2r2)

, (15)

θ =

∫
dr

M/r2√
2m(E − U(r))−M2/r2

, (16)

(b) 5 pt Give and sketch Ueff(r). Discuss orbits.
From eq. (14) we see that

Ueff(r) =
M2

2mr2
+ U(r) . (17)

With U(r) = −k/r, we have a negative 1/r plus a positive 1/r2. For large
values of r the 1/r dominates, so the potential is negative there. For small
values of r the 1/r2 dominates and the potential goes to +∞. The sketch is

r

Ueff

The orbits are:

(i) E = Umin < 0 : circular orbit (closed)

(ii) Umin < E < 0 : elliptic orbit (closed)

(iii) E > 0 : hyperbolic orbit (open)
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(c) 5 pt Compute {H,Ai} and give interpretation
The Runge-Lenz vector is conserved if {H,Ai} = 0 (since Ai is not explicitly
time-dependent). So let’s show that:

{H,Ai} =
{ p2

2m
− k

r
, εijkpjMk −mk

ri
r

}
(18)

=
εijk
2m

{
p2, pjMk

}
− k

2

{
p2,

ri
r

}
− kεijk

{1

r
, pjMk

}
+mk2

{1

r
,
ri
r

}
Calculate the four brackets in turn:

{p2, pjMk} = pj{p2,Mk} = 2pjp`{p`,Mk} = 2pjp`εk`npn = 0 ,{
p2,

ri
r

}
= 2pk

{
pk,

ri
r

}
=

2pk
r

{
pk, ri

}
+ 2pkri

{
pk,

1

r

}
=

2pi
r
− 2rirkpk

r3
,{1

r
, pjMk

}
= pj

{1

r
,Mk

}
+Mk

{1

r
, pj

}
= pj

{1

r
, εk`mr`pm

}
+Mk

1

r2

rj
r

= pjεk`mr`

{1

r
, pm

}
+Mk

1

r2

rj
r

= Mk
1

r2

rj
r

=
rjMk

r3
,{1

r
,
ri
r

}
= 0 .

Inserting these results gives

{H,Ai} = −k
2

(2pi
r
− 2rirkpk

r3

)
− kεijk

rjMk

r3

= −k
(pi
r
− rirkpk

r3

)
− k

r3
εijkrjεk`mr`pm

= −k
(pi
r
− rirkpk

r3

)
− k

r3

(
rirkpk − rkrkpi

)
= 0 . (19)

(d) 2 pt Argue RL-vector lies in orbital plane
The Runge-Lenz vector is

~A = ~p× ~M − mk

r
~r . (20)

The second term is proportional to ~r and therefore obviously lies in the plane
of the orbit. The first term is perpendicular to ~M . Also the orbital plane
is perpendicular to ~M . Hence, the first term is also in the orbital plane.
Conclusion is that ~A lies in the orbital plane.

(e) 4 pt Sketch sun, planet, elliptic orbit, and RL-vector at various locations

r

r

rr
1

2

3
4

pxM

A

mk ^

A

A

A

rpxM

mkr̂

mkr̂pxM

pxM
mkr̂
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The first term of the RL vector, ~p× ~M , points towards the outside of the orbit.
Contrary, the second term, −mkr̂, points towards the inside of the orbit. At
the perihelion (point 1) and aphelion (point 3), these two vectors are paralel.
At the perihelion, ~p is large and ~r is small, so the first term dominates and
the vector sum is in the direction from aphelion to perihelion.

(f) 6 pt Determine the shape of the orbit r(φ) and eccentricity ε

Compute ~A · ~r in two ways:

~A · ~r = Ar cos(φ) , (21)

~A · ~r =

(
~p× ~M − mk

r
~r

)
· ~r = M2 −mkr , (22)

where we used the cyclic symmetry of the triple product (~p × ~M) · ~r =

(~r ×~p) · ~M = M2. Hence,

Ar cos(φ) = M2 −mkr =⇒ r =
M2

mk + A cos(φ)
=

M2

mk

1 + A
mk

cos(φ)
. (23)

Comparing this to the general formula r = r0/(1 + ε cos(φ)) we identify

ε =
A

mk
. (24)
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Solution of exercise 3: CoupledPendulums

(a) 4 pt Construct Lagrangian

Let the origin of the coordinate system coincide with the equilibrium position
of mass m1. Then the positions of the masses m1 and m2 are, respectively

(x1, y1) = (` sin θ1, `(1− cos θ1)) , (25)

(x2, y2) = (x+ ` sin θ2, `(1− cos θ2)) . (26)

The two pendulums thus have kinetic and potential energies

Ti = 1
2
mi`

2θ̇2
i , Ui = mig`(1− cos θi) . (27)

The spring has potential energy

Uspring = k(d− x)2 , (28)

where d is the length of the spring

d =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(x+ ` sin θ2 − ` sin θ1)2 + (` cos θ1 − ` cos θ2)2 (29)

The Lagrangian is

L = T1 + T2 − U1 − U2 − Uspring (30)

(b) 4 pt Construct E-L equations

mi`
2θ̈i = −mig` sin θi − 2k(d− x)

∂d

∂θi
for i = 1, 2 (31)

with

∂d

∂θ1

=
1

d

[
(x+ ` sin θ2 − ` sin θ1)(−` cos θ1) + (` cos θ1 − ` cos θ2)(−` sin θ1)

]
=

1

d

[
− `x cos θ1 − `2 sin θ2 cos θ1 + `2 sin θ1 cos θ2

]
=
`

d

[
− x cos θ1 + ` sin(θ1 − θ2)

]
, (32)

Similarly,

∂d

∂θ2

=
`

d

[
x cos θ2 − ` sin(θ1 − θ2)

]
. (33)

(c) 4 pt Approximating Lagrangian
When the angles are small, d ≈ x+ `(θ2 − θ1), so

Uspring ≈ k`2(θ2 − θ1)2 , Ui ≈ 1
2
mig`θ

2
i . (34)
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(d) 4 pt Eigenfrequencies

ω2
1 =

g

`
, or ω2

2 =
g

`
(1 + 2η) . (35)

With η = 2k`/(mg) the eigenfrequencies may also be written as

ω2
± =

g

`
+
k

m
(2± 2) . (36)

(e) 4 pt Eigenvectors

~a1 = A1

[
1
1

]
, ~a2 = A2

[
1
−1

]
. (37)

(f) 3 pt Sketch eigenmodes
Even without the explicit calculation of eigenvectors, one can easily guess
that the modes are:
Pendulums move in phase (same direction) ⇔ ω2

1 = g/`
Pendulums move out of phase (opposite directions) ⇔ ω2

2 = g/`(1 + 2η)

(g) 3 pt Explain how to find general solution

• Method 1: Decompose ~q in the basis of eigenvectors: ~q =
∑2

s=1 rs~as. The
eigenvectors should be properly normalized:

~as · m̂ · ~as′ = δss′

~as · k̂ · ~as′ = ω2
sδss′

(38)

Then the Lagrangian is, in terms of the normal coordinates rs, guaranteed to
be diagonal and “canonically” normalized:

L =
2∑
s=1

Ls , Ls = 1
2
ṙ2
s − 1

2
ω2
sr

2
s ⇒ rs = Cs cos(ωst+ φs) . (39)

Inserting this into ~q =
∑2

s=1 rs~as gives the final result for ~q.

• Method 2: Construct the matrix Â, whose columns are comprised of the
two eigenvectors with the normalisation factors A1,2 set to 1:

Â =

[
1 1
1 −1

]
. (40)

Insert ~q = Â · ~Q into the Lagrangian, which diagonalises: L = L1 + L2, but
the Li are not necessarily “canonically” normalized. Find the corresponding
Euler-Lagrange equations, and solve them. Insert the solutions into ~q = Â · ~Q
to find ~q.
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Solution of exercise 4: Hamiltonian

(a) 4 pt Derive Hamiltonian equations
It is useful to write the Hamiltonian in index notation

H =
p2
k

2m
− γεk`mBkr`pm (41)

The Hamilton equations are then

ṙi =
∂H

∂pi
=
pi
m
− γεk`iBkr` =

pi
m

+ γ(~r × ~B)i , (42)

ṗi = −∂H
∂ri

= γεkimBkpm = γ(~p× ~B)i (43)

(b) 6 pt Compute time derivative of ~M

~̇M can be computed with the EOM or with Poisson brackets.
• With EOM:

~̇M = ~̇r × ~p+ ~r × ~̇p

=

(
~p

m
+ γ(~r × ~B)

)
× ~p+ ~r ×

(
γ(~p× ~B)

)
= γ

[
(~r × ~B)× ~p+ ~r × (~p× ~B)

]
= γ

[
(~r × ~p)× ~B

]
= γ ~M × ~B . (44)

Here we used the Jacobi identity for the cross product,

~a× (~b× ~c) + ~c× (~a×~b) +~b× (~c× ~a) = 0 ,

Alternatively, we could have written out the cross products in index notation:

[(~r × ~B)× ~p]i = εijk(~r × ~B)jpk

= εijkεj`mr`Bmpk

= εjkiεj`mr`Bmpk

= (δk`δim − δkmδi`)r`Bmpk

= (~r · ~p)Bi − (~p · ~B)ri , (45)

and similarly

[~r × (~p× ~B)]i = (~r · ~B)pi − (~r · ~p)Bi . (46)

Adding the two terms gives what we claimed:

[(~r × ~B)× ~p+ ~r × (~p× ~B)]i = (~r · ~B)pi − (~p · ~B)ri

= (δi`δmk − δikδm`)rkp`Bm

= εximεx`krkp`Bm

= εxim(~p× ~r)xBm

= [(~r × ~p)× ~B]i . (47)
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• With Poisson brackets:

~̇M =
d ~M

dt
=
∂ ~M

∂t
+ {H, ~M} = {H, ~M} . (48)

The Poisson bracket is

{H,Mi} =

{
p2
k

2m
− γBkMk , Mi

}
=
pk
m
{pk , Mi} − γBk{Mk , Mi} . (49)

Calculating and inserting the following results

{Mi, pj} = −εijkpk , {Mi,Mj} = −εijkMk , (50)

gives

{H,Mi} =
pk
m

(
εik`p`

)
− γBk

(
εik`M`

)
= γ( ~M × ~B)i . (51)

Thus

~̇M = γ ~M × ~B . (52)

(c) 4 pt Sketch the vectors and argue for precession

Sketch must have ~̇M along the positive x-axis (assuming γ > 0).

x�

y�

z�

M�

dM/dt�

B�

x�

y�

z�

M�

dM/dt�

B�

p�

q�

Argue that ~M precesses around B by noting that

(i) The length | ~M | is constant ( ~̇M is perpendicular to ~M); and

(ii) The component of ~M along ~B is constant ( ~̇M is perpendicular to ~B).

Therefore, in general ~M will rotate around ~B.

(d) 6 pt Solve for ~M
The equations are

Ṁ1 = −γBM2 , (53)

Ṁ2 = +γBM1 , (54)

Ṁ3 = 0 . (55)

Decoupling the differential equations gives M̈i = −(γB)2Mi ≡ −ω2Mi for
i = 1, 2. The solution is, after imposing the boundary condition,

M1 = (M0)1 cos(ωt) + (M0)2 sin(ωt) , (56)

M1 = −(M0)1 sin(ωt) + (M0)2 cos(ωt) , (57)

M3 = (M0)3 . (58)
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(e) 6 pt Construct Lagrangian and EOM

With ~B along the z-axis, the Hamiltonian becomes

H =
p2

2m
− γBM3 . (59)

The Lagrangian is then

L = ~p · ~̇r −H

= ~p · ~̇r − p2

2m
+ γBM3 (60)

We must substitute the canonical momentum in terms of ~̇r. Using the first
Hamilton equation we find

~p = m
[
~̇r + γ ~B × ~r

]
= m

[
~̇r + γB(r1ê2 − r2ê1)

]
= m

ṙ1 − γBr2

ṙ2 + γBr1

ṙ3

 . (61)

With this the three terms in the Lagrangian become

~p · ~̇r = mṙ2 +mγB(r1ṙ2 − r2ṙ1) , (62)

− p2

2m
= −m

2
ṙ2 − m

2
(γB)2(r2

1 + r2
2)−mγB(r1ṙ2 − r2ṙ1) , (63)

γBM3 = mγB(r1ṙ2 − r2ṙ1) +m(γB)2(r2
1 + r2

2) . (64)

Adding these terms up gives

L =
1

2
mṙ2 +mγB(r1ṙ2 − r2ṙ1) +

m

2
(γB)2(r2

1 + r2
2) . (65)

The Euler-Lagrange equations are

r̈1 − γBṙ2 = γBṙ2 + γ2B2r1 , (66)

r̈2 − γBṙ1 = γBṙ1 + γ2B2r2 , (67)

r̈3 = 0 . (68)
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