Lésung der Aufgabe

(a)

(b)

(f)

(2)

()

(i)

1 pt| Conserved quantity for rotational symmetry

Angular momentum M. (1pt)

2 pt| Two descriptions for motion on a circle

(1pt) Add a Lagrange multiplier L — L + \(z? + y* — R?).

(1pt) Explicitly eliminate one coordinate. One can substitute x = 1/ R? — 42,
or equivalently, change coordinates: (z,y) — (r,6) and then eliminate r = R.
1 pt| Conserved quantities in Kepler potential

Energy F, angular momentum A, Runge-Lenz vector A. (1 pt)

1 pt| Theorem for homogeneous potentials
The relation between average kinetic and potential energies are:

(T) = 5(U) (1pt) 1)

Potential for different trajectories

The following potentials are examples which allow for both open and closed

trajectories (1pt).
U(x) U(x)

/. |
/

Expression for angular momentum and energy for scattering

(M| = muvep , (1pt) (2)

1
E = §mvgo (1pt) (3)

Effects of anharmonic corrections
1. Frequency becomes mass dependent: FALSE (0.5 pt)

2. Frequency grows linearly with time: FALSE (0.5 pt)
3. The period becomes amplitude dependent: TRUE (0.5 pt)
4. There will be frequency multiples 2w, 3w, .... TRUE (0.5 pt)

Constant force oscillator solution
The solution is the sum of homogeneous ((1 pt)) and particular ((1pt)) soluti-
ons

Fy
& = Acos(wt + ¢) + - (4)

w2

Phase space volume under canonical transformation
Phase-space volume is invariant under canonical transformation. (1 pt)
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§) Poisson bracket

87’@'

Gri

{py, (agm)"} = (aif%_> 9, dare)”

Op;

= 0i;n(akry

)n—l

a(aﬂ’g) _

0 r;

= 5z‘jﬂ(ak7‘k)n_laz5m

= n(axry)

Hence

n—1
a;

Op;

{ﬁ, (@- F)"} =n(a@- 7" '@ (1pt)

(k) Principal moments of inertia for spherical top

All three moments of inertia of the spherical top are identical, so the answer

is one (1pt).

Losung der Aufgabe

(a) Lagrangian

L=T-U with

3

1 .

(Ipt) T = E §mir29i2
i=1

1
(Ipt) U= §7°2 (klu%Q + k2u§3 + kgugl)
0; — 21 /3)?

U?j = (93' -

(b) Matritzen

L= Z %mﬂg 12 - %7“2 (kl(fQ - 51)2 + ko(&3 — 52)2 + k(& — 53)2)

=1
ma 0 0
m=r*[ 0 my 0 | (Ipt)
0 0 ms

(c) FEuler-Lagrange equations
The equations are

k=nr?

k1 + k3
—ky
— ks

mi;&; + k& = 0 (1pt)

fori=1,2,3.

K
ky + ko
— ks

— ks
—ky
ko + k3

(1pt)

(10)
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(d)

Derive condition on Eigenfrequencies
Solve the Euler-Lagrange equations with an Ansatz {; = a; cos(wt + ¢). Then

(—w®mgj + kij)a; cos(wt + ¢) = 0 (12)
This must hold for all times t, so
(—w2mij + k’ij)a]‘ =0 <1 pt) (13)

We will necessarily find the trivial solution a; = 0 (no oscillation), unless the
matrix has less than maximal rank. This leads to the condition:

det(—w?m 4+ k) =0 (1pt) (14)
FEigenfrequenzen
3k k 2k
=0 2= 2=—+=— (Ipt 15
Wy Wy m Ws m + M (1pt) (15)
Figenvectors (3pt)
1 0 —om/M
6(1) =C 1 6(2) = Co —1 6(3) = C3 1 (16)
1 1 1

Boundary conditions
In terms of ¢ the boundary conditions are (1 pt)

&1 0 fi1 Vo
3 =(0], &2 =(0]. (17)
53 =0 0 53 =0 0

The general solution is (1 pt)

s=1
with
T =c+ dlt (19)
To = o cos(wat + ¢2) (20)
rs = C3 COS(wgt + gbg) (21)
and
1 0 —om/M
a =11 a® = -1 a® = 1 (22)
1 1 1
The constants are fixed to be (1pt)
1 =0 (23)
M
dy 002 M (24)
=0 (25)
P = /2 (26)
— M 3/2
Cg—U(M/? <2m—|—M) (27)
¢3 =m/2 (28)
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Lésung der Aufgabe

(a) Hamiltonian

The canonical momentum is

F=mi+ S,LT (1pt) (10)
The Hamiltonian is

H=7 §—L(1pt) (11)
= (mq—l— E/T) 7 — lnf2 + EfT(“) 7 (12)

= q p q B q g q)-4g
_ 1 —2 (13)
L (52 ¢A) (1pt 14
= % (P - = ) ( p ) ( )

(b) Poisson bracket

The Poisson bracket is
OH 0 OoH 0 oH
{H,p3}22< Py p3):——:0(1pt) (15)

Op; 0q;  0Oq; Op;
Y
73

since H depends only on ¢; and ¢y through A(g). As a result

dgs  Ogs
— =—+4+{H =0 16
The interpretation is that ps is conserved. (1 pt)
(c) [1pt] Value of w
Inserting the choice of vector potential into the Hamiltonian gives

1 eB \* 1 eB \* 1
H= " = — = —p? 1
2m (p1 * c?2 qz) * 2m (p2 c?2 Q1> * 2mp3 (17)
This is equal to the given Hamiltonian for p3 = 0 and
eB
=— (Ipt 18
w="2 (1pt) (18)

(d) [3 pt| Canonical Transformation
The transformation equations are

OF )
p1 = Do = mw (Ql - %%)
@ (1pt) (19)
p :a—F:mw(Q - 5q1)
2 aq2 2 241 )
Pi= g = (e - Qo)
aFl (1pt) (20)
Py=——r = —mw(q — Q1)
2 a@? Y
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Solving for old coordinates and momenta gives (1 pt)

@ =Q2— ﬁpl (21)
@ =Q1— P (22)
P1 = %mle + %PQ (23)
p2 = 3mwQs + 5P (24)
(e) New Hamiltonian
Since 0F /0t = 0 we have K = H. (1pt)
The new Hamiltonian becomes
1 1
K= %Pf + EmeQf (1pt) (25)
(f) New Hamilton equations
The four Hamilton equations are
: OH P . 0OH
G=3R " m Q2= 5p, =0
, SH SACON S (1pt)  (26)
p= - Py=-22
1 80, mw”( 2 90,
Their solutions are (1 pt)
Q)1 = Acos(wt + ¢) Qs =C (27)
P = —mwAsin(wt + ¢) P,=D (28)

with four constants C, D, A, ¢.
Using the provided expressions for ¢; and ¢, in terms of new coordinates in
eq. (B))-(6) finally gives the general solutions (1 pt)

¢ = C + Asin(wt + ¢) (29)
q2 = Acos(wt + @) D (30)

_ 1
Lésung der Aufgabe

(a) Symmetry

The setup is manifestly symmetric for a translation along the boundary y(x).
It is given by

i qre( ) =1 () @

The kinetic term of the Lagrangian is invariant under this transformation.
For the potential we look at the two quantities

y =y +ae, (8)
ar — +a(z + €) = ax + ae, 9)

such that y < ax = ¢y’ < ax’ and same for “>". Thus the potential is also
invariant under the transformation (1pt). The associated conserved quantity
is

aL.1_|_a_L.a:m($'+ay). (1pt) (10)

K=7%: 09
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This is the projection of the particle’s momentum along the direction of the
boundary between the two potential regions.

Passing the boundary

For a — 0 the conserved quantity becomes mi; = m|v;|sing; , @ € {1,2}.
The conservation law can then be rephrased as |vy|sin¢g; = |ve| singsy (1 pt).
Energy conservation also tells us that

m m 2
EZ?‘U1|2+U1:E‘UQ‘2+U2 = ’1)2|:\/‘U1‘2+E(U1—U2). (11)

Putting both conservation laws together yields

sin ¢ _ @ _
sinps vy

\/1+ﬁ(U1 —Ug). (1pt) (12)

2 pt| Geometry of the problem

The scattering angle 6 is the angle between the outgoing particle and the
z—axis (1pt). From the picture we see that § = 2§, where 0 itself is given by
a — (. Thus we have 0 = 2(a — ) (1pt).

Determine relation between p and 0
We now use the formula which was proven in the first part of the exercise,
and which now becomes:

sin «v 2U,

i 1+mv =n (1pt). (13)

2
oo

We reexpress 3 in terms of a and 6:
0 0 0
sin 8 = sin(« — 5) = sin a cos (5) — cos asin (5) : (14)

putting the two previous equations together, we obtain

1 0 . (0
= Cos (5) — sin <§> cot . (15)

We further express a in terms of p:

a? — p?
p® =a’sin’ a = cot’a = TR (16)
p
Inserting this into the square of the previous identity, we finally get after some
manipulations

p=a (1pt). (17)
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(e) Determine the minimal and mazimal scattering angles
From the relation between p and 6 we see that 6,,;, = 0, which is the case for
p =0 (Ipt). The maximal scattering angle is obtained when p = a, which
implies

Hmax o 1 _ 1
cos < 5 > =-= Omax = 2 arccos (ﬁ) (1pt). (18)

(f) Limiting cases for Opax
The case Uy — 0 means that n — 1, such that 6, — 0 (1pt). The other
case of strong potential means than n — oo, such that 6., — 7 (1pt) (give

half a point if the sketch misses or is wrong).

O C

(2) Determine the differential cross section
We differentiate both sides of the identity of subquestion (d) with respect to
¢ and obtain

5 (9)8/) n? (sin (%) cos (4) (1 — 2ncos (£) +n?)) — n3sin® (&) sin (%)
a0 (1 — 2n cos (g) + n2)2
(19)
The differential cross section is then given by
do = 27p(0) % dg (1pt)
a6

2 2sm ( ) cos (g) — nsin (g) cos? (g) — nsin (25) + n?sin (g) oS (g) W
(1 — 2n.cos (g) + n2)
() eos(§ ) (1—neos(@)
- (1 — 2n cos (g) + n2)2 @ (et 20)

(The last point can be given for either of the last two lines.)

(h) [1 pt| Guess the total cross section
Since the potential is spherically symmetric, the cross section of the scattering
object is going to be a disc with the same radius. Its surface is wa? (1pt).
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