
Lösung der Aufgabe 1

(a) 1 pt Conserved quantity for rotational symmetry

Angular momentum ~M . (1 pt)

(b) 2 pt Two descriptions for motion on a circle
(1 pt) Add a Lagrange multiplier L→ L+ λ(x2 + y2 −R2).
(1 pt) Explicitly eliminate one coordinate. One can substitute x =

√
R2 − y2,

or equivalently, change coordinates: (x, y)→ (r, θ) and then eliminate r = R.

(c) 1 pt Conserved quantities in Kepler potential

Energy E, angular momentum ~M , Runge-Lenz vector ~A. (1 pt)

(d) 1 pt Theorem for homogeneous potentials
The relation between average kinetic and potential energies are:

〈T 〉 =
n

2
〈U〉 (1 pt) (1)

(e) 1 pt Potential for different trajectories
The following potentials are examples which allow for both open and closed
trajectories (1 pt).

x

U(x)

x

U(x)

(f) 2 pt Expression for angular momentum and energy for scattering

| ~M | = mv∞ρ , (1 pt) (2)

E =
1

2
mv2∞ (1 pt) (3)

(g) 2 pt Effects of anharmonic corrections
1. Frequency becomes mass dependent: FALSE (0.5 pt)
2. Frequency grows linearly with time: FALSE (0.5 pt)
3. The period becomes amplitude dependent: TRUE (0.5 pt)
4. There will be frequency multiples 2ω, 3ω, ...: TRUE (0.5 pt)

(h) 1 pt Constant force oscillator solution
The solution is the sum of homogeneous ((1 pt)) and particular ((1 pt)) soluti-
ons

ξ = A cos(ωt+ φ) +
F0

mω2
(4)

(i) 1 pt Phase space volume under canonical transformation
Phase-space volume is invariant under canonical transformation. (1 pt)

Seite 8 von 14



(j) 1 pt Poisson bracket

{
pj, (akrk)

n
}

=

(
∂pj
∂pi

∂(akrk)
n

∂ri
− ∂pj
∂ri

∂(akrk)
n

∂pi

)
(5)

= δijn(akrk)
n−1∂(a`r`)

∂ri
− 0 (6)

= δijn(akrk)
n−1a`δ`i (7)

= n(akrk)
n−1aj (8)

Hence {
~p, (~a · ~r)n

}
= n(~a · ~r)n−1~a (1 pt) (9)

(k) 1 pt Principal moments of inertia for spherical top
All three moments of inertia of the spherical top are identical, so the answer
is one (1 pt).

Lösung der Aufgabe 2

(a) 2 pt Lagrangian

L = T − U with (5)

(1 pt) T =
3∑
i=1

1

2
mir

2θ̇2i (6)

(1 pt) U =
1

2
r2
(
k1u

2
12 + k2u

2
23 + k3u

2
31

)
(7)

u2ij = (θj − θi − 2π/3)2 (8)

(b) 2 pt Matritzen

L =
3∑
i=1

1

2
mir

2ξ̇2i −
1

2
r2
(
k1(ξ2 − ξ1)2 + k2(ξ3 − ξ2)2 + k3(ξ1 − ξ3)2

)
(9)

m̂ = r2

m1 0 0
0 m2 0
0 0 m3

 (1 pt) k̂ = r2

k1 + k3 −k1 −k3
−k1 k1 + k2 −k2
−k3 −k2 k2 + k3

 (1 pt)

(10)

(c) 1 pt Euler-Lagrange equations
The equations are

mij ξ̈j + kijξj = 0 (1 pt) (11)

for i = 1, 2, 3.
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(d) 2 pt Derive condition on Eigenfrequencies
Solve the Euler-Lagrange equations with an Ansatz ξj = aj cos(ωt+ φ). Then

(−ω2mij + kij)aj cos(ωt+ φ) = 0 (12)

This must hold for all times t, so

(−ω2mij + kij)aj = 0 (1 pt) (13)

We will necessarily find the trivial solution aj = 0 (no oscillation), unless the
matrix has less than maximal rank. This leads to the condition:

det(−ω2m̂+ k̂) = 0 (1 pt) (14)

(e) 1 pt Eigenfrequenzen

ω2
1 = 0 ω2

2 =
3k

m
ω2
3 =

k

m
+

2k

M
(1 pt) (15)

(f) 3 pt Eigenvectors (3 pt)

~a(1) = c1

1
1
1

 ~a(2) = c2

 0
−1
1

 ~a(3) = c3

−2m/M
1
1

 (16)

(g) 3 pt Boundary conditions
In terms of ξ the boundary conditions are (1 pt)ξ1ξ2

ξ3


t=0

=

0
0
0

 ,

ξ̇1ξ̇2
ξ̇3


t=0

=

v00
0

 . (17)

The general solution is (1 pt)

~ξ =
3∑
s=1

~a(s)rs (18)

with

r1 = c1 + d1t (19)

r2 = c2 cos(ω2t+ φ2) (20)

r3 = c3 cos(ω3t+ φ3) (21)

and

~a(1) =

1
1
1

 ~a(2) =

 0
−1
1

 ~a(3) =

−2m/M
1
1

 (22)

The constants are fixed to be (1 pt)

c1 = 0 (23)

d1 = v0
M

2m+M
(24)

c2 = 0 (25)

φ2 = π/2 (26)

c3 = v0

√
m

k

(
M

2m+M

)3/2

(27)

φ3 = π/2 (28)
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Lösung der Aufgabe 3

(a) 3 pt Hamiltonian
The canonical momentum is

~p = m~̇q +
e

c
~A (1 pt) (10)

The Hamiltonian is

H = ~p · ~̇q − L (1 pt) (11)

=
(
m~̇q +

e

c
~A
)
· ~̇q −

(
1

2
m~̇q 2 +

e

c
~A(~q ) · ~̇q

)
(12)

=
1

2
m~̇q 2 (13)

=
1

2m

(
~p− e

c
~A
)2

(1 pt) (14)

(b) 2 pt Poisson bracket
The Poisson bracket is

{H , p3} =
∑
i

(
∂H

∂pi

∂p3
∂qi︸︷︷︸
0

−∂H
∂qi

∂p3
∂pi︸︷︷︸
δi3

)
= −∂H

∂q3
= 0 (1 pt) (15)

since H depends only on q1 and q2 through A(~q). As a result

dq3
dt

=
∂q3
∂t

+ {H , p3} = 0 (16)

The interpretation is that p3 is conserved. (1 pt)

(c) 1 pt Value of ω
Inserting the choice of vector potential into the Hamiltonian gives

H =
1

2m

(
p1 +

e

c

B

2
q2

)2

+
1

2m

(
p2 −

e

c

B

2
q1

)2

+
1

2m
p23 (17)

This is equal to the given Hamiltonian for p3 = 0 and

ω =
eB

mc
(1 pt) (18)

(d) 3 pt Canonical Transformation
The transformation equations are

p1 =
∂F

∂q1
= mω

(
Q1 − 1

2
q2
)

p2 =
∂F

∂q2
= mω

(
Q2 − 1

2
q1
)

 (1 pt) (19)

P1 = − ∂F

∂Q1

= −mω (q1 −Q2)

P2 = − ∂F

∂Q2

= −mω (q2 −Q1)

 (1 pt) (20)
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Solving for old coordinates and momenta gives (1 pt)

q1 = Q2 − 1
mω
P1 (21)

q2 = Q1 − 1
mω
P2 (22)

p1 = 1
2
mωQ1 + 1

2
P2 (23)

p2 = 1
2
mωQ2 + 1

2
P1 (24)

(e) 2 pt New Hamiltonian
Since ∂F/∂t = 0 we have K = H. (1 pt)
The new Hamiltonian becomes

K =
1

2m
P 2
1 +

1

2
mω2Q2

1 (1 pt) (25)

(f) 4 pt New Hamilton equations
The four Hamilton equations are

Q̇1 =
∂H

∂P1

=
P1

m

Ṗ1 = − ∂H
∂Q1

= −mω2Q1

 (1 pt)

Q̇2 =
∂H

∂P2

= 0

Ṗ2 = − ∂H
∂Q2

= 0

 (1 pt) (26)

Their solutions are (1 pt)

Q1 = A cos(ωt+ φ) Q2 = C (27)

P1 = −mωA sin(ωt+ φ) P2 = D (28)

with four constants C,D,A, φ.
Using the provided expressions for q1 and q2 in terms of new coordinates in
eq. (5)-(6) finally gives the general solutions (1 pt)

q1 = C + A sin(ωt+ φ) (29)

q2 = A cos(ωt+ φ)− 1
mω
D (30)

Lösung der Aufgabe 4

(a) 3 pt Symmetry
The setup is manifestly symmetric for a translation along the boundary y(x).
It is given by

~q → ~q + ε

(
1
a

)
= ~q ′ (1 pt) (7)

The kinetic term of the Lagrangian is invariant under this transformation.
For the potential we look at the two quantities

y → y + aε, (8)

ax→ +a(x+ ε) = ax+ aε, (9)

such that y < ax ⇒ y′ < ax′ and same for “>”. Thus the potential is also
invariant under the transformation (1 pt). The associated conserved quantity
is

K =
∂L

∂ẋ
· 1 +

∂L

∂ẏ
· a = m(ẋ+ aẏ). (1 pt) (10)
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This is the projection of the particle’s momentum along the direction of the
boundary between the two potential regions.

(b) 2 pt Passing the boundary
For a → 0 the conserved quantity becomes mẋi = m|~vi| sinϕi , i ∈ {1, 2}.
The conservation law can then be rephrased as |v1| sinϕ1 = |v2| sinϕ2 (1 pt).
Energy conservation also tells us that

E =
m

2
|v1|2 + U1 =

m

2
|v2|2 + U2 ⇒ |v2| =

√
|v1|2 +

2

m
(U1 − U2). (11)

Putting both conservation laws together yields

sinϕ1

sinϕ2

=
|v2|
|v1|

=

√
1 +

2

m|v1|2
(U1 − U2). (1 pt) (12)

(c) 2 pt Geometry of the problem

θ

α

β
δ

The scattering angle θ is the angle between the outgoing particle and the
z−axis (1 pt). From the picture we see that θ = 2δ, where δ itself is given by
α− β. Thus we have θ = 2(α− β) (1 pt).

(d) 2 pt Determine relation between ρ and θ
We now use the formula which was proven in the first part of the exercise,
and which now becomes:

sinα

sin β
=

√
1 +

2U0

mv2∞
= n (1 pt). (13)

We reexpress β in terms of α and θ:

sin β = sin(α− θ

2
) = sinα cos

(
θ

2

)
− cosα sin

(
θ

2

)
. (14)

putting the two previous equations together, we obtain

1

n
= cos

(
θ

2

)
− sin

(
θ

2

)
cotα. (15)

We further express α in terms of ρ:

ρ2 = a2 sin2 α⇒ cot2 α =
a2 − ρ2

ρ2
. (16)

Inserting this into the square of the previous identity, we finally get after some
manipulations

ρ2 = a2
n2 sin2

(
θ
2

)
1− 2n cos

(
θ
2

)
+ n2

(1 pt). (17)
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(e) 2 pt Determine the minimal and maximal scattering angles
From the relation between ρ and θ we see that θmin = 0, which is the case for
ρ = 0 (1 pt). The maximal scattering angle is obtained when ρ = a, which
implies

cos

(
θmax

2

)
=

1

n
⇒ θmax = 2 arccos

(
1

n

)
(1 pt). (18)

(f) 2 pt Limiting cases for θmax

The case U0 → 0 means that n → 1, such that θmax → 0 (1 pt). The other
case of strong potential means than n→∞, such that θmax → π (1 pt) (give
half a point if the sketch misses or is wrong).

,

(g) 2 pt Determine the differential cross section
We differentiate both sides of the identity of subquestion (d) with respect to
θ and obtain

2ρ(θ)
∂ρ

∂θ
=
n2
(
sin
(
θ
2

)
cos
(
θ
2

) (
1− 2n cos

(
θ
2

)
+ n2

))
− n3 sin2

(
θ
2

)
sin
(
θ
2

)(
1− 2n cos

(
θ
2

)
+ n2

)2
(19)

The differential cross section is then given by

dσ = 2πρ(θ)

∣∣∣∣∂ρ∂θ
∣∣∣∣ dθ (1 pt)

= πn2a2
sin
(
θ
2

)
cos
(
θ
2

)
− n sin

(
θ
2

)
cos2

(
θ
2

)
− n sin

(
θ
2

)
+ n2 sin

(
θ
2

)
cos
(
θ
2

)(
1− 2n cos

(
θ
2

)
+ n2

)2 dθ

= πn2a2
sin
(
θ
2

) (
cos
(
θ
2

)
− n

) (
1− n cos

(
θ
2

))(
1− 2n cos

(
θ
2

)
+ n2

)2 dθ (1 pt). (20)

(The last point can be given for either of the last two lines.)

(h) 1 pt Guess the total cross section
Since the potential is spherically symmetric, the cross section of the scattering
object is going to be a disc with the same radius. Its surface is πa2 (1 pt).
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