Theoretische Physik B SS 10

Prof. Dr. Alexander Shnirman

Blatt 4

Dr. Boris Narozhny, Dr. Holger Schmidt

04.05.2010

1. Mathematische Quickies

(6 Punkte)

In dieser Aufgabe sollen einige grundlegende mathematische Techniken zum Thema partielle und totale Ableitungen von Funktionen, sowie zu Differentialoperationen von Skalar- und Vektorfeldern geübt werden.

(a) Gegeben sei eine Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = x^2 + \sqrt{x^4 + l^4}$$
 wobei $x(t) = l \sin \omega t$

Bestimmen sie die Ableitung $\frac{df}{dt}.$ (2 Punkte)

(b) Gegeben sei eine Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ mit

$$f(x, y, t) = x^2 + \sqrt{x^4 + y^4} + v^2 t^2$$
 wobei $x(t) = l \sin \omega t$, $y(t) = l \cos \omega t$.

Bestimmen sie die partiellen Ableitungen $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial t}$, sowie die totale Ableitung $\frac{df}{dt}$. (2 Punkte)

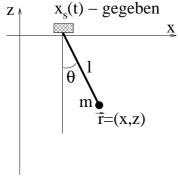
(c) Gegeben seien ein Skalarfeld $f: \mathbb{R}^3 \to \mathbb{R}$ und ein Vektorfeld $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$

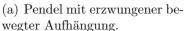
$$f(\vec{r}) = (\vec{r}\vec{s})^2 + l^2x^2,$$

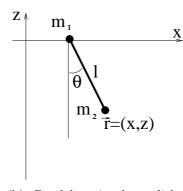
$$\vec{F}(\vec{r}) = (yz, xz, y^2 - x^2).$$

Berechnen sie $\vec{\nabla} f(\vec{r})$ und $\vec{\nabla} \cdot \vec{F}(\vec{r})$. (2 Punkte)

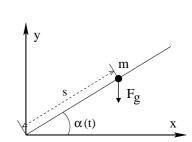
2. Lagrange-Formalismus zweiter Art: Einige Lagrange-Funktionen (6 Punkte)







(b) Pendel mit beweglicher Aufhängung.



(c) Perle auf rotierendem Stab.

Abbildung 1: Das Pendel mit erzwungener bewegter Aufhängung 1(a) und mit massebehafteter beweglicher Aufhängung 1(b). Die Perle auf dem rotierenden Stab 1(c).

- (a) Betrachten sie (analog zu Aufgabe 1 von Übungsblatt 1) ein Pendel mit einer erzwungenen bewegten Aufhängung (siehe Abb. 1(a)). Die zeitabhängige Position der Aufhängung ist durch die Funktion $x_s(t)$ gegeben. Bestimmen Sie die Lagrange-Funktion und leiten Sie die Bewegungsgleichung her (die Lösung ist nicht verlangt). (2 Punkte)
- (b) Die Aufhängung wird nun durch eine Masse m_1 ersetzt, die sich entlang der x-Achse reibungsfrei bewegen kann (siehe Abb. 1(b)). Bestimmen sie die Lagrangefunktion dieses Systems. (2 Punkte)
- (c) Betrachten sie eine Perle der Masse m, die sich reibungsfrei auf einem Stab bewegen kann, der mit der Winkelgeschwindigkeit ω rotiert (analog zu Aufgabe 3 von Übungsblatt 2) unter dem Einfluss der Gravitationskraft (siehe Abb. 1(c)). Bestimmen sie ebenfalls die Lagrangefunktion und geben sie die Bewegungsgleichung an (die Lösung ist nicht verlangt). (2 Punkte)

3. Das ebene Doppelpendel

(8 Punkte)

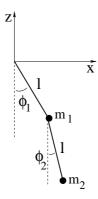


Abbildung 2: Das ebene Doppelpendel.

Betrachten Sie ein ebenes Doppelpendel das aus zwei unterschiedlichen Massen m_1 und m_2 besteht, welche sich nur in der x-z Ebene bewegen können. Die Massen sind miteinander und mit einem Aufhängepunkt durch zwei massenlose Stäbe der Länge l verbunden (siehe Abb. 2). Als generalisierte Koordinaten wählen wir die Winkel ϕ_1 und ϕ_2 (siehe Abb. 2).

- (a) Geben Sie die Lagrange-Funktion $L(\phi_1, \phi_2, \dot{\phi}_1, \dot{\phi}_2)$ an. Leiten Sie dann die Bewegungsgleichungen für ϕ_1 und ϕ_2 her. (4 Punkte) Hinweis: $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- (b) Für kleine Schwingungen gilt $\phi_1 \ll 1$, $\phi_2 \ll 1$. Vereinfachen Sie in diesem Falle die Bewegungsgleichungen durch Linearisieren. Um die linearisierte Gleichungen zu lösen, benutzen Sie den Ansatz

$$\phi_1 = a_1 e^{i\omega t}, \qquad \phi_2 = a_2 e^{i\omega t}, \tag{1}$$

wobei ω eine zu bestimmende Frequenz ist. Bestimmen sie die erlaubten Frequenzen (sog. Eigenfrequenzen). Geben Sie die Eigenfrequenzen für die Grenzfälle $m_1 \gg m_2$ und $m_1 \ll m_2$ an und diskutieren Sie beide Fälle physikalisch. (4 Punkte)

Hinweis: Es gibt nochmals eine kleine Änderung bezüglich der Beratungstutorien. Diese finden ab sofort statt (jeweils Donnerstags)

14.00 - 15.30 Uhr im Lehmann HS und 15.45 - 17.15 Uhr in Raum 12.1