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Exercise 1: Spherical Pendulum 5 points
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A spherical pendulum consists of a massless rod of length
r, which is attached to a fixed point at one end and has
a mass m on the other end. The pendulum is free to
move, under the influence of gravity, in two directions
around the fixed point. The position of the mass is thus
described by spherical coordinates (θ, φ).

(a) Construct the Lagrangian for this system.

(b) The Lagrangian is independent of time t. Find
the simplest choice of X and Ψi such that the
Lagrangian is invariant under the corresponding
infinitesimal transformation

t′ = t+ εX({qj}, t) , q′i = qi + εΨi({qj}, t) , (1.1)

where ε � 1. What is the corresponding conserved quantity? Calculate
its expression, starting from the general formula for the conserved Noether
charge,

I =
∑
i

∂L

∂q̇i
(Ψi −Xq̇i) + LX , (1.2)

and describe its physical interpretation.

(c) The Lagrangian is also independent of the coordinate φ. What is the related
symmetry transformation? Calculate the conserved quantity from Eq. (1.2).
What is the physical interpretation of this conserved quantity?

(d) Derive the Euler-Lagrange equations. Which equation leads to the conserved
quantity of the preceding question?

(e) Suppose that θ = θ0 is constant. Show that the pendulum revolves around
the vertical axis with constant angular velocity

φ̇0 =

√
g

r cos θ0
. (1.3)
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Exercise 2: Conserved quantities in various potentials 6 points

Consider a particle of mass m with position ~r = (r1, r2, r3), whose motion is
described by the Lagrangian L = 1

2
m~̇r 2−U(~r, t). We will consider various types of

potentials U(~r, t), in order to practice finding transformations that leave the action
invariant and to compute the associated conserved quantities.

(a) Suppose that the potential has the form U(~r, t) = U(~r − ~v0t), where ~v0 is a
constant vector. What infinitesimal transformation, of the form

t′ = t+ εX({rj}, t) , r′i = ri + εΨi({rj}, t) , (2.1)

leaves the Lagrangian (and thus the action) invariant? Show that the
associated conserved quantity is

E(t)− ~p · ~v0 = const , (2.2)

where the energy E(t) = T + U = 1
2
mṙ2i + U is actually not constant.

(b) Suppose instead that the potential has the form U(~r, t) = −F0r3, where F0

is a constant force. Obviously, the Lagrangian does not depend explicitly on
time, so t→ t+ ε is a symmetry of the action and energy is conserved. Find
additional symmetry transformations of the action, of the form of Eq. (2.1).
Show that they lead to momentum conservation in the r1, r2 plane and to
conservation of angular momentum around the r3 axis. Can you generalise
this problem to the potential U(~r, t) = −~F0 · ~r?

(c) Let U(~r, t) = e φ(~r, t)− e
c
~A(~r, t) · ~̇r for a particle with charge e. Choose the

potentials as φ = 0 and ~A = B0 r1 ê2, which corresponds to a constant
magnetic field ~B = B0 ê3. Find all symmetry transformations of the
Lagrangian and calculate the corresponding conserved quantities as functions
of ri and ṙi.

Exercise 3: Bead on an angled wire 5 points
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A bead of mass m, idealised as a point mass, moves
frictionlessly on a wire, which rotates with angular
velocity ω and constant inclination α around the
z-axis (see sketch). The system is subject to Earth’s

homogenous gravitational force ~Fg = −mgêz.
(a) Construct the Lagrangian for this system

using suitable generalised coordinates.

(b) Compute the conserved quantity that is
generated by the fact that the Lagrangian
does not depend explicitly on time.

(c) Is the conserved quantity in the previous
question equal to the energy of the bead m?
Provide an explanation in either case.
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(d) Find and solve the equations of motion for the initial conditions r(t = 0) =
r0 > 0 and ṙ(t = 0) = 0. Here, r(t) denotes the distance of the bead from
the origin.

(e) How does the system behave for very small or very large values of α (i.e.,
for α ≈ 0 and α ≈ π

2
)? How does the angular velocity ω influence the

behaviour? For which value of ω does the system change from one behaviour
to the other?

Exercise 4: Snell’s law of refraction 6 points

Fermat’s principle says that light propagates along the path along which it takes
the shortest time between two points. The goal of this exercise is to derive Snell’s
law of refraction from this principle.

(a) Show that the time which it takes for light to propagate in a plane from
a point P with coordinates (x1, y1) to a point Q with coordinates (x2, y2),
while in a medium1 with an index of refraction n(x, y), is given by

T [y(x)] =

∫ Q

P

dt =

∫ x2

x1

dxF (y(x), y′(x), x) , (4.1)

where

F (y(x), y′(x), x) =
n(x, y)

c

√
1 + y′(x)2 . (4.2)

(b) Draw an analogy between Fermat’s principle and the principle of minimal
action to find the Euler-Lagrange equation for the trajectory y(x) that
minimises the time functional T [y(x)]. Show that this implies

d

dx

(
y′(x)n(x, y)√

1 + y′(x)2

)
=
∂n(x, y)

∂y

√
1 + y′(x)2 (4.3)

with F from Eq. (4.2).

1The speed of light in a medium is given by v = c/n.
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Figure 1: Refraction of light at a boundary surface between two regions with
different, constant indices of refraction
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(c) Show that in a medium with constant index of refraction n(x, y) = n0 light
propagates along a straight line.

(d) Consider the situation in Fig. 1, where

n(x, y) = n(x) =

{
n1 für x < 0

n2 für x > 0
(4.4)

with n1 and n2 being different constants. Use the solution from question (c)
in both regions and use Eq. (4.3) to derive Snell’s law

n1 sin(θ1) = n2 sin(θ2) . (4.5)
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