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Exercise 1: Precession of the perihelion 10 points

Einsteins’ general theory of relativity predicts that the orbits of the planets are not
stable ellipses as predicted by Newton, but rather ellipses for which the perihelion
(i.e. the point on the orbit closest to the sun) slowly rotates around the sun. The
correct prediction of the size of this effect for the orbit of the planet Mercury was
the first triumph of general relativity, and helped to establish that theory as the
successor to Newtonian gravitation.
The leading effect of the relativistic corrections, can be modelled as an additional
term in the gravitational potential which decreases as r−2, such that the potential
becomes

U(~r ) = −k
r

+
C

r2
, (1.1)

where k is the same as in Newtonian gravity, and C parametrises the relativistic
correction.

(a) Write down the Lagrangian for an object with mass m moving in this three-
dimensional potential. What are the conserved quantities? Explain why
this implies that the motion takes place on a two-dimensional plane that is
naturally described by polar coordinates r and ϕ.

(b) For an object moving in a central potential, ϕ as a function of r can be
written as

ϕ =

∫
dr

r2
√

2mE
M2 − 2mU(r)

M2 − 1
r2

, (1.2)

where M is the angular momentum of the object and E is its energy. Show
that this implies that the shape of the orbit is given by

r =
ρ(1− ε2)

1 + ε cos(αϕ)
, (1.3)

where ρ, ε, and α are functions of E, M , m, k, and C. The expression for α
is

α =

√
1 +

2mC

M2
. (1.4)

What are the expressions for ρ and ε?

https://ilias.studium.kit.edu/goto.php?target=crs_1462479 page 1 of 4

https://ilias.studium.kit.edu/goto.php?target=crs_1462479


Hint: Follow the same steps as for the derivation of the Kepler orbits presented
in the lecture. Use the integral∫

dz√
az2 + bz + c

=
−1√
−a

arccos

(
− b+ 2az√

b2 − 4ac

)
, (1.5)

and the substitution z = 1/r.

(c) Make a sketch of the orbit for values of α close to one. Show α, ρ, and ε in
the sketch. What is the essential difference between the cases of α = 1 and
α 6= 1?

(d) Assume in the following that C is much smaller than all other scales in the
problem. Derive that the rate of the precession of the perihelion, i.e., the
change in the angular position of the perihelion for each orbit of the planet,
is

δϕ ≈ −2π
mC

M2
. (1.6)

(e) Einsteins’ theory predicts that the constant C is given by

C = −3
G2mm2

�

c2
(1.7)

where G is Newtons’ gravitational constant, m� is the mass of the sun, and
c the speed of light. Show that the rate of the precession of the perihelion
may be expressed as

δϕ ≈ 6πGm�

c2(1− ε2)ρ
(1.8)

Hint: You may use the Newtonian expressions for k, ρ, and ε:

k = Gmm� , ρ = −Gmm�

2E
, ε ≈

√
1 +

2EM2

mk2
. (1.9)

(f) The measured value of the rate of perihelion precession of Mercury is 5600
arcseconds per century (an arcsecond or is 1/3600 of a degree), but most of
this effect is due gravitational effects from the other planets, well described by
Newtonian physics. How big is the relativistic contribution to the precession
of the perihelion of Mercury?
Hint: The planet Mercury has ε = 0.206, ρ = 57.9× 109 m, orbital period τ =
88.0 (earth-)days, andm = 3.30× 1023 kg. Additionally, m� = 1.99× 1030 kg,
G = 6.67× 10−11 m3 kg−1 s−2 and c = 3.00× 108 m s−1.
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Exercise 2: The Runge-Lenz vector 10 points

We have shown in the lecture that the Runge-Lenz vector ~A is conserved in the
Kepler problem. The Runge-Lenz vector is defined as

~A = ~p× ~L−mkr̂ , (2.1)

where ~p is the momentum, ~L is the angular momentum, k = GMm and r̂ = ~r/r is
the unit vector in radial direction.

(a) Sketch an elliptical orbit and indicate the direction of the Runge-Lenz vector
at different points along the orbit.

(b) We introduce the angle θ between ~A and ~r such that ~A · ~r = | ~A||~r| cos θ.

Equate this expression to the explicit expression for ~A · ~r to derive the
formula

r =
L2

mk + A cos θ
, (2.2)

where L = |~L|.
(c) Compare Eq. (2.2) with the formula for an elliptic orbit

r =
(1− ε2)ρ
1 + ε cos θ

(2.3)

to express A in terms of the excentricity ε.

(d) If there are deviations from a 1/r potential, the Runge-Lenz vector is no
longer conserved. Show that the time derivative of the Runge-Lenz vector
for a general central potential U(r) = −k

r
+ δU(r) is given by

d ~A

dt
= f(r) r̂ × ~L , (2.4)

where f(r) = −dδU(r)
dr

.

Hint: Use the vector identity ~a× (~b×~c) = ~b(~a ·~c)−~c(~a ·~b) (BAC-CAB rule).

(e) Use the conservation of angular momentum, to express the time derivative
as a derivative with respect to the angle and to obtain the formula

d ~A

dθ
= −f(r)mr2L̂× r̂ , (2.5)

where L̂ = ~L/L is the unit vector in ~L direction.

(f) Now we consider the 1/r2 perturbation from the previous problem so that
f(r) = 2C

r3
holds. Show that the change of the Runge-Lenz vector after one

complete orbit is given approximately by

∆ ~A =
−2πCm

L2
L̂× ~A . (2.6)

Hint 1: Choose the coordinate system such that you can describe ~r in polar
coordinates (~r = r(cos θêx + sin θêy)) and that L̂ = Lêz.

Hint 2:
∫ 2π

0
cos θ sin θ = 0 and

∫ 2π

0
cos2 θ = π.
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(g) Compare Eq. (2.6) with the formula for the speed of the perihelion precession
from the previous exercise,

∆θ =
−2πmC

L2
. (2.7)

How do you interpret this agreement? How does this fit to the sketch from
subproblem (a)?
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