Quantenmechanik I SS 11

□ Bachelor, Prüfungsordnung 2008	Erste Klausur
□ Bachelor, Prüfungsordnung 2010	19.07.2011
□ Diplom	Einsicht 03.08.2011
Name:	Matrikel-Nr:
(Bitte ausfüllen und an die Lösung heften.)	

Aufgabe 1: Schrödingergleichung

(11 Punkte)

Betrachten Sie ein Teilchen der Masse m, das sich in einer Dimension bewegen kann. In Teilaufgaben (a) bis (c) sei die potenzielle Energie V(x) = 0, d.h. das Teilchen bewegt sich frei.

- a) Geben Sie den Ortsoperator X, Impulsoperator P und Hamiltonoperator H in der Ortsdarstellung an. (3 Punkte)
- b) Zeigen Sie die folgenden Vertauschungsrelationen:

$$[X,P]=i\hbar \quad , \quad [H,P]=0 \quad .$$

Welche physikalische Bedeutung hat die zweite Gleichung?

(3 Punkte)

- c) Geben Sie die zeitunabhängige und die zeitabhängige Schrödingergleichung an. Geben Sie die allgemeinen Lösungen $\phi_E(x)$ und $\psi_E(x,t)$ der zwei Gleichungen für eine vorgegebene Energie E>0 an. (4 Punkte)
- d) Zeigen Sie, wie man für einen beliebigen, zeitunabhängigen Hamiltonoperator H Lösungen der zeitabhängigen Schrödingergleichung aus Lösungen der zeitunabhängigen Schrödingergleichung konstruiert. (1 Punkt)

Aufgabe 2: Teilchen im δ -Potential

(11 Punkte)

Betrachten Sie ein Teilchen der Masse m, das sich in einer Dimension bewegen kann. Die potenzielle Energie sei gegeben durch $V(x) = -a\delta(x)$ mit a > 0.

Hinweis: In den Teilaufgaben (b) bis (d) ist nach dem $L\"{o}sungsweg$ gefragt. Eine einfache Angabe der Ergebnisse ist nicht ausreichend.

a) Geben Sie den Hamiltonoperator des Systems und die zeitunabhängige Schrödingergleichung an. (1 Punkt) b) Zeigen Sie, dass die Ableitung $\psi'(x)$ der Wellenfunktion $\psi(x)$ die Sprungbedingung

$$\lim_{\substack{x \to 0 \\ x < 0}} \psi'(x) - \lim_{\substack{x \to 0 \\ x > 0}} \psi'(x) = \frac{2ma}{\hbar^2} \psi(0)$$

erfüllt. (3 Punkte)

c) Lösen Sie die Eigenwertgleichung für E < 0. Definieren Sie dazu

$$\psi(x) = \begin{cases} \psi_{-} & \text{für } x < 0 \\ \psi_{+} & \text{für } x > 0 \end{cases}$$

und bestimmen Sie ψ_- und ψ_+ . Machen Sie dabei deutlich, welche Forderungen die Wellenfunktion erfüllen muß. Wie viele Zustände mit E < 0 gibt es? Geben Sie die entsprechenden Energie-Eigenwerte an. (5 Punkte)

d) Geben Sie zu jedem Zustand mit E < 0 eine normierte Eigenfunktion an. (2 Punkte)

Aufgabe 3: Wasserstoffatom und Störungstheorie (15 Punkte)

Betrachten Sie ein Teilchen der Masse μ , das sich in drei Dimensionen bewegen kann. Die potenzielle Energie ist gegeben durch $V(\boldsymbol{x}) = -\gamma/|\boldsymbol{x}|$. Vernachlässigen Sie den Spin des Teilchens.

- a) Geben Sie den Hamiltonoperator H_0 des Systems an. (1 Punkt)
- b) Die Eigenzustände $|n, l, m\rangle$ von H_0 werden vollständig klassifiziert durch die Eigenwerte von H_0 , \mathbf{L}^2 und L_3 , wobei $\mathbf{L} = \mathbf{X} \times \mathbf{P}$ der Bahndrehimpuls-Operator ist. Geben Sie die möglichen Kombinationen der Quantenzahlen (n, l, m) sowie die zugehörigen Eigenwerte der Operatoren an. (Eine Herleitung dieser Relationen ist hier nicht gefragt.)

 (3 Punkte)
- c) Entwickeln Sie die relativistische Energie-Impuls-Beziehung

$$E = \sqrt{\mu^2 c^4 + \boldsymbol{p}^2 c^2}$$

zur zweiten Ordnung in $p^2/(\mu^2c^2)$ und konstruieren Sie daraus einen Korrekturterm H' zum Hamiltonoperator H_0 des Wasserstoffatoms. Drücken Sie H' durch H_0 und den Operator R aus, wobei R in der Ortsdarstellung definiert ist durch

$$R\psi(\boldsymbol{x}) = |\boldsymbol{x}|\psi(\boldsymbol{x})$$
.

(3 Punkte)

- d) Bestimmen Sie die Kommutatoren $[H', \mathbf{L}^2]$ und $[H', L_3]$. Dies ist ohne Rechnung möglich. Begründen Sie Ihr Ergebnis. (1 Punkt)
- e) Berechnen Sie die Korrektur zur Grundzustands-Energie E_1 in erster Ordnung Störungstheorie. Drücken Sie die Energiekorrektur durch μ , γ , \hbar und c aus.

Hinweis: Die Darstellung der Eigenfunktionen von H_0 in Kugelkoordinaten ist

$$\psi_{nlm}^{(0)}(r,\theta,\phi) = f_{nl}(r)Y_{lm}(\theta,\phi) \quad ,$$

wobei $Y_{lm}(\theta,\phi)$ die Kugelflächenfunktionen sind und

$$f_{10}(r) = 2a^{-3/2}e^{-\frac{r}{a}}$$

Dabei ist $a = \hbar^2/(\mu\gamma)$ der Bohr'sche Radius.

(7 Punkte)

(18 Punkte)

Aufgabe 4: Zweidimensionaler harmonischer Oszillator

Betrachten Sie ein Teilchen der Masse m, das sich in zwei Dimensionen $(x_1 \text{ und } x_2)$ bewegen kann. Die potenzielle Engergie des Teilchens sei gegeben durch

$$V(x_1, x_2) = \frac{m}{2} \sum_{j=1}^{2} \omega_j^2 x_j^2$$
,

mit $\omega_i > 0 \ (i = 1, 2)$.

Hinweis: Alles, was Sie über den eindimensionalen harmonischen Oszillator wissen, dürfen Sie in dieser Aufgabe ohne Beweis verwenden.

- a) Geben Sie den Hamiltonoperator H des (quantenmechanischen) Systems an. (1 Punkt)
- b) Definieren Sie die Erzeugungs- und Vernichtungsoperatoren

$$a_{j} = \frac{1}{\sqrt{2}} \left(\frac{X_{j}}{x_{0,j}} + i \frac{P_{j} x_{0,j}}{\hbar} \right) \quad , \quad a_{j}^{\dagger} = \frac{1}{\sqrt{2}} \left(\frac{X_{i}}{x_{0,j}} - i \frac{P_{j} x_{0,j}}{\hbar} \right)$$

mit $x_{0,j} = \sqrt{\hbar/(m\omega_j)}$. Bestimmen Sie die Kommutatoren $[a_j, a_k], [a_j^{\dagger}, a_k^{\dagger}]$ und $[a_j, a_k^{\dagger}]$ mit $j, k \in \{1, 2\}$. (2 Punkte)

c) Drücken Sie den Hamiltonoperator H durch die a_j und a_j^{\dagger} (j=1,2) aus. Analog zum eindimensionalen harmonischen Oszillator kann man nun die Energieeigenzustände des Systems schreiben als

$$|n_1, n_2\rangle = \frac{1}{\sqrt{n_1! n_2!}} (a_1^{\dagger})^{n_1} (a_2^{\dagger})^{n_2} |0, 0\rangle ,$$

wobei der Grundzustand $|0,0\rangle$ die Gleichungen

$$a_1|0,0\rangle = a_2|0,0\rangle = 0$$

erfüllt. Bestimmen Sie die zugehörigen Energieeigenwerte E_{n_1,n_2} . (3 Punkte)

d) Betrachten Sie nun den Spezialfall $\omega_1=\omega_2\equiv\omega.$ Der Drehimpulsoperator in "z-Richtung" ist definiert als

$$L_3 = X_1 P_2 - X_2 P_1$$
 .

Bestimmen Sie den Kommutator $[H, L_3]$. Dies ist ohne Rechnung möglich. Begründen Sie Ihr Ergebnis. (1 Punkt)

e) Wir betrachten weiterhin den Spezialfall $\omega_1=\omega_2\equiv\omega$. Zeigen Sie, dass die möglichen Energie-Eigenwerte gegeben sind durch

$$E_n = \hbar\omega(n+1)$$

mit $n \in \mathbb{N}_0$. Definieren Sie

$$a_{\pm} = \frac{1}{\sqrt{2}}(a_1 \pm ia_2)$$
 , $a_{\pm}^{\dagger} = \frac{1}{\sqrt{2}}(a_1^{\dagger} \mp ia_2^{\dagger})$

und berechnen Sie $[a_{\pm}, a_{\pm}^{\dagger}]$ und $[a_{\pm}, a_{\mp}^{\dagger}]$.

(3 Punkte)

f) Drücken Sie H und L_3 durch die Operatoren a_{\pm} und a_{\pm}^{\dagger} aus. Geben Sie zu jedem Energie-Eigenwert E_n $(n \in \mathbb{N}_0)$ die möglichen Eigenwerte von L_3 an. (8 Punkte)