Theo D - Kühn - Mitschrieb SS 2005

Christian Barth & Christian Benz

2. Juni 2005

Inhaltsverzeichnis

1	Einf	ührung	- einfache eindimensionale Probleme	5
	1.1	Elektr	omagnetische Wellen & Photonen	Ę
		1.1.1	Zusammenhang zwischen Energie und Frequenz	Ę
		1.1.2	Ausbreitung	Ę
		1.1.3	Spektralzerlegung	6
	1.2	Materi	ie–Wellen	7
	1.3		npakete	7
		1.3.1	Freies Teilchen $(V=0)$	7
		1.3.2	Zusammenhang zwischen $\Psi(x,t=0)$ und $g(x)$	8
		1.3.3	Zeitliche Entwicklung eines Freien Wellenpaketes	ç
	1.4		•	10
		1.4.1		10
		1.4.2		11
		1.4.3		14
		1.4.4		15
		1.4.5		16
		1.4.6		17
		1.1.0	1 otolikatopi	
2	Mat	hemati	sche Hilfsmittel	21
	2.1	Wellen	nfunktionen als Zustandsraum	21
		2.1.1	Zustandsraum \mathfrak{F}	21
		2.1.2	Orthonormierte Basis	23
		2.1.3	Ebene Wellen und andere verallgemeinerte Basiszustände	24
	2.2	Dirac-	Notation	26
		2.2.1	Einführung	26
		2.2.2	"ket" und "bra" liefert Bracket	26
		2.2.3		27
		2.2.4		27
	2.3	Darste		28
	2.4	Eigenv	vert–Gleichungen / Observablen	29
		2.4.1	•	29
		2.4.2	9 , 9	30
3	Post	tulate d	ler Quantenmechanik	33
	3.1		•	33
	3.2	Schröd	linger Gleichung / allgemeine Resultate	35
		3.2.1		35
		3.2.2		36
		3.2.3	9	37
		3.2.4	Zeitliche Entwicklung von Zuständen	37
4	Der	Harmo	nische Oszillator (HO)	39
-	4.1		,	39
	4.2		_	39
	.=			39

	4.2.2	H.O. Algebraische Lösung	41		
4.3	Diskussion der Resultate				
	4.3.1	Erwartungswerte	45		
	4.3.2	Qualitativer Beitrag zum Grundzustand	45		
4.4	Dreidi	mensionaler Harmonischer Oszillator in kartesischen Koordinaten .	45		

 \overline{Seite} 3

Literaturangaben

- Cohen-Tannoudji, Diu, Laloë (Grundlage dieser Vorlesung)
- Landau Lifshitz (knapp)
- Messiah (ausführlich)
- Dawydow (Viele Anwendungsbeispiele)
- Nolting Band 5 (O-Ton: "billig")
- Schwabl

Historische Entwicklung (1900–1925/27)

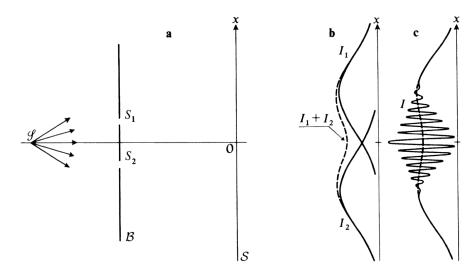
Planck → Heisenberg / Schrödinger

"Kopenhagener Interpretation"

Dualität zwischen Wellenbild und Teilchenbild fürs Photon

Dualität zwischen Wellenbild und Teilchenbild fürs Elektron

Doppelspalt Experiment



1 Einführung – einfache eindimensionale Probleme

- Die Quantenmechanik findet in fast allen Gebieten der Physik Verwendung
- Die Stabilität der Materie beruht auf der Quantemechanik
- Diskrete Atomniveaus \Rightarrow diskrete Übergangsenergie \rightarrow Farben
- Halbleiter: Bändermodell
- Kernphysik: Statistischer Charakter des radioaktiven Zerfalls
- Verschränkte Zustände: EPR-Paradoxon (Einstein, Podolski, Rosa)
- Verknüpfung von QM & Relativitätstheorie ⇒ Existenz von Antiteilchen

1.1 Elektromagnetische Wellen & Photonen

1.1.1 Zusammenhang zwischen Energie und Frequenz

Planck: $E = hf = \hbar\omega$

$$h = \frac{h}{2\pi}$$
 $h = 6.62 \cdot 10^{-34} Js$, Wirkungsquantum"

Erinnerung: Wirkung $\equiv \int_{t_1}^{t_2} p(t) \cdot \dot{q}(t) dt$

Später: Energie-Differenz von Atomniveaus = $\hbar\omega_{\text{Photon}}$

entsprechend: Impuls \leftrightarrow Wellenlänge

Compton-Streuung

 $\gamma + e \rightarrow \gamma + e$ (mit anderen Impulsen)

Impulser haltung: $\overrightarrow{p} = \hbar \underbrace{k}_{2\pi/\lambda}$

1.1.2 Ausbreitung

Intensität (Energiedichte / Zeiteinheit) $I(x) \sim |E(x)|^2$

Beitrag der durch den Spalt 1 bzw. 2 fallenden Welle

$$E(x) = E_1(x) + E_2(x)$$

$$E(x) = E_1(x) + E_2(x)$$

$$I \sim |E_1(x) + E_2(x)|^2 = I_1(x) + I_1(x) + \underbrace{2E_1(x)E_2(x)}_{\text{Interferenzterm}}$$

Entsprechender Ansatz für Wellenfunktion:

 $I(x) \Rightarrow$ Wahrscheinlichkeitsverteilung auf dem Schirm. Die Bahn eines einzelnen Photons kann nicht vorhergesagt werden.

Anmerkungen

• Superpositionsprinzip

 $E_1(x), E_2(x)$ sind Lösungen der Maxwell-Gleichungen

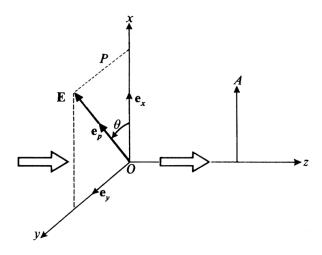
 $\Rightarrow E(x) = \lambda_1 E_1(x) + \lambda_2 E_2(x)$ ist ebenfalls Lösung, denn E genügt linearen DGL! (gilt auch für Wellenfunktion Ψ in der QM)

- I(x) = Wahrscheinlichkeitsverteilung. Eine große Zahl von Photonen ist erforderlich für Interferenzmuster.
- Wichtiger Unterschied: Elektrisches Feld ist reell. Gelegentliche Beschreibung durch komplexe Zahlen: $\Re \left(E e^{i\omega t} \hat{=} E \cos \omega t \right)$

QM: $\Re[\Psi]$ und $\Im[\Psi]$ sind we sentlich

1.1.3 Spektralzerlegung

Polarisiertes Licht mit Ausbreitungsrichtung \vec{e}_z fällt auf Analysator A



Klassisch: P polarisiert Licht in \vec{e}_P Richtung

$$E(\vec{r},t)=E_0\vec{e}_Pe^{i(kz-\omega t)}$$
Intensität E_0^2 hinter P
 Intensität hinter A: $E'(\vec{r},t)=E'_0\vec{e}_xe^{i(kz-\omega t)}$, wobe
i $E'_0=E_0\vec{e}_x\vec{e}_P=E_0\cos\theta$ $I_A=E'^2_0=E^2_0\cos^2\theta$

QM: Photon wird in Analysator gestoppt (Wahrscheinlichkeit = $\sin^2 \theta$) oder durchgelassen (Wahrscheinlichkeit = $\cos^2 \theta$) \Rightarrow 2 mögliche Resultate. (klassisch: Welle wird geschwächt)

Nach A würde das Photon weitere Analysatoren (bezüglich x-Richtung) sicher durchlaufen: Nach A ist es "im Eigenzustand zu A".

Es gibt hier zwei Eigenzustände mit Polarisation \vec{e}_x und \vec{e}_y . Für diese ist das Messresultat in A sicher.

Jeder Zustand kann in Eigenzustände von A zerlegt werden:

$$\vec{e}_P = \cos\theta \vec{e}_x + \sin\theta \vec{e}_y$$

elektromagnetisches Feld

• $I(x) \sim |E(x)|^2$

• Überlagerungsprinzip

$$E_1, E_2$$
 Lösung $\Rightarrow E = \lambda E_1 + \lambda E_2$
 E ist Lösung

• Spektralzerlegung

Jeder Zustand mit Polarisation \vec{e}_P kann in Eigenzustand \vec{e}_x und \vec{e}_y zerlegt werden.

1.2 Materie-Wellen

Übertragung der Dualität von Wellen und Teilchen auf Teilchen mit Masse $m \neq 0$ (de Broglie) ... Schrödinger

- 1. Klassische Trajektorie x(t)
 - ⇒ Zeitlich veränderliche Wellenfunktion

$$\Psi(\vec{r},t)$$

2. Wahrscheinlichkeitsdichte = $|\Psi(\vec{r},t)|^2$

(Kopenhagener Interpretation), das Teilchen am Ort \vec{r} zur Zeit t zu finden.

- \Rightarrow Normierung $\int |\Psi|^2 dV = 1$
- 3. Klassische Bewegungsgleichung ⇒ Schrödingergleichung

$$\boxed{-\frac{\hbar^2}{2m}\Delta\Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) = i\hbar\partial_t\Psi(\vec{r},t)}$$

Lineare, partielle DGL, homogen \Rightarrow Überlagerungsprinzip erster Ordnung in t Anfangswertproblem: $\Psi(\vec{r},t)|_{t_0}$ legt $\Psi(\vec{r},t) \forall t$ fest.

1.3 Wellenpakete

1.3.1 Freies Teilchen (V=0)

$$-\frac{\hbar^2}{2m}\Delta\Psi(\vec{r},t) = i\hbar\partial_t\Psi(\vec{r},t) \tag{1}$$

DGL mit konstanten Koeffizienten.

 $\Psi_{\vec{k}}(\vec{r},t) = Ae^{i(\vec{k}\vec{r}-\omega_k t)}$ ebene Welle, A,\vec{k} beliebig

$$\omega_k = \frac{\hbar \vec{k}^2}{2m}; (\hat{=}E = \frac{\vec{p}^2}{2m})$$

$$\omega_k = \frac{\hbar \vec{k}^2}{2m}; (\hat{=}E = \frac{\vec{p}^2}{2m})$$

$$|\Psi|^2 = |A|^2 \text{ konstant} \Rightarrow \text{nicht integrierbar}$$

Lineare DGL: jede Überlagerung von Lösungen mit verschiedenen k ist Lösung. Normierbare Überlagerung von ebenen Wellen \Rightarrow Wellenpaket

$$\int \frac{dk}{(2\pi)^{\frac{3}{2}}} g(\vec{k}) e^{i(\vec{k}\vec{r} - \omega_k t)} = \Psi(\vec{r}, t)$$
(2)

ist Lösung von (1).

Bei fester Zeit t (= 0 per Konvention) $g(\vec{k})$ = Fouriertransformation von $\Psi(\vec{r},t=0)$

$$g(\vec{k}) = \int \frac{d\vec{r}}{(2\pi)^{\frac{3}{2}}} g(\vec{k}) e^{i\vec{k}\vec{r}} = \Psi(\vec{r}, t = 0)$$
(3)

Zu einer festen Zeit t(=0) kann zu $\Psi(\vec{r},0)$ immer die Fouriertransformation angegeben werden. Gleichung (2) legt dann $\Psi(\vec{r},t)$ \forall t fest. (Bei Anwesenheit eines Potentials gilt aber <u>nicht</u> mehr $E=\hbar\omega_k=\frac{\hbar^2\vec{k}^2}{2m}$)

Zeitliche Entwicklung eines Wellenpaketes:

 \Rightarrow elektromagnetische Welle im Vakuum

$$\omega = ck$$
 $(f = c/\lambda)$ – lineares Dispersionsprinzip

 \Rightarrow Form des Wellenpakets bleibt erhalten.

Im Medium oder in Halbleitern: $\omega(k)$ ist Funktion von $k \Rightarrow$ Wellenpaket wird verformt.

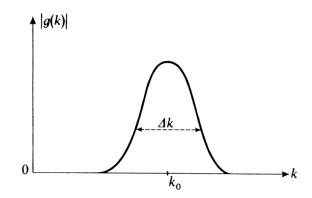
$$v_{Phaseng.} = \frac{\omega(k)}{k}$$
 $v_{Gruppeng.} = \frac{d\omega}{dk}$

1.3.2 Zusammenhang zwischen $\Psi(x,t=0)$ und g(x)

Frage: "Breite" von $\Psi(x,0)$ und g(k)

Ansatz oBdA:
$$g(x) = \underbrace{|g(x)|}_{\text{Betrag}} \underbrace{e^{\alpha(k)}}_{\text{Phase}}$$

Annahmen: 1. g ist glatt, und nur im $\left[k_0 - \frac{\Delta k}{2}; k_0 + \frac{\Delta k}{2}\right]$ wesentlich von 0 verschieden



2. $\alpha(k)$ variert nur wenig in diesem Bereich:

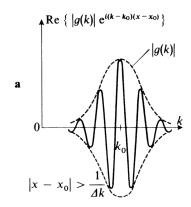
$$\Rightarrow$$
 daher Taylor: $\alpha(k) = \alpha(k_0) + (k - k_0) \underbrace{\frac{d\alpha}{dk}}_{=-X_0} |_{k=k_0}$

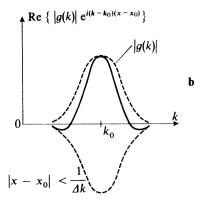
Konsequenz für $\Psi(x,0)$

$$\begin{split} \Psi(x,t=0) &= \int \frac{dk}{2\pi} e^{ikx} \\ &= \int \frac{dk}{\sqrt{2\pi}} \cdot |g(k)| e^{i[\alpha(k_0) - (k-k_0)x_0} \overbrace{+k_0x - k_0x}^{\text{erweitert}} + kx] \end{split}$$

$$\Longrightarrow \Psi(x,t=0) = e^{i[\alpha k_0 + k_0 x]} \int \frac{dk}{\sqrt{2\pi}} |g(k)| e^{i[k-k_0][x-x_0]}$$

- Falls $x = x_0$ dann $e^{(\cdots)} = 1$ \rightarrow nur positive Beiträge $\Rightarrow |\Psi|$ ist maximal
- Für $|x x_0| \gg \frac{1}{\Delta k}$: viele Oszillationen innerhalb des Integrationsgebiet $\Rightarrow |\Psi|$ ist klein





→ Auslöschung für:

$$(x-x_0)\Delta k \gg 1$$

→ <u>Maximum</u> des Wellenpakets im Ortsraum bei:

 $x_0 = -\left[\frac{d\alpha}{dk}\right]_{k-k_0}$ (Methode der stationären Phase)

 $\longrightarrow \underline{\text{Breite}}$ im Ortsraum:

$$\Delta x \sim \frac{1}{\Delta k}$$

Physikalische Bedeutung / Nutzen $p = \hbar k$

 \Longrightarrow Zusammenhang zwischen Breite der Verteilung im Ortsraum: $\frac{dN}{dx}=|\Psi(x,0)|^2$ und der Breite im Impulsraum: $\frac{dN}{dp}=|\tilde{\Psi}(p,=)|^2$ mit: $\Psi(x,0)=\frac{1}{\sqrt{2\pi\hbar}}\int dp\tilde{\Psi}(p,0)e^{i\frac{p}{\hbar}}$

1.3.3 Zeitliche Entwicklung eines Freien Wellenpaketes

ebene Welle:

$$\Psi(x,t) = e^{i(kx-wt)} \text{ mit } \omega = \omega(k)v_{\text{Phase}} = v_{\varphi}(k) = \frac{\omega}{|k|}$$

em Welle im Vakuum: [ein Wellenpaket]

$$\int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} g(k) e^{i(kx-\omega t)} = \underbrace{\int_{0}^{\infty} \frac{dk}{\sqrt{2\pi}} g(k) e^{i|k|(x-ct)}}_{f_1(x-ct)} + \underbrace{\int_{-\infty}^{0} \frac{dk}{\sqrt{2\pi}} g(k) e^{i|k|(x+ct)}}_{f_2(x+ct)}$$

in QM:

$$\int \frac{dk}{\sqrt{2\pi}} g(k) e^{i(\alpha(\omega) - \omega(k)t)}$$

also $\alpha(k) - \omega(k)t$ statt $\alpha(k)$ wie vorhin

$$x_m a x(t) = -\frac{d}{dk} (\alpha(k) - \omega(k)t)$$

 \Longrightarrow Maximum verschiebt sich um: $\frac{d\omega(k)}{dk}|_{k_0}t$

$$v_{gr} = \frac{d\omega}{dk}|_{x_0} = \frac{\hbar k_0}{m} = \frac{p_0}{m}$$

wie im klassischen, nur mit Ψ da (Funktion der Zeit breiter)

1.4 Zeitunabhängiges Potential

1.4.1 Separation der Variablen \vec{r}, t , stationäre Zustände

Schrödingergleichung:

$$\underbrace{i\hbar\partial_t\Psi(\vec{r},t)}_{\text{Ableitung nach t}} = \underbrace{-\frac{\hbar^2}{2m}\Delta\Psi(\vec{r},t) + \underbrace{V(\vec{r})}_{\text{Ableitung nach }\vec{r}} \Psi(\vec{r},t)}_{\text{Ableitung nach }\vec{r}}$$

Ansatz: $\Psi(\vec{r},t) = \varphi(\vec{r}) \cdot \chi(t)$

$$\Rightarrow \underbrace{\frac{1}{\chi(t)}i\hbar\partial_t\chi(t)}_{\text{Funktion von t, unabhängig von }\vec{r}\Rightarrow \text{const.}} = \underbrace{\frac{1}{\varphi(\vec{r})}\left(-\frac{\hbar^2}{2m}\Delta\varphi(\vec{r}) + V(\vec{r})\varphi(\vec{r})\right)}_{\text{Funktion von }\vec{r} \text{ unabhängig von t}}$$

1. Lösung für x(t):

$$i\hbar \frac{\partial}{\partial_t} x(t) = \hbar \omega x(t)$$

$$x(t) = Ae^{-i\omega t}$$

$$\left(-\frac{\hbar^2}{2m}\Delta + V(\vec{r})\right)\varphi(\vec{r}) = \hbar\omega\varphi(\vec{r})$$

Planck-Einstein, $\hbar\omega\varphi(\vec{r})$

$$\left(-\frac{\hbar^2}{2m}\Delta + V(\vec{r})\right)\varphi(\vec{r}) = E\varphi(\vec{r}) \quad \leftarrow : \text{Zeitunabhängige Schrödinger Gleichung}$$

Eigenwert-Gleichung eines linearen Operator mit:

E = Eigenwert

 $\varphi = Eigenfunktion$

 $\Psi(\vec{r},t) = \varphi(\vec{r}) \cdot e^{-i\omega t}$: stationärer Zustand.

 $|\Psi(\vec{r},t)|^2$ ist unabhängig von der Zeit.

Schrödinger–Gleichung \Rightarrow Zeitentwicklung der Wellenfunktion Ψ

Zeitunabhängige Schrödinger–Gleichung \Rightarrow stationäre Zustände und deren Energien

Im Allgemeinen gibt es mehrere Lösungen

$$H\varphi_n(\vec{r}) = E_n\varphi_n(\vec{r}),$$

stationäre Zustände: $\Psi(\vec{r},t) = e^{iE_n t/\hbar} \varphi_n(\vec{r})$

Dann ist

$$\Psi(\vec{r},t) = \sum_{1} c_n \varphi_n(\vec{r}) e^{iE_n t/\hbar}$$
(4)

Lösung der Schrödinger Gleichung.

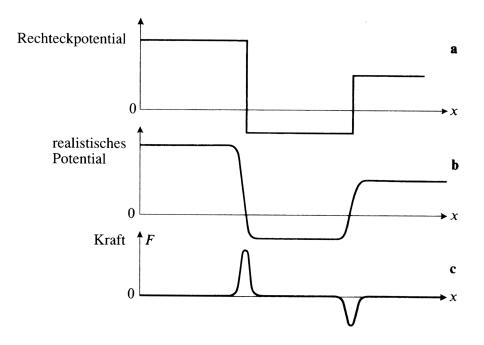
 $|\Psi(\vec{r},t)|^2$ ist im Allgemeinen zeitabhängig, Beispiel: $c_1=c_2=1$

$$\begin{aligned} |\Psi|^2 &= \left| \varphi_1 e^{-i\frac{E_1 t}{\hbar}} + \varphi_2 e^{-i\frac{E_2 t}{\hbar}} \right| \\ &= \left| |\varphi_1|^2 + |\varphi_2|^2 + \text{Interferenzterm (ist zeitabhänig)} \right| \end{aligned}$$

Später: Jede Lösung der Schrödinger-Gleichung kann auf die Form (5) gebracht werden.

1.4.2 Stufenpotentiale (qualitativ)

Idealisierung von Grenzflächen



klassisches Teilchen: läuft von links nach rechts über die Stufe, solange $E > V_0$. oder wird reflektiert für $E < V_0$

Stationäre Schrödinger-Gleichung

$$\left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right) \varphi(x) = E\varphi(x)$$

$$\left(\frac{d^2}{dx^2} \frac{2m}{\hbar^2} \left(E - V(x) \right) \right) \varphi(x) = 0$$

Analogie zur Optik: Ansatz für elektrisches Feld:

$$\vec{E}(\vec{r},t) = \vec{e}E(x)e^{-i\omega t}$$

Wellengleichung im Medium:

$$\left(\frac{d^2}{dx^2} - \frac{n^2}{c^2} \frac{d^2}{dt^2}\right) E(x)e^{-i\omega t} = 0$$

$$\left[\left(\frac{d^2}{dx^2} + \frac{n^2\omega^2}{c^2}\right) E(x) = 0\right]$$

für große n \rightarrow kleine Phasengeschwindigkeit

Analogie in QM:
$$\frac{2m}{\hbar^2}(E-V) = \frac{n^2\omega^2}{c^2}$$

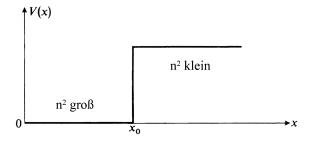
Analogie in QM:
$$\frac{2m}{\hbar^2}(E-V) = \frac{n^2\omega^2}{c^2}$$

 $n^2 \binom{>0}{<0} \Leftrightarrow \binom{\text{transparent}}{\text{totalreflektierendes}}$ Medium, z.B. $\binom{\text{Glass}}{\text{Metal}}$

Ausbreitung:
$$\begin{cases} e^{\pm ikx} & k = \frac{\omega}{c}\sqrt{n^2} & n^2 > 0 \\ e^{\pm i\varrho x} & \varrho = \frac{\omega}{c}\sqrt{n^2} & n^2 < 0 \end{cases}$$

Beispiele:

Stufe:



Brechungsindex:

$$n_1 = \frac{c}{\hbar\omega}\sqrt{2mE}$$

$$n_2 = \frac{c}{\hbar\omega}\sqrt{2m(E - V_0)}$$

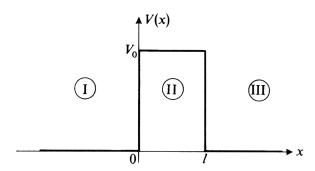
$$E > V_0 \implies n_1^2 > n_2^2 > 0$$

Teilchenreflexion an der Grenzschicht zwischen zwei Medien. klassisch: Teilchen läuft langsam weiter.

$$V_0 > E > 0$$
 $n_1^2 > 0;$ $n_2^2 < 0$ $n_2 = i \frac{c}{\hbar \omega} \sqrt{2m(V_0 - E)}$

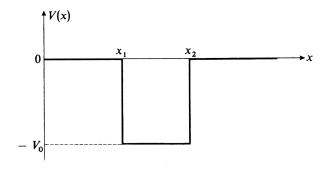
Totalrefexion, aber Eindringen in die Grenzschicht.

Barriere:



Optik: Welle dringt von (1) nach (2) ein, wird dort gedämpft (ein Teil wird auch reflektiert), läuft bis zum rechten Rand, und dort zum Teil weiter.

Topf:



klassisch: beliebige Energien sind zulässig

Optik: oszillierende Wellen im Bereich (2)

Dämpfung im Bereich (1), (3), stehende Wellen nur für diskrete Werte von k. E > Oklassisch: teilweise Transmission jedoch keine Reflektion bei: Luft|Glas|Luft

1.4.3 Stufenpotentiale (quantitativ)

Ausgangspunkt: $\left(\frac{d^2}{dx^2} + \frac{2m}{\hbar^2}(E - V(x))\right)\varphi(x) = 0$ V stückweise konstant.

1.
$$E > V$$
 $\varphi(x) = Ae^{ikx} + A'e^{-ikx}$

A, A' komplex, beliebig

$$\frac{\hbar^2 k^2}{2m} = E \cdot V$$

2.
$$E < V$$
 $\varphi(x) = Be^{\varrho x} + Be^{-\varrho x}$ mit $\frac{(\hbar \varrho)^2}{2m} = V - E$

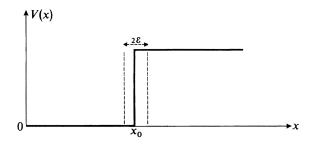
3.
$$E = V$$
 $\varphi(x) = c + c'x$

Anschlussbedingungen bei der Sprungstelle:

- 1. φ ist stetig an der Sprungstelle
- 2. Ψ ist stetig an der Sprungstelle

3.
$$\frac{d^2}{dx^2}\Psi(x_0+\varepsilon) - \frac{d^2}{dx^2}\Psi(x_0-\varepsilon) = \frac{2m}{\hbar^2}(V(x_0+\varepsilon) - V(x_0-\varepsilon))\varphi(x_0)$$

Ersetze den Sprung durch glatten Übergang in einem Intervall $< -\varepsilon, \varepsilon >$



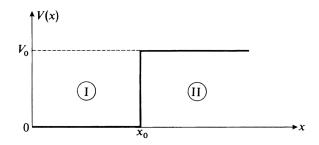
integriere die Schrödinger Gleichung von $x_0 - \varepsilon$ bis $x_0 + \varepsilon$

$$\int dx \frac{d^2}{dx^2} \Phi(x) \Big|_{x_0 - \varepsilon}^{x_0 + \varepsilon} = \frac{2m}{\hbar^2} \int dx \left[\underbrace{(V_{\varepsilon}(x) - E)}_{\text{beschränkt}} \underbrace{\Phi(x)}_{\text{sei beschränkt}} \right]_{x_0 - \varepsilon}^{x_0 + \varepsilon}$$
$$\lim_{\varepsilon \to 0} \left(\frac{d}{dx} \Phi(x_0 + \varepsilon) \right) - \left(\frac{d}{dx} \Phi(x_0 - \varepsilon) \right) = 0$$

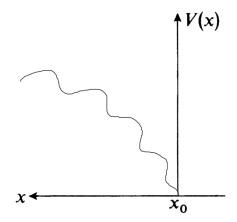
- 1. Ableitung ist stetig (gilt nicht bei ∞ hoher Barriere)
- 2. \Longrightarrow Funktion Φ ist stetig
- 3. Schrödinger Gleichung: $\frac{d^2}{dx^2}\varphi(x_0+\varepsilon) \frac{d^2}{dx^2}\varphi(x_0-\varepsilon) = \frac{2m}{\hbar^2}\left(V(x_0+\varepsilon) V(x_0-\varepsilon)\right)\varphi(x_0)$ (plus Terme $O(\varepsilon)$)

$$\Delta V$$
 ist $\lim_{\varepsilon \to 0} \left(V(x_0 + \varepsilon) - V(x_0 - \varepsilon) \right) = \frac{2m}{\hbar^2} \Delta V(x_0) \varphi(x_0)$ ist automatisch erfüllt, wenn (1), (2) gilt und k, ϱ korrekt gewählt werden.

Wenn Barriere ∞ hoch ist $\Rightarrow \varphi$ stetig; verschwindet im verbotenen Bereich. Anschlussbedingung: $\varphi(x_0) = 0$



1.4.4 Beispiel: Stufe bei $x_0 = 0$ $E > V_0$



in (1):
$$k_1 = \sqrt{\frac{2mE}{\hbar^2}} \longrightarrow \Phi_1(x) = A_1 e^{ik_1 x} + A_1' e^{-ik_1 x}$$

in (2): $k_2 = \sqrt{\frac{2m(E - V_0)}{\hbar^2}} \longrightarrow \Phi_2(x) = A_2 e^{ik_2 x} + A_2' e^{-ik_2 x}$

1. $A_1 + A_1' = A_2 + A_2'$

2.
$$k_1(A_1 - A_1') = k_2(A_2 + A_2')$$

- 3. folgt aus (1),(2) (nachrechnen!) 2 Gleichungen mit 4 Unbekannten \Longrightarrow ?
 - Normierung ist irrelevant, bleibt unbestimmt. Entweder nur Verhältnisse: $\frac{A_2}{A_1}$; $\frac{A_2'}{A_1'}$; \cdots oder wir setzen $A_1 = 1$
 - in (2) nur auslaufende Welle $\Rightarrow A_2' = 0$ Randbedingung

In (1) einlaufende und auslaufende Welle (= reflektierte Welle)

$$(1),(2)(A'_{2} = 0) \Rightarrow \frac{A'_{1}}{A_{1}} = \frac{k_{1} - k_{2}}{k_{1} + k_{2}},$$
$$\frac{A_{2}}{A_{1}} = \frac{2k_{1}}{k_{1} + k_{2}},$$

Wähle $A \equiv 1$

$$\varphi(x) = \begin{cases} e^{ik_1x} + \frac{k_1 - k_2}{k_1 + k_2} e^{-ik_1x} & x < 0\\ \frac{2k_1}{k_1 + k_2} e^{ik_2x} & x > 0 \end{cases}$$

Reflexionskoeffizient: $R = \left| \frac{k_1 - k_2}{k_1 + k_2} \right|^2$

Transmissionskoeffizient: $T=\left|\frac{2k_1}{k_1+k_2}\right|^2\cdot\left(\frac{k_2}{k_1}\right)=\frac{4k_1k_2}{(k_1+k_2)^2}$

[bild]

 $\left(\frac{k_1}{k_2}\right)$ $\hat{=}$ Verhältnis der Geschwindigkeiten

$$R + R = 1$$

$$\frac{(k_1 - k_2)^2}{(k_1 + k_2)^2} + \frac{4k_1k_2}{(k_1 + k_2)^2} = 1$$

1.4.5 Stufe $E < V_0$

$$\implies k_2 \rightarrow i\varrho_2 = i\sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$$

$$\Phi_2 = B_2 e^{\varrho_2 x} + \Phi_2 = B_2' e^{-\varrho_2 x}$$

Forderung: $B_2 = 0$ wegen expotentiellem <u>Abfall</u> im verbotenen Bereich.

Lösung wie oben mit $k_2 \to i \varrho_2$,

$$\varphi \begin{cases} e^{ik_1x} + \frac{k_1 - i\varrho_2}{k_1 + i\varrho_2} e^{-ik_1x} & x < 0 \\ \frac{2k_1}{k_1 + i\varrho_2} e^{-\varrho_2x} & x > 0 \end{cases}$$
Transmission = 0; $\varphi \to 0$ für $x \to +\infty$

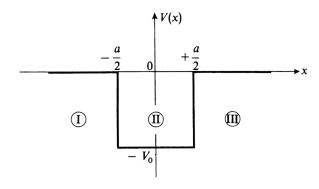
$$R = \left| \frac{k_1 - i\varrho_2}{k_1 + i\varrho_2} \right|^2 = 1;$$

$$\frac{k_1 - i\varrho_2}{k_1 + i\varrho_2} = e^{-2i\delta}$$

$$\delta = \arctan \frac{\varrho_2}{k_1}$$

1.4.6 Potentialtopf

$$-V_0 < E < 0$$



$$\phi_1 = B_1 e^{\varrho x} + B_1' e^{-\varrho x}$$

$$\phi_3 = B_3 e^{\varrho x} + B_3' e^{-\varrho x}$$

$$\phi_2 = A_2 e^{\varrho x} + A_2' e^{-\varrho x}$$

mit:

$$\varrho = \sqrt{\frac{-2mE}{\hbar^2}} \qquad k = \sqrt{\frac{-2mE}{\hbar^2} \underbrace{(V_0 + E)}_{>0}}$$

4 Konstanten - 1 Normierung - 4 Anschlussbed.: \Rightarrow System ist überbestimmt, hat nur Lösung für bestimmte diskrete E bzw ϱ oder k.

Anschlussbedingungen: bei $x = -\frac{a}{2}$,

$$\varphi \quad \text{stetig} \quad B_1 e^{-\varrho \frac{a}{2}} = A_2 e^{-ik\frac{a}{2}} A_2' e^{+ik\frac{a}{2}}$$

$$\varphi' \quad \text{stetig} \quad \varrho B_1 e^{-\varrho \frac{a}{2}} = ikA_2 e^{-ik\frac{a}{2}} - ikA_2' e^{ik\frac{a}{2}}$$

$$A_2 = B_1 \left(\frac{ik+\varrho}{2ik}\right) e^{(ik-\varrho)\frac{a}{2}}$$

$$A_2' = B_1 \left(\frac{ik-\varrho}{2ik}\right) e^{(-ik-\varrho)\frac{a}{2}}$$

$$\frac{A_2}{A_2'} = \left(\frac{ik+\varrho}{ik-\varrho}\right)e^{ika} \left| \frac{A_2}{A_2'} = \left(\frac{ik-\varrho}{ik+\varrho}\right)e^{-ika} \text{bei } y = +\frac{a}{2} \right|$$
(5)

identisch für $\varrho \to -\varrho$ $a \to -a$

- a) Normierung bleibt zunächst unbestimmt
- b) Gleichung Gl. (5) und Gl. (5) können zusammen nur für bestimmte Energien erfüllt werden: $\Longrightarrow \left[\left(\frac{ik-\varrho}{ik+\varrho}\right)^2=e^{2ika}\right]$ Eigenwert–Gleichung für E bzw.

$$k = \sqrt{\frac{-2mE}{\hbar^2}(V_0 + E)} \qquad \varrho = \sqrt{\frac{-2mE}{\hbar^2}}$$

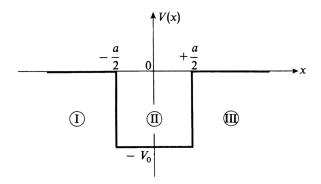
Zwei Lösungssystem:

$$\frac{ik - \varrho}{ik + \varrho} = \left\{ \frac{e^{ika}}{-e^{ika}} \qquad \frac{\underline{ka}}{2} = \arctan \frac{\varrho}{\underline{k}} \right\}$$

Potential topf E < 0

Nur beschränkte Zahl von Lösungen.

Ansatz:
$$\varphi_1 = B_1 e^{+\varrho x}$$
 $x < -\frac{a}{2}$ $\varphi_3 = B_2 e^{-\varrho x}$ $x > \frac{a}{2}$ $x > \frac{a}{2}$ $-\frac{a}{2} < x < \frac{a}{2}$



4 Anschlussbedingungen für B_1, B_2, A_2, A_2' Zunächst nur Verhältnisse festgelegt \Rightarrow System überbestimmt \Rightarrow Gleichung für E;

Anschluss bei
$$x = -\frac{a}{2}$$
: $\frac{A_2}{A_2'} = \left(\frac{ik+\varrho}{ik-\varrho}\right)e^{ika}$

$$x = \frac{a}{2}$$
: $\frac{A_2}{A_2'} = \left(\frac{ik - \varrho}{ik + \varrho}\right)e^{-ika}$

$$\left(\frac{ik-\varrho}{ik+\varrho}\right)^2 = e^{2ika}$$

Eigenwert–Gleichung für E mit $k=\sqrt{\frac{2m}{\hbar^2}(V_0+E)}$, $\varrho=\sqrt{\frac{2m}{\hbar^2}(-E)}$

Aus der Form

$$\left(\frac{ik-\varrho}{ik+\varrho}\right)^2 \cdot e^{2ika} = 1$$

sieht man, dass $\frac{A_2}{A_2'} = \pm 1$ ist.

 \Rightarrow Zwei Lösungssysteme: Gerade und ungerade.

$$\frac{ik - \varrho}{ik + \varrho} = +e^{ika} \text{ und } -e^{ika}$$

Etwas trickreiche Algebra für den ersten Fall $(+e^{ika})$:

$$\underbrace{\frac{k+i\varrho}{k-i\varrho}}_{}=e^{2i\theta}$$

Betrag =1

mit $\tan \theta = \frac{\varrho}{k}$; oder $\theta = \arctan \frac{\varrho}{k}$

$$e^{2i\theta} = e^{ika}$$

$$e^{i\theta} = e^{ika/2}$$

$$\frac{ka}{2} = \theta = \arctan \frac{\varrho}{k}$$

$$\frac{\varrho}{k} = tan \frac{ka}{2}$$

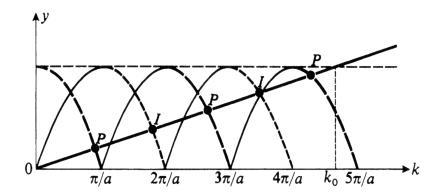
Umformung:

$$\frac{1}{\cos^2 \frac{ka}{2}} = 1 + \tan^2 \frac{ka}{2} = 1 + \frac{\varrho^2}{k^2} = \frac{k^2 + \varrho^2}{k^2} = \frac{\frac{2mV_0}{\hbar^2}}{k^2} = \frac{k_0^2}{k^2}$$

$$Mit k_0 = \frac{2mV_0}{\hbar^2}$$

$$\left|\cos\frac{ka}{2}\right| = \frac{k}{k_0}$$
 $\tan\frac{ka}{2} > 0$ gerade Lösung

$$\begin{array}{l} \operatorname{Aus} \left(\frac{ik-\varrho}{ik+\varrho}\right) = e^{ika} \text{ folgt:} \\ \left|\sin\frac{ka}{2}\right| = \frac{k}{k_0} \qquad \tan\frac{ka}{2} < 0 \right| \quad \text{ungerade L\"osung} \end{array}$$



Für diese Wahl von k_0 gibt es $\binom{3}{2}$ Lösungen vom Typ $\binom{G}{U}$. Aus k folgen dann A_2, A_2', B_1, B_3' . Mit wachsendem k_0 ; (V_0) erhalten wir immer mehr Lösungen und die Werte für k liegen approximativ bei $n(\frac{\pi}{a})$.

Für $V_0 \to \infty$: unendlich tiefer Topf

$$k_n = n(\frac{\pi}{a}); \quad E_n = \frac{1}{2m}(\frac{n\pi}{a})^2$$

 $k_n = n(\frac{\pi}{a});$ $E_n = \frac{1}{2m}(\frac{n\pi}{a})^2$ Für beliebig kleine k_0 gibt es immer noch eine Lösung. (Schnittpunkt mit cos)

2 Mathematische Hilfsmittel

Wellenfunktion $\Phi(x,t)$ ist sehr spezielle Beschreibung eines Systems.

 $|\Psi|^2 \Rightarrow$ Verteilung als Funktion von x

 $|\tilde{\Psi}|^2 \Rightarrow \text{Verteilung als Funktion von p}$

Alternativ: Angabe von E_n für gebundenen Zustand, oder: Mehrere E_n und relative Amplitude falls ÜBerlagerung verschiedener Energie-Eigenzustände vorliegt.

Im Allgemeinen viele Möglichkeiten (Messgrößen, Observable) für die Charakterisierung. Umgekerht gibt es verschiedene Möglichkeiten die gleiche Messung zu beschreiben:

Z.B.: Erwartungswert des Impulses:

$$\langle p \rangle = \int dp \ \tilde{\Psi}^{\star}(p) p \tilde{\Psi}(p) = \int dx \ \Psi^{\star}(x) \left(\frac{\hbar \delta_x}{i}\right) \Psi(x)$$

Ziel: Abstrakte Beschreibung eines Zustandes (statt Bahnkurve in klassischer Mechanik) als Element eines Vektorraumes (genauer: eines Hilbertraumes) und der Messgröße (≡ Observable) durch hermitische (genauer: selbstadjungierte) Operatoren unabhängig von einer Basis. Die Messung entspricht Matrixelement dieses Operators.

2.1 Wellenfunktionen als Zustandsraum

2.1.1 Zustandsraum §

{ Quadratintegrable Funktion } $\equiv L^2$

Hier oft zusätzliche Einschränkungen, abhängig vom Problem (z.B. stetig, differenzierbar, beschränkt oder nur in einem Intervall $\neq 0, \ldots$)

 $\mathfrak{F} = \{ \text{ genügend reguläre Funktionen } \in L^2 \}$

• ¾ linearer Raum → Superpositionsprinzip

$$\Psi_1, \Psi_2, \in \mathfrak{F} \Rightarrow \Psi = \lambda_1 \Psi_1 + \lambda_2 \Psi_2 \in \mathfrak{F} \text{ da } |\Psi|^2 \text{ ebenfalls quadratintegrabel.}$$

Beweis:
$$|\Psi|^2 = |\lambda_1|^2 |\Psi_1|^2 + |\lambda_2|^2 |\Psi_2|^2 + \underbrace{2\Re\{\lambda_1\lambda_2^{\star}\Psi_1\Psi_2^{\star}\}}_{<|\lambda_1\lambda_2|^2(|\Psi_1|^2|\Psi_2|^2)}$$

$$\Rightarrow \int dx |\Psi|^2 < |\lambda_1|^2 \int dx |\Psi_1|^2 + \dots$$

• Skalarprodukt

$$(\varphi, \Psi) \equiv \int d\vec{r} \; \varphi^{\star}(\vec{r}) \Psi(\vec{r})$$

Es gilt
$$(\varphi, \Psi)^* = \Psi, \varphi$$

$$\rightarrow (\varphi, \Psi)$$
ist $\left\{ \substack{\text{linear} \\ \text{antilinear}} \right\}$ bezüglich $\left\{ \substack{\Psi \\ \varphi} \right\}$

d.h.
$$(\varphi, \lambda \Psi) = \lambda(\varphi, \Psi);$$
 $(\lambda \varphi, \Psi) = \lambda^{\star}(\varphi, \Psi)$

Falls $(\varphi, \Psi) = 0 \equiv \varphi, \Psi$ sind orthogonal

Ferner: $(\varphi, \Psi) = 0 \Leftrightarrow \Psi = 0$

$$(\varphi, \Psi)^{\frac{1}{2}} = \text{Normierung} = \|\Psi\|$$

Schwarzsche Ungleichung

$$|(\Psi_1, \Psi_2)| \le \|\Psi_1\| \cdot \|\Psi_2\|$$

Beweis: Betrachte $\left(\frac{\Psi_1}{\|\Psi_1\|} + \frac{\Psi_2}{\|\Psi_2\|}\right)^2 \ge 0$

• Lineare Operatoren:

Lineare Abbildung $A: \varphi A \Psi$ mit $\Psi, \varphi \in \mathfrak{F}$

$$A(\lambda_1\Psi_1 + \lambda_2\Psi_2) = \lambda_1 A\Psi_1 + \lambda_2 A\Psi_2$$

Beispiele:

- Ortsoperator X = Multiplikation der Wellenfunktion im Ortsraum mit x

$$X \ \Psi(x, y, z) = x \Psi(x, y, z)$$

- Ableitungsoperator:

$$D_x \ \Psi(x, y, z) = \frac{d}{dx} \Psi(x, y, z)$$

Paritätsoperator:

$$\Pi \ \Psi(x,y,z) = \Psi(-x,-y,-z)$$

- Hamiltonoperator:

$$H\ \Psi(x,y,z) = \left(-\frac{\hbar\Delta}{2m} + V(x,y,z)\right)\Psi(x,y,z)$$

Anmerkung: Der Operator A ist i.A. nicht für alle Zustände definiert, Bsp dazu: $\Psi(x)=\sqrt{\frac{a}{2}}\frac{1}{a+|x|}$

$$\int dx \ |\Psi(x)|^2 = 1 \text{ aber } \int dx \ \Psi^*(x)\Psi(x)x$$

- Produkt: AB definiert durch $(AB)\Psi = A(B\Psi)$

i.A.:
$$AB \neq BA$$

$$AB - BA$$

Bsp: $[x, D_x]$

$$[x, D_x] \ \Psi(\vec{r}) = \left(x \frac{d}{dx} - \frac{d}{dx}x\right) \Psi = x \left(\frac{d}{dx}\Psi\right) - \frac{d}{dx}(x\Psi)$$
$$= -\Psi$$
$$\rightarrow [x, D_x] = -1 \text{ oder } [x, \underbrace{\frac{\hbar D_x}{i}}_{p}] = i\hbar$$
$$[x, p] = i\hbar$$

2.1.2 Orthonormierte Basis

• Vektor wird charakterisiert durch seine Komponenten bezüglich orthonormaler Basis $\{u_i\}$

$$u_i(\vec{r}) \in \mathfrak{F} \quad i = 1 \dots n \text{ (oder eventuell } \infty)$$

 $(u_i, u_j) = \delta_{ij} \Leftrightarrow \text{ orthonormiert}$
 $\{u_i\} \text{ ist "Basis", wenn jedes } \Psi \in \mathfrak{F} \text{ geschrieben werden kann als}$
 $\Psi(\vec{r}) = \sum_{i=1}^{\infty} (c_i u_i(\vec{r})).$

• Berechnung der c_i :

ausführliche Schreibweise Kurznotation
$$\Psi(\vec{r}) = \sum_{i} c_{i} u_{i}(\vec{r}) \qquad \Psi = \sum_{i} c_{i} u_{i}$$

$$\int d\vec{r} \ u_{j}^{\star}(\vec{r}) \Psi(\vec{r}) = \sum_{i} c_{i} \int \underbrace{d\vec{r} \ u_{j}^{\star}(\vec{r}) u_{i}(\vec{r})}_{\delta_{ij}} \quad (u_{j}, \Psi) = \sum_{i} c_{i} \underbrace{(u_{j}, u_{i})}_{\delta_{ij}}$$

$$\int d\vec{r} \ u_{j}^{\star}(\vec{r}) \Psi(\vec{r}) = c_{j} \qquad (u_{j}, \Psi) = c_{j}$$

• Skalarprodukt in Komponentenschreibweise

ausführlich kurz
$$\varphi = \sum_{i} G_{i} u_{i}(\vec{r}); \quad \Psi(\vec{r}) = \sum_{j} c_{j} u_{j}(\vec{r}) \quad \varphi = \sum_{i} G_{i} u_{i}; \quad \Psi = \sum_{j} c_{j} u_{j}$$

$$\int d\vec{r} \ \varphi^{\star}(\vec{r}) \Psi(\vec{r}) = \sum_{i} G_{i}^{\star} c_{i} \qquad (\varphi, \Psi) = \sum_{i} G_{i} v_{i}$$

speziell
$$(\Psi, \Psi) = \sum_i |c_i|^2$$

Analogie zu Basisvektoren $\vec{e}_1, \vec{e}_2, \vec{e}_3$ in \mathbf{R}^3 ist offensichtlich.

 \bullet Vollständigkeitsrelation: Jede Funktion $\Psi(\vec{r}) \in \mathfrak{F}$ kann dargestellt werden in der Form

$$\Psi(\vec{r}) = \sum_{i} c_{i} u_{i}(\vec{r}) \qquad \Psi = \sum_{i} c_{i} u_{i}$$

$$= \sum_{i} \left(\int \underbrace{d\vec{r'} \ u_{i}^{\star}(\vec{r'}) \Psi(\vec{r'})}_{=c_{i}} \right) u_{i}(\vec{r}) \qquad = \sum_{i} \underbrace{(u_{i}\Psi)}_{=c_{i}} u_{i}$$

$$\int d\vec{r'} \Psi(\vec{r'}) \underbrace{\sum_{i} u_{i}(\vec{r}) u_{i}(\vec{r'})}_{\delta(\vec{r}-\vec{r'})} \qquad = \sum_{i} u_{i} u_{i} = 1$$

$$\Rightarrow \sum_{i} u_{i}^{\star}(\vec{r}) u_{i}(\vec{r'}) = \delta(\vec{r} - \vec{r'})$$

2.1.3 Ebene Wellen und andere verallgemeinerte Basiszustände

(nur eindimensional)

Ebene Welle: $v_p(x) \equiv \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar}$ nicht normierbar; p = IndexZerlegung eines Wellenpaketes nach ebenen Wellen = Entwicklung nach Basis $\{v_p\}$

Fourier-Transformation:

$$\Psi(x) = \int \frac{dp}{\sqrt{2\pi\hbar}} \tilde{\Psi}(p) e^{ipx/\hbar}$$
$$= \int \underbrace{dp}_{\hat{=} \sum_{i}} \underbrace{\tilde{\Psi}(p)}_{\hat{=} c_{i}} \underbrace{v_{p}}_{\hat{=} u_{i}}$$

 \Rightarrow Darstellung des Vektors

Umkehrung:

$$\underbrace{\tilde{\Psi}(p)}_{c_i} = \int \frac{dx}{\sqrt{2\pi\hbar}} \Psi(x) e^{-ipx/\hbar}$$

$$= \underbrace{\int dx \ v_p^* \Psi(x)}_{\hat{=}(u_i, \Psi)}$$

⇒ Berechnung der Koeffizienten

Parseval'sche Gleichung

$$\int dx \ \Psi^{\star}(x)\Psi(x) = \int dp \ \tilde{\Psi}^{\star}(p)\tilde{\Psi}(p)$$
$$(\Psi, \Psi) = \sum_{i} |c_{i}|^{2}$$

Vollständigkeit: $\sum_{i} u_i(x) u_i^{\star}(x') = \delta(x' - x)$

Hier:

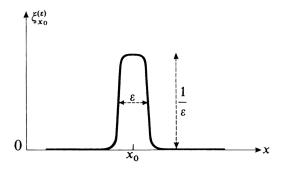
$$\int dp \left(\frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}}\right) \left(\frac{e^{-ipx'/\hbar}}{\sqrt{2\pi\hbar}}\right) = \delta(x'-x)$$

Orthonormiertheit:

$$(v_p, v_p') \int \frac{dx}{2\pi\hbar} e^{\frac{-ipx}{\hbar} + \frac{ip'x}{\hbar}} = \delta(p - p')$$

in Analogie zu δ_{ij}

Entsprechendes gilt für den Ortsraum mit der verallgemeinerten Basis $\{\xi_{x_0}(x)\}$ mit $\xi_{x_0}(x) = \delta(x - x_0)$



Aufgabe: Entwickle $\xi_{x_0}(x)$ bezüglich v_p und umgekehrt v_p bezüglich $\xi_{x_0}(x)$. Wie lauten Vollständigkeitsrelationen und Orthonormiertheit für $\{\xi\}$?

Verallgemeinerung auf beliebige konstante Basis $\{W_{\alpha}\}$

$$(W_{\alpha}, W_{\alpha'}) = \delta(\alpha - \alpha')$$
 orthonormiert $\int d\alpha \ W_{\alpha}(x)W_{\alpha'}^{\star}(x') = \delta(x - x'))$ vollständig

gemischte Basis (Bindungs- und Streuzustände)

$$\{u_i, w_{\alpha}\}$$
; i diskret, α kontinuierlich
 $(u_i, u_j) = \delta_{ij}$
 $(w_{\alpha}, w_{\alpha'}) = \delta_{\alpha-\alpha'}$
 $(u_i, w_{\alpha}) = 0$

Vollständigkeit:

$$\sum_{i} u_i(x)u_i^+(x') + \int d\alpha \ w_{\alpha}(x)w_{\alpha}^{\star}(x') = \delta(x - x')$$

2.2 Dirac-Notation

2.2.1 Einführung

Zustand eines Teilchens kann charakterisiert werden durch $\Psi(\vec{r})$ oder durch Komponenten bezüglich einer Basis.

Basis	Index	Komponenten	$\mid \Psi(ec{r}) \mid$	Bezeichnung
$u_i(\vec{r})$	i	c_i	$\sum_{u} c_i u_i(\vec{r})$	allgemein
$v_{\vec{p}}(\vec{r})$	$ec{p}$	$ ilde{\Psi}(ec{r})$	$\int d\vec{p} \ \tilde{\Psi}(\vec{p}) v_{\vec{p}}(\vec{r})$	Impulsdarstellung
$\xi(\vec{r_0})$	$ \vec{r_0} $	$\Psi(ec{r_0})$	$\int d\vec{r_0} \Psi(\vec{r_0}) \xi_{\vec{r_0}}(\vec{r})$	Orstdarstellung
$w_{E_n}(\vec{r})$	$\mid n \mid$	c_n	$\sum_n c_n w_{E_n}(\vec{r})$	Energiedarstellung für gebundene Zustände

Analogie zum Vektor in \mathbb{R}_3 :

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \sum_i a_i \vec{e}_i \quad \text{bezüglich Basis } \vec{e}_1 \vec{e}_2 \vec{e}_3$$

Basiswechsel: neue Basisvektoren: $\vec{e_i} = \underbrace{O}_{\text{orthongonale Matrix}} \vec{e_i'}$

$$\vec{a} = \sum_{i} a'_{i} \vec{e'_{i}}$$
 wobei $a'_{j} = \sum_{i} a_{i} (\vec{e'_{j}}, \vec{e_{i}}) = \sum_{i} a_{i} \underbrace{\vec{e'_{j}} O \vec{e'_{i}}}_{O_{ij}}$

 \vec{a} hat Bedeutung unabhängig von Basis.

 $\vec{a} \cdot \vec{b}$ liefert das gleiche Resultat in jeder Basis.

2.2.2 "ket" und "bra" liefert Bracket

Abstrakte Beschreibung eines Zustandes ohne Bezug auf Wellenfunktionen.

- a) "ket" \equiv Element der Zustandsumme symbolisiert durch $\langle a|$ charakterisiert den Zustand ohne Bezug auf Basis.
- b) "bra": Zu jeder "ket" $|\varphi\rangle$ gehört eine "bra" $\langle\varphi|$ die zusammen mit einer beliebigen "ket" $|\varphi\rangle$ eine komplexe Zahl definiert:

$$\langle \varphi | \Psi \rangle = \text{komlexe Zahl}$$

(entspricht dem Skalarprodukt wie in Abschnitt 2.1)

Es gelten fogende Rechenregeln:

$$\begin{split} \langle \varphi | \Psi \rangle^{\star} &= \langle \Psi | \varphi \rangle \\ \langle \varphi | \lambda_1 \Psi_1 + \lambda_2 \Psi_2 \rangle &= \lambda_1 \langle \varphi | \Psi_1 \rangle + \lambda_2 \langle \varphi | \Psi_2 \rangle \quad \text{linear} \\ \langle \lambda_1 \varphi_1 + \lambda_2 \varphi_2 | \Psi \rangle &= \lambda_1^{\star} \langle \varphi_1 | \Psi \rangle + \lambda_2^{\star} \langle \varphi_1 | \Psi \rangle \quad \text{antilinear} \end{split}$$

2.2.3 Lineare Operatoren

 $A|\Psi\rangle$ ist wieder "ket", $|A\Psi\rangle$ und $\langle \varphi|(A|\Psi\rangle)$ einerseits Skalarprodukt von $\langle \varphi|$ mit dem "ket" $(A|\Psi\rangle)$, andererseits kann es als Matrix interpretiert werden.

Beispiel für linearen Operator:

Gegeben sei $|\Psi_1\rangle$ und $\langle \varphi_1|$ (fest gewählt). Dann definiert $|\Psi_1\rangle\langle \varphi_1|$ einen linearen Operator auf beliebige "ket" $|\Psi\rangle$ durch

$$|\Psi_1\rangle\langle\varphi_1|\Psi\rangle$$

Analogie für Vektoren:

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}; \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} : \quad a \cdot b = \sum_i a_i \cdot b_i \quad \text{Skalarprodukt}$$

$$ba^{\star} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \begin{pmatrix} a_1^{\star} & \dots & a_n^{\star} \end{pmatrix} = \begin{pmatrix} b_1 a_1^{\star} & b_2 a_2^{\star} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ b_n a_1^{\star} & \dots & \dots & b_n a_n^{\star} \end{pmatrix}$$

Projektor:

 $\overline{\text{Es sei } \langle \Psi | \Psi \rangle} = 1$ $P_{\Psi} \equiv |\Psi \rangle \langle \Psi | \text{ Operator}$

$$P_{\Psi}|\varphi\rangle = \underbrace{|\Psi\rangle}_{\text{Richtung Gewicht}} \underbrace{\langle\Psi|\varphi\rangle}_{\text{Gewicht}}$$

Projektor auf 1 - P Unterraum.

Es gilt
$$P_{\Psi}^2 = P_{\Psi}$$

Es seien $|\Psi_1\rangle \dots |\Psi_q\rangle$ orthonormierte "ket", d.h. $\langle \Psi_i | \Psi_j \rangle = \delta_{ij}$ für $1 \leq ij \leq q$. Dann ist $P = \sum_{1 \leq ij \leq q} |\Psi_j\rangle \langle \Psi_i|$ Projektor auf den durch $|\Psi_1\rangle \dots |\Psi_q\rangle$ aufgespannten Raum.

Zeige dass $P^2 = P$ (Nachrechnen!)

2.2.4 Hermitisch konjugierter (adjungierter) Operator

A auf "ket" $|\Psi\rangle$ liefert $(A|\Psi\rangle)$; ist wieder "ket".

Wirkung von A auf "bra" $\langle \varphi |$ (liefert "bra" $\langle \varphi | A$) ist festgelegt durch die Forderung:

$$(\langle \varphi | A) | \Psi \rangle = \langle \varphi | (A | \Psi \rangle) \ \forall \ \Psi$$

und wir schreiben in Analogie zur Matrixnotation:

$$(\langle \varphi | A) | \Psi \rangle = \langle \varphi | (A | \Psi \rangle) = \langle \varphi | A | \Psi \rangle$$

Der zu A adjungierte (hermitisch konjugierte) Operator A^+ ist definiert durch

$$\langle \varphi | A^+ | \Psi \rangle \equiv \langle \Psi | A^+ | \varphi \rangle^*$$

in Analogie zu Matrizen: $(M^+)_{ij}=M^*_{ii}$

Beachte:
$$|A\Psi\rangle = A|\Psi\rangle$$
 $\langle A\Psi| = \langle \Psi|A^+ \text{ (wie } \langle \lambda\Psi| = \lambda^*\langle \Psi| \text{)}$ Es gilt: $A^{++} = A, \quad (\lambda A)^+ = \lambda^*A^+$ $(AB)^+ = B^+A^+$

2.3 Darstellungen im Zustandsraum

Wahl einer Darstellung $\hat{=}$ Wahl einer normierten Basis

Zustände werden dann "dargestellt" durch die Komponenten dieser Basis.

Operatoren : Matrizen

Zusammenstellung der wesentlichen Formeln (nur für diskreten Index):

 $\{|u_i\rangle\}$ orthonormierte Basis

Jeder ket $|\Psi\rangle$ kann geschrieben werden als $|\Psi\rangle = \sum_i c_i |u_i\rangle$

Es gilt $\forall i : P_i = |u_i\rangle\langle u_i|$ ist Projektor.

$$\sum_i P_i = \mathbf{1}$$

Beispiel:
$$\langle \varphi | \Psi \rangle = \langle \varphi | \mathbf{1} | \Psi \rangle = \langle \varphi | \sum_{i} P_{i} | \Psi \rangle$$

$$= \sum_{i} \langle \varphi | u_{i} \rangle \langle u_{i} | \Psi \rangle$$

ket $|\Psi\rangle$ in der durch $\{|u_i\rangle\}$ festgelegten Dastellung entspricht der einspaltigen Matrix:

$$\begin{pmatrix} \langle u_1 | \Psi \rangle \\ \langle u_2 | \Psi \rangle \\ \vdots \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \end{pmatrix}$$

bra $\langle \Psi |$ in der durch $\{ |u_i \rangle \}$ festgelegten Dastellung entspricht der einzeiligen Matrix:

$$\left(\begin{array}{ccc} \langle \Psi | u_1 \rangle & \langle \Psi | u_2 \rangle & \dots \end{array}\right) = \left(\begin{array}{ccc} c_1^{\star} & c_2^{\star} & \dots \end{array}\right)$$

Operator A $A_{ij} = \langle u_i | A | u_j \rangle$

Produkt von A mit $|\Psi\rangle$: $A|\Psi\rangle$ in der durch $\{|u_i\rangle\}$ charakterisierten Basis.

$$|\Psi'\rangle = A|\Psi\rangle$$

$$c'_i = \sum_j A_{ij}c_j$$

Basis–Wechsel

 = "Wechsel der Darstellung"

Übergang von Basis $\{|u_i\rangle\}$ zu Basis $\{|t_k\rangle\}$

Regel wird festgelegt durch die Komponenten jedes der neuen Basisvektoren bezüglich der alten Basis.

$$|t_k\rangle = \sum_i \underbrace{\langle u_i|t_k\rangle}_{\text{Komponenten von }t_k \text{ bezüglich }u_i} |u_i\rangle$$
 $S_{ik} \equiv \langle u_i|t_k\rangle$ Transformationsmatrix
 $(S)_{ki}^+ = (S_{ik})^* = \langle t_k|u_i\rangle$

S ist unitär: $SS^+ = S^+S = \mathbf{1}$

Beweis: $(SS^+)_{ij} = \sum_{k} \langle u_i \underbrace{|t_k\rangle\langle t_k|}_{=1} u_j \rangle = \underbrace{\langle u_i|u_j\rangle}_{\delta_{ij}}$ Neue Komponenten

- von ket: $\langle t_k | \Psi \rangle = \sum_i (S^+)_{ki} c_i$
- von bra: $\langle \varphi | t_k \rangle = \sum_i b_i^* S_{ik}$

2.4 Eigenwert-Gleichungen / Observablen

2.4.1 Eigenwerte / Eigenvektoren

$$A|\Psi\rangle = \underbrace{\lambda}_{\text{Eigenwert } Eigenvektor} \underline{|\Psi\rangle}$$

2 Fälle:

 λ ist einfacher Eigenwert \Leftrightarrow der zu λ gehörige Eigenvektor ist eindeutig festgelegt.

 λ ist g-facher Eigenwert \Leftrightarrow linear unabhängiger Eigenvektor zu $\lambda: |\Psi^i\rangle; i=1\dots g$ Diese spannen Eigenwertgleichung in bestimmter Darstellung

$$A|\Psi\rangle = \lambda|\Psi\rangle$$

$$c_i \equiv \langle u_i|\Psi\rangle; \quad A_{ij} = \langle u_i|A|u_j\rangle$$

$$\langle u_i|A \underbrace{\qquad}_{\sum_j |u_j\rangle\langle u_j|} |\Psi\rangle = \lambda\langle u_i|\Psi\rangle$$

$$\sum_{j} A_{ij} c_j = \lambda c_i$$

$$\sum_{j} \underbrace{(A_{ij} - \lambda \delta_{ij})}_{\sum_{j} M_{ij} c_{j} = 0} c_{j} = 0$$

Homogenes Gleichungssystem; hat nur Lösungen $\neq 0$ wenn Det $(A_{ij} - \lambda \delta_{ij}) = 0$

"Säkulargleichung"

Für $N \times N$ -Matrix \Rightarrow Gleichung N-ten Grades für $\lambda \Rightarrow N$ Wurzeln, reell oder komplex, einfach oder vielfach. c_j ist für festes λ Lösung der komplexen Gleichung.

Für hermitische Operatoren gilt:

Falls die Säkulargleichung die Wurzel λ n-fach hat, so gibt es n linear unabhängige Eigenvektoren zu λ .

2.4.2 Observable

Im folgenden sei A hermitisch

 \Rightarrow Eigenwerte reell

Denn es gilt:
$$A|\Psi\rangle = \lambda|\Psi\rangle$$
 für Eigenvektor $|\Psi\rangle$

$$\langle\Psi|A|\Psi\rangle = \lambda\langle\Psi|\Psi\rangle$$

$$\lambda^*\langle\Psi|\Psi\rangle = \langle\Psi|A|\Psi\rangle^* = \langle\Psi|A^+|\Psi\rangle$$
da A hermitisch = $\langle\Psi|A|\Psi\rangle = \lambda\langle\Psi|\Psi\rangle$

Ferner: $A|\varphi\rangle$

$$\begin{array}{cccc} \langle \Psi | A | \varphi \rangle & \underbrace{=}_{\text{Definition von } A^+} & \langle \varphi | A^+ | \Psi \rangle^\star & \underbrace{=}_{\text{A hermitisch}} \langle \varphi | A | \Psi \rangle^\star = \lambda^\star \langle \varphi | \Psi \rangle^\star \\ & = & \lambda \langle \Psi | \varphi \rangle \Rightarrow \boxed{\langle \Psi | A = \lambda \langle \Psi |} \end{array}$$

Eigenvektoren zu verschiedenen Eigenwerten stehen orthogonal aufeinander.

$$\begin{array}{rcl} A|\Psi\rangle & = & \lambda|\Psi\rangle; & A|\varphi\rangle = \mu|\varphi\rangle; & \lambda \neq \mu \\ \langle\varphi|A|\Psi\rangle & = & \left\{ \begin{array}{ll} \lambda\langle\varphi|\Psi\rangle & \text{Wirkung nach rechts} \\ \lambda\langle\mu|\Psi\rangle & \text{Wirkung nach links} \\ \Rightarrow \lambda \neq \mu & \Rightarrow & \langle\varphi|\Psi\rangle = 0 \end{array} \right. \end{array}$$

Endlich dimensionaler Raum, hermitische Matrix:

 $\{Eigenvektor\} = Basis$

Hier: Forderung: Hermitischer Operator O dessen Eigenvektor eine Basis bilden \equiv Observable.

D.h. Jeder Zustand kann entwickelt werden nach Eigenvektor von O.

Bsp.: Hamilton Operator: Energie-Eigenzustände sind vollständig.

Behauptung:

Falls $[A,B]=0 \Rightarrow \exists$ Orthogonale Basis mit Basisvektoren die simultan Eigenvektoren zu A und B sin

Vollständiger Satz von Observablen A, B, C, \dots

1. Alle Operatoren vertauschen untereinander

2. Das System der Eigenvektoren ist nicht mehr entartet, d.h. zwei Eigenvektoren zu A, B, C unterscheiden sich in wenigstens einem Eigenwert. Die Eigenvektoren sind eindeutig durch ihre Eigenwerte charakterisiert.

Beispiel: Eindimensionales Potential x oder p

Eindimensionale Box [Bild]
$$x$$
 oder p k_n oder Energie $k_n = \frac{n\pi}{a}$

Anmerkungen:

- Wenn O mit allen Operatoren eines vollständigen Satzes von Operatoren vertauscht, so ist O eine Funktion dieser Operatoren. Beispiel: 1-dimensional [O, x] = 0, dann ist O eine Funktion von x.
- Zustände ket (oder bra) werden oft durch die Eigenwerte eines vollständigen Satzes charakterisiert.

 $|p\rangle$ ebene Welle mit Impuls p

 $|E_1\rangle$ Grundzustand des Hamilton Operators (1-dim. Problem)

 $|n,l,m\rangle$ Energie–Eigenzustand mit $E_n \sim n^2$, mit (Drehimpuls)² = $l(l+1)\hbar^2$, und $l_z = m\hbar$ Impuls: {Eigenzustände $|p_0\rangle$ } = Basis; $\langle p_0|p_0'\rangle = \delta(p_0-p_0')$ Impulsdarstellung: $\langle p_0|\Psi\rangle\tilde{\Psi}(p)$

Ort: {Eigenzustand: $|x\rangle$ } = Basis $\langle x|x'\rangle = \delta(x-x')$ Ortsdarstellung: $\langle x|\Psi\rangle = \Psi(x)$

Energie: {Eigenzustand $|E_n\rangle$ oder $|n\rangle$ } = Basis Energiezustand $\langle E_n|\Psi\rangle$

• Funktionen eines Operators: f(H)Entweder: Wähle Darstellung, in welcher A diagonal ist.

$$\langle i|A|j\rangle = a_i \delta_{ij} = \begin{pmatrix} a_1 & & \\ & a_2 & \\ & & \ddots & \\ & & a_n \end{pmatrix}$$

$$\langle i|f(A)|j\rangle = f(a_i)\delta_{ij} = \begin{pmatrix} f(a_1) & 0 & 0 & 0 \\ 0 & f(a_2) & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & f(a_n) \end{pmatrix}$$

Falls
$$f(u) = \sum_{n} c_n u^n$$
, dann $f(A) = \sum_{n} c_n A^n$

Wichtige Beispiele:

 $\overline{\mathcal{P}}$ sei Impulsoperator, a Konstante

$$e^{ia\mathcal{P}/\hbar}$$

Impulsdarstellung:

$$\langle p'_{0}|e^{ia\mathcal{P}/\hbar}|p_{0}\rangle = e^{ia\mathcal{P}/\hbar}\delta(p'_{0} - p_{0})$$

$$\langle p_{0}|e^{ia\mathcal{P}/\hbar}|\Psi\rangle = \int dp'_{0} \langle p_{0}|e^{ia\mathcal{P}/\hbar}|p'\rangle\langle p'|\Psi\rangle$$

$$= e^{ia\mathcal{P}/\hbar}\tilde{\Psi}(p_{0})$$

Ortsdarstellung:

$$e^{ia\mathcal{P}/\hbar} \triangleq e^{a\frac{a}{dx}} = \sum_{n} \frac{1}{n!} (a\frac{a}{dx})^{n}$$

$$\langle x|e^{ia\mathcal{P}/\hbar}| \underbrace{\qquad}_{\int dx' |x'\rangle\langle x'|} \Psi \rangle = \int dx' \langle x| \sum_{n} \frac{1}{n!} (a\frac{a}{dx})^{n} |x'\rangle\langle x'|\Psi \rangle$$

$$= \int dx' \sum_{n} \frac{1}{n!} (a\frac{a}{dx})^{n} \delta(x - x') \Psi(x')$$

$$= \sum_{n} \frac{1}{n!} (a\frac{a}{dx})^{n} \Psi(x) = \sum_{n} \frac{1}{n!} a^{n} \Psi^{(n)}(x)$$

$$= \Psi(x + a)$$

Hamilton–Operator in Orts– bzw. Impulsdarstellung

$$\overline{H = \frac{p^2}{2m} + V(x)}$$
; $p = \text{Impulsoperator}$ $x = \text{Ortsoperator}$

Ortsdarstellung

$$\langle x_{0}|P^{2}|x'_{0}\rangle = (i\hbar \frac{d}{dx_{0}})^{2}\delta(x_{0} - x'_{0})$$

$$\langle x_{0}|V(x)|x'_{0}\rangle = V(x_{0})\delta(x_{0} - x'_{0})$$

$$\langle x|\mathcal{H}|\Psi\rangle = \int dx'_{0}\langle x_{0}|\mathcal{H}|x'_{0}\rangle\langle x'_{0}|\Psi\rangle$$

$$= \int dx'_{0} \left[\frac{1}{2m}(i\hbar \frac{d}{dx_{0}})^{2} + V(x_{0})\right]\delta(x_{0} - x'_{0})\Psi(x'_{0})$$

$$= \left(-\frac{\hbar^{2}}{2m}(\frac{d}{dx_{0}})^{2} + V(x_{0})\right)\Psi(x_{0})$$

• Impulsdarstellung

$$\langle p_0|P^2|p_0'\rangle = p_0^2 \delta(p_0 - p_0')$$

$$\langle p_0|V(x)|p_0'\rangle = \int dx_1 dx_2 \langle p_0|x_1\rangle \quad \langle x_1|V(x)|x_2\rangle \quad \langle x_2|p_0'\rangle$$

$$= \int dx_1 dx_2 V_{p_0}(x_1)^* \quad \delta(x_1 - x_2) \quad V_{p_0'}(x_2)$$

$$= \frac{dx_1}{2\hbar\pi} e^{i(p_0' - p_0)x_1/\hbar} V(x_1)$$

$$= \tilde{V}(p_0' - p_0)/\sqrt{2\pi\hbar}$$

$$\langle p_0|\mathcal{H} \underbrace{\hspace{1cm} |\Psi\rangle}_{|p_0'\rangle\langle p_0'|} = \frac{p_0^2}{2m} \tilde{\Psi}(p_0) + \int \frac{dp'}{\sqrt{2\pi\hbar}} \tilde{V}(p_0' - p_0) \tilde{\Psi}(p_0')$$

$$\langle p_0|\mathcal{H}|\Psi\rangle = E\langle p_0|\Psi\rangle \quad \text{Integralgleichung}$$

3 Postulate der Quantenmechanik

3.1 Allgemeine Prinzipien

Zwei Jahre Intensive Diskussion 1925/26 (Kopenhagener Interpretation)

Klassisches mechanisches System:

Zur Zeit t_0 : Zustand festgelegt durch die verallgemeinerten Koordinaten $q_i(t_0), p_i(t_0)$, Bewegung im Phasenraum.

(Bild - beliebiger Zeitpunkt: $q_i(t), p_i(t)$ aus den hamilton'schen Gleichungen)

Quantenmechanik

- Zur Zeit t_0 : Zustand festgelegt durch $|\Psi(t_0)\rangle$. Jede Messung wird beschrieben durch die Wirkung eines Operators der auf $\Psi(t_0)$ wirkt. \rightarrow "Observable"
- Messung → Eigenwert von A
 z.B. Energieeigenwerte, Spin bei Stern Gerlach
- Wahrscheinlichkeit, den Eigenwert a_n zu finden (ohne Entartung)

$$P(a_n) = |\langle u_n | \Psi \rangle|^2$$

 a_n g–fach entartet $P(a_n) = \sum_{i,\dots,g} \left| \langle u_n^i | \Psi \rangle \right|^2$

Falls A kontinuierliches Spektrum:

Dichte
$$dP(\alpha) = |\langle \nu_{\alpha} | \Psi \rangle|^2 d\alpha$$

Beispiel: Dichte im Ortsraum:

$$dP(x) = |\langle x|\Psi\rangle|^2 dx = |\Psi(x)|^2 dx$$

$$dP(p) = |\langle p|\Psi\rangle|^2 dp = |\tilde{\Psi}(p)|^2 dp$$

"Reduktion des Wellenpaketes"

Nach der Messung ist das System (Wahrscheinlichkeit 1) im Unterraum, der durch a_n charakterisiert wird:

$$|\Psi\rangle = \stackrel{a_n}{\rightarrow} \frac{P_n |\Psi\rangle}{\sqrt{\langle\Psi|P_n|\Psi\rangle}}$$

 P_n ist der Projektor auf den durch a charakterisierten Unterraum (falls keine Entartung $P_n = |u_n\rangle\langle u_n|$).

Beispiel: Ortsmessung

Teilchen zwischen ∞ hohen Wänden im Grundzustand:

(3 Zeichnungen)

Teilchen nicht mehr im Energiegrundzustand. Überlagerung von allen Energie-Eigenzuständen.

Anmerkung: Sukzessive Messungen von Observablen aus vollständigem Satz führt auf einen Zustand, der Eigenzustand zu all diesen Operatoren ist. Der Zustand ist dann eindeutig festgelegt.

Zeitentwicklung:
$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \mathcal{H}(t) |\Psi(t)\rangle$$

In der Quantenmechanik werden Observable häufig aus klassischen Größen dediziert:

In Ortsdarstellung:
$$x \rightarrow X$$

$$p \rightarrow P = i\hbar \frac{d}{dx}$$

alle anderen Observablen, die klassische Funktionen von x und p sind, werden durch diese Substitution gewonnen. \Rightarrow "Korrespondenzprinzip"

Erwartungswerte (diskretes, nicht entartetes Spektrum)

Einzelne Messung liefert einen der Eigenwerte a_n mit der Wahrscheinlichkeit $P_n = |\langle u_n | \Psi \rangle|^2$

viele Messungen:
$$\sum_n a_n P_n = \sum_n \langle \Psi \underbrace{|u_n\rangle a_n\langle u_n|}_A \Psi \rangle$$
$$= \langle \Psi | A | \Psi \rangle$$

Schwankungen um den Mittelwert

$$|\Psi\rangle(\Delta A)^2 \equiv |\Psi\rangle \left(A - \langle\Psi|A|\Psi\rangle\right)^2 |\Psi\rangle$$

Heisenberg'sche Unschärfe-Beziehung

Ausgangspunkt: $[Q,P] = i\hbar$

Ausgangspunkt. [4], ...] Trick: Betrachte $|\varphi\rangle=(Q+i\lambda p)$ $\underbrace{|\Psi\rangle}_{\text{beliebig}}$

$$0 \le \langle \varphi | \varphi \rangle = \langle \Psi | \underbrace{(Q + i\lambda P)(Q - i\lambda P)}_{Q^2 + \lambda^2 P^2 + i\lambda(QP - PQ)} | \Psi \rangle$$
$$[Q,P] = i\hbar$$

$$0 \leq \langle \Psi | Q^2 | \Psi \rangle + \lambda^2 \langle \Psi | P^2 | \Psi \rangle - \lambda \hbar \underbrace{\langle \Psi | \Psi \rangle}_{=1} \quad \forall \ \lambda$$

Wähle $\lambda=\frac{\hbar}{2}\left\langle P^{2}\right\rangle _{\Psi};\quad\left\langle P^{2}\right\rangle _{\Psi}=\left\langle \Psi|P^{2}|\Psi\right\rangle$

$$\boxed{\left\langle Q^2 \right\rangle_{\Psi} \left\langle P^2 \right\rangle_{\Psi} \ge \frac{\hbar^2}{u}}$$

Gleichheitszeichen gilt nur für Gauß-Paket.

3.2 Schrödinger Gleichung / allgemeine Resultate

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = \mathcal{H}(t) |\Psi(t)\rangle$$

Für gegebenes $|\Psi(t_0)\rangle$ liegt $|\Psi(t)\rangle$ für alle t bekannt.

3.2.1 Erhaltung der Wahrscheinlichkeit

$$\underbrace{\langle \Psi(t) | \Psi(t) \rangle}_{\text{zeitlich konstant}}$$

Beweis:
$$\frac{d}{dt} \langle \Psi(t) | \Psi(t) \rangle = \underbrace{\left[\frac{d}{dt} \langle \Psi(t) | \right]}_{\frac{d}{dt} \Psi = -\frac{1}{i\hbar} \langle \Psi | \mathcal{H}(t)} | \Psi(t) \rangle + \langle \Psi(t) | \underbrace{\frac{d}{dt} \Psi(t)}_{\frac{1}{i\hbar} \mathcal{H}(t) | \Psi \rangle}_{\frac{1}{i\hbar} \mathcal{H}(t) | \Psi \rangle}$$

$$\Rightarrow = 0$$

Im Ortsraum:

$$\int d\vec{r} \ |\Psi(\vec{r},t)|^2 \ {\rm zeitlich \ konstant} = 1$$

3.2.2 Wahrscheinlichkeitsdichten und Ströme

$$\rho(\vec{r},t) = |\Psi(\vec{r},t)|^{2}$$

$$\vec{\jmath}(\vec{r},t) = \frac{\hbar}{2mi} \left(\Psi^{\star} \tilde{\nabla} \Psi - \Psi \nabla \Psi^{\star} \right)$$

Plausibilität:

$$\vec{v} = \frac{\vec{p}}{m} = \frac{\hbar}{i} \frac{\vec{v}}{m}$$

Klassische Stromdichte = Dichte \cdot Geschwindigkeit

Für ebene Wellen:

$$\begin{split} \Psi(\vec{r},t) &= Ae^{i(\vec{p}\vec{r}-Et)/\hbar} \\ \Rightarrow \rho &= |A|^2 \\ \vec{j} &= |A|^2 \left(\frac{i\vec{p}}{\hbar} - \left(-\frac{i\vec{p}}{\hbar}\right)\right) \frac{\hbar}{2mi} = |A|^2 \underbrace{\vec{p}}_{v_{\text{Gruppe}}} \end{split}$$

Lokale Erhaltung

Elektrodynamik:

$$\frac{\partial}{\partial t} \underbrace{\rho(\vec{r},t)}_{\text{Ladungsdichte}} + \nabla \underbrace{\vec{\jmath}(\vec{r},t)}_{\text{Stromdichte}} = 0$$

Hier:

$$\begin{split} \frac{\partial}{\partial t} \left(\Psi^{\star} \Psi \right) & + \quad \vec{\nabla} \frac{\hbar}{2mi} \left(\Psi^{\star} \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^{\star} \right) \\ & = \quad \left(\frac{\partial}{\partial t} \Psi^{\star} \right) \Psi + \Psi^{\star} \left(\frac{\partial}{\partial t} \Psi \right) + \frac{\hbar}{2mi} \left(\vec{\nabla} \Psi^{\star} \vec{\nabla} \Psi + \Psi^{\star} \vec{\nabla}^{2} \Psi - \vec{\nabla} \Psi \vec{\nabla} \Psi^{\star} - \Psi \vec{\nabla}^{2} \Psi^{\star} \right) \\ & = \quad \left(\frac{\partial}{\partial t} \Psi^{\star} - \frac{\hbar}{2m} \vec{\nabla}^{2} \Psi^{\star} \right) \Psi + \left(\frac{\partial}{\partial t} \Psi + \frac{\hbar}{2mi} \vec{\nabla}^{2} \Psi \right) \Psi^{\star} \underbrace{\qquad \qquad }_{\text{Schr. Gl. einsetzen}} 0 \end{split}$$

Schrödinger-Gleichung:

$$\begin{split} i\hbar\frac{\partial}{\partial t}\Psi &= \left(-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V\right)\Psi \qquad |\cdot\Psi^\star| \\ -i\hbar\frac{\partial}{\partial t}\Psi^\star &= \left(-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V\right)\Psi^\star \qquad |\cdot\Psi| \\ -i\hbar\left[\left(\frac{\partial}{\partial t}\Psi\right)\Psi^\star + \left(\frac{\partial}{\partial t}\Psi^\star\right)\Psi\right] &= \Psi^\star\left(-\frac{\hbar^2}{2m}\vec{\nabla}\Psi\right) + \Psi\left(\frac{\hbar^2}{2m}\vec{\nabla}\Psi^\star\right) \end{split}$$

3.2.3 Zeitliche Entwicklung von Erwartungswerten

$$\begin{array}{rcl} \langle A \rangle & = & \langle \Psi(t) | A | \Psi(t) \rangle \\ & \frac{d}{dt} \left\langle A(t) \right\rangle & = & \frac{d}{dt} \langle \Psi(t) | A | \Psi(t) \rangle + \langle \Psi(t) | A | \frac{d}{dt} \Psi(t) \rangle + \langle \Psi(t) | \frac{\partial}{\partial t} A | \Psi(t) \rangle \\ & = & \frac{1}{i\hbar} \langle \Psi(t) | [A,H] | \Psi(t) \rangle + \langle \Psi(t) | \frac{\partial}{\partial t} A | \Psi(t) \rangle \\ \Rightarrow & \frac{d}{dt} \left\langle A(t) \right\rangle & = & \frac{1}{i\hbar} \left\langle [A,H] \right\rangle + \langle \frac{\partial}{\partial t} A \rangle \end{array}$$

Insbesondere:

Falls
$$[A,H] = 0$$
 und falls $\frac{\partial}{\partial t}A = 0$ $\Rightarrow \frac{d}{dt}\langle A \rangle = 0$

Wähle speziell:

A = R Ortsoperator

A = P Impulsoperator

$$\begin{split} H &= \frac{p^2}{2m} + V(x) \quad [R,H] &= \quad \left[R,\frac{p^2}{2m}\right] = i\hbar\frac{p}{m} \\ &[P,H] &= \quad [P,V(R)] = \frac{\hbar}{i}\vec{\nabla}V(R) \\ &\frac{\partial}{\partial t}R = 0 \quad ; \quad \frac{\partial}{\partial t}P = 0 \\ &\Rightarrow \frac{d}{dt}\left\langle R\right\rangle(t) \quad = \quad \frac{\langle P\rangle\,t}{m} \\ &\frac{d}{dt}\left\langle P\right\rangle(t) \quad = \quad -\langle\vec{\nabla}V(R)(t)\rangle \end{split}$$

⇒ Ehrenfest–Theorem analog zur Hamilton–Gleichung in der Mechanik

Beachte: $\langle \vec{\nabla} V(R) \rangle \neq \vec{\nabla} V(\langle R \rangle)$

Klassischer Grenzfall:

$$\langle \vec{\nabla} V(R) \rangle \to \vec{\nabla} V(\langle R \rangle)$$

$$\Rightarrow m \frac{d^2}{dt^2} \langle R \rangle = -\vec{\nabla} V(\langle R \rangle)$$

3.2.4 Zeitliche Entwicklung von Zuständen

Konservative Systeme $\frac{\partial}{\partial t}H = 0$ Eigenzustände / -werte zum Zeitpunkt $t = t_0$

$$H|\Psi_n(t_0)\rangle = E_n|\Psi_n(t_0)\rangle$$

Definiere Basis $\{|\Psi_n(t_0)\rangle\}$

Zeitliche Entwicklung von beliebigem Zustand

$$|\Psi(t)\rangle = \sum_{n} c_n(t) |\Psi(t_0)\rangle$$

DGL für $c_n(t)$

$$i\hbar \sum_{n} \left(\frac{d}{dt} c_n(t) \right) |\Psi(t_0)\rangle = \sum_{n} c_n(t) E_n |\Psi_n(t_0)\rangle$$

$$\Rightarrow i\hbar \frac{d}{dt} c_n(t) = E_n c_n(t)$$

$$\Rightarrow c_n(t) = c_n(t) e^{-iE_n(t-t_0)/\hbar}$$

$$|\Psi(t)\rangle = \sum_{n} c_n(t) e^{-iE_n(t-t_0)/\hbar} |\Psi(t_0)\rangle$$

Wichtige Konsequenz: Falls nur ein $c_n \neq 0, c_n = e^{i\varphi}$ O.B.d.A.

$$\begin{array}{lcl} \left\langle A\right\rangle(t) & = & \left\langle \Psi(t)|A|\Psi(t)\right\rangle \\ & = & \left\langle \Psi(t_0)|e^{iE_n(t-t_0)/\hbar}Ae^{-iE_n(t-t_0)/\hbar}|\Psi(t_0)\right\rangle \\ & = & \left\langle A\right\rangle(t_0) \end{array}$$

Erwartungswerte ändern sich nicht "stationäre Zustände" \Leftrightarrow scharfe Energie

4 Der Harmonische Oszillator (HO)

4.1 Einführung – H.O. in der klassischen Mechanik

Teilchen der Masse m im Potential $V(x) = \frac{1}{2}kx^2$

(Bild Potential)

Bewegungsgleichung: $m\ddot{x} = -\frac{dV}{dx} = -kx$

Lösung: $x(t) = x_M \cos(\omega t - \varphi)$ $\omega = \sqrt{\frac{k}{m}}; \quad x_M, \varphi \text{ aus Anfangsbedingung}$

Energie:

$$E = T + V = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \frac{1}{2}m\omega^2 x_M^2$$

Bemerkung: Die potentielle Energie U(x) vieler physikalischer Systeme hat bei $x=x_0$ ein Minimum.

Entwickeln von $x = x_0$

$$U(x) = \underbrace{U(x_0)}_{\text{konst.}} + \underbrace{U'(x_0)}_{= 0}(x - x_0) + \frac{1}{2} \underbrace{U''(x_0)}_{\text{konst.}}(x - x_0)^2$$

(Bild U(x))

Beschreibbar:

- Oszillationen von Atomen im Kristall, Molekül
- "Quantisierung" von Feldern

4.2 Harmonischer Oszillator in der Quantenmechanik

$$\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

Klassische Größen \rightarrow Operatoren

Eigenwert-Gleichung $\mathcal{H}\Psi = E\Psi$ im Ortsraum:

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 \right] \Psi = E \Psi$$

4.2.1 Analytische Lösung der DGL

Setze
$$\hat{x} = x\sqrt{\frac{m\omega}{\hbar}}, \quad \varepsilon = \frac{E}{\hbar\omega}$$

$$\left(\frac{d^2}{d\hat{x}^2} - \hat{x}^2 + 2\varepsilon\right)\Psi(\hat{x}) = 0\tag{6}$$

Verhalten für $\Psi(\hat{x})$ für große \hat{x} $(\hat{x} \gg \varepsilon)$

Ansatz: $G_{+}(\hat{x}) = e^{\pm \frac{\hat{x}^2}{2}}$

 $G_{\pm}(\hat{x})$ löst DGL:

$$\left(\frac{d^2}{d\hat{x}^2} - \hat{x}^2 \pm 1\right) G_{\pm}(\hat{x}) = 0$$

Für große $\hat{x} \approx \hat{x} \pm 1 \approx \hat{x} + 2\varepsilon$

Normierbarkeit nur abfallende Lösung.

$$\Rightarrow$$
 Ansatz für Gl. (6):
$$\Psi(\hat{x}) = h(\hat{x})e^{-\frac{\hat{x}^2}{2}}$$

Einsetzen in Gl. (6):

$$\left(\frac{d^2}{d\hat{x}^2} - 2\hat{x}^2 \frac{d}{d\hat{x}} + (2\varepsilon - 1)\right) h(\hat{x}) = 0$$

Lösung mit Potenzreihenansatz

$$h(\hat{x}) = \sum_{n=0}^{\infty} a_m \hat{x}^{m+p}$$

$$\begin{array}{ll} a_0 \neq 0 & (a_i = 0 \text{ für } i < 0) \\ (m+p+2)(m+p+1)a_{m+2} = (2m+2p-3\varepsilon+1)a_m \end{array}$$

 $\frac{a_{m+2}}{a_m} \stackrel{m \quad \infty}{\longrightarrow} \frac{1}{m} \Rightarrow$ Normierbare Lösung nur, falls Potenzreihe abbricht.

1.

$$m = -2 \Rightarrow p(p-1) = 0$$

 $\Rightarrow p = 0; p = 1$

2.

$$(2m + 2p - 2\varepsilon + 1) \stackrel{!}{=} 0$$

$$\Rightarrow \varepsilon_n = m + p + \frac{1}{2} = n + \frac{1}{2}$$

$$\Rightarrow E_n = \hbar\omega \left(n + \frac{1}{2}\right)$$

einsetzen in DGL:

$$\left(\frac{d^2}{d\hat{x}^2} - 2\hat{x}^2 \frac{d}{d\hat{x}} + 2n\right) h(\hat{x}) = 0 \quad n = 0, 1, 2, \dots$$

Hermite DGL

Lösung: Hermite Polynome $H_n(\hat{x})$

$$H_n(\hat{x}) = (-1)^n e^{\hat{x}^2} \frac{d^n}{d\hat{x}^n} e^{-\hat{x}^2}$$

$$N_n = \sqrt{\pi} n! \sqrt{\frac{\hbar}{m\omega}} \dots$$

$$H_0(y) = 1$$

$$H_1(y) = 2y$$

$$H_2(y) = 4y^2 - 2$$

Stationäre Zustände des H.O.

$$\varphi_n(\hat{x}) = N_n e^{-\frac{\hat{x}^2}{2}} H_n(\hat{x})$$

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right) \qquad n = 0, 1, 2, \dots$$

- $\Delta E = E_n E_{n-1} = \hbar \omega = \text{konstant}$
- $E_0 = \frac{1}{2}\hbar\omega$ heißt Nullpunktsenergie

Eigenschaften von $\varphi_n(\hat{x})$

- $\varphi_n(-\hat{x}) = (-1)^n \varphi_n(\hat{x})$
- $\varphi_n(\hat{x})$ hat *n* reelle Nullstellen
- Extrema liegen innerhalb der "klassischen Grenzen"

4.2.2 H.O. Algebraische Lösung

Def. dimensionslose Größen

$$\hat{x} = \sqrt{\frac{m\omega}{\hbar}}x \qquad \hat{p} = \frac{1}{\sqrt{m\hbar\omega}}p$$

$$\hat{H} = \frac{H}{\hbar\omega} = \frac{1}{2}(\hat{x}^2 + \hat{p}^2) \qquad \varepsilon = \frac{E}{\hbar\omega}$$

$$[\hat{x}, \hat{p}] = i$$

Eigenwertgleichung:

$$\hat{H}|\varphi_{\nu}\rangle = E_{\nu}|\varphi_{\nu}\rangle$$

$$a = \frac{1}{\sqrt{2}}(\hat{x} + i\hat{p}) \qquad a^{\dagger} = \frac{1}{\sqrt{2}}(\hat{x} - i\hat{p})$$

$$\hat{x} = \frac{1}{\sqrt{2}}(a + a^{\dagger}) \qquad \hat{p} = \frac{i}{\sqrt{2}}\left[a^{\dagger} - a\right]$$

Eigenschaften von a, a^{\dagger}

1.

$$\begin{bmatrix} a, a^{\dagger} \end{bmatrix} = \frac{1}{2} [\hat{x} + i\hat{p}, \hat{x} - i\hat{p}]
= \frac{1}{2} (i [\hat{x} - \hat{p}] + i [\hat{p}, \hat{x}])
= 1$$

2.

$$\underbrace{N}_{\text{Besetzungszahloperator}} = aa^{\dagger} = \frac{1}{2} \left(\hat{x}^2 + \hat{p}^2 - 1 \right)$$

3.

$$H = a^{\dagger}a + \frac{1}{2} = N + \frac{1}{2}$$

- \Rightarrow Eigenzustände von \hat{H} sind auch Eigenzustände von \hat{N} und umgekehrt.
- \Rightarrow Lösen von $H|\varphi_{\nu}\rangle=E_{\nu}|\varphi_{\nu}\rangle$ ist äquivalent zur Lösung von $N|\varphi_{\nu}\rangle=\nu|\varphi_{\nu}\rangle$

Eigenschaften von N

1.

$$\begin{array}{rcl} [N,a] & = & \left[a^{\dagger}a,a\right] & [AB,C] = A\left[B,C\right] + \left[A,C\right]B \\ \\ & = & \left[a^{\dagger},a\right]a = -a \\ \\ \left[N,a^{\dagger}\right] & = & a^{\dagger} \end{array}$$

2. Eigenwerte ν von $N \quad \nu \geq 0$

$$0 \leq ||(a|\varphi_{\nu}\rangle)||$$

$$= \langle a\varphi_{\nu}|a\varphi_{\nu}\rangle = \langle \varphi_{\nu}|a^{\dagger}a|\varphi_{\nu}\rangle = \langle \varphi_{\nu}|N|\varphi_{\nu}\rangle = \nu\underbrace{\langle \varphi_{\nu}|\varphi_{\nu}\rangle}_{>0}$$

$$\Rightarrow \nu \geq 0$$

- niedrigster Eigenwert ≥ 0
- Falls $\nu > 0 \Rightarrow a |\varphi_{\nu}\rangle = 0$
- 3. Sei $|\varphi_{\nu}\rangle$ Eigenzustand von N zum Eigenwert $\nu 1$, $a|\varphi_{\nu}\rangle \sim |\varphi_{\nu-1}\rangle \Rightarrow a^{\dagger}|\varphi_{\nu}\rangle$ ist Eigenzustand zum Eigenwert $\nu + 1$, $a^{\dagger} |\varphi_{\nu}\rangle \sim |\varphi_{\nu+1}\rangle$

$$Na^{\dagger}|\varphi_{\nu}\rangle = (a^{\dagger} + a^{\dagger}N)|\varphi_{\nu}\rangle = (\nu + 1)a^{\dagger}|\varphi_{\nu}\rangle$$

Analog für $a|\varphi_{\nu}\rangle$

Richtige Normierung $|\varphi_{\nu}\rangle$ sei 1. Normiert $\langle \varphi_{\nu}|\varphi_{\nu}\rangle = 1$

$$\langle a^{\dagger} \varphi_{\nu} | a^{\dagger} \varphi_{\nu} \rangle = \langle \varphi_{\nu} | a a^{\dagger} | \varphi_{\nu} \rangle = \langle \varphi_{\nu} | a^{\dagger} a + 1 | \varphi_{\nu} \rangle - (\nu + 1) \langle \varphi_{\nu} | \varphi_{\nu} \rangle$$

$$\Rightarrow a^{\dagger} | \varphi_{\nu} \rangle = \sqrt{\nu + 1} | \varphi_{\nu + 1} \rangle$$

$$a | \varphi_{\nu} \rangle = \sqrt{n} | \varphi_{\nu - 1} \rangle$$

Falls eine Eigenfunktion bekannt ist erhält man alle anderen sukzessive.

Anwendung von a und a^{\dagger} :

Falls $|\varphi_0\rangle$ bekannt

$$|\varphi_n\rangle = \frac{1}{\sqrt{n}}a^{\dagger}|\varphi_{n-1}\rangle = \frac{1}{\sqrt{n!}}(a^{\dagger})^n|\varphi_0\rangle$$

4. Eigenwerte ν von N sind $\in N_0$

Annahme: Es gibt $\bar{\nu}$ mit $n < \bar{\nu} < n+1$ $n \in N_0$

$$N(a^{n}|\varphi_{\bar{\nu}}\rangle) \qquad ([N,a] = -a; [N,a^{n}] = -a_{n}^{n})$$

$$= \underbrace{(\bar{\nu} - n)}_{\geq 0} a^{n}|\varphi_{\bar{\nu}}\rangle$$

$$N(a^{n+1}|\varphi_{\bar{\nu}}\rangle) \qquad = \underbrace{(\bar{\nu} - n - 1)}_{<0} a^{n+1}$$

D.h. wir haben

$$N|\varphi_n\rangle = n|\varphi_n\rangle$$

 $\Rightarrow H|\varphi_n\rangle = \hbar\omega\left(n + \frac{1}{2}\right)|\varphi_n\rangle \qquad n = 0, 1, 2, ...$

Interpretation von a, a^{\dagger} : a^{\dagger} heißt Erzeugungsoperator a heißt Vernichtungsoperator

(Bild: Parabel n = 0, 1, 2, 3)

5. Eigenzustände des Hamiltonoperators: Besetzungsdarstellung

$$a = \frac{1}{\sqrt{2}} \left(\hat{x} + i\hat{p} \right) \qquad a |\varphi_0\rangle = 0$$

Im Orstraum:

$$\varphi_0(x) = \langle x|a|\varphi_0\rangle = \frac{1}{\sqrt{2}} \left(\hat{x} + \frac{d}{d\hat{x}}\right) \underbrace{\langle x|\varphi_0\rangle}_{\varphi_0(\hat{x})}$$

Lösung: $\varphi_0(\hat{x}) = N_0 e^{-\hat{x}/2}$

Angeregte Zustände:

$$\langle x|\varphi_n\rangle = \frac{1}{\sqrt{n!}}\langle x|(a^{\dagger})^n|\varphi_0\rangle$$
$$= \frac{1}{\sqrt{n!}}\frac{1}{\sqrt{2^n}}(\hat{x} - \frac{d}{dt})\varphi_0(x)$$

Explizite Form von $H, N, a, a^{\dagger}, \hat{x}, \hat{p}$ Besetzungszahldarstellung $|\varphi_n\rangle = |n\rangle$

$$\langle m|N|n\rangle = n\delta_{m,n}$$

$$\Rightarrow (N) = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 0 & \ddots \end{pmatrix}$$

$$H = \hbar\omega \left(N + \frac{1}{2}\right)$$

$$\Rightarrow H = \hbar\omega \begin{pmatrix} 1/2 & 0 \\ 3/2 & 0 \\ 0 & 5/2 \end{pmatrix}$$

$$a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

 $\langle m|a^{\dagger}|m\rangle = \sqrt{n+1}\delta_{m,n+1}$

$$a^{\dagger} = \begin{pmatrix} 0 & & & 0 \\ \sqrt{1} & 0 & & & \\ & \sqrt{2} & 0 & & \\ & & \sqrt{3} & \ddots & \\ 0 & & \ddots & 0 \end{pmatrix}$$
 $a = \begin{pmatrix} 0 & \sqrt{1} & & 0 \\ 0 & \sqrt{2} & & & \\ & 0 & \sqrt{3} & & \\ & & \ddots & \ddots & \\ 0 & & & 0 \end{pmatrix}$

Hinweis:

Berechnen Sie $a^{\dagger}a$ und vergleichen Sie die Spur und Determinante auf der linken und

rechten Seite.

$$\hat{x} = \frac{1}{\sqrt{2}} \left(a + a^{\dagger} \right) \qquad (\hat{x}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 \\ \sqrt{1} & 0 & \sqrt{2} & & \\ & \sqrt{2} & 0 & \sqrt{3} & & \\ & & \sqrt{3} & \ddots & \ddots \\ 0 & & & \ddots & 0 \end{pmatrix}$$

$$\hat{p} = \frac{i}{\sqrt{2}} \left(a^{\dagger} - a \right) \qquad (\hat{p}) = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -\sqrt{1} & & 0 \\ \sqrt{1} & 0 & -\sqrt{2} & & \\ & & \sqrt{2} & 0 & -\sqrt{3} \\ & & & \sqrt{3} & \ddots & \ddots \\ 0 & & & \ddots & 0 \end{pmatrix}$$

4.3 Diskussion der Resultate

4.3.1 Erwartungswerte

Für stationäre Zustände (Energieeingenzustände) gilt $\langle x \rangle = 0$; $\langle p \rangle = 0$ für alle Zeiten. $\langle n|x^2|n \rangle$ wächst mit n und entspricht genau dem Wert, welchen man als zeitlichen Mittelwert von x^2 bei klassischer Bewegung erhalten würde. (Ohne Beweis) Analog für p^2

4.3.2 Qualitativer Beitrag zum Grundzustand

Klassisch: $x = 0, p = 0, E = 0 \quad \forall t$

Quantenmechanik: Wellenfunktion ist ausgedehnt über Bereich $\sim \xi \sim$, $\langle V \rangle \approx \frac{1}{2} m \omega^2 \xi^2$ Erwartungswert $\langle p^2 \rangle \sim \frac{\hbar^2}{\xi^2}$ (Unschärferelation)

$$\Rightarrow$$
 Kinetische Energie: $\langle T \rangle = \frac{\langle p^2 \rangle}{2m} = \frac{\hbar^2}{2m\xi^2}$

$$\langle H \rangle = \frac{\hbar^2}{2m\xi^2} + \frac{1}{2}m\omega^2\xi^2$$

 $\langle H \rangle$ wird minimal für $\xi^2 = \frac{\hbar}{m\omega}$ und man erhält $\langle V \rangle = \langle T \rangle$ und $\langle H \rangle \approx \hbar \omega$ als korrekte Größenordnung

4.4 Dreidimensionaler Harmonischer Oszillator in kartesischen Koordinaten

$$\underbrace{\left[\frac{\vec{p}^2}{2m} + \frac{1}{2}m\omega^2\vec{R}^2\right]}_{H = H_x + H_y + H_z} \varphi(\vec{R}) = E\varphi(\vec{R})$$

$$\min_{H = \frac{\hbar^2}{2m}} \frac{d^2}{dx^2} + \frac{1}{2}m\omega^2x^2$$

Es gilt weiterhin

$$[H_x, H_y] = 0;$$
 $[H_x, H_z] = 0;$ $[H_y, H_z] = 0$

können gleichzeitig diagonalisiert werden; Problem entspricht drei ungekoppelten harmonischen Oszillatoren.

Ansatz:
$$\varphi(\vec{R}) = \varphi_x(x) + \varphi_y(y) + \varphi_z(z)$$

$$H\varphi = (H_x + H_y + H_z) \varphi = H_x \varphi_x \varphi_y \varphi_z + H_y \varphi_x \varphi_y \varphi_z + H_z \varphi_x \varphi_y \varphi_z$$

$$\Rightarrow \underbrace{H_x \varphi_x}_{=E_x} + \underbrace{H_y \varphi_y}_{=E_y} + \underbrace{H_z \varphi_z}_{=E_z} = E$$

Drei entkoppelte Gleichungen und $E_x + E_y + E_z = E$

$$H_x \varphi_x = E_x \varphi_x$$

$$H_y \varphi_y = E_y \varphi_y$$

$$H_z \varphi_z = E_z \varphi_z$$

$$\varphi_x^{n_x}(x)$$
sei Lösung der $1-D$ Gleichung mit Energie $\hbar\omega\left(n_x+\frac{1}{2}\right)$ $\varphi_y^{n_y}(x)\to\hbar\omega\left(n_y+\frac{1}{2}\right)$ $\varphi_z^{n_z}(x)\to\hbar\omega\left(n_z+\frac{1}{2}\right)$

$$E = \hbar\omega(n_x + n_y + n_z + \frac{3}{2})$$

Energie–Eigenwerte sind entartet angeregt von $n = n_x + n_y + n_z$, reicht nicht um den Zustand festzulegen. Die Angabe von n_x, n_y, n_z legt Zustand eindeutig fest.

Gegeben sei n. Wieviele n_x, n_y, n_z Kombinationen passen?

$$\Rightarrow \frac{(n+1)(n+2)}{2}$$