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II. HISTORICAL BACKGROUND

A. 1901: Max Planck

In 1901 Max Plank explained blackbody radiation using an assumption of light quanta

(photons). Every photon carries energy E = ~ω, where ω = 2πν is the angular frequency of

light (ν is the frequency) and

~ = 1.05457266× 1034J · s . (1)

B. 1905: Albert Einstein

In 1905 Albert Einstein used the concept of light quanta to explain the photo-effect. The

maximal kinetic energy of an electron released from a metal is given by

Ekin,max = ~ω −W , (2)

where W is the work function, i.e., work needed to extract an electron from the metal.

C. 1911: Ernest Rutherford

Rutherford model of an atom.

D. 1913: Niels Bohr

Formulated a quantization principle, which allowed to explain spectra of atoms (both

allowed energies of electrons and the allowed frequency of emitted and absorbed photons).
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E. 1923: Arthur Holly Compton

In 1923 the scattering of photons (X-rays) on electrons has been observed by Compton

(Compton effect). This is an example of inelastic scattering, in which the photon looses a

part of its energy to the electron. From the relation E = ~ω, the dispersion relations E = cp

(p ≡ |p|), and ω = ck (k = |k| is the wave vector) one gets the relation p = ~k. The wave

vector is further related to the wave length of the photon λ = 2π/k.

We derive here the relation between the scattering angle θ and the change of the wave

length of the photon. Relativistic 4-momentum of a photon

pµ =

 E/c

p

 = ~

 ω/c

k

 = ~

 k

k

 , (3)

where k ≡ |k|. For an electron E =
√
m2c4 + c2p2

pµ =

 E/c

p

 =

√m2c2 + p2

p

 (4)

Before the scattering the electron had velocity v = 0. The conservation of the 4-momentum

gives

~

 k

k

+

√m2c2 + p2

p

 = ~

 k′

k′

+

√m2c2 + p′2

p′

 (5)

We choose p = 0 (initially the electron is at rest)

~

 k

k

+

mc

0

 = ~

 k′

k′

+

√m2c2 + p′2

p′

 (6)

~

 k − k′

k− k′

+

mc

0

 =

√m2c2 + p′2

p′

 (7)

We calculate the Minkovski length (norm) of the left and the right sides. On the right

side we can use the general property pµp
µ = p20 − p2 = m2c2 for an electron (for a photon

pµp
µ = 0).

[~(k − k′) +mc]
2 − ~2 (k− k′)

2
= m2c2 (8)

2~2(k · k′ − kk′) + 2~mc(k − k′) = 0 (9)

k − k′ =
~
mc

kk′(1− cos θ) (10)
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1

k′
− 1

k
=

~
mc

(1− cos θ) (11)

With λ = 2π/k we get

λ′ − λ =
2π~
mc

(1− cos θ) (12)

Compton wavelength λc ≡ ~
mc

= 3, 86× 10−11cm = 3, 86× 10−13m.

λ′ − λ = 2πλc (1− cos θ) = 4πλc sin
2 θ

2
(13)

F. 1924: Louis de Broglie

In his PhD thesis in 1924 de Broglie postulated that also electrons have the wave nature

(matter waves). The relations

E = ~ω , p = ~k (14)

are also valid for the electrons (and other matter particles). This means that an electron

with momentum p is characterized by the wave length (de Broglie wave length)

λ =
2π

k
=

2π~
p

. (15)

III. SCHRÖDINGER EQUATION

A. Schrödinger equation for a free particle

Schrödinger introduced a complex wave function ψ(r, t), which satisfies the following

wave equation (for a free particle)

i~
∂ψ

∂t
= − ~2

2m
∇2ψ , (16)

where ∇ = (∂x, ∂y, ∂z) or ∇ = (∂1, ∂2, ∂3). It is easy to see that a plane wave

ψ(r, t) = Cei(k·r−ω(k)t) , (17)

satisfies this equation if

E = ~ω(k) =
~2k2

2m
=

p2

2m
. (18)
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B. Physical meaning and normalization

The physical meaning is as follows: ρ(r, t) ≡ |ψ(r, t)|2 is the probability density to find

the electron at point r at time t. More precisely dP (r, t) = ρ(r, t)d3r is the probability

to find the particle in a volume element d3r around r. This interpretation requires the

normalization condition ∫
d3r ρ(r, t) = 1 , (19)

which means that with probability 1 the particle is located somewhere. The plane wave

solution cannot be normalized (we will discuss this problem later). Yet, since the Schrödinger

equation is linear, we can build a superposition of plane wave solutions which would be

normalizable. A general solution of the free particle Schrödinger equation reads

ψ(r, t) =

∫
d3k

(2π)3
C(k) ei(k·r−ω(k)t) . (20)

With a proper choice of the function C(k) this solution can be made normalizable. We will

discuss such solutions (wave packets) in what follows.

C. Momentum operator

We stick to the description of free particles and consider the expectation value of its

coordinate and velocity. For the coordinate we obtain

〈r〉 =
∫
d3r rρ(r, t) =

∫
d3r ψ∗(r, t)rψ(r, t) . (21)

For the averaged velocity this gives

〈v〉 = d

dt
〈r〉 =

∫
d3r ([∂tψ

∗(r, t)] rψ(r, t) + ψ∗(r, t)r [∂tψ(r, t)]) . (22)

We use (16) and its complex conjugated version:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ , (23)

−i~∂ψ
∗

∂t
= − ~2

2m
∇2ψ∗ , (24)

we obtain

〈v〉 = ~
2mi

∫
d3r

([
∇2ψ∗] rψ − ψ∗r

[
∇2ψ

])
. (25)
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The calculation is simplified in coordinates:

〈vβ〉 =
~

2mi

∑
α

∫
d3r ([∂α∂αψ

∗] rβψ − ψ∗rβ [∂α∂αψ]) . (26)

Perform partial integration in the first term

〈vβ〉 =
~

2mi

∑
α

∫
d3r (ψ∗∂α∂αrβψ − ψ∗rβ∂α∂αψ) . (27)

In the first term ∂α can act either on rβ or on ψ. Using ∂αrβ = δα,β we get

〈vβ〉 =
~
mi

∫
d3r ψ∗∂βψ . (28)

In the vector form this reads

〈v〉 = ~
mi

∫
d3r ψ∗∇ψ =

1

m

∫
d3r ψ∗

(
~
i
∇
)
ψ . (29)

Since classically we would expect

〈v〉 = 1

m
〈p〉 , (30)

we define the momentum operator as

p̂ ≡ ~
i
∇ . (31)

Its expectation value is defined as

〈p̂〉 ≡
∫
d3r ψ∗p̂ψ =

∫
d3r ψ∗

(
~
i
∇
)
ψ . (32)

This makes sense also because if we act with p̂ on the plane wave we obtain

p̂ei(k·r−ω(k)t) = ~kei(k·r−ω(k)t) . (33)

D. Schrödinger equation for a particle in a potential

The momentum operator introduced above allows to write down the Schrödinger equation

for a free particle as

i~
∂ψ

∂t
=

p̂ · p̂
2m

ψ =
p̂2

2m
ψ . (34)

If we introduce the operator of the kinetic energy as

T̂ ≡ p̂2

2m
, (35)
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the Schrödinger equation for a free particle reads

i~
∂ψ

∂t
= T̂ψ . (36)

This immediately motivates the full Schrödinger equation for a particle of mass m in a

potential energy V (r):

i~
∂ψ

∂t
= Ĥψ , (37)

where the Hamiltonian operator is given by Ĥ ≡ T̂+V̂ . The potential energy operator V̂ just

multiplies the wave function with the potential energy, i.e., V̂ ψ = V (r)ψ(r, t) (accordingly

the operator r̂ is defined as r̂ψ(r, t) = rψ(r, t)). From now on we will investigate the full

version of the Schrödinger equation (37).

E. Continuity equation

Consider the time-derivative of the probability density ρ(r, t). Using the Schrödinger

equation and its complex conjugate

i~
∂ψ

∂t
= Ĥψ , (38)

−i~∂ψ
∗

∂t
= Ĥψ∗ , (39)

we obtain

∂tρ = (∂tψ
∗)ψ + ψ∗(∂tψ) =

1

−i~
(Ĥψ∗)ψ +

1

i~
ψ∗(Ĥψ) . (40)

Substituting Ĥ = T̂ + V̂ we observe that the potential energy term drops and we get

∂tρ =
~

2mi
(
[
∇2ψ∗]ψ − ψ∗ [∇2ψ

]
) . (41)

We define the current density of the probability

j =
~

2mi
(ψ∗ [∇ψ]− [∇ψ∗]ψ) . (42)

It is easy to show that the following equation holds

∂tρ+∇ · j = 0 . (43)

This is the continuity equation, which expresses the conservation of the probability.
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For the probability P for a particle to be inside of a volume V ,

P =

∫
V

d3r ρ , (44)

this gives

∂tP = −
∫
V

d3r∇ · j = −
∫
∂V

dS · j . (45)

F. Ehrenfest theorem

In analogy to the expectation value of the momentum operator (32) we can define the

expectation value of an arbitrary operator Â as

〈Â〉 ≡
∫
d3r ψ∗Âψ . (46)

Its time derivative can be easily calculated using the Schrödinger equation (37) and its

complex conjugate:

i~
∂ψ

∂t
= Ĥψ , (47)

−i~∂ψ
∗

∂t
= Ĥψ∗ , (48)

We obtain

i~
d

dt
〈Â〉 =

∫
d3r

[
ψ∗Â

[
Ĥψ
]
−
[
Ĥψ∗

]
Âψ
]
. (49)

In the second term we can use integration by parts (or the fact that H is hermitian as will

be defined later) to get

i~
d

dt
〈Â〉 =

∫
d3r

[
ψ∗ÂĤψ − ψ∗ĤÂψ

]
. (50)

This can be rewritten as
d

dt
〈Â〉 = i

~
〈
[
Ĥ, Â

]
〉 , (51)

where
[
Ĥ, Â

]
≡ ĤÂ− ÂĤ is the commutator.

In general operators do not commute and commutators play a very important role in

quantum mechanics. For example the operators r̂α and p̂β = −i~∂β do not commute.

Indeed

p̂β r̂αψ = −i~∂βrαψ = −i~δα,βψ − i~rα∂βψ = −i~δα,βψ + r̂αp̂βψ . (52)

This gives

[r̂α, p̂β] = i~δα,β . (53)

12



Now we are in a position to recalculate the expectations values of the velocity (time

derivative of r) and the time derivative of the momentum. For the velocity we get

〈v〉 = d

dt
〈r̂〉 = i

~
〈[Ĥ, r̂]〉 = i

~

〈[
p̂2

2m
, r̂

]〉
. (54)

For the commutator, using [r̂α, p̂β] = i~δα,β, we get[
p̂2, r̂

]
β
=
∑
α

[p̂αp̂α, r̂β] =
∑
α

(p̂αp̂αr̂β − r̂β p̂αp̂α)

=
∑
α

(p̂αp̂αr̂β − p̂αr̂β p̂α − i~δα,β p̂α) =
∑
α

(−2i~δα,β p̂α) = −2i~p̂β . (55)

This gives

〈v〉 = d

dt
〈r̂〉 = 1

m
〈p̂〉 . (56)

For the time derivative of the momentum we get

d

dt
〈p〉 = i

~
〈[Ĥ, p̂]〉 = i

~
〈[V̂ , p̂]〉 . (57)

We calculate the commutator

[V̂ , p̂]α = V (r)(−i~∂α)− (−i~∂α)V (r) = i~∂V/∂rα . (58)

As a result we obtain
d

dt
〈p〉 = 〈−∇V̂ 〉 . (59)

This relation, together with d
dt
〈r̂〉 = 1

m
〈p̂〉 is called the Ehrenfest theorem. We see that the

expectation values of the coordinate and momentum satisfy the usual Hamiltonian equations

of motion. Quantum mechanics allows, however, for fluctuations around these expectation

values.

G. Stationary solutions

If the potential V (r) is time-independent a special class of solutions of the Schrödinger

equation exists. One makes the following Ansatz

Ψ(r, t) = f(t)ψ(r) (60)

and substitutes it to the Schrödinger equation i~∂tΨ = HΨ. One obtains

i~(∂tf)ψ = (Ĥψ)f . (61)

13



On the right hand side the Hamiltonian acts only on ψ since f is independent of r. Then

i~(∂tf)/f = (Ĥψ)/ψ . (62)

On the left hand side we have a function of t only and on the right hand side we have a

function of r only. The only possibility is that both give a constant independent of t and r.

We call this constant E. Then we obtain

i~(∂tf) = Ef and Ĥψ = Eψ . (63)

The first equation is easy to solve

f = e−iEt/~ . (64)

The second equation

Ĥψ = Eψ (65)

is called the stationary Schrödinger equation. It is an eigenvalue equation for the operator

Ĥ.

Assuming we found several solutions, ψn, of this equation with eigen-energies En, we can

build the following time-dependent solution

Ψ(t) =
∑
n

cnψne
−iEnt/~ (66)

Should ψn form a complete basis in the Hilbert space, Ψ(t) would be the most general

solution.

H. Wave packets (in 1D)

One of the immediate applications of the expansion of the type (66) is the wave packet

solution for a free particle with the Hamiltonian

Ĥ = T̂ , (67)

where

T̂ ≡ p̂2

2m
. (68)

The plane wave solutions ∝ ei(k·r−ω(k)t) can now be arrived via the eigenvalue/eigenvectors

of H. Indeed the wave functions

ψk(r) = eik·r (69)

14



satisfy the stationary Schrödinger equation

Hψk(r) = Ekψk(r) (70)

with Ek = ~2k2/2m. The general solution of the time dependent Schrödinger equation is

then (in analogy to (66)) given by

Ψ(r, t) =

∫
d3k

(2π)3
g(k)ψk(r)e

−iEkt/~ , (71)

where the function g(k) plays the role of the expansion coefficients cn in (66).

A very special role is played by the solutions in which the function |g(k)| is peaked around

a certain wave vector k0. These are called wave packets.

For simplicity we will continue our consideration in 1D. Then the general solution of the

time-dependent Schrödinger equation reads

Ψ(x, t) =

∫
dk

2π
g(k)ψk(x)e

−iEkt/~ =

∫
dk

2π
g(k)ei(kx−ω(k)t) , (72)

where ω(k) = Ek/~.

Let us first consider the initial state at t = 0. The we have

Ψ0(x) = Ψ(x, t = 0) =

∫
dk

2π
g(k)eikx . (73)

That is Ψ0(x) is just the Fourier transform of g(k). We now introduce explicitly the absolute

value of g(k) and its phase

g(k) = |g(k)|e−iα(k) . (74)

This gives

Ψ0(x) =

∫
dk

2π
|g(k)|ei(−α(k)+kx) =

∫
dk

2π
|g(k)|eiφ(k) , (75)

where φ(k) ≡ kx− α(k). Since |g(k)| is peaked around k0, that is, it is essentially non-zero

only in a small vicinity of k0 of order ∆k (e.g. in the interval k0 −∆k/2 < k < k0 +∆k/2)

we can expand the phase φ(k) around k0:

φ(k) = φ(k0) +
∂φ(k)

∂k

∣∣∣
k=k0

· (k − k0) +
1

2

∂2φ(k)

∂k2

∣∣∣
k=k0

· (k − k0)
2 +O((k − k0)

3) . (76)

Keeping only the lowest orders we obtain

Ψ0(x) = eiφ(k0)
∫

dk

2π
|g(k)|e

i

(
∂φ
∂k

∣∣∣
k=k0

·(k−k0)+O((k−k0)2)

)
. (77)
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The solution is, thus, a plane wave eiφ(k0) = ei(k0x−α(k0)) multiplied by an envelope. We

employ now the stationary phase approximation. This means the integral in the envelope

will be the largest if all the exponents interfere constructively. This happens if

∂φ(k)

∂k

∣∣∣
k=k0

= 0 . (78)

This is the stationary phase condition. Substituting φ(k) = kx − α(k) we see that the

stationary phase condition gives

x = x0 ≡
∂α(k)

∂k

∣∣∣
k=k0

. (79)

Thus, the wave packet will be centered around x = x0. Substituting this into (77) we obtain

Ψ0(x) = ei(k0x−α(k0))

∫
dk

2π
|g(k)|ei((k−k0))(x−x0)+...) . (80)

Now we can estimate the width of the envelope function. Since k−k0 can at most be of order

∆k, the destructive interference of different plane waves will start once |x − x0|∆k ≥ 2π.

Thus, we estimate the width of the envelope as

∆x ∼ 2π

∆k
. (81)

This is, actually, nothing but the uncertainty relation. The exact inequality will be derived

later.

FIG. 1: Wave packet

Now, we consider the evolution in time:

Ψ(x, t) =

∫
dk

2π
|g(k)|ei(−α(k)+kx−ω(k)t) =

∫
dk

2π
|g(k)|eiφ(k,t) , (82)
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where we have defined

φ(k, t) = kx− α(k)− ω(k)t . (83)

We expand again around k0:

φ(k, t) ≈ φ(k0, t) +
∂φ

∂k

∣∣∣
k=k0

· (k − k0) +
1

2

∂2φ

∂k2

∣∣∣
k=k0

· (k − k0)
2 +O((k − k0)

3) (84)

We obtain

φ(k0, t) = k0x− ω(k0)t− α(k0) , (85)
∂φ(k)

∂k

∣∣∣
k=k0

= −∂α(k)
∂k

∣∣∣
k=k0

+ x− t
∂ω(k)

∂k
= x− x0 − t

∂ω(k)

∂k

∣∣∣
k=k0

, (86)

∂2φ(k)

∂k2

∣∣∣
k=k0

= −∂
2α(k)

∂k2

∣∣∣
k=k0

− t
∂2ω(k)

∂k2

∣∣∣
k=k0

. (87)

The stationary phase condition

∂φ(k)

∂k

∣∣∣
k=k0

= 0 (88)

gives now

x = t
∂ω(k)

∂k

∣∣∣
k=k0

+ x0 , (89)

We introduce, thus, the group velocity

vg ≡
∂ω(k)

∂k

∣∣∣
k=k0

, (90)

so that the wave packet is peaked around x = x0 + vgt.

The solution we obtained thus far reads

Ψ(x, t) ≈ ei(k0x−ω(k0)t−α(k0))

∫
dk

2π
|g(k)|ei(x−x0−vgt)(k−k0) . (91)

The plane wave in front of the envelope ”runs” with the so called phase velocity, vph ≡

ω(k0)/k0, whereas the envelope moves with the group velocity vg.

Unfortunately (91) is not the full truth. We have to take into account the second order

terms in the expansion of φ(k) around k0. This gives then

Ψ(x, t) ≈ ei(k0x−ω(k0)t−α(k0))

∫
dk

2π
|g(k)|ei(x−x0−vgt)(k−k0) e−

i
2
(α′′(k0)+ω′′(k0)t)(k−k0)2 . (92)

The term (phase) ∼ ω′′(k0)t(k − k0)
2 ”works” agains the interference argument applied

above. Once |ω′′(k0)t(k − k0)
2| becomes of order 2π the strong oscillations suppress the

contributions of such values of k. Effectively then ∆k becomes smaller and ∆x becomes
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larger. The wave packet widens. This is called dispersion. At large t one can estimate the

effective width in the k-space as ∆keff ∼
√

2π
ω′′(k0)t

. Then, the width of the wave packet

should scale as ∆x ∼ 2π/∆keff ∼
√

2πω′′(k0)t ∼
√
2π~t/m. Of course this behavior would

be be only relevant, once
√

2πω′′(k0)t has reached the initial width of the wave packet.

IV. BASIC PRINCIPLES OF QUANTUM MECHANICS

A. Hilbert space

Whereas a state of a classical system is a point is the phase space (for a single particle

(r,p)), in quantum mechanics a state of a system is described by a wave function, which is

a vector in a Hilbert space.

Let us start with the concept of a vector space. A vector space is a set of objects

(vectors). The vectors can be added to each other. A sum of two vectors is a vector again.

If we have two vectors v and u, then g = v + u is a vector again. This operation is

commutative v + u = u+ v. In addition vectors can be multiplied by numbers to produce

other vectors. If one uses only real numbers this vector space is called a a real vector space.

In complex vector space one employs complex numbers[1]. In quantum mechanics we use

complex vector spaces. Thus, the most general vector we can construct out of two vectors

v1 and v2 is g = c1v1+c2v2, where c1 and c2 are complex coefficients[2]. Every vector space

has a basis (it is not unique). A basis is a set of linearly independent vectors bn, such that

any vector can be represented as v =
∑

n cnbn. The number of vectors in the basis is called

dimensionality of the vector space.

In addition to well known d-dimensional vector spaces there are vector spaces of infinite

dimensionality. The most relevant for us would be, e.g., the space of all complex functions

ψ(r). Assume ψ1(r) and ψ2(r) are two complex functions. Clearly, c1ψ1(r) + c2ψ2(r) is also

a complex function.

Hilbert space is a vector space with a scalar product. The scalar product of two vectors

is denoted (u,v), or in the Dirac notation 〈u|v〉. It has the following properties

1) (u,v) = (v,u)∗,

2) (u, c1v1 + c2v2) = c1(u,v1) + c2(u,v2),

3) (c1u1 + c2u2,v) = c∗1(u1,v) + c∗2(u2,v),
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4) (v,v) ≥ 0, if (v,v) = 0 then v = 0,

5) |(u,v)|2 ≤ (u,u) · (v,v) (Schwarz inequality).

In order to make a Hilbert space out of our complex functions ψ(r) we have to restrict

them to the space of quadratically integrable functions, i.e., such that∫
d3r|ψ(r)|2 <∞ . (93)

This space is called L2. The scalar product of two vectors in L2 is then defined as

(φ, ψ) = 〈φ|ψ〉 =
∫
d3r φ∗(r)ψ(r) . (94)

The norm of the wave function is then given by

||ψ|| = 〈ψ|ψ〉 =
∫
d3r ψ∗(r)ψ(r) . (95)

Every state in L2 can be normalized. Indeed, defining

ψ′(r) =
ψ(r)√
〈ψ|ψ〉

, (96)

we trivially obtain

〈ψ′|ψ′〉 = 1 . (97)

B. Dirac notation, dual space

The scalar product allows to define a dual space. For a vector space V the dual space is

called V ∗. This is a space of all linear maps V → C. Namely every state v defines a linear

map φv(u) = 〈v|u〉 in which an arbitrary vector u is mapped onto the complex number

〈v|u〉. One therefore uses |v〉 for vectors v and calls this a ”ket” state. The elements of the

dual space are denoted as 〈v| and are called the ”bra” states. This is the Dirac notation

commonly used in quantum mechanics.

C. Orthonormal basis, completeness

In a Hilbert space one can use a special kind of basis, namely an orthonormal basis. The

basis states (vectors) bn satisfy

〈bn|bm〉 = δn,m . (98)
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Every state can be presented as

|v〉 =
∑
n

cn |bn〉 . (99)

The coefficients cn are unique and can be found by projecting on the state |bm〉, i.e., by

scalar multiplying (99) from the left by 〈bm|. This gives

〈bm|v〉 =
∑
n

cn 〈bm|bn〉 = cm . (100)

We have obtained cm = 〈bm|v〉 and

|v〉 =
∑
n

cn |bn〉 =
∑
n

〈bn|v〉 |bn〉 . (101)

Let us rewrite this relation in a slightly different way

|v〉 =
∑
n

cn |bn〉 =
∑
n

|bn〉 〈bn|v〉 . (102)

Now we can interpret the combination Pn = |bn〉 〈bn| as a linear operator. Namely the

operator Pn acts on an arbitrary state |v〉 as

Pn |v〉 = |bn〉 〈bn|v〉 = 〈bn|v〉 |bn〉 . (103)

The operator Pn is called a projector onto the state |bn〉. The relation |v〉 =
∑

n |bn〉 〈bn|v〉

can be now rewritten as

|v〉 =
∑
n

|bn〉 〈bn|v〉 =
∑
n

Pn |v〉 . (104)

Since the basis is complete, i.e., every state |v〉 can be expanded, we conclude that∑
n

Pn =
∑
n

|bn〉 〈bn| = 1̂ , (105)

where 1̂ is the unity operator. This relation is called the completeness relation.

D. Linear operators, matrix representation

A linear operator Â is a mapping from the Hilbert space to itself |u〉 = Â |v〉, such that

Â(c1 |v1〉+ c2 |v2〉) = c1Â |v1〉+ c2Â |v2〉.

Consider a linear operator Â. We have the vector |v〉 and the vector |u〉, which is the

result of Â acting on |v〉, i.e. |u〉 = Â |v〉. We can expand the vectors |v〉 and |u〉 in the basis

|bn〉:

|v〉 =
∑
n

vn |bn〉 , (106)
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|u〉 =
∑
m

um |bm〉 . (107)

Then

|u〉 =
∑
m

um |bm〉 = Â |v〉 = Â
∑
n

vn |bn〉 . (108)

We project onto 〈bk|:

〈bk|u〉 = uk =
∑
n

vn 〈bk| Â |bn〉 . (109)

We can rewrite this as

uk =
∑
n

Ak,nvn , (110)

where Ak,n = 〈bk| Â |bn〉 is the matrix of matrix elements of Â. This gives the matrix

representation of the operator Â in the basis |bn〉.

E. Completeness relation in L2

For simplicity we consider one dimension (1D). Thus the wave functions are |ψ〉 = ψ(x).

The scalar product reads

〈ψ2|ψ1〉 =
∫
dxψ∗

2(x)ψ1(x) . (111)

What is the unity operator is L2? We can think of ψ(x) as a complex vector with x being a

continuous index. Then every operator Â in L2 can be represented as an infinite dimensional

matrix A(x, x′). Namely we can write |φ〉 = Â |ψ〉 as

φ(x) =

∫
dx′A(x, x′)ψ(x′) . (112)

The unity operator is clearly represented by the matrix δ(x− x′). Indeed

ψ(x) =

∫
dx′ δ(x− x′)ψ(x′) . (113)

Assume we have a complete orthonormal basis |ψn〉 = ψn(x) in L2. The dimensionality is of

course infinite, but index n can be regarded here as a discrete one running to infinity. The

orthonormality means

〈ψm|ψn〉 =
∫
dxψ∗

m(x)ψn(x) = δm,n . (114)

The completeness relation then reads∑
n

ψn(x)ψ
∗
n(x

′) = δ(x− x′) . (115)
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Let us check once again

|φ〉 = φ(x) =

∫
dx′ δ(x− x′)φ(x′) =

∑
n

∫
dx′ ψn(x)ψ

∗
n(x

′)φ(x′)

=
∑
n

ψn(x)

∫
dx′ ψ∗

n(x
′)φ(x′) =

∑
n

cnψn(x) =
∑
n

cn |ψn〉 . (116)

Here cn = 〈ψn|φ〉 =
∫
dx′ ψ∗

n(x
′)φ(x′).

F. Hermitian operators, their eigenvectors and eigenvalues

For every operator Â one can define its Hermitian conjugated Â† operator. This is defined

by the following relation 〈
u|Âv

〉
=
〈
Â†u|v

〉
. (117)

for any pair of states |u〉 and |v〉. The operator |A〉 is called Hermitian if Â† = A [3]. There

are two important facts about Hermitian operators.

1) Eigenvalues of Hermitian operators are real. Indeed, assume we have an eigenvector

|v〉 with an eigenvalue a, i.e., Â |v〉 = a |v〉. Multiplying by 〈v| we get〈
v|Âv

〉
= a 〈v|v〉 . (118)

On the other hand 〈
v|Âv

〉
=
〈
Âv|v

〉
= 〈av|v〉 = a∗ 〈v|v〉 . (119)

Comparing we conclude that a = a∗, i.e., it is real.

2) Two eigenvectors with non-equal eigenvalues are orthogonal. Indeed, assume |v1〉 and

|v2〉 are the eigenvectors. We have

Â |v1〉 = a1 |v1〉 , Â |v2〉 = a2 |v2〉 . (120)

We multiply the first equation by 〈v2| from the left. This gives〈
v2|Âv1

〉
= a1 〈v2|v1〉 . (121)

On the other hand 〈
v2|Âv1

〉
=
〈
Âv2|v1

〉
= a2 〈v2|v1〉 . (122)

(remember a1 and a2 are real). Combining we obtain

(a1 − a2) 〈v2|v1〉 = 0 . (123)
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Thus, if a1 6= a2, we have 〈v2|v1〉 = 0.

Let us prove that the momentum operator is Hermitian.

〈φ|p̂ ψ〉 =
∫
dxφ∗(x) [−i~∂xψ(x)] . (124)

In L2 the wave functions must vanish at x → ±∞. Thus, we can use integration by parts

without the boundary terms. We obtain

〈φ|p̂ψ〉 =

∫
dxφ∗(x) [−i~∂xψ(x)] =

∫
dx [i~∂xφ∗(x)]ψ(x)

=

∫
dx [−i~∂xφ(x)]∗ ψ(x) = 〈p̂ φ|ψ〉 . (125)

Assume we have two Hermitian operators. Is their product Hermitian? It is easy to check

that for arbitrary Â and B̂ (not necessarily Hermitian)

(ÂB̂)† = B̂†Â† . (126)

Indeed 〈
φ|ÂB̂ψ

〉
=
〈
Â†φ|B̂ψ

〉
=
〈
B̂†Â†φ|ψ

〉
. (127)

Thus, if Â and B̂ are Hermitian, we obtain

(ÂB̂)† = B̂†Â† = B̂Â . (128)

Thus, ÂB̂ is Hermitian only if ÂB̂ = B̂Â, i.e, if they commute. For example x̂ p̂ is not

Hermitian.

We see, thus, that the kinetic energy operator p̂2/2m is Hermitian. Also the coordinate

operator and, thus, the potential energy operator are Hermitian. We conclude that the

Hamiltonian operator

H =
p̂2

2m
+ V (r̂) (129)

is Hermitian.

G. Hermitian operators have a complete, orthonormal basis of eigenstates

See[4]. We have already proven that two eigenstates of a Hermitian operator Â

Â |v1〉 = a1 |v1〉 , Â |v2〉 = a2 |v2〉 . (130)
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with a1 6= a2 are orthogonal. What happens if Â has a degenerate subspace, i.e., there

are several eigenvectors with the same eigenvalue. These must not be orthogonal. We can,

however, find orthogonal combinations of these eigenvectors.

Assume we have N eigenvectors |vn〉, where n ∈ [1, . . . , N ], such that a1 = a2 = . . . =

aN ≡ a. Any superposition of |vn〉 would be again an eigenvector of Â with the eigenvalue

a. We construct the following matrix

Cn,m = 〈vn|vm〉 . (131)

This matrix is Hermitian, Cn,m = C∗
m,n. From linear algebra we know that there exists a

unitary matrix U , such that U †CU = CD, where CD is diagonal. Then, the states

|φk〉 =
∑
n

|vn〉Un,k (132)

are orthogonal. Indeed,

〈φp|φk〉 =
∑
n,m

U∗
m,p 〈vm|vn〉Un,k = (U †CU)p,k = CD

p,k ∝ δp,k . (133)

What remains is just to normalize the states |φk〉 and we obtain N orthonormal degenerate

eigenstates of Â with the eigenvalue a. Thus, Â has a complete orthonormal basis.

H. Uncertainty relations

Consider two Hermitian operators Â and B̂. Let’s take an arbitrary state |ψ〉. The

variance of Â in the state |ψ〉 is defined

σ2
A =

〈[
Â− 〈Â〉

]2〉
= 〈Â2〉 − 〈Â〉2 . (134)

Here the averaging is in state |ψ〉, i.e., 〈. . .〉 = 〈ψ| . . . |ψ〉.

We obtain

σ2
A =

〈
ψ|
[
Â− 〈Â〉

]2
ψ

〉
=
〈[
Â− 〈Â〉

]
ψ|
[
Â− 〈Â〉

]
ψ
〉
= 〈f |f〉 , (135)

where

|f〉 =
[
Â− 〈Â〉

]
|ψ〉 . (136)

Analogously

σ2
B = 〈g|g〉 , |g〉 =

[
B̂ − 〈B̂〉

]
|ψ〉 . (137)
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Next we use the Schwarz’s inequality:

σ2
Aσ

2
B = 〈f |f〉 〈g|g〉 ≥ | 〈f |g〉 |2 . (138)

We calculate z ≡ 〈f |g〉

z = 〈f |g〉 = 〈ψ|
[
Â− 〈Â〉

] [
B̂ − 〈B̂〉

]
|ψ〉 = 〈ÂB̂〉 − 〈Â〉〈B̂〉 . (139)

Analogously

z∗ = 〈g|f〉 = 〈B̂Â〉 − 〈Â〉〈B̂〉 . (140)

Thus

z − z∗ = 2iIm[z] = 〈[Â, B̂]〉 . (141)

Since

| 〈f |g〉 |2 = |z|2 = (Re [z])2 + (Im [z])2 ≥ (Im [z])2 =
1

4

∣∣∣〈[Â, B̂]
〉∣∣∣2 , (142)

we, finally, obtain

σAσB ≥ 1

2

∣∣∣〈[Â, B̂]
〉∣∣∣ . (143)

In particular, for A = x̂ and B = p̂, using [x̂, p̂] = i~, we obtain

σxσp = ∆x∆p ≥ ~
2
. (144)

I. Eigenstates of the momentum operator, continuum

The eigenstates of the momentum operator can be formally defined as

|p〉 = ψp(x) = eipx/~ . (145)

These states are not normalizable and thus do not belong to L2. Yet, as these are the

eigenstates of a very important operator p̂ = −i~∂x, one profits very much from using them.

Then we need the orthogonality relation for such states. This is given by∫
dxψ∗

p1
(x)ψp2

(x) = 2π~ δ(p1 − p2) . (146)

Also the completeness relation can be formulated∫
dp

2π~
ψp(x)ψ

∗
p(x

′) = δ(x− x′) . (147)
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Any arbitrary wave function in L2 can expanded in the basis of states |p〉 as

ψ(x) =

∫
dp

2π~
φ(p) |p〉 =

∫
dp

2π~
φ(p)eipx/~ . (148)

Comparing with the discrete expansions of the type ψ(x) =
∑

m cmψm(x) we see that the

following equivalence has to be declared∑
m

→
∫

dp

2π~
, cm → φ(p) . (149)

The function φ(p) can be thought of as the wave function in the p-representation.

J. Eigenstates of the coordinate operator

It is also possible to find the eigenstates of the coordinate operator. These are

|ξ〉 = δ(x− ξ) . (150)

Indeed

x̂ |ξ〉 = xδ(x− ξ) = ξδ(x− ξ) = ξ |ξ〉 . (151)

This states are also not normalizable, but satisfy the following orthogonality relations

〈ξ2|ξ1〉 =
∫
dx δ(x− ξ2)δ(x− ξ1) = δ(ξ1 − ξ2) . (152)

The completeness relation is∫
dξδ(x− ξ)δ(x′ − ξ) = δ(x− x′) . (153)

Any wave function ψ(x) can be trivially expanded in the basis |ξ〉:

ψ(x) =

∫
dξψ(ξ) |ξ〉 =

∫
dξψ(ξ)δ(x− ξ) = ψ(x) . (154)

Thus, the function ψ(x) can also be seen as a set of coefficients:

ψ(x) = 〈x|ψ〉 . (155)

26



K. Postulates of quantum mechanics (for a single particle)

1) The state of the system is described by a wave function |ψ〉 = ψ(r), which belongs to

the Hilbert space of square integrable functions L2.

2) The physical observables correspond to Hermitian operators. E.g., coordinate x̂, mo-

mentum p̂, but also x̂2 etc.

3) The expectation value of an observable Â in a state |ψ〉 is given by

〈Â〉 =
〈
ψ|Âψ

〉
. (156)

4) The state of the system evolves in time according the the Schrödinger equation

i~∂t |ψ〉 = Ĥ |ψ〉 , (157)

where Ĥ is the Hermitian operator called Hamiltonian:

Ĥ =
p̂2

2m
+ V (r̂) . (158)

Important consequence: the Hamiltonian, as any Hermitian operator, has a complete

orthonormal basis of eigenstates:

Ĥ |φn〉 = En |φn〉 , 〈φm|φn〉 = δm,n ,
∑
n

|φn〉 〈φn| = 1̂ . (159)

(Sometimes index n is continuous and the states |φn〉 do not belong to L2). At t = 0 any

initial state |ψ0〉 = |ψ(t = 0)〉 can be expanded in this basis

|ψ0〉 =
∑
n

cn |φn〉 , (160)

where cn = 〈φn|ψ0〉. At time t the state evolves to

|ψ(t)〉 =
∑
n

cne
−iEnt/~ |φn〉 . (161)

5) Measurement postulate. Consider an observable Â. As a Hermitian operator it has an

orthonormal complete basis of eigenstates

Â |n〉 = an |n〉 , 〈n|m〉 = δn,m ,
∑
n

|n〉 〈n| = 1̂ . (162)

Assume, the state of the system right before the measurement is |ψ〉 =
∑

n cn |n〉. A single

(strong, projective) measurement of the observable Â leads to a projection (collapse) of the
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state into one of the eigenstates |n〉 whereas the measurement gives the (real) eigenvalue

an as a result. This happens with probability |cn|2. This is one of the most controversial

postulates, which lead to numerous discussions and controversies. The famous Stern-Gerlach

experiment was a strong projective measurement. Most of the measurements performed

in experiments are not of this type. Yet, nowadays, strong measurements are routinely

performed in quantum bits (qubits).

V. ONE-DIMENSIONAL PROBLEMS

A. Harmonic oscillator (1D)

We follow Schwabl, Chapter 3.1. The Hamiltonian reads

Ĥ =
p̂2

2m
+
mω2x̂2

2
. (163)

The purpose is to find all possible eigenvectors and corresponding eigenvalues of the Hamil-

tonian, i.e., to solve Ĥ |ψ〉 = E |ψ〉. This equation, as a differential equation, reads[
− ~2

2m

∂2

∂x2
+
mω2x2

2

]
ψ(x) = Eψ(x) . (164)

It is convenient to introduce the following length scale:

x0 ≡
√

~
mω

(165)

We define two non-Hermitian operators

â =
mωx̂+ ip̂√

2m~ω
=

1√
2

(
x̂

x0
+ x0

∂

∂x

)
, (166)

â† =
mωx̂− ip̂√

2m~ω
=

1√
2

(
x̂

x0
− x0

∂

∂x

)
. (167)

The commutation relation reads

[â, â†] = 1 . (168)

The inverted relations are

x̂ =

√
~

2mω
(â+ â†) =

x0√
2
(â+ â†) , (169)

p̂ = −i
√

~mω
2

(â− â†) = −i ~√
2x0

(â− â†) . (170)
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The Hamiltonian can be then rewritten as

Ĥ =
~ω
4

[
(â+ â†)2 − (â− â†)2

]
=

~ω
2

(
â†â+ ââ†

)
= ~ω

(
â†â+

1

2

)
= ~ω

(
n̂+

1

2

)
.

(171)

We define the (Hermitian) operator n̂ = â†â (it is called the number operator or the oc-

cupation number operator) and try to find its eigenstates. Assume there is one with the

eigenvalue ν:

n̂ |ν〉 = ν |ν〉 . (172)

Then

ν 〈ν|ν〉 =
〈
ν|â†âν

〉
= 〈âν|âν〉 ≥ 0 . (173)

Thus ν ≥ 0. We can try to find the eigenstate with ν = 0. From (173) with ν = 0 it follows

that

â |0〉 = 0 . (174)

Assume the state |0〉 corresponds to the wave function ψ0(x). Then â |0〉 = 0 can be written

as a differential equation: (
d

dx
+

x

x20

)
ψ0(x) = 0 . (175)

The solution is a Gaussian

ψ0(x) = N exp

[
− x2

2x20

]
, (176)

where N is the normalization constant. To determine N we calculate the norm

〈0|0〉 =
∫
dx |ψ0|2 = N 2

∫
dx exp

[
−x

2

x20

]
= N 2

√
π x0 = 1 . (177)

This gives

N = π− 1
4 x

− 1
2

0 . (178)

Thus we have found the eigenstate

|0〉 = ψ0(x) = π− 1
4 x

− 1
2

0 exp

[
− x2

2x20

]
(179)

with the lowest possible eigen-energy:

Ĥ |0〉 = ~ω
2

|0〉 . (180)

To find other eigenstates we notice two important commutators:

[n̂, â†] = â† , [n̂, â] = −â . (181)

29



Indeed

[n̂, â†] = n̂ â† − â† n̂ = â† â â† − â† â† â = â† (â† â+ 1)− â† â† â = â† . (182)

analogously

[n̂, â] = n̂ â− â n̂ = â† â â− â â† â = â† â â− (â† â+ 1) â = −â . (183)

1. Creation operator

Assume we have an eigenstate of n̂ with the eigenvalue ν, i.e., n̂ |ν〉 = ν |ν〉 and it is

normalized, i.e. 〈ν|ν〉 = 1. Then |ϕ〉 ≡ â† |ν〉 is an eigenstate of n̂ with the eigenvalue ν+1.

Indeed

n̂ |ϕ〉 = n̂â† |ν〉 = (â†n̂+ â†) |ν〉 = (ν + 1)â† |ν〉 = (ν + 1) |ϕ〉 . (184)

The state |ϕ〉 is, however, not normalized. Indeed

〈ϕ|ϕ〉 =
〈
â†ν|â†ν

〉
=
〈
ν̂|ââ†ν

〉
= 〈ν̂|(n̂+ 1)ν〉 = (ν + 1) 〈ν|ν〉 = ν + 1 . (185)

The normalized state is then

|ν + 1〉 = |ϕ〉√
ν + 1

=
1√
ν + 1

â† |ν〉 . (186)

Finally

â† |ν〉 =
√
ν + 1 |ν + 1〉 . (187)

2. Annihilation operator

Analogously, we can proceed with the operator â. We, first show that |ϕ〉 ≡ â |ν〉 is the

eigenvector of n̂ with the eigenvalue ν − 1:

n̂ |ϕ〉 = n̂â |ν〉 = (ân̂− â) |ν〉 = (ν − 1)â |ν〉 = (ν − 1) |ϕ〉 . (188)

Next, we calculate the norm of |ϕ〉 assuming |ν〉 is normalized:

〈ϕ|ϕ〉 = 〈âν|âν〉 =
〈
ν̂|â†âν

〉
= 〈ν̂|n̂ν〉 = ν 〈ν|ν〉 = ν . (189)

The normalized state is then given by

|ν − 1〉 = 1√
ν
|ϕ〉 = 1√

ν
â |ν〉 . (190)

and

â |ν〉 =
√
ν |ν − 1〉 . (191)
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3. Ladder of eigenstates

We constructed explicitly the state |0〉 with ν = 0. With help of the creation operator

we can now construct the states with ν = n, where n are all non-negative integers:

|n〉 = (â†)n√
n!

|0〉 . (192)

The annihilation operator makes |n− 1〉 out of |n〉. Indeed

â |n〉 = â(â†)n√
n!

|0〉 = (ââ†)(â†)n−1

√
n!

|0〉 = (n̂+ 1)√
n

|n− 1〉 =
√
n |n〉 . (193)

We see that with the help of the operators â and â† we can ”go up and down” within the

ladder of states |n〉. These are the eigenstates of the Hamiltonian

Ĥ |n〉 = En |n〉 , (194)

where

En = ~ω
(
n+

1

2

)
. (195)

4. Absence of other eigenstates

Assume there exists an eigenstate of n̂ with a non-integer positive eigenvalue ν = n+ α,

where 0 < α < 1. Then acting n + 1 times with the annihilation operator we would be

able to construct a normalized eigenstate with a negative eigenvalue α − 1. This, however,

contradicts (173). See Schwabl, Chapter 3.1 about not normalizable eigenstates of n̂ with

negative eigenvalues.

To conclude, we have found all the eigenvectors and the eigenvalues (energies) of the

Hamiltonian Ĥ. These are states |n〉, such that n ∈ [0, 1, . . . ,∞] and

Ĥ |n〉 = ~ω
(
n+

1

2

)
|n〉 . (196)

We have found the explicit wave function ψ0(x) (see Eq. 176) corresponding to the state |0〉.

All the other states can be constructed using

â† |n〉 =
√
n+ 1 |n+ 1〉 and â |n〉 =

√
n |n− 1〉 . (197)
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5. Explicit wave functions ψn(x) corresponding to |n〉

The algebraic theory constructed above allows also to construct explicitly all the wave

functions ψn(x). We have already found ψ0(x):

ψ0(x) = (
√
π x0)

− 1
2 exp

[
−1

2

x2

x20

]
. (198)

Then

ψ1(x) = â†ψ0(x) =
1√
2

(
x̂

x0
− x0

∂

∂x

)
ψ0(x) = (2

√
π x0)

− 1
2

[
2
x

x0

]
exp

[
−1

2

x2

x20

]
. (199)

For arbitrary n one can find

ψn(x) =
(â†)n√
n!

ψ0(x) = (2nn!)−
1
2

(
x̂

x0
− x0

∂

∂x

)n

ψ0(x) . (200)

One finds

ψn(x) = (2nn!
√
π x0)

− 1
2 Hn

(
x

x0

)
exp

[
−1

2

x2

x20

]
, (201)

where Hn are the so-called Hermit polynomials. For the Hermit polynomials there exists

the following formula:

Hn(x) = (−1)n ex
2 dn

dxn
e−x2

. (202)

Here are several first Hermit polynomials:

H0(x) = 1 , (203)

H1(x) = 2x , (204)

H2(x) = 4x2 − 2 , (205)

H3(x) = 8x3 − 12x . (206)

6. Zero-point motion

The fact that the ground state energy E0 = (1/2)~ω is not zero is consistent with the

fact that both x̂ and p̂ have non-zero variations in the ground state |0〉. Indeed, using

x̂ =
x0√
2
(â+ â†) , (207)
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we get

x̂2 =
x20
2
(â+ â†) (â+ â†) =

x20
2
(â2 + ââ† + â†â+ (â†)2) (208)

This gives

〈0| x̂2 |0〉 = x20
2

〈0| ââ† |0〉 = x20
2
. (209)

The expectation value of x̂ is zero:

x0√
2
〈0| (â+ â†) |0〉 = 0 . (210)

Thus,

∆x2 = 〈x̂2〉 − 〈x̂〉2 = x20
2
. (211)

Analogously 〈0| p̂ |0〉 = 0 and 〈0| p̂2 |0〉 = ~2/2x20. Thus

∆p2 = 〈p̂2〉 − 〈p̂〉2 = ~2

2x20
(212)

We see that in the ground state the uncertainty inequality becomes an equality:

∆x∆p =
~
2
. (213)

The energy stored in the kinetic part of the Hamiltonian

〈0| p̂2

2m
|0〉 = ~2

4mx20
=

~ω
4
. (214)

is equal to the energy stored in the potential part

〈0| mω
2x̂2

2
|0〉 = mω2x20

4
=

~ω
4
. (215)

Together they give the zero point energy E0 = (1/2)~ω.

It is easy to generalize these result for the state |n〉. We get, using (208)

〈n| x̂2 |n〉 = x20
2
(2n+ 1) , 〈n| x̂ |n〉 = 0 , (216)

and similarly

〈n| p̂2 |n〉 = ~2

2x20
(2n+ 1) , 〈n| p̂ |n〉 = 0 . (217)
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7. Coherent states

We now look for states with 〈x〉 6= 0. For all eigenstates we have 〈n| x̂ |n〉 = 0. Let us try

to find states, which are eigenstates of the annihilation operator â:

â |α〉 = α |α〉 . (218)

The eigenvalue α may be a complex number, since â is not Hermitian. It is easy to expand

|α〉 in the basis of the eigenstates of the Hamiltonian |n〉 = 1√
n!
(â†)n |0〉. Indeed

〈n|α〉 = 1√
n!

〈
(â†)n0|α

〉
=

1√
n!

〈0|ânα〉 = αn

√
n!

〈0|α〉 . (219)

The matrix element C ≡ 〈0|α〉 becomes a coefficient independent of n. Thus we conclude

that

|α〉 =
∑
n

|n〉 〈n|α〉 = C

∞∑
n=0

αn

√
n!

|n〉 . (220)

The coefficient C well be chosen to be real and so that the state |α〉 is normalized. Namely

〈α|α〉 = C2

∞∑
n=0

|α|2n

n!
= C2e|α|

2

= 1 . (221)

We obtain

C = e−|α|2/2 , (222)

|α〉 = e−|α|2/2
∞∑
n=0

αn

√
n!

|n〉 . (223)

Let us consider |ψα(t = 0)〉 = |α〉 to be the initial state at t = 0 and find its time

evolution. We obtain

|ψα(t)〉 = e−|α|2/2
∞∑
n=0

αn

√
n!
e−iEnt/~ |n〉 . (224)

Using En/~ = ω(n+ 1
2
) we obtain

|ψα(t)〉 = e−|α|2/2 e−iωt/2

∞∑
n=0

αne−inωt

√
n!

|n〉 = e−|α|2/2 e−iωt/2

∞∑
n=0

(αe−iωt)n√
n!

|n〉 . (225)

We introduce now α(t) = αe−iωt and obtain

|ψα(t)〉 = e−iωt/2 |α(t)〉 . (226)

We obtain a very simple time dependence. The state remains a coherent state with the

complex number α replaced by α(t) and gets an extra phase factor e−iωt/2.
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Now we can calculate the expectation value of x̂ in the state |ψα(t)〉. Let us first start at

t = 0. We obtain

〈ψα(0)| x̂ |ψα(0)〉 = 〈α| x̂ |α〉 = x0√
2
〈α| (â+ â†) |α〉 . (227)

We use

〈α| â |α〉 = 〈α|α |α〉 = α , (228)

〈α| â† |α〉 = 〈â α|α〉 = α∗ . (229)

Thus, we obtain

〈ψα(0)| x̂ |ψα(0)〉 =
x0√
2
(α + α∗) . (230)

Assuming the complex number α to have the form α = |α|eiδ we get

〈ψα(0)| x̂ |ψα(0)〉 =
√
2x0 |α| cos(δ) . (231)

At t > 0 we just obtain

〈ψα(t)| x̂ |ψα(t)〉 =
x0√
2
(α(t) + α∗(t)) =

√
2x0 |α| cos(ωt− δ) . (232)

We, thus, finally obtain a quantity, which oscillates with frequency ω.

B. Piecewise constant potentials in one dimension

The stationary Schrödinger equation in 1D reads

− ~2

2m

∂2ψ

∂x2
+ V (x)ψ = Eψ , (233)

or
∂2ψ

∂x2
=

2m

~2
(V (x)− E)ψ . (234)

If V (x) is a constant, the equation is simply solved by plane waves. That is the equation

∂2ψ

∂x2
=

2m

~2
(V − E)ψ (235)

is solved by

ψ(x) = eikx , (236)

where

k2 =
2m

~2
(E − V ) . (237)
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For E > V the solutions are

~k = ±
√

2m(E − V ) . (238)

So we have two plane waves. For E < V the solutions are imaginary

~k = ±i
√
2m(V − E) . (239)

Such solutions diverge at either x → ∞ or x → −∞. However, they are still possible if

E < V only in part of the x-axis.

1. Boundary conditions

What if V (x) is piecewise constant and jumps abruptly between? E.g., V (x) = V1 for

x < x0 and V (x) = V2 for x > x0. We need a boundary condition for the wave function at

x = x0. We look again at the equation

∂2ψ

∂x2
=

2m

~2
(V − E)ψ . (240)

Due to the jump of V (x) the right hand side is discontinuous. Assume ψ(x) is discontinuous,

i.e., ψ(x−0 ) 6= ψ(x+0 ) (these notations stand for ψ(x∓0 ) ≡ limε>0,ε→0 ψ(x0 ∓ ε)). Then the left

hand side of (240) would contain the derivative of the delta function δ′(x− x0) whereas the

right hand side does not contain such a singularity. Similarly, if ψ′(x) is discontinuous, the

l.h.s. of (240) would contain a delta function δ(x − x0) whereas the r.h.s. does not have

it. Thus, we arrive at the boundary condition: both ψ(x) and ψ′(x) must be continuous at

x = x0. Namely

ψ(x−0 ) = ψ(x+0 ) , (241)

and
∂ψ

∂x

∣∣∣
x−
0

=
∂ψ

∂x

∣∣∣
x+
0

. (242)

These boundary conditions are consistent also with the requirement that the current density

of the probability is continuous. Indeed, as we have seen above (Eq. 42) the current density

is given in 1D by

j =
~

2mi
(ψ∗ [∂xψ]− [∂xψ

∗]ψ) . (243)

This is definitely continuous if both ψ(x) and ∂xψ(x) are continuous.
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2. Potential step at x = 0

Consider the case V (x) = 0 for x < 0 and V (x) = V0 > 0 at x > 0. On the left side

(domain I) there are solutions with E ≥ 0 and wave vectors ±k, where ~k =
√
2mE. We

will consider an incoming wave with amplitude A and the outgoing (reflected) wave with

amplitude B:

ψI = Aeikx +Be−ikx . (244)

Consider first the case E > V0. Then, there are solutions on the right side (domain II)

with wave vectors ±q, where ~q =
√

2m(E − V0). The most general solution reads

ψII = Ceiqx +De−iqx . (245)

The coefficients A, B, C, D are not arbitrary. They are restricted by the boundary condi-

tions:

A+B = C +D , ik(A−B) = iq(C −D) . (246)

The waves with coefficients A and D are incoming. That is if we would construct wave

packets out of these waves located initially far from the potential step, these wave packets

would move towards the potential step. The waves with coefficients B and C are outgoing.

Since there are two equations but four unknowns, we can choose freely two out of four. It

is physically the most convenient and meaningful to choose the amplitudes of the incoming

waves, i.e., A and D. Here we analyze the case in which there is only one incoming wave

from the left, i.e., D = 0. We also choose A = 1, which can be interpreted such that there

is one particle per unit of length in the incoming wave. Substituting D = 0 and A = 1 we

obtain

C =
2k

k + q
, B =

k − q

k + q
. (247)

We calculate the current density on both sides:

jI =
~

2mi

[
(e−ikx +B∗eikx)(ik)(eikx −Be−ikx)− c.c.

]
=

~
2mi

[
(ik)(1− |B|2 −Be−2ikx +B∗e2ikx)− c.c.

]
=

~k
m

[
1− |B|2

]
. (248)

jII =
~

2mi

[
C∗e−iqx(iq)Ceiqx − c.c.

]
=

~q
m

|C|2 . (249)
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We observe that as expected jI = jII. This results can be interpreted as jI = ji − jr, where

ji = ~k/m is the incoming current and jr = |B|2~k/m is the reflected current. The current

jII can be now called the transmitted current jt = |C|2~q/m. Thus we have

jt = ji − jr . (250)

One can define, thus, the reflection and the transmission probabilities:

r =
|jr|
|ji|

= |B|2 , (251)

t =
|jt|
|ji|

= |C|2 q
k
. (252)

Consider now the case E < V0. For x < 0 we still have

ψI = Aeikx +Be−ikx . (253)

with ~k =
√
2mE. For x > 0 the only possible solution is

ψII = Ceiqx = Ce−ηx , (254)

where q = iη and ~η =
√

2m(V0 − E). Indeed the other solution ∝ eηx diverges at x→ +∞.

The boundary conditions read

A+B = C , ik(A−B) = −ηC . (255)

One unknowns can be chosen. We choose A = 1, as above. We obtain

C =
2k

k + q
=

2k

k + iη
, B =

k − iη

k + iη
. (256)

In contrast to the previous case |B| = 1. Thus the incoming current ji = ~k/m and the

reflected current jr = |B|2~k/m are equal and, thus, the total current on the left side vanishes

jI = 0. Of course also jII = 0. Indeed

jII =
~

2mi

[
C∗e−ηx(−η)Ce−ηx − c.c.

]
= 0 . (257)

Although the wave if fully reflected we observe an interesting phenomenon. There is an

evanescent wave penetrating under the potential step to a distance of order 1/η. Later we

will see that this leads to the phenomenon of tunneling.

Let us consider the limit V0 → ∞. In this case η → ∞, and thus B → −1. In addition

C → 0 but so that Cη → −2ik. Thus, we observe that the wave function on the left side

ψI = eikx − e−ikx vanishes at x → 0. Also ψII vanishes for all x > 0. Yet, the derivative

∂ψII/∂x|x→0 = −Cη → 2ik is finite. All this shows that the appropriate boundary condition

for V0 → ∞ is ψI(x = 0) = 0.
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3. Potential barrier, tunneling

We now consider a potential barrier

V (x) = V0θ(a− |x|) . (258)

Consider, first, the case E > V0. Then the solution looks like

ψ(x) = Aeikx +Be−ikx for x < −a ,

ψ(x) = Ceiqx +De−iqx for − a < x < a ,

ψ(x) = Feikx +Ge−ikx for x > a . (259)

Here ~k =
√
2mE and ~q =

√
2m(E − V0). The boundary conditions read for x = −a

Ae−ika +Beika = Ce−iqa +Deiqa ,

ik(Ae−ika −Beika) = iq(Ce−iqa −Deiqa) , (260)

and for x = a

Feika +Ge−ika = Ceiqa +De−iqa ,

ik(Feika −Ge−ika) = iq(Ceiqa −De−iqa) . (261)

We have 4 equations and 6 unknown variables. It means we can choose 2 of them freely.

Physically it makes sense to choose the amplitudes of the incoming waves A and G. Let us

choose the situation in which the incoming wave comes only from the left, i.e., A = 1 and

G = 0. Then from the second pair of equations we get

Ceiqa +De−iqa = Feika ,

Ceiqa −De−iqa =
k

q
Feika . (262)

Thus we find the coefficients C and D:

Ceiqa =
F

2

(
1 +

k

q

)
eika ,

De−iqa =
F

2

(
1− k

q

)
eika . (263)

We substitute these results into the first pair of equations (260) and obtain

e−ika +Beika =
Feika

2

[(
1 +

k

q

)
e−2iqa +

(
1− k

q

)
e2iqa

]
,

e−ika −Beika =
q

k

Feika

2

[(
1 +

k

q

)
e−2iqa −

(
1− k

q

)
e2iqa

]
. (264)
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These can be simplified to

e−ika +Beika = Feika
[
cos(2qa)− ik

q
sin(2qa)

]
,

e−ika −Beika = Feika
[
cos(2qa)− iq

k
sin(2qa)

]
. (265)

Adding and subtracting we get

F =
e−2ika

cos(2qa)− ik
2+q2

2kq
sin(2qa)

. (266)

B =
iF

2

q2 − k2

kq
sin(2qa) . (267)

It is straightforward to calculate the transmission probability

t = |F |2 = 1

1 +
[
k2−q2

2kq

]2
sin2(2qa)

=
1

1 + 1
4

V 2
0

E(E−V0)
sin2(2qa)

. (268)

In the last equality we have used

k2 − q2 =
2mV0
~2

, (269)

and

kq =
2m
√
E(E − V0)

~2
. (270)

We observe resonances at sin(2qa) = 0 and q 6= 0 (actually q > 0). Namely t = 1 for such

values of q. This happens for

q =
nπ

2a
, n = 1, 2, . . . (271)

In terms of the wave length of the waves above the barrier this means (λ = 2π/q)

n
λ

2
= 2a . (272)

It is easy to find the energies at which the resonances occur:

En = V0 +
~2

2m

(πn
2a

)2
. (273)

We now switch to the most interesting case E < V0. The solution above still holds

if we make q imaginary. Namely q = iη, where

~η =
√

2m(V0 − E) . (274)
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Using cos(iα) = cosh(α) and sin(iα) = i sinh(α) we obtain for the transmission probability

t = |F |2 = 1

1 +
[
k2+η2

2kη

]2
sinh2(2ηa)

=
1

1 + 1
4

V 2
0

E(V0−E)
sinh2(2ηa)

. (275)

Consider the limit of sufficiently wide and high barrier, such that 2ηa� 1. Then

sinh2(2ηa) ≈ 1

4
exp [4ηa] � 1 . (276)

Therefore

t ≈ 16E(V0 − E)

V 2
0

exp [−4ηa] =
16E(V0 − E)

V 2
0

exp

[
−4a

~
√

2m(V0 − E)

]
. (277)

We obtain an exponentially weak tunneling effect.

4. Potential well

We now consider a potential well

V (x) = −V0θ(a− |x|) . (278)

The eigenstates with E > 0 are found similarly to the case of energies above the barrier

above. The most interesting is the case −V0 < E < 0. The solution looks like

ψ(x) = Aeηx for x < −a ,

ψ(x) = Ceiqx +De−iqx for − a < x < a ,

ψ(x) = Fe−ηx for x > a . (279)

Here ~η =
√
−2mE and ~q =

√
2m(E − (−V0)) =

√
2m(E + V0). The boundary conditions

read

Ae−ηa = Ce−iqa +Deiqa ,

ηAe−ηa = iq(Ce−iqa −Deiqa) ,

Fe−ηa = Ceiqa +De−iqa ,

−ηFe−ηa = iq(Ceiqa −De−iqa) . (280)
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There are no free parameters to choose. We rewrite

Ae−ηa = Ce−iqa +Deiqa ,

−iη
q
Ae−ηa = Ce−iqa −Deiqa ,

Fe−ηa = Ceiqa +De−iqa ,

i
η

q
Fe−ηa = Ceiqa −De−iqa . (281)

The first two equations give

2Ce−iqa = Ae−ηa

(
1− i

η

q

)
,

2Deiqa = Ae−ηa

(
1 + i

η

q

)
. (282)

Analogously

2Ceiqa = Fe−ηa

(
1 + i

η

q

)
,

2De−iqa = Fe−ηa

(
1− i

η

q

)
. (283)

We further obtain

C

D
e−2iqa =

(
1− i η

q

)
(
1 + i η

q

) , (284)

and

C

D
e2iqa =

(
1 + i η

q

)
(
1− i η

q

) . (285)

Further
C

D
=
q − iη

q + iη
e2iqa =

q + iη

q − iη
e−2iqa . (286)

We obtain the quantization condition, i.e., the condition that a solution exists(
q + iη

q − iη

)2

= e4iqa . (287)

Here one can distinguish two cases:

1) Symmetric solutions. If one takes(
q + iη

q − iη

)
= +e2iqa , (288)
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this immediately leads to C = D and A = F . The solution is symmetric, i.e., it satisfies

ψ(x) = ψ(−x). Inside the well ψ(x) ∝ cos(qx).

2) Antisymmetric solutions. If one takes(
q + iη

q − iη

)
= −e2iqa , (289)

this immediately leads to C = −D and A = −F . The solution is antisymmetric, i.e., it

satisfies ψ(x) = −ψ(−x). Inside the well ψ(x) ∝ sin(qx).

To proceed further we introduce the angle 0 < θ < π/2 so that

q + iη

q − iη
= e2iθ (290)

or, equivalently, tan θ = η/q. Then, for symmetric solutions this means

e2iθ = e2iqa → 2θ = 2qa+ 2πN → θ = qa+ πN . (291)

This, in turn, means

tan θ = tan(qa) . (292)

Using η2 + q2 = 2mV0

~2 ≡ k20 we obtain tan θ = η/q =
√
k20 − q2/q. Thus, we obtain the

following transcendental equation√
k20 − q2

q
=

√
(ak0)2 − (aq)2

aq
= tan(qa) . (293)

This equation can be solved graphically (Fig. 2).

0
π

2
π

3 π

2
2 π

qa

FIG. 2: Graphic solution for the symmetric bound states.
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Analogously, for the antisymmetric case

e2iθ = −e2iqa → 2θ = 2qa+ π(2N + 1) → θ = qa+ πN +
π

2
. (294)

Therefore

tan θ = tan(qa+ π/2) = − cot(qa) , (295)

and √
(ak0)2 − (aq)2

aq
= − cot(qa) . (296)

The graphical solution of this equation is presented in Fig. 3

0
π

2
π

3 π

2
2 π

qa

FIG. 3: Graphic solution for the antisymmetric bound states.

Shallow well limit. From the graphical solution we observe that in the limit of very

shallow potential well, i.e., when ak0 � 1 there is only one symmetric solution. The shallow

well condition reads

V0 �
~2

2ma2
. (297)

In this case Eq. (293) can be approximately solved. Indeed this equation can be rewritten

as

cos(aq) =
aq

ak0
and 0 < aq < ak0 � 1 . (298)

We denote x ≡ aq and x0 ≡ ak0:

x = x0 cosx . (299)

Since x0 � 1 we can iterate. The first iteration gives x ≈ x0. The second:

x ≈ x0 cosx0 ≈ x0

(
1− x20

2

)
. (300)
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For the energy of this state we get

E = −V0 +
~2q2

2m
= −V0 +

~2x2

2ma2
. (301)

Substituting x2 ≈ x20 − x40 (recall x20 = (ak0)
2 = 2mV0a2

~2 ) we obtain

E ≈ −2mV 2
0 a

2

~2
. (302)

Scattering states (continuum). For E > 0 one can obtain the scattering states similar

to the problem of the scattering states with energies above the potential barrier. Thus, for

the potential well, the spectrum consists of both bound states (discrete energy levels En < 0)

and continuum of scattering states (E > 0).

5. Parity operator

In the last problem (potential well) we have obtained two kinds of bound states - sym-

metric (also called even), ψ(x) = ψ(−x), and antisymmetric (odd), ψ(x) = −ψ(−x). Is

there a mathematical reason why only these two kinds of eigenstates appear? The answer

is positive. It has to do with the fact that the potential energy and the whole Hamiltonian

is symmetric. Indeed V (x) = −V0θ(a − |x|) satisfies V (x) = V (−x). We define the parity

operator P̂ as follows

P̂ψ(x) = ψ(−x) . (303)

This is a Hermitian operator. Indeed〈
φ|P̂ψ

〉
=

∫
dxφ∗(x)ψ(−x) =

∫
dxφ∗(−x)ψ(x) =

〈
P̂ φ|ψ

〉
. (304)

All symmetric wave functions are eigenstates of P̂ with eigenvalue 1, all antisymmetric wave

functions are eigenstates with eigenvalue −1. There are no other eigenvalues since any

function can be written as a sum of a symmetric and an antisymmetric ones:

ψ(x) =
ψ(x) + ψ(−x)

2
+
ψ(x)− ψ(−x)

2
. (305)

P̂ψ(x) =
ψ(x) + ψ(−x)

2
− ψ(x)− ψ(−x)

2
. (306)

The operator P̂ commutes with our Hamiltonian (because V (x) = V (−x)). Indeed

P̂ Ĥ |ψ〉 = P̂

(
− ~2

2m

∂2

∂x2
+ V (x)

)
ψ(x) =

(
− ~2

2m

∂2

∂x2
+ V (−x)

)
ψ(−x)

=

(
− ~2

2m

∂2

∂x2
+ V (x)

)
ψ(−x) =

(
− ~2

2m

∂2

∂x2
+ V (x)

)
P̂ψ(x) = ĤP̂ |ψ〉 . (307)
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The property [Ĥ, P̂ ] = 0 just expresses the fact that the potential energy is symmetric.

Later we will prove the fact that two commuting Hermitian operators share a mutual

basis of eigenstates. Here we prove this only for non-degenerate states. Indeed, assume

Ĥ |ψn〉 = En |ψn〉 and En is not degenerate. That is there is only one eigenstate with energy

En. Then

ĤP̂ |ψn〉 = P̂ Ĥ |ψn〉 = EnP̂ |ψn〉 . (308)

From this we observe that P̂ |ψn〉 is also the eigenstate of Ĥ with eigenvalue En. But only

one such state exists. Thus P̂ |ψn〉 ∝ |ψn〉 and, therefore, |ψn〉 is also an eigenstate of P̂ .

Since the only possible eigenvalues of P̂ are ±1 we obtain

P̂ |ψn〉 = ± |ψn〉 . (309)

This explains why all (non-degenerate) eigenstates of Ĥ are either even or odd.

VI. CENTRAL POTENTIAL AND ANGULAR MOMENTUM

We now switch to a very important class of 3D problems: central potential problems.

Central potential is a potential that depends on the radius only V (r) = V (|r|) = V (r). The

Hamiltonian is then

H =
p2

2m
+ V (r) . (310)

Important examples: 1) Coulomb potential V = − 1
4πε0

e2

r
. Solving this problem one can

describe the hydrogen atom; 2) 3D oscillator V = mω2r2

2
.

A. Spherical coordinates

The potential energy V (r) depends only on one of the spherical coordinates r. It would

therefore be nice to express p2 = −~2∇2 is spherical coordinates. These are defined via

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ . (311)

Evidently r ∈ [0,+∞], θ ∈ [0, π], and φ ∈ [0, 2π].
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First, we find the operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z) in spherical coordinates (see Ap-

pendix A or Appendix C):

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (312)

Using further the results of Appendix B one observes that the following relation holds

L̂2 = −~2
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]
, (313)

where

L̂ ≡ r̂× p̂ (314)

is the angular momentum operator with three components L̂x, L̂y, L̂z.

We, thus, get for the Hamiltonian

Ĥ = − ~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L̂2

2mr2
+ V (r) . (315)

B. Angular momentum, algebraic results

For the components of L̂ one obtains

L̂x = −i~
(
y
∂

∂z
− z

∂

∂y

)
= i~

[
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

]
,

L̂y = −i~
(
z
∂

∂x
− x

∂

∂z

)
= i~

[
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

]
,

L̂z = −i~
(
x
∂

∂y
− y

∂

∂x

)
= −i~ ∂

∂φ
. (316)

Very important are the commutation relations between L̂x, L̂y, L̂z:

[L̂x, L̂y] = [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z] = [ŷp̂z, ẑp̂x]− [ẑp̂y, ẑp̂x]− [ŷp̂z, x̂p̂z] + [ẑp̂y, x̂p̂z]

= ŷp̂x[p̂z, z] + p̂yx̂[ẑ, p̂z] = i~(x̂p̂y − ŷp̂x) = i~L̂z . (317)

Analogously we get

[L̂x, L̂y] = i~L̂z , (318)

[L̂y, L̂z] = i~L̂x , (319)

[L̂z, L̂x] = i~L̂y . (320)
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It is easy to show that [L̂2, L̂x] = 0, [L̂2, L̂y] = 0, [L̂2, L̂z] = 0. Indeed

[L̂2, L̂x] = [L̂2
x + L̂2

y + L̂2
z, L̂x] = [L̂2

y + L̂2
z, L̂x]

= L̂y [L̂y, L̂x] + [L̂y, L̂x] L̂y + L̂z [L̂z, L̂x] + [L̂z, L̂x] L̂z

= i~
(
−L̂yL̂z − L̂zL̂y + L̂zL̂y + L̂yL̂z

)
= 0 . (321)

We use now the fact that two commuting Hermitian operators have a mutual basis of eigen-

states (for proof see Appendix D). We try to find such a basis for the commuting pair L̂2

and L̂z. We will call such states |l,m〉 so that

L̂2 |l,m〉 = ~2l(l + 1) |l,m〉 , (322)

and

L̂z |l,m〉 = ~m |l,m〉 . (323)

Here l and m just parametrize the eigenvalues. Since the eigenvalues of L̂2 must be non-

negative, we should demand l ≥ 0. Thus far this is the only restriction. Indeed the com-

bination l(l + 1) can parametrize any real non-negative number if l is taken to be real and

non-negative. Also m is an arbitrary (real) number at this stage.

We now define

L̂± ≡ L̂x ± iL̂y . (324)

We investigate the commutation relations of L̂±:

[L̂z, L̂+] = i~L̂y + ~Lx = ~L̂+ , [L̂z, L̂−] = i~L̂y − ~Lx = −~L̂− . (325)

Further

[L̂+, L̂−] = [L̂x + iL̂y, L̂x − iL̂y] = 2~L̂z . (326)

In addition, from

L̂+L̂− = (L̂x + iL̂y)(L̂x − iL̂y) = L̂2
x + L̂2

y − i[L̂x, L̂y] = L̂2
x + L̂2

y + ~Lz (327)

we obtain

L̂2 = L̂2
x + L̂2

y + L̂2
z = L̂+L̂− − ~L̂z + L̂2

z = L̂−L̂+ + ~L̂z + L̂2
z . (328)

All this commutation relations will help us to put restrictions on the possible values of l and

m. We start with m. From

L̂zL̂+ |l,m〉 = (L̂+L̂z + ~L+) |l,m〉 = ~(m+ 1)L̂+ |l,m〉 (329)
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and from

L̂2L̂+ |l,m〉 = L̂+L̂
2 |l,m〉 = ~2l(l + 1)L̂+ |l,m〉 (330)

follows that L̂+ |l,m〉 ∝ |l,m+ 1〉. Analogously,

L̂zL̂− |l,m〉 = (L̂−L̂z − ~L−) |l,m〉 = ~(m− 1)L̂+ |l,m〉 , (331)

L̂2L̂− |l,m〉 = L̂−L̂
2 |l,m〉 = ~2l(l + 1)L̂− |l,m〉 (332)

and, therefore, L̂+ |l,m〉 ∝ |l,m− 1〉. We observe that L̂± act similar to the creation and

annihilation operators of the harmonic oscillator.

Next we investigate the norm of the states L̂± |l,m〉:〈
L̂+ l,m|L̂+ l,m

〉
= 〈l,m| L̂−L̂+ |l,m〉 = 〈l,m| L̂2 − L̂2

z − ~L̂z |l,m〉

= ~2[l(l + 1)−m(m+ 1)] . (333)

Analogously 〈
L̂− l,m|L̂− l,m

〉
= 〈l,m| L̂+L̂− |l,m〉 = 〈l,m| L̂2 − L̂2

z + ~L̂z |l,m〉

= ~2[l(l + 1)−m(m− 1)] . (334)

Since the norm must be positive we must demand that

l(l + 1) ≥ m(m+ 1) and l(l + 1) ≥ m(m− 1) . (335)

For m > 0 the first relation is more restrictive. For m < 0, the second relation can be written

as l(l+ 1) ≥ −|m|(−|m| − 1) = |m|(|m|+ 1) and is more restictive. Thus, both inequalities

can be written as |m| ≤ l. Since the operators L̂± change m by ±1, applying, e.g., L̂+.

several times we would finally reach the values of m that violate the condition |m| ≤ l. The

only way to avoid this is to demand that the numbers l and m are such that upon applying

L̂+ we at some stage reach m = l. Applying L̂+ once again we would get a state with zero

norm, thus the state with m = l+1 would not emerge. We demand mmax = l. Analogously,

applying L̂− several times, we arrive at the condition mmin = −l. Since m changes by ±1

this is possible only if

l = 0,
1

2
, 1,

3

2
, . . . (336)

This is an extremely important result, which we obtained purely algebraically, without

specifying the wave functions |l,m〉. Finally, the normalization conditions (333,334) give

L̂+ |l,m〉 = ~
√
l(l + 1)−m(m+ 1) |l,m+ 1〉 . (337)
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and

L̂− |l,m〉 = ~
√
l(l + 1)−m(m− 1) |l,m− 1〉 . (338)

From these equations we see again that upon reaching m = ±l the states with m = ±(l+1)

are not created.

C. Angular momentum, wave functions

In the central potential problem the wave functions |l,m〉 should be represented by the

wave functions that depend on θ and φ. We call those Yl,m(θ, φ). Using (316) we find

L̂+ = L̂x + iL̂y = ~eiφ
(
i cot θ

∂

∂φ
+

∂

∂θ

)
L̂− = L̂x − iL̂y = ~e−iφ

(
i cot θ

∂

∂φ
− ∂

∂θ

)
L̂z = −i~ ∂

∂φ
. (339)

We start with L̂z:

L̂zYl,m(θ, φ) = −i~ ∂

∂φ
Yl,m(θ, φ) = ~mYl,m(θ, φ) . (340)

We immediately conclude that

Yl,m(θ, φ) ∝ eimφ (341)

with m = 0,±1,±2, . . .. Thus, only integer values of l can be realized, i.e., l = 0, 1, 2, . . ..

We use the following Ansatz

Yl,m(θ, φ) =
1√
2π

Λl,m(θ) e
imφ . (342)

The normalization coefficient 1/
√
2π is chosen so that the integration over φ in the norm

calculation gives one.

Let us take m = mmax = l. Then we must have L̂+ |l, l〉 = 0. This gives

L̂+Yl,l(θ, φ) = ~eiφ
(
i cot θ

∂

∂φ
+

∂

∂θ

)
1√
2π

Λl,l(θ) e
ilφ = 0 . (343)

Calculating the derivative ∂/∂φ we obtain(
−l cot θ +

∂

∂θ

)
Λl,l(θ) = 0 . (344)
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This differential equation can be solved. The solution reads

Λl,l(θ) = C sinl θ , (345)

where C is the normalization constant. It is found from the condition
π∫

0

dθ sin θ|Λl,l(θ)|2 = 1 . (346)

This gives

C2

π∫
0

dθ[sin θ]2l+1 = C2

√
πΓ[l + 1]

Γ[l + 3/2]
= C2 4

l+1(l + 1)!

(2l + 2)!
√
π

√
πl! = C22 · 4l(l!)2

(2l + 1)!
= 1 . (347)

Calculating the normalization constant one obtains

Yl,l(θ, φ) =
(−1)l

2ll!

√
(2l + 1)!

4π
sinl θ eilφ . (348)

The factor (−1)l is a matter of convention. All the other functions Yl,m(θ, φ) with m < l

can be obtained by applying L̂− in accordance with (338). For example

Yl,l−1(θ, φ) =
1

~
√
2l

~e−iφ

(
i cot θ

∂

∂φ
− ∂

∂θ

)
Yl,l(θ, φ) . (349)

The factor
√
2l emerges from

√
l(l + 1)−m(m− 1) and m = l. Next

Yl,l−2(θ, φ) =
1

~
√
4l − 2

~e−iφ

(
i cot θ

∂

∂φ
− ∂

∂θ

)
Yl,l−1(θ, φ) . (350)

Here
√
4l − 2 =

√
l(l + 1)−m(m− 1) for m = l− 1. So one can construct all the functions

Yl,m(θ, φ). These wave functions Yl1,m1 and Yl2,m2 are orthogonal unless l1 = l2 and m1 = m2.

Indeed, if l1 6= l2 or m1 6= m2, these two are eigenvectors of a Hermitian operator with

different eigenvalues (either L̂2 or L̂z). Thus
π∫

0

sin θdθ

2π∫
0

dφ Y ∗
l1,m1

(θ, φ)Yl2,m2(θ, φ) = δl1,l2δm1,m2 . (351)

The general form of Yl,m(θ, φ) is provided in Appendix E. See Schwabl for concrete examples

and graphic representation of Yl,m(θ, φ).

A very important property of Yl,m is their behavior under the parity transformation. The

transformation r → −r corresponds to (θ, φ) → (π − θ, φ+ π). One can show that

P̂ Yl,m = Yl,m(π − θ, φ+ π) = (−1)lYl,m(θ, φ) . (352)
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D. Schrödinger equation for the central potential problem

We return back to the central potential problem with the Hamiltonian

Ĥ = − ~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L̂2

2mr2
+ V (r) . (353)

Since we now know the eigenfunctions of the operator L̂2, we make the following Ansatz

ψ(r) = R(r)Yl,m(θ, φ) . (354)

Then the stationary Schrödinger equation Ĥψ = Eψ reads[
− ~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

~2l(l + 1)

2mr2
+ V (r)

]
R(r) = ER(r) . (355)

This is further simplified if we substitute

R(r) =
u(r)

r
(356)

A simple calculation gives (
∂2

∂r2
+

2

r

∂

∂r

)
u(r)

r
=

1

r

∂2u(r)

∂r2
. (357)

Thus we obtain [
− ~2

2m

∂2

∂r2
+

~2l(l + 1)

2mr2
+ V (r)

]
u(r) = Eu(r) . (358)

This is a regular Schrödinger equation (only for r ≥ 0) with the effective potential

Veff(r) = V (r) +
~2l(l + 1)

2mr2
. (359)

The second part is the so-called centrifugal potential.

It is important to discuss the boundary condition at r = 0. Unless the potential V (r) is

very singular at r = 0, i.e., V (r) ∝ δ(r), the proper boundary condition is u(0) = 0. Indeed,

if u(0) 6= 0, the wave function near r = 0 would contain (be dominated by) u(0)/r. The

operator ∇2 acting on u(0)/r would produce ∝ u(0)δ(r), which would not be compensated

by anything in the Schrödinger equation. Another way of looking at it is to think that the

potential is infinitely high at r < 0. As we have seen above, the proper boundary condition

in this case is again u(0) = 0.
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E. Hydrogen atom

The Hydrogen atom is a two-body problem: proton with mass mp and electron with mass

me attracting each other via the Coulomb potential. The Hamiltonian reads

Ĥ =
p̂2
p

2mp

+
p̂2
e

2me

+ V (|re − rp|) . (360)

We transform to the center of mass frame:

R =
mprp +mere
mp +me

, r = re − rp . (361)

The standard calculation gives the Hamiltonian in the new frame:

Ĥ = − ~2

2M
∇2

R − ~2

2m
∇2

r + V (r) . (362)

Here M ≡ mp +me is the total mass and m ≡ memp/(me +mp) is the reduced mass. The

Hamiltonian is a sum of a part describing the free motion of the center of mass and the

relative motion with the attraction due to V (r). We concentrate on the relative motion and

consider the Hamiltonian

Ĥr = − ~2

2m
∇2

r + V (r) . (363)

In what follows we drop the index r. The potential is given by

V (r) = − 1

4πε0

Ze2

r
. (364)

For hydrogen atom Z = 1. We keep Z in order to be able to use the solution later for other

atoms with Z protons in the atomic nucleus. The effective potential is

Veff(r) = − 1

4πε0

Ze2

r
+

~2l(l + 1)

2mr2
. (365)

As mentioned above we use the Ansatz

ψ(r, θ, φ) =
u(r)

r
Yl,m(θ, φ) , (366)

and the function u(r) satisfies the Schrödinger equation (for r ≥ 0, u(0) = 0)[
− ~2

2m

∂2

∂r2
+ Veff(r)

]
u(r) =

[
− ~2

2m

∂2

∂r2
+

~2l(l + 1)

2mr2
− 1

4πε0

Ze2

r

]
u(r) = E u(r) . (367)
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1. Bound states

We rewrite (367) as[
− ∂2

∂r2
+
l(l + 1)

r2
− Ze2

4πε0

2m

~2
1

r
− 2mE

~2

]
u(r) = 0 . (368)

We introduce the Bohr radius

a0 =
4πε0~2

me2
≈ 0.53× 10−10m , (369)

and the Rydberg constant

Ry =
~2

2ma20
≈ 13.6eV ≈ 2.18× 10−18J . (370)

which gives [
− ∂2

∂r2
+
l(l + 1)

r2
− 2Z

a0

1

r
− E

a20Ry

]
u(r) = 0 . (371)

We look for bound states with E < 0. We introduce a new dimensionless variable

x ≡ ηr , (372)

where

η ≡
√

2m|E|
~2

=

√
|E|
Ry

1

a0
, (373)

and obtain [
∂2

∂x2
− l(l + 1)

x2
+
x0
x

− 1

]
u(x) = 0 , (374)

where

x0 ≡ 2Z

√
Ry

|E|
=

2Z

ηa0
. (375)

For small x the dominant term is the centrifugal one and one has to solve the following

differential equation u′′ = l(l+1)u/x2. We try u = xq+1 and obtain q(q+1) = l(l+1). The

possible solutions are q = l and q = −(l + 1). The second solution is incompatible with the

boundary condition u(0) = 0. Thus we are left with u(x) ∝ xl+1 at small x. For large x the

differential equation is approximately u′′ = u and the decaying solution reads u(x) ∝ e−x.

Motivated by these asymptotic solutions we make an Ansatz:

u(x) = xl+1e−xw(x) . (376)
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We substitute into (374) and obtain the differential equation for w(x):

xw′′(x) + 2(l + 1− x)w′(x) + (x0 − 2(l + 1))w = 0 . (377)

We try to solve this equation by using the following expansion

w(x) =
∞∑
k=0

bkx
k . (378)

We now try to determine the coefficients bk. We substitute this into the differential equation

above and obtain
∞∑
k=1

bkx
k−1 [(k − 1)k + 2(l + 1)k] =

∞∑
k=0

bkx
k [2(l + 1 + k)− x0] . (379)

We shift k by one in the left hand side, i.e., we substitute k = k′ + 1 and then drop the

prime. This gives
∞∑
k=0

bk+1x
k [k(k + 1) + 2(l + 1)(k + 1)] =

∞∑
k=0

bkx
k [2(l + 1 + k)− x0] . (380)

This gives a recursion:

bk+1 =
2(k + l + 1)− x0

(k + 1)(k + 2(l + 1))
bk . (381)

One can show that if this recursion does not stop, the function w(x) would diverge at x→ ∞

so that even u(x) = xl+1e−xw(x) would diverge. Indeed for k � 2l+1 we get bk+1 ∼ 2
k+1

bk.

This, in turn, gives w(x) ∼ e2x.

Thus the normalizable solutions are obtained only if the recursion stops. This happens

if for some k = N , where N = 0, 1, 2, . . ., if the following relation holds

2(N + l + 1) = x0 . (382)

For this we need
x0
2

= Z

√
Ry

|E|
=

Z

ηa0
= N + l + 1 . (383)

We obtain

E = − Z2Ry

(N + l + 1)2
, (384)

and, equivalently

η =
1

a0

Z

N + l + 1
. (385)
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We get an important result: for every N = 0, 1, 2, 3, . . . and every l = 0, 1, 2, 3, . . . we

obtain a solution wN,l(x) and, thus, uN,l(x) = xl+1e−xwN,l(x) whose energy is given by

(384). The function wN,l(x) os a polynomial of grade N . The quantum numbers N and l

are independent. The quantum number N is called the radial quantum number. However,

there are multiple combinations of N and l leading to the same energy. One defines instead

the new quantum number

n ≡ N + l + 1 , (386)

called the principal quantum number, so that

En = −Z
2Ry

n2
. (387)

However n and l are no longer independent. We observe the important restriction n ≥ l+1.

Alternatively, one can first fix n = 1, 2, 3, . . . and then demand l ≤ n− 1.

The ultimate expression for the eigenstates of the Hamiltonian can be cast in the following

form:

|n, l,m〉 = ψn,l,m(r) = Rn,l(r)Yl,m(θ, φ) . (388)

For the radial part Rn,l we have

Rn,l(r) =
1

r
(ηnr)

l+1e−ηnrwN,l(ηnr) , (389)

where ηn ≡ Z/(na0). Since N = n− l− 1 and wN,l is the polynomial of grade N we observe

that Rn,l(r) as an exponential e−ηnr times a polynomial of grade n − 1. We also observe

that for l > 0, the radial functions Rn,l(r) vanish at r = 0. Further information about the

functions Rn,l(r) is provided in Appendix F.

The ground state is obtained at n = 1 with energy E1 = −Z2Ry. It is not degenerate as

only l = 0,m = 0 are possible. The first excited state is n = 2 with energy E2 = −Z2Ry/4.

Here l = 0,m = 0 and l = 1,m = −1, 0, 1 are possible. The degeneracy is, therefore, 4. For

an arbitrary n the degeneracy is given by

gn =
n−1∑
l=0

(2l + 1) = n(n− 1) + n = n2 . (390)
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2. Scattering states

At E > 0 there is a continuum of states. Since Veff(r → ∞) → 0, the Schrödinger

equation (367) [
− ~2

2m

∂2

∂r2
+ Veff(r)

]
u(r) = E u(r) . (391)

becomes asymptotically (at r → ∞) an equation for a free particle

− ~2

2m

∂2

∂r2
u(r) = E u(r) . (392)

This can be trivially solved as u(r) = Ae−ikr +Beikr, where ~k =
√
2mE. The part ∝ e−ikr

is the incoming wave (we can thus choose, e.g., A = 1) and the part ∝ eikr is the reflected

wave. Since the wave function cannot penetrate into the domain r < 0, it must be fully

reflected, i.e., |B| = |A| = 1. To find the full solution and, in particular, the scattering phase

B = eiδ is an interesting and non-trivial problem. Yet, it is clear that for every E = ~2k2
2m

> 0

and every l there is a solution, which we call uk,l(r). Thus we have a continuum of scattering

states

ψk,l,m(r) = Rk,l(r)Yl,m(θ, φ) , (393)

where Rk,l(r) ≡ uk,l(r)/r.

F. Complete set of commuting observables (CSCO)

We have characterized the eigenstates of the hydrogen atom Hamiltonian with three

quantum numbers |n, l,m〉 for E < 0 and |k, l,m〉 for E > 0. These three correspond to

three commuting operators Ĥ, L̂2, L̂z:

Ĥ |n, l,m〉 = En |n, l,m〉 , En = −Z2Ry/n
2 , (394)

or

Ĥ |k, l,m〉 = Ek |k, l,m〉 , Ek =
~2k2

2m
(395)

and

L̂2 |n, l,m〉 = ~2l(l + 1) |n, l,m〉 or L̂2 |k, l,m〉 = ~2l(l + 1) |k, l,m〉 , (396)

and

L̂z |n, l,m〉 = ~m |n, l,m〉 or L̂z |k, l,m〉 = ~m |k, l,m〉 . (397)
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Specifying the three eigenvalues of Ĥ, L̂2 and L̂z, one identifies the unique eigenstate cor-

responding to these eigenvalues. There are no degeneracies left. The three operators Ĥ, L̂2

and L̂z thus form the so-called complete set of commuting observables (CSCO).

Formal definition: a set of (independent) Hermitian operators Â, B̂, Ĉ, . . . is called

CSCO if all these operators pairwise commute and their mutual eigenbasis is not degenerate.

That is, there exists a basis |n〉, such that Â |n〉 = an |n〉, B̂ |n〉 = bn |n〉 etc. The sets of

eigenvalues (an, bn, cn, . . .) are all different. There are no two states |n1〉 and |n2〉 such

that (an1 , bn1 , cn1 , . . .) = (an2 , bn2 , cn2 , . . .). It is convenient to denote the states using their

eigenvalues, i.e. |a, b, c, . . .〉.

What if we already have a complete set (CSCO) and find another operator M̂ that

commutes with all the operators of the set? Then M̂ is not independent of Â, B̂, Ĉ, . . ..

Indeed the eigenstate |a, b, c, . . .〉 must be also an eigenstate of M̂ with some eigenvalue m.

Since the set (a, b, c, . . .) identifies the state uniquely, the eigenvalue m must be a single-

valued function of (a, b, c, . . .), i.e,

M̂ |a, b, c, . . .〉 = m(a, b, c, . . .) |a, b, c, . . .〉 . (398)

Then, however, M̂ = m(Â, B̂, Ĉ, . . .).

What if we have a set of commuting observables, but there is still some degeneracy.

Then, there must exist yet another hermitian operator, which commutes with the given set

and is independent of it. This extra operator should lift (at least partially) the remaining

degeneracy.

VII. SYMMETRIES, UNITARY OPERATORS, CONSERVATION LAWS

Unitary operators satisfy

Û † = Û−1 . (399)

If we transform two states using Û , i.e., |ψ′〉 = Û |ψ〉 and |φ′〉 = Û |φ〉, we obtain

〈φ′|ψ′〉 =
〈
Ûφ|Ûψ

〉
=
〈
φ|Û †Ûψ

〉
= 〈φ|ψ〉 . (400)

That is a unitary transformation conserves the scalar product.
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A. Time evolution operator

A very important unitary operator is the time evolution operator:

Û(t) = exp

[
− i

~
tĤ

]
(401)

This should be simply understood as

Û(t) =
∞∑
n=0

1

n!

(
− i

~

)n

tnĤn . (402)

Consider |ψ(t)〉 = Û(t) |ψ0〉. Then

i~
∂

∂t
|ψ(t)〉 = i~

[
∂

∂t
Û(t)

]
|ψ0〉 (403)

Further

∂

∂t
Û(t) =

∞∑
n=1

1

n!

(
− i

~

)n

n tn−1Ĥn

=

(
− i

~

)
Ĥ

∞∑
n=1

1

(n− 1)!

(
− i

~

)n−1

tn−1Ĥn−1

=

(
− i

~

)
Ĥ

∞∑
n=0

1

n!

(
− i

~

)n

tnĤn =

(
− i

~

)
Ĥ Û(t) . (404)

Thus

i~
∂

∂t
|ψ(t)〉 = i~

[
∂

∂t
Û(t)

]
|ψ0〉 = Ĥ Û(t) |ψ0〉 = Ĥ |ψ(t)〉 . (405)

We have recovered the Schrödinger equation. Thus, indeed, Û(t) is the time evolution

operator.

B. Rotational symmetry

Consider now an infinitesimal rotation around the axis described by a unit length vector

n by an angle δφ. Such a rotation is described by

r → r′ = r+ δr , where δr = δφ · (n× r) . (406)

Consider now a ”passive” transformation of the wave functions: ψ(r) → ψ′(r), such that

ψ′(r) = ψ(r′). It is passive because we rotate the coordinate system. (An equivalent
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”active” transformation would satisfy ψ′(r′) = ψ(r).) For an infinitesimal rotation the

passive transformation reads

ψ′(r) = ψ(r+ δr) . (407)

We now look for a unitary transformation Un(δφ) that transforms ψ(r) into ψ′(r), i.e. ψ′(r) =

Un(δφ)ψ(r). We obtain

Un(δφ)ψ(r) = ψ(r+ δr) ≈ ψ(r) + δr ·∇ψ(r) = ψ(r) + δφ (n× r) ·∇ψ(r)

= ψ(r) + δφn · (r×∇)ψ(r) = [1 + δφn · (r×∇)]ψ(r)

=

[
1 +

i

~
δφn · (r× p̂)

]
ψ(r) =

[
1 +

i

~
δφn · L̂

]
ψ(r) , (408)

and

Un(δφ) ≈
[
1 +

i

~
δφn · L̂

]
. (409)

Next we calculate the unitary transformation corresponding to a rotation by an arbitrary

angle φ. We have

Un(φ+ δφ) = Un(δφ)Un(φ) =

[
1 +

i

~
δφn · L̂

]
Un(φ) . (410)

This gives

Un(φ+ δφ)− Un(φ) =
i

~
δφn · L̂Un(φ) . (411)

Further
Un(φ+ δφ)− Un(φ)

δφ
=
i

~
n · L̂Un(φ) . (412)

In the limit δφ→ 0 this gives

∂φUn(φ) =
i

~
n · L̂Un(φ) . (413)

Finally

Un(φ) = exp

[
i

~
φn · L̂

]
. (414)

Assume an operator Â transforms ψ(r) to φ(r). Which operator would transform ψ′ to

φ′? We have φ = Âψ, then

φ′ = Uφ = UÂψ = UÂU−1Uψ = UÂU−1ψ′ . (415)

Therefore

Â′ = UÂU−1 . (416)
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Analogously, if ψ satisfies the Schrödinger equation i~∂tψ = Hψ, the transformed function

would satisfy

i~∂tψ′ = i~∂tUψ = Ui~∂tψ = UĤψ = UĤU−1ψ′ . (417)

Thus the Hamiltonian transforms as Ĥ ′ = UĤU−1 = UĤU †.

What is the condition that the Hamiltonian in the new frame is the same as the Hamil-

tonian in the old frame, Ĥ ′ = Ĥ. We have

exp

[
i

~
φn · L̂

]
Ĥ exp

[
− i

~
φn · L̂

]
= Ĥ . (418)

This is fulfilled if [n · L̂, Ĥ] = 0. Should this symmetry be valid for arbitrary n the condition

reads [L̂, Ĥ] = 0. Thus, if the Hamiltonian is rotational symmetric, i.e, it does not change

upon rotation of the coordinate frame, it commutes with the three components of L̂. If for

example the Hamiltonian is only symmetric with respect to rotations around the ẑ-axis, it

commutes with L̂z.

C. Conservation laws

Observables that commute with the Hamiltonian provide conserved quantities. Indeed,

assume [Â, Ĥ] = 0. Then for the expectation value of Â in a state |ψ〉 we get

i~
d

dt
〈ψ| Â |ψ〉 = 〈ψ| ÂĤ |ψ〉 − 〈ψ| ĤÂ |ψ〉 = 〈ψ| [Â, Ĥ] |ψ〉 = 0 . (419)

Thus, as in the classical mechanics (Noether theorem), symmetries lead to conservation

laws. In particular, for central potential, which is symmetric with respect to rotations

around arbitrary axis n, all three components L̂x, L̂y, L̂z are conserved.

VIII. ELECTRON IN AN EXTERNAL ELECTRO-MAGNETIC FIELD.

PART I: MAGNETIC MOMENT

In SI system we have the following relation between the electric and magnetic fields and

the vector and scalar potentials

B = ∇×A , (420)

E = −∂A
∂t

−∇ϕ , (421)
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where the 4-vector potential is given by

Aµ =
(ϕ
c
,A
)
. (422)

Here ϕ(r, t) is the scalar potential (sometimes called also U or V ) and A(r, t) is the vec-

tor potential. The Hamiltonian of a particle with charge q and mass m in an external

electromagnetic field reads

Ĥ =
(p̂− qA(r, t))2

2m
+ qϕ(r, t) . (423)

The fields A and φ are considered as given and classical (numbers, not operators)

This Hamiltonian follows from the Lagrangian

L =
mv2

2
− qϕ+ qv ·A . (424)

This is the non-relativistic limit of

L = −mc2
√
1− v2

c2
− qϕ+ qv ·A . (425)

We will concentrate on the case of a constant in space and time magnetic field. We choose

the gauge such that

A(r) =
1

2
B× r . (426)

This vector potential satisfies the Coulomb gauge condition ∇ ·A = 0.

Let us analyze the kinetic energy

Ĥkin =
1

2m
(−i~∇− qA)2 = − ~2

2m
∇2 +

i~q
2m

A ·∇+
i~q
2m

∇ ·A+
q2A2

2m

= − ~2

2m
∇2 +

i~q
m

A ·∇+
q2A2

2m
= − ~2

2m
∇2 +Hp +Hd . (427)

where we have used ∇ ·A = 0. Let us look closer at the so-called ”paramagnetic” term

Hp =
i~q
m

A ·∇ =
i~q
2m

(B× r) ·∇ =
i~q
2m

B · (r×∇) = − q

2m
B · L̂ . (428)

One introduces here the magnetic moment of the particle

µ̂ =
q

2m
L̂ , (429)

so that the paramagnetic term reads

Hp = −µ̂ ·B . (430)
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For an electron q = −|e| (e is sometimes considered positive or negative (e.g., in Schwabl

e < 0), but the charge of an electron is definitely negative) and m = me. We multiply and

divide by ~:

µ̂ = − ~|e|
2me

L̂

~
. (431)

The combination

µB ≡ ~|e|
2me

∼ 9.27× 10−24J/T . (432)

is called the Bohr magneton. Thus we get

µ̂ = −µB
L̂

~
. (433)

The minus sign here is due to the negative charge of the electron.

The last term of (427) is called ”diamagnetic”. It can be written as

Hd =
q2A2

2m
=

q2

8m
(B× r)2 =

q2

8m

(
B2r2 − (B · r)2

)
. (434)

A. ”Normal” Zeeman effect

Consider the hydrogen atom and assume B = Bez. Then

Hp = − q

2m
BL̂z , (435)

and

Hd =
q2B2

8m
(x2 + y2) . (436)

To estimate the relevant importance of these two terms in the hydrogen atom we replace L̂z

by ~, whereas x2 + y2 we replace by the Bohr radius squared a20, where

a0 =
4πε0~2

me2
≈ 0.53× 10−10m . (437)

Taking into account |q| = |e| we get

Hd

Hp

∼ |e|Ba20
4~

∼ B

106T
. (438)

That is Hd can become important at B ∼ 106T.

Substituting q = −|e| we get

Hp = µBBL̂z/~ . (439)
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Consider now the hydrogen atom in a constant magnetic field. The total Hamiltonian is

H = H0 + Hp, where H0 = p2

2m
− e2

4πε0
1
r
. We have [Hp, H0] = 0 and the states |n, l,m〉 are

eigenstates of both H0 and Hp and, thus, of H. The eigenenergies are now given by

En,l,m = −Ry

n2
+ µBBm . (440)

The shell of 2l + 1 states with given n and l is now no longer degenerate but is split into a

staircase of states with energy distance µBB between them.

IX. SPIN

A. Stern-Gerlach experiment

Otto Stern und Walther Gerlach (1922). The experiment was done with silver atoms, yet

one could imagine it was done with hydrogen atoms. Assume the magnetic field is slowly

r-dependent, but changes very little on the scale of Bohr radius. Then, one can use the

energy −µ · B(r) and a potential energy of the atom in the magnetic field. The magnetic

moment in that of the electron. The proton’s mass mp is ∼ 1000 times larger than that of

the electron. Thus the magnetic moment of the proton (∼ ~|e|/2mp) should be negligible.

In the experiment the magnetic field had a gradient in z-direction, so that a force was acting

on the atom

F = −∇ (−µ ·B) = ∇ (µ ·B) ≈ µz
∂Bz

∂z
ez . (441)

If the electron is in the ground state n = 1, l = 0, m = 0, the magnetic moment vanishes

and there should be no force. Indeed, for the electron we expect

µ̂ = −µB
L̂

~
. (442)

For l = 0 the expectation value of µ̂ vanishes. Yet, in the experiment the atoms were

deflected. On one half of them acted a positive force and on the other half a negative force.

B. Spin-1/2 operators

The experiment suggests that an electron has in addition to the orbital angular momen-

tum L̂ an internal angular (and magnetic) momentum, which is called spin and is denoted
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as Ŝ. The operators Ŝx, Ŝy and Ŝz should satisfy the same commutation relations of the

angular momentum, i.e.,

[Ŝα, Ŝβ] = i~εαβγŜγ . (443)

As we have seen for the operators L̂, this algebra allows for mutual eigenstates of Ŝ2 and

Ŝz, with quantum numbers s and ms so shat

Ŝ2 |s,ms〉 = ~2s(s+ 1) |s,ms〉 ,

Ŝz |s,ms〉 = ~ms |s,ms〉 . (444)

Here s can assume the values 0, 1/2, 1, 3/2, . . . and ms = −s,−s + 1, . . . , s − 1, s. The

experiment suggests that the internal magnetic moment has two possible values. Thus we

are forced to choose s = 1/2. Thus electrons have spin-1/2. Then ms = ±1/2. To shorten

the notation we call the state |s = 1/2,ms = 1/2〉 = |↑z〉 and |s = 1/2,ms = −1/2〉 = |↓z〉.

This gives

Ŝz |↑z〉 =
~
2
|↑z〉 , Ŝ2 |↑z〉 =

3~2

4
|↑z〉 , (445)

Ŝz |↓z〉 = −~
2
|↓z〉 , Ŝ2 |↓z〉 =

3~2

4
|↓z〉 . (446)

We can easily calculate how the operators Ŝx and Ŝy act on the states |↑z〉 and |↓z〉. We

form Ŝ± = Ŝx ± iŜy. From (337) we obtain

Ŝ+ |↓z〉 = Ŝ+ |s = 1/2,ms = −1/2〉 = ~
√
s(s+ 1)−ms(ms + 1) |1/2, 1/2〉

= ~ |1/2, 1/2〉 = ~ |↑z〉 . (447)

From (338) we get

Ŝ− |↑z〉 = Ŝ− |s = 1/2,ms = 1/2〉 = ~
√
s(s+ 1)−ms(ms − 1) |1/2,−1/2〉

= ~ |1/2,−1/2〉 = ~ |↓z〉 . (448)

In addition Ŝ+ |↑z〉 = 0 and Ŝ− |↓z〉 = 0.

These relations allow us to express Ŝx, Ŝy, and Ŝz in the matrix form. Assume the spin

is in the state |ψ〉 = α |↑z〉+ β |↓z〉. We can represent such a state as

|ψ〉 =

 α

β

 . (449)
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In particular

|↑z〉 =

 1

0

 , |↓z〉 =

 0

1

 . (450)

Then

Ŝz =
~
2

 1 0

0 −1

 , Ŝ+ = ~

 0 1

0 0

 , Ŝ− = ~

 0 0

1 0

 . (451)

This further gives

Ŝx =
Ŝ+ + Ŝ−

2
=

~
2

 0 1

1 0

 , Ŝy =
Ŝ+ − Ŝ−

2i
=

~
2

 0 −i

i 0

 . (452)

We define 3 Pauli matrices

σx ≡

 0 1

1 0

 , σy ≡

 0 −i

i 0

 , σz ≡

 1 0

0 −1

 . (453)

and also

σ+ ≡ σx + iσy
2

=

 0 1

0 0

 , σ− ≡ σx − iσy
2

=

 0 0

1 0

 . (454)

For the spin-1/2 operators we obtain

Ŝ =
~
2
σ , Ŝ+ = ~σ+ , Ŝ− = ~σ− . (455)

As we have seen in the discussion of the orbital angular momentum L̂ one cannot find

wave functions ψ(r) that would correspond to l = 1/2. The solution is to postulate that the

wave function of an electron is a 2-component spinor

|ψ〉 =

 ψ↑(r)

ψ↓(r)

 . (456)

In the absence of the spin-orbit coupling (very important relativistic effect) the orbital

r-dependence and the spin-dependence are disentangled. So, an electron in the orbital state

ψ(r) and in the spin state |↑〉 would be described by the wave function |ψ, ↑z〉 = ψ(r)

 1

0

.
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C. Magnetic moment of electron, Landé factor

Naively one would think that the spin part of the angular momentum would provide a

corresponding contribution to the magnetic moment. That is we would have

µ̂orbital = −µB
L̂

~
(457)

and a similar relation for µ̂spin. However, the experiment shows that the correct relation is

µ̂spin = −g µB
Ŝ

~
, (458)

where g = 2 is the Landé factor. That is, for the spin the ratio between the magnetic

momentum and the angular momentum (called gyromagnetic ratio) is twice larger than for

the orbital angular motion. This invalidates a naive idea that the electron is a small charged

ball spinning around. The Landé factor is very nicely explained in the relativistic quantum

mechanics (Dirac equation).

The total magnetic moment of the electron is given by µ̂ = µ̂orbital + µ̂spin.

µ̂ = −µB
L̂+ gŜ

~
. (459)

D. Zeeman effect

To accommodate the spin and its magnetic moment we are forced to accept a new Hamil-

tonian of an electron in the external electromagnetic field

Ĥ =
(p̂− qA(r, t))2

2m
+ qϕ(r, t)− µ̂spin ·B . (460)

Here q = −e (and e > 0), m = me. We thus obtain

(p̂+ eA(r, t))2

2m
− eϕ(r, t) +

gµB

~
Ŝ ·B , (461)

where µB = ~e
2m

. This Hamiltonian is called Pauli Hamiltonian. For the hydrogen atom in a

constant magnetic field we obtain

H = H0 +
µB

~

(
L̂+ g Ŝ

)
·B , (462)

where the diamagnetic term is neglected. We now assume B = Bez. Then

H = H0 +
µBB

~

(
L̂z + gŜz

)
, (463)
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The state with quantum numbers |n, l,m,ms〉 has then the energy

En,l,m,ms = −Ry

n2
+ µBB(m+ gms) . (464)

Here m = −l,−l + 1, . . . , l − 1, l and ms = ±1/2.

E. Stern-Gerlach experiment as strong, projective measurement

Stern-Gerlach experiment represents a paradigmatic example of a strong projective mea-

surement. Theory of such measurements was developed by John von Neumann (Book:

”Mathematical foundations of quantum mechanics”.) The main idea: the measurement ap-

paratus is also a quantum mechanical system. Let us consider spin-1/2 as a quantum system

that is being measured. Before the measurement the spin is in the state |ψ〉 = α |↑z〉+β |↓z〉

(the normalization requires |α|2+|β|2 = 1). The measurement apparatus is in the state |M0〉.

The state of the total system is a direct product (a product state) (α |↑z〉+ β |↓z〉)⊗ |M0〉.

During the measurement the spin and the measurement apparatus are made to interact.

The interaction Hamiltonian is proportional to the measured observable (Ŝz in our case)

so that at the end the state of the whole system reads α |↑z〉 ⊗ |M↑〉 + β |↓z〉 ⊗ |M↓〉. The

basis states |↑z〉 and |↓z〉 are eigenstates of the observable that is being measured, i.e.,

Ŝz. Moreover, if the interaction was strong enough or the measurement was long enough

the states |M↑〉 and |M↓〉 are (almost) orthogonal, 〈M↓|M↑〉 = 0. In this case one says a

strong projective measurement has happened. If one observed the measurement apparatus

in state |M↑〉, it automatically means that the spin is in (is projected into) the state |↑z〉.

This happens with probability |α|2. Analogously for the state |↓z〉. The states of the type

α |↑z〉 ⊗ |M↑〉 + β |↓z〉 ⊗ |M↓〉 are called entangled states. An entangled state cannot be

presented as a product state of the spin and the meter. It means it cannot be presented as

|ψ′〉 ⊗ |M ′〉.

The measurement problem is, actually, not solved. Indeed, we did not describe how

the state of the measurement apparatus should be ”observed”. This would require another

quantum measurement by yet another measurement apparatus. Von Neumann suggested a

sequence of such measurements until the result is obvious.

In the Stern-Gerlach experiment the role of the measurement apparatus is played by the

position r of the atom. The interaction Hamiltonian is gµB

~ Ŝ · B. If the field B is along
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the z-axis, the interaction Hamiltonian is proportional to Ŝz. Thus, Ŝz is being measured.

Before the measurement the state of the atom is ψ(r)

 α

β

. After the measurement the

state becomes

 αψ↑(r)

βψ↓(r)

. The normalized wave functions ψ↑ and ψ↓ are localized around

two very different points, and, thus, are almost orthogonal.

1. Repeated measurements

Assume the flux of atoms that were deflected up (state |↑z〉) is further let into a second

Stern-Gerlach device that measures again Ŝz. Clearly all the atoms (100%) will be deflected

up in the second device.

Assume now the second Stern-Gerlach device measures Ŝx. That is the magnetic field in

the second device is along x-axis. The state of the atoms |↑z〉 at the entrance to the second

device should now be expanded in the basis |↑x〉, |↓x〉. These two states are the eigenstates

of Ŝx such that

Ŝx |↑x〉 =
~
2
|↑x〉 , Ŝx |↓x〉 = −~

2
|↑x〉 . (465)

These states are easy to find. These are the eigenstates of the Pauli matrix σx. We obtain

|↑x〉 =
1√
2

 1

1

 =
1√
2
(|↑z〉+ |↓z〉) . (466)

Similarly

|↓x〉 =
1√
2

 1

−1

 =
1√
2
(|↑z〉 − |↓z〉) . (467)

From this we obtain

|↑z〉 =
1√
2
(|↑x〉+ |↓x〉) . (468)

The second measurement, thus, will split the atoms 50%− 50%.

F. Spin rotation

In analogy to the unitary operator (414), describing the (passive) transformation of the

wave function upon rotation of the system of coordinates, for the spin-1/2 wave function
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the corresponding transformation reads

Un(φ) = exp

[
i

~
φn · Ŝ

]
= exp

[
i

2
φn · σ̂

]
. (469)

Using the properties of the Pauli matrices we obtain

Un(φ) = cos(φ/2) + in · σ sin(φ/2) . (470)

Interestingly, a rotation by φ = 2π produces an original wave function multiplied by −1.

G. Interacting spins, triplet and singlet

Consider two spin-1/2 particles. We concentrate only on the spin degrees of freedom.

Assume the Hamiltonian reads

Ĥ =
J

~2
Ŝ1 · Ŝ2 . (471)

Here J is the coupling constant of dimension energy. The Hilbert state is 4-dimensional

and we can use the basis |↑↑〉, |↓↑〉, |↑↓〉, |↓↓〉. Not all of these are the eigenstates of the

Hamiltonian. On the other hand one can observe that the total spin

Ŝ ≡ Ŝ1 + Ŝ2 , (472)

commutes with the Hamiltonian. Thus, it might be profitable to find the mutual eigenstates

of Ŝ2 and Ŝz.

We first inspect Ŝz:

Ŝz |↑↑〉 = ~ |↑↑〉 , (473)

Ŝz |↑↓〉 = 0 , (474)

Ŝz |↓↑〉 = 0 , (475)

Ŝz |↓↓〉 = −~ |↓↓〉 . (476)

Further, using

Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1 · Ŝ2 =
3

2
~2 + 2Ŝ1,zŜ2,z + Ŝ1,+Ŝ2,− + Ŝ1,−Ŝ2,+ , (477)

we obtain

Ŝ2 |↑↑〉 =

(
3

2
~2 + 2

(
~
2

)2
)
|↑↑〉 = 2~2 |↑↑〉 . (478)
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Ŝ2 |↓↓〉 =

(
3

2
~2 + 2

(
~
2

)2
)
|↓↓〉 = 2~2 |↓↓〉 . (479)

Thus, the state |↑↑〉 corresponds to s = 1 and ms = 1. Accordingly, the state |↓↓〉 cor-

responds to s = 1 and ms = −1. To obtain the state s = 1,ms = 0 we should act with

Ŝ+ = Ŝ1,+ + Ŝ2,+ on the state |↓↓〉 = |s = 1,ms = −1〉. We obtain

Ŝ+ |↓↓〉 = ~ |↑↓〉+~ |↓↑〉 = ~
√
s(s+ 1)−ms(ms + 1) |s = 1,ms = 0〉 =

√
2~ |s = 1,ms = 0〉 .

(480)

Thus, we have obtained three states corresponding to s = 1, called triplet states

|s = 1,ms = 1〉 = |↑↑〉 ,

|s = 1,ms = 0〉 = 1√
2
(|↑↓〉+ |↓↑〉) ,

|s = 1,ms = −1〉 = |↓↓〉 . (481)

The remaining state, called singlet is given by

|s = 0,ms = 0〉 = 1√
2
(|↑↓〉 − |↓↑〉) . (482)

It is easy to see that

Ŝ2 1√
2
(|↑↓〉 − |↓↑〉) = 0 , (483)

and

Ŝz
1√
2
(|↑↓〉 − |↓↑〉) = 0 . (484)

Finally, to find the eigenenergies of Ĥ we use

Ŝ1 · Ŝ2 =
1

2

(
Ŝ2 − Ŝ2

1 − Ŝ2
2

)
=

1

2
Ŝ2 − 3

4
~2 . (485)

Therefore, the triplet states are degenerate and their energy is given by

ET =
1

4
J , (486)

whereas for the singlet state we get

ES = −3

4
J . (487)

Assuming J > 0, the ground state is the singlet, and it is non-degenerate.

In an external magnetic field B = Bez the Hamiltonian is

Ĥ =
J

~2
Ŝ1 · Ŝ2 +

2µB

~
BŜz . (488)

This splits the energies of the triplet states into ET,+1 =
1
4
J +2µBB for ms = 1, ET,0 =

1
4
J

for ms = 0, and ET,−1 =
1
4
J − 2µBB for ms = −1.
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X. ELECTRON IN AN EXTERNAL ELECTRO-MAGNETIC FIELD.

PART II

We come back to the quantum description of an electron in an external electro-magnetic

field. Without taking into account the spin the Hamiltonian reads

Ĥ =
(p̂+ eA(r, t))2

2m
− eϕ(r, t) , (489)

and the wave functions ψ(r) have one component. Here we use e > 0 and the negative sign

of the electron charge is taken into account explicitly.

With the spin the description is with the Pauli Hamiltonian:

Ĥ =

[
(p̂+ eA(r, t))2

2m
− eϕ(r, t)

]
σ0 +

gµB

~
Ŝ ·B(r, t)

=

[
(p̂+ eA(r, t))2

2m
− eϕ(r, t)

]
σ0 + µB B(r, t) · σ , (490)

where g = 2 was used. The wave function is a 2-component spinor ψσ(r) =

 ψ↑(r)

ψ↓(r)

.

The Pauli matrices σ act in the spin space σ =↑ / ↓, whereas the other operators, e.g., the

momentum p̂ act in the orbital space (dependence on r).

An equivalent representation of the Pauli Hamiltonian reads

Ĥ =
[σ · (p̂+ eA)] [σ · (p̂+ eA)]

2m
− eϕ σ0 . (491)

This, in turn, is obtained from the Dirac equation (relativistic quantum mechanics).

A. Gauge invariance

It is well known that the physical fields

B = ∇×A , (492)

E = −∂A
∂t

−∇ϕ , (493)

do not change under gauge transformations

A → A′ = A+∇f(r, t) , (494)
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φ→ φ′ = φ− ∂tf(r, t) . (495)

These transformations alone would change the Hamiltonian and the corresponding

Schrödinger equation. In order to retain the form of the Hamiltonian a simultaneous gauge

transformation of the wave function is necessary

ψ(r, t) → ψ′(r, t) = exp

[
−ie

~
f(r, t)

]
ψ(r, t) . (496)

Indeed, we have

(p̂+ eA′)ψ′ = [−i~∇+ eA+ e(∇f)] exp

[
−ie

~
f

]
ψ

= exp

[
−ie

~
f

]
(−i~∇+ eA) ψ . (497)

Also

i~
∂

∂t
ψ′ = exp

[
−ie

~
f

](
i~
∂

∂t
+ e(∂tf)

)
ψ . (498)

Substituting these two relations to the Schrödinger equation i~∂tψ′ = Ĥ ′ψ′ we obtain

i~∂tψ = Ĥψ. Here Ĥ ′ = Ĥ[A′, φ′]. The gauge transformation does not involve spin,

and, thus is valid also for Pauli Hamiltonian.

B. Aharonov-Bohm effect

Consider a situation in which an electron moves in the region, where B = 0, but A 6= 0.

This is so because in other regions there is a finite magnetic field. Example - a coil (solenoid).

Then (where B = 0) we have ∇ × A = 0. Thus, we can locally find a function χ(r) such

that A = ∇χ. Performing a gauge transformation

ψ(r, t) → ψ′(r, t) = exp

[
ie

~
χ(r)

]
ψ(r, t) , (499)

we obtain

A → A′ = A−∇χ(r) = 0 , (500)

Thus ψ′ is the solution of the Schrödinger equation with A′ = 0 and the original Schrödinger

equation is solved by

ψ(r, t) = ψ′(r, t) exp

[
−ie

~
χ(r)

]
= ψ′(r, t) exp

−ie
~

r∫
r0

dsA(s)

 . (501)
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The integration path over s must be completely in the region where B = 0. An interesting

situation emerges, if there are two path’s P1 and P2 starting at r0 and ending at r such that

a solenoid with magnetic field is inside the loop formed by P1 and P2. Then, the relative

phase between the two path is given by

∆θ = θ1 − θ2 = − e

~

∫
P1

dsA(s) +
e

~

∫
P2

dsA(s) =
e

~

∮
P2−P1

dsA(s) . (502)

We obtain ∆θ = 2πΦ/Φ0. Here Φ is the magnetic flux through the loop P2 − P1 and

Φ0 ≡ 2π~/e = h/e ≈ 4.12 × 10−15Wb is the flux quantum. The interference pattern is

shifted by the magnetic flux in the solenoid even though the electrons never experience the

magnetic field.

C. Landau levels

We consider free electrons in homogeneous time-independent magnetic field B = Bez.

The Hamiltonian reads

Ĥ =
(p̂+ eA(r))2

2m
σ0 + µB B σz . (503)

One can solve the problem separately for spin up electrons and for spin down electrons.

Namely, substituting the wave function in the form ψ↑(r)

 1

0

 we obtain the following

Schrödinger equation
(p̂+ eA)2

2m
ψ↑ + µB B ψ↑ = E ψ↑ . (504)

Accordingly, for spin down electrons we substitute ψ↓(r)

 0

1

 and obtain

(p̂+ eA)2

2m
ψ↓ − µB B ψ↓ = E ψ↓ . (505)

For both cases we can just solve the Schrödinger equation for ”spinless” electrons

(p̂+ eA)2

2m
ψ = E ψ , (506)

and, then, shift the energy by ±µB B for spin up/down.
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We choose the following gauge A = (−By, 0, 0). Then the Schrödinger equation reads

1

2m

(
(p̂x − eBy)2 + p̂2y + p̂2z

)
ψ = Eψ . (507)

The Hamiltonian is translationally invariant in x and z directions. That is p̂x and p̂z commute

with the Hamiltonian and we can choose eigenvectors of Ĥ that are simultaneously the

eigenvectors of p̂x and p̂z. We make an ansatz

ψ(r) = eikxx eikzz u(y) . (508)

This gives the following

1

2m

[
(~kx − eBy)2 + p̂2y + ~2k2z

]
u(y) = E u(y) . (509)

Equivalently [
1

2m
p̂2y +

e2B2

2m

(
y − ~kx

eB

)2
]
u(y) =

(
E − ~2k2z

2m

)
u(y) . (510)

Introducing the frequency

ωL ≡ eB

m
(511)

and the coordinate

y0 ≡
~kx
eB

, (512)

we obtain [
1

2m
p̂2y +

mω2
L

2
(y − y0)

2

]
u(y) =

(
E − ~2k2z

2m

)
u(y) . (513)

We obtain, thus, the Schrödinger equation for a linear oscillator. This gives the eigenenergies

E =
~2k2z
2m

+ ~ωL

(
n+

1

2

)
. (514)

The eigenstates are characterized by three quantum numbers kx, kz, n. They read

|kx, kz, n〉 = eikxx eikzz ψn

(
y − ~kx

eB

)
. (515)

Here ψn are the eigenstates of a linear oscillator with mass m and frequency ωL. The energy

depends only on two quantum numbers kz and n. Thus we have a degeneracy of infinite

grade (kx is continuous).
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The eigenstates are localized in y-direction. The characteristic length, as we know from

the discussion of harmonic oscillators (165), is given by

lB =

√
~

mωL

=

√
~
eB

. (516)

This length is called the magnetic length.

The infinite degeneracy of the states with given n and kz can be regularized by assuming

the system has an area of size A = LxLy in the x−y plane. In the x-direction one introduces

the periodic boundary conditions ψ(x, y, z) = ψ(x+Lx, y, z). This ”quantizes” the possible

values of kx, namely kx = 2π
Lx
nx, where nx in an integer number. The distance between

the neighboring values of kx is ∆kx = 2π
Lx

. In addition, the wave number kx provides the

coordinate y0 around which the state is localized in y-direction. We have 0 < y0 < Ly.

Using y0 = ~kx
eB

, we obtain 0 < kx <
eBLy

~ . Dividing this by the ∆kx we obtain the total

number of allowed values of kx, i.e.,

N =
eBLxLy

2π~
=

A

2πl2B
. (517)

XI. TIME-INDEPENDENT PERTURBATION THEORY

A. General idea

Assume we can find exactly the spectrum of Ĥ0. That is we can find the states
∣∣n(0)

〉
and the energies E(0)

n , such that

Ĥ0

∣∣n(0)
〉
= E(0)

n

∣∣n(0)
〉
. (518)

We want now to find the spectrum of

Ĥ = Ĥ0 + λV̂ , (519)

where λ� 1. The part λV̂ is called the perturbation. The goal is to find the states |n〉 and

the energies En such that

Ĥ |n〉 = En |n〉 . (520)

B. Non-degenerate, 1-st order

Assume the spectrum of Ĥ0 is non-degenerate and discrete. Then, if λ is sufficiently

small, it is natural to expect that for each state
∣∣n(0)

〉
there will be a unique state |n〉, such
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that the wave functions of these two states and their eigenenergies are close. The main idea

is to expand both |n〉 and En in powers of λ so that in zeroth order (for λ = 0) one has

|n〉 =
∣∣n(0)

〉
and En = E

(0)
n . For non-zero λ we expand

|n〉 =
∣∣n(0)

〉
+ λ

∣∣n(1)
〉
+ λ2

∣∣n(2)
〉
+ . . . , (521)

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . . (522)

We multiply and obtain

(Ĥ0 + λV̂ )(
∣∣n(0)

〉
+ λ

∣∣n(1)
〉
+ λ2

∣∣n(2)
〉
+ . . .)

= (E(0)
n + λE(1)

n + λ2E(2)
n + . . .)(

∣∣n(0)
〉
+ λ

∣∣n(1)
〉
+ λ2

∣∣n(2)
〉
+ . . .) . (523)

We extract the terms of first order in λ:

Ĥ0

∣∣n(1)
〉
+ V̂

∣∣n(0)
〉
= E(0)

n

∣∣n(1)
〉
+ E(1)

n

∣∣n(0)
〉
. (524)

To solve this both for
∣∣n(1)

〉
and E

(1)
n we choose

∣∣n(1)
〉

to be orthogonal to
∣∣n(0)

〉
. (In

principle, if
∣∣n(1)

〉
is a solution, then also

∣∣n(1)
〉
− α

∣∣n(0)
〉

is a solution.) The state |n〉 =∣∣n(0)
〉
+ λ

∣∣n(1)
〉
+ . . . is then definitely not normalized. Yet the deviation is of the second

order in λ:

〈n|n〉 =
〈
n(0)|n(0)

〉
+ λ2

〈
n(1)|n(1)

〉
+ . . . = 1 + λ2

〈
n(1)|n(1)

〉
+ . . . . (525)

We can then expand ∣∣n(1)
〉
=
∑
m 6=n

∣∣m(0)
〉 〈
m(0)|n(1)

〉
. (526)

The equation (524) now reads∑
m 6=n

E(0)
m

∣∣m(0)
〉 〈
m(0)|n(1)

〉
+ V̂

∣∣n(0)
〉
= E(0)

n

∑
m 6=n

∣∣m(0)
〉 〈
m(0)|n(1)

〉
+ E(1)

n

∣∣n(0)
〉
. (527)

Projecting (527) onto
∣∣l(0)〉 with l 6= n we obtain

〈
l(0)
∣∣ V̂ ∣∣n(0)

〉
= (E(0)

n − E
(0)
l )
〈
l(0)|n(1)

〉
. (528)

Thus 〈
l(0)|n(1)

〉
=

〈
l(0)
∣∣ V̂ ∣∣n(0)

〉
E

(0)
n − E

(0)
l

, (529)
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and (changing l back to m)

∣∣n(1)
〉
=
∑
m6=n

∣∣m(0)
〉 〈
m(0)|n(1)

〉
=
∑
m6=n

∣∣m(0)
〉 〈m(0)

∣∣ V̂ ∣∣n(0)
〉

E
(0)
n − E

(0)
m

. (530)

Projecting (527) onto
∣∣n(0)

〉
we obtain

E(1)
n =

〈
n(0)
∣∣ V̂ ∣∣n(0)

〉
. (531)

The two last equations are the main result of the (non-degenerate) perturbation theory

of the first order. Of course, now we can normalize the state |n〉 ≈
∣∣n(0)

〉
+ λ

∣∣n(1)
〉

by

multiplying it with
[〈
n(0)|n(0)

〉
+ λ2

〈
n(1)|n(1)

〉]−1/2
= (1 + λ2

〈
n(1)|n(1)

〉
)−1/2. Up to O(λ2

this will only influence the amplitude of
∣∣n(0)

〉
. That is the normalized state will look like

(1−O(λ2))
∣∣n(0)

〉
+ λ

∣∣n(1)
〉
.

C. Non-degenerate, 2-st order

In the second order in λ we obtain from (523)

Ĥ0

∣∣n(2)
〉
+ V̂

∣∣n(1)
〉
= E(2)

n

∣∣n(0)
〉
+ E(1)

n

∣∣n(1)
〉
+ E(0)

n

∣∣n(2)
〉
. (532)

We choose again the correction to be orthogonal to the unperturbed wave-function〈
n(2)|n(0)

〉
= 0. Then, projecting on

∣∣n(0)
〉

we obtain

E(2)
n =

〈
n(0)
∣∣ V̂ ∣∣n(1)

〉
=
〈
n(0)
∣∣ V̂ ∑

m 6=n

∣∣m(0)
〉 〈
m(0)|n(1)

〉
=
〈
n(0)
∣∣ V̂ ∑

m6=n

∣∣m(0)
〉 〈m(0)

∣∣ V̂ ∣∣n(0)
〉

E
(0)
n − E

(0)
m

.

(533)

We get

E(2)
n =

∑
m6=n

〈
n(0)
∣∣ V̂ ∣∣m(0)

〉 〈
m(0)

∣∣ V̂ ∣∣n(0)
〉

E
(0)
n − E

(0)
m

=
∑
m6=n

|
〈
n(0)
∣∣ V̂ ∣∣m(0)

〉
|2

E
(0)
n − E

(0)
m

. (534)

An interesting result: the correction to the ground state energy is always negative.

D. Degenerate case

As we can observe from the non-degenerate perturbation theory the smallness of the

corrections is guaranteed if

|
〈
m(0)

∣∣λV̂ ∣∣n(0)
〉
| � |E(0)

n − E(0)
m | . (535)
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If for the energy E
(0)
n we have several degenerate eigenstates of Ĥ0:

∣∣∣n(0)
k

〉
, where k =

1, 2, . . . Nn and Nn is the degree of degeneracy of the level n, the condition above cannot be

satisfied if
〈
n
(0)
q

∣∣∣ V̂ ∣∣∣n(0)
k

〉
6= 0 for k 6= q. That is, if the perturbation V̂ is not diagonal in the

Nn-dimensional degenerate subspace of En,0. The solution of this problem is to diagonalize

the operator V̂ in the degenerate subspace. We want to find such superpositions of the Nn

states: ∣∣ñ(0)
α

〉
=

Nn∑
k=1

ck,α

∣∣∣n(0)
k

〉
, (536)

that 〈
ñ
(0)
β

∣∣∣ V̂ ∣∣∣ñ(0)
α

〉
= δβ,αvα . (537)

Here α, β = 1, 2, . . . , Nn. The matrix ck,α must be unitary. Substituting (536) into (537) we

obtain (summation over repeated indexes)

c∗q,βVq,kck,α = (c†)β,qVq,kck,α = δβ,αvα . (538)

Here we have introduced Vq,k ≡
〈
n
(0)
q

∣∣∣ V̂ ∣∣∣n(0)
k

〉
. Multiplying with matrix ĉ from the left we

obtain

cp,β(c
†)β,qVq,kck,α = cp,βδβ,αvα , (539)

which gives

Vp,kck,α = cp,αvα . (540)

Thus, the columns of the matrix ck,α are the eigenvectors of the matrix Vp,k with the eigenval-

ues vα. As usual, these eigenvalues are found by solving the ”secular” equation (characteristic

equation, characteristic polynom) det [Vp,k − vδp,k] = 0 for the unknown v.

To conclude, we found the new basis of states
∣∣∣ñ(0)

α

〉
, where α = 1, 2, . . . , Nn. All these

states are eigenstates of Ĥ0 with the eigenvalue E(0)
n :

Ĥ0

∣∣ñ(0)
α

〉
= E(0)

n

∣∣ñ(0)
α

〉
. (541)

The perturbation λV̂ is diagonal in the new basis within this degenerate subspace (cf.

Eq. (537)).

At this point we apply the non-degenerate version of the perturbation theory discussed

earlier. The first order correction to the energies of the states
∣∣∣ñ(0)

α

〉
reads

E(1)
n,α =

〈
ñ(0)
α

∣∣ V̂ ∣∣ñ(0)
α

〉
= vα . (542)
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The total energies (up to the first order) read

En,α ≈ E(0)
n + λ

〈
ñ(0)
α

∣∣ V̂ ∣∣ñ(0)
α

〉
= E(0)

n + λvα . (543)

If we have diagonalized the perturbation V̂ in every degenerate subspace, we can apply

now the non-degenerate perturbation theory. The first order corrections to the states
∣∣∣ñ(0)

α

〉
will come only from the states, which do not belong to the degenerate subspace E(0)

n .

E. Stark effect

We consider a hydrogen atom in a homogeneous electric field. We assume E = Eez. The

Hamiltonian reads

Ĥ = Ĥ0 + V̂ , (544)

where Ĥ0 is the hydrogen Hamiltonian discussed before and V̂ = −eφ(r) (here e > 0, the

negative charge of the electron is taken into account explicitly). Since for static electric

fields we can put A = 0, we obtain E = −∇φ. We can choose, therefore φ = −E · z. Thus

the perturbation reads

V̂ = eEẑ . (545)

Since this perturbation does not involve the spin (commutes with Ŝ), the spin degeneracy

of every level is not affected. Thus we can solve the problem as if the electron had no spin.

We assume the electric field to be sufficiently weak and apply the perturbation theory. For

this we need the matrix elements of the type

〈n, l,m| ẑ |n′, l′,m′〉 . (546)

It would not be smart starting calculating these matrix elements for every choice of the

quantum numbers n, l,m, n′, l′,m′. Instead, we first use the symmetries in order to decide

which of these matrix elements do not vanish. This strategy produces the ”selection rules”.

That is there are certain rules which immediately tell us which of the matrix elements are

zero and which have a chance of being non-zero.

1) Since
[
ẑ, L̂z

]
= 0, we obtain

〈n, l,m|
[
ẑ, L̂z

]
|n′, l′,m′〉 = 〈n, l,m| ẑL̂z − L̂z ẑ |n′, l′,m′〉

= ~(m′ −m) 〈n, l,m| ẑ |n′, l′,m′〉 = 0 . (547)
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Thus, we observe that

〈n, l,m| ẑ |n′, l′,m′〉 = 0 if m′ 6= m . (548)

The first selection rule reads m = m′.

2) The second selection rule can be obtained using the parity operator P̂ψ(r) = ψ(−r).

As we have discussed around Eq. (352), we have P̂ |n, l,m〉 = (−1)l |n, l,m〉. On the other

hand P̂ ẑP̂ = −ẑ. Thus, we obtain

〈n, l,m| P̂ ẑP̂ |n′, l′,m′〉 = −〈n, l,m| ẑ |n′, l′,m′〉 = (−1)l+l′ 〈n, l,m| P̂ ẑP̂ |n′, l′,m′〉 . (549)

We conclude that the matrix element can be non-zero if (−1)l+l′ = −1, i.e., l + l′ is odd.

3) The third selection rule overrides completely the second one. (The second rule is a

weaker subset of the third one.) The third rule reads l′ = l ± 1. We will not prove it here.

The simplest way to prove is to use the knowledge about the ”addition of angular momenta”

(Wigner–Eckart theorem), which will be studied later.

1. Linear Stark effect

Consider the 4-fold degenerate subspace of states with n = 2. The states are

|2, 0, 0〉 , |2, 1,−1〉 , |2, 1, 0〉 , |2, 1, 1〉. According to the selection rules the perturbation V̂ =

eEẑ has only two matrix elements in this subspace, namely ∆ ≡ 〈2, 0, 0| V̂ |2, 1, 0〉 =

eE 〈2, 0, 0| ẑ |2, 1, 0〉 and its complex conjugate ∆∗ = 〈2, 1, 0| V̂ |2, 0, 0〉. Since both wave

functions |2, 0, 0〉 and |2, 1, 0〉 are real, we have ∆∗ = ∆, i.e., the matrix element is real.

Below we will estimate ∆.

We apply the degenerate perturbation theory. We have to diagonalize the 4 × 4 matrix

of the matrix elements of the perturbation in the degenerate subspace. This matrix reads

Vp,k =


0 0 ∆ 0

0 0 0 0

∆ 0 0 0

0 0 0 0

 (550)

This matrix is easy to diagonalize. The eigenstates are

1√
2
(|2, 0, 0〉+ |2, 1, 0〉) with eigenvalue v = ∆ , (551)
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1√
2
(|2, 0, 0〉 − |2, 1, 0〉) with eigenvalue v = −∆ , (552)

|2, 1,−1〉 with eigenvalue v = 0 , (553)

|2, 1, 1〉 with eigenvalue v = 0 . (554)

As a result, the 4-fold degeneracy of the states with n = 2 and energy E
(0)
2 = −Ry/4 is

partially lifted. The two states retain their unperturbed energies. The two other states

combine into symmetric and anti-symmetric combination with energies −Ry/4 ±∆. Since

∆ ∝ E, one observes the linear dependence of the splitting on the electric field. This explains

the name ”linear Stark effect”.

For the matrix element ∆, using z = r cos θ, we obtain

∆ = eE

∞∫
0

r2drR∗
2,0(r)rR2,1(r)

π∫
0

sin θdθ

2π∫
0

dφY ∗
0,0(θ, φ) cos θ Y1,0(θ, φ) . (555)

For the angular part we obtain
π∫

0

sin θdθ

2π∫
0

dφY ∗
0,0(θ, φ) cos θ Y1,0(θ, φ)

=

π∫
0

sin θdθ

2π∫
0

dφ
1√
4π

cos θ

√
3

4π
cos θ

=

√
3

2

π∫
0

sin θdθ cos2 θ =

√
3

2

1∫
−1

dx x2 =
1√
3
. (556)

For the radial part we obtain
∞∫
0

r2drR∗
2,0(r)rR2,1(r)

=

∞∫
0

r2dr 2

(
1

2a0

)3/2 (
1− r

2a0

)
e−r/2a0 r

2√
3

(
1

2a0

)3/2 (
r

2a0

)
e−r/2a0

=
4√
3

(
1

2a0

)3
∞∫
0

r3dr

(
1− r

2a0

)(
r

2a0

)
e−r/a0

=
a0

4
√
3

∞∫
0

x3dx(1− x/2)xe−x =
a0

4
√
3

 ∞∫
0

dx x4e−x − 1

2

∞∫
0

dx x5e−x


= −9a0√

3
. (557)
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Altogether we get

∆ = −3a0eE . (558)

2. Quadratic Stark effect

The ground state |1, 0, 0〉 is non-degenerate (remember we ignore the spin). Since

〈1, 0, 0| V̂ |1, 0, 0〉 = 0, the lowest order effect is the correction of the second order. Tak-

ing into account the selection rules, we obtain

E
(2)
1,0,0 = e2E2

∞∑
n=2

| 〈1, 0, 0| ẑ |n, 1, 0〉 |2

E
(0)
1,0,0 − E

(0)
n,1,0

. (559)

The exact result of the summation is known:

E
(2)
1,0,0 = −9

4
(4πε0) a

3
0E

2 . (560)

F. Elements of the fine structure calculation: spin-orbit coupling

One of the corrections to the Hamiltonian of the hydrogen atom, which is obtained from

the Dirac equation is the so-called spin-orbit coupling. As above we have the full Hamiltonian

Ĥ = Ĥ0 + λV̂ , (561)

where Ĥ0 =
p̂2

2m
+ U(r). Here U(r) = − 1

4πε0
Ze2

r
.

The additional Hamiltonian (perturbation) reads

λV̂ = ĤSO =
1

2m2c2

[
1

r

d

dr
U(r)

]
L̂ · Ŝ . (562)

This Hamiltonian does not commute neither with L̂z nor with Ŝz. Thus, the quantum

numbers m and ms are no longer good quantum numbers. On the other hand ĤSO commutes

with L̂2 and with Ŝ2. Therefore, we can further use l and s = 1/2.

We consider the degenerate subspace of the eigenstates of Ĥ0 for a given value of of the

principal quantum number n. The degree of degeneracy including spin is 2n2. We apply the

degenerate perturbation theory, which requires diagonalizing ĤSO in this subspace. That is,

we have to diagonalize the following 2n2 × 2n2 matrix

〈n, l,m,ms| ĤSO |n, l′,m′,m′
s〉 . (563)
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Since [ĤSO, L̂
2] we immediately get the selection rule l = l′. Thus, we have to diagonalize

for each value of l separately. For a given l the matrix to be diagonalized has dimensions

2(2l + 1)× 2(2l + 1).

Recall that the orbital unperturbed states are given by |n, l,m〉 = Rn,l(r)Yl,m(θ, ϕ). For

fixed n and l, the matrix elements of the perturbation read

〈n, l,m,ms| ĤSO |n, l,m′,m′
s〉 =

1

2m2c2

〈[
1

r

d

dr
U(r)

]〉
n,l

〈l,m,ms| L̂ · Ŝ |l,m′,m′
s〉 . (564)

Here 〈[
1

r

d

dr
U(r)

]〉
n,l

=

∞∫
0

r2dr R∗
n,l(r)

1

r

(
dU(r)

dr

)
Rn,l(r) , (565)

and

|l,m,ms〉 = |l,m〉 |ms〉 = Yl,m(θ, ϕ) |ms〉 . (566)

1. Adding orbital momentum and spin 1/2

We want now to diagonalize 〈l,m,ms| L̂ · Ŝ |l,m′,m′
s〉. We look for a basis in which the

operator L̂ · Ŝ is diagonal. The situation is similar to the one of two spin-1/2 particles with

the interaction proportional to Ŝ1 · Ŝ2 (see Sec. IX G). The main idea is to consider the total

angular momentum

Ĵ = L̂+ Ŝ , (567)

since Ĵ commutes with L̂ · Ŝ (that is every component of Ĵ commutes with L̂ · Ŝ) and the

three operators L̂ · Ŝ, Ĵ2 and Ĵz share the mutual basis of eigenstates. Thus, we look for

the eigenstates of Ĵ2 and Ĵz (with eigenvalues ~2j(j + 1) and ~mj respectively). Since Ĵ

commutes with L̂2, states with different values of l will not be mixed. Thus the relevant

basis of product states reads

|l,m〉 |↑〉 = Yl,m(θ, ϕ)

 1

0

 and |l,m〉 |↓〉 = Yl,m(θ, ϕ)

 0

1

 . (568)

The total number of states in this basis is equal to 2(2l + 1).

All the states (568) are eigenstates of Ĵz = L̂z + Ŝz. Indeed Ĵz |l,m〉 |↑〉 = ~(m +

1/2) |l,m〉 |↑〉 and Ĵz |l,m〉 |↓〉 = ~(m− 1/2) |l,m〉 |↓〉. Thus, we observe that mj = m± 1/2.

The maximal possible value of mj equals l+1/2. There is only one state with mj = l+1/2,

84



namely |l, l〉 |↑〉. Analogously, there is only one state with mj = −l− 1/2, namely |l,−l〉 |↓〉.

For every one of the other possible values of mj, namely for mj = −l+1/2,−l+3/2, . . . , l−

3/2, l − 1/2 there exist two states. These are |l,mj − 1/2〉 |↑〉 and |l,mj + 1/2〉 |↓〉.

One can, therefore, guess that only the states |j,mj〉 will be present with j = l + 1/2

and j = l − 1/2 (for l = 0 only j = 1/2). The total number of such states is given by

2(l + 1/2) + 1 + 2(l − 1/2) + 1 = 2(2l + 1) (for l = 0 the total number of states is equal 2).

We start by constructing the states with j = l+1/2. The state with the highest possible

value of mj = l + 1/2 is given by

|ψ〉 = |l, l〉 |↑〉 . (569)

Indeed

Ĵz |ψ〉 = ~(l + 1/2) |ψ〉 . (570)

Further, using

Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ = L̂2 + Ŝ2 + 2L̂zŜz + L̂+Ŝ− + L̂−Ŝ+ , (571)

we obtain

Ĵ2 |ψ〉 = ~2
(
l(l + 1) +

3

4
+ 2l

1

2

)
|ψ〉 = ~2

(
l +

1

2

)(
l +

3

2

)
|ψ〉 . (572)

We conclude that state |ψ〉 = |l, l〉 |↑〉 corresponds to the state |ψ〉 =

|j = l + 1/2,mj = l + 1/2〉. We will use the notation |j,mj〉J for the new basis. Thus,

we have obtained

|l + 1/2, l + 1/2〉J = |l, l〉 |↑〉 . (573)

Next, we act with the operator Ĵ− = L̂− + Ŝ−.

Ĵ− |l + 1/2, l + 1/2〉J = (L̂− + Ŝ−) |l, l〉 |↑〉

= ~
√
l(l + 1)− l(l − 1) |l, l − 1〉 |↑〉+ ~ |l, l〉 |↓〉

= ~
√
2l |l, l − 1〉 |↑〉+ ~ |l, l〉 |↓〉 . (574)

Normalizing this state we get

|l + 1/2, l − 1/2〉J =

√
2l

2l + 1
|l, l − 1〉 |↑〉+

√
1

2l + 1
|l, l〉 |↓〉 . (575)

Continuing this process one obtains

|l + 1/2,mj〉J =

√
l +mj + 1/2

2l + 1
|l,mj − 1/2〉 |↑〉+

√
l −mj + 1/2

2l + 1
|l,mj + 1/2〉 |↓〉 . (576)
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The coefficients here are the so-called Clebsch-Gordan coefficients. We have thus constructed

2(l + 1/2) + 1 states for j = l + 1/2. We still need 2(l − 1/2) + 1 states. For every mj in

(576) such that both states in (576) have non-zero coefficients, i.e., for mj = l − 1/2, l −

3/2, . . . ,−l + 3/2,−l + 1/2, we can build the orthogonal to (576) state

|l − 1/2,mj〉J = −
√
l −mj + 1/2

2l + 1
|l,mj − 1/2〉 |↑〉+

√
l +mj + 1/2

2l + 1
|l,mj + 1/2〉 |↓〉 .

(577)

One can check that these states correspond to j = l− 1/2. There are exactly 2(l− 1/2) + 1

such states.

Since

L̂ · Ŝ =
1

2

(
Ĵ2 − L̂2 − Ŝ2

)
, (578)

we get

L̂ · Ŝ |l + 1/2,mj〉J =
~2

2

(
(l + 1/2)(l + 3/2)− l(l + 1)− 3

4

)
|l + 1/2,mj〉J

=
~2l
2

|l + 1/2,mj〉J . (579)

On the other hand

L̂ · Ŝ |l − 1/2,mj〉J =
~2

2

(
(l − 1/2)(l + 1/2)− l(l + 1)− 3

4

)
|l − 1/2,mj〉J

=
~2(−l − 1)

2
|l − 1/2,mj〉J . (580)

Thus, we have diagonalized the operator L̂ · Ŝ in the subspace of given l. This subspace

splits into 2(l + 1/2) + 1 states with j = l + 1/2 and the eigenvalue of L̂ · Ŝ equal to ~2l/2,

and 2(l− 1/2)+ 1 states with j = l− 1/2 and the eigenvalue of L̂ · Ŝ equal to −~2(l+1)/2.

2. Lifting degeneracy for n = 2

For n = 2 we have an 8-fold degeneracy. Namely, we have 2 states with l = 0 (2s states)

and 6 states with l = 1 (2p states). For the new basis with given j one uses the following

notation nlj. For example, for the states 2s only one possibility exists and we obtain two

2s1/2 states. For l = 0, j = 1/2 the eigenvalue of L̂ · Ŝ is zero, thus no shift in energy.

Out of 6 states 2p we obtain four 2p3/2 states and two 2p1/2 states. The states 2p3/2 are

shifted in energy by

∆E(2p3/2) =
1

2m2c2

〈[
1

r

d

dr
U(r)

]〉
n=2,l=1

× ~2

2
. (581)
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For the states 2p1/2 we obtain

∆E(2p1/2) =
1

2m2c2

〈[
1

r

d

dr
U(r)

]〉
n=2,l=1

× ~2

2
(−2) . (582)

Important: We considered only the spin-orbit (SO) coupling. There are other corrections

contributing to the fine structure (∝ p4 correction to the kinetic energy and the Darwin term).

These corrections, including the SO coupling, originate from the Dirac equation. As a result,

the fine structure splittings are different from what we obtained. In particular, the energy

shifts depend only on j and not on l. Therefore, the states 2s1/2 and 2p1/2 remain degenerate.

Our calculation here was for training purposes only.

XII. ADIABATIC APPROXIMATION (THEOREM), BERRY PHASE

Assume a Hamiltonian of a system changes slowly in time. How will the wave functions

then evolve? It is convenient to think that the hamiltonian depends on a vector of parameters

R, i.e., we have the hamiltonian Ĥ(t) = Ĥ(R(t)) and this vector of parameters depends

in turn on time R(t). As an example consider a spin-1/2 in a magnetic field that depends

(slowly) on time: Ĥ(t) = µBB(t) · σ. In this case R(t) = B(t).

Assume that for any t the parameters R(t) are such that the Hamiltonian Ĥ(R(t)) has a

discrete non-degenerate spectrum |n(t)〉 = |n(R(t))〉 with eigenenergies En(t) = En(R(t)).

The energies En never cross. The states |n(t)〉 are called instantaneous eigenstates. For

example, for spin-1/2 in a magnetic field this means that for any t the magnetic field is

non-zero, i.e., |B(t)| > 0.

The idea of the adiabatic approximation is that if at t = 0 the state of the system is

one of the instantaneous eigenstates, |ψ(t = 0)〉 = |n(t = 0)〉, and the Hamiltonian changes

sufficiently slow (to be specified) the state will ”follow” the Hamiltonian so that |ψ(t)〉 ≈

|n(t)〉.

To justify the adiabatic approximation we expand the wave function |ψ(t)〉 is the basis

of instantaneous eigenstates

ψ(t) =
∑
m

cm(t) |m(R(t))〉 . (583)

Initially cm(t = 0) = δm,n. The Schrödinger equation gives

i~
d

dt
|ψ〉 = i~

∑
m

(
dcm(t)

dt
|m(t)〉+ cm(t) |ṁ(t)〉

)
=
∑
m

Em(t)cm(t) |m(t)〉 . (584)
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Here

|ṁ(t)〉 = Ṙ(t) ·∇R |m(R)〉 . (585)

We project the Schrödinger equation on 〈l(t)| and obtain

i~
dcl
dt

= El(t)cl − i~
∑
m

〈l(t)|ṁ(t)〉 cm . (586)

We can consider this equation as a Schrödinger equation for the wave function cl(t), i.e.,

i~dcl
dt

= H̃l,mcm, where the Hamiltonian matrix reads

H̃l,m = δl,m

[
Em(t)− i~ 〈m(t)|ṁ(t)〉

]
− (1− δl,m)i~ 〈l(t)|ṁ(t)〉 . (587)

The matrix element 〈l(t)|ṁ(t)〉 is small if the ”velocity” is the parameter space Ṙ(t) is small.

The idea of the adiabatic approximation is that one can neglect the off-diagonal terms in

(587) if they are much smaller than the energy differences:

~| 〈l(t)|ṁ(t)〉 | � |Em − El| . (588)

Indeed, the off-diagonal terms contribute only in the second order whereas the diagonal one

already in the first order.

Neglecting the off-diagonal elements (this is the adiabatic approximation) we obtain

dcm(t)

dt
=

[
− i

~
Em(t)− 〈m(t)|ṁ(t)〉

]
cm(t) . (589)

This leads to

cm(t) = cm(0)e
iγm(t) exp

− i

~

t∫
0

dt′Em(t
′)

 , (590)

where

γm(t) = i

t∫
0

dt′ 〈m(t′)|ṁ(t′)〉 . (591)

Note that 〈m(t)|ṁ(t)〉 is purely imaginary. Indeed, from 〈m(t)|m(t)〉 = 1 follows

〈m(t)|ṁ(t)〉+ 〈ṁ(t)|m(t)〉 = 0, and, therefore 〈m(t)|ṁ(t)〉∗ = 〈ṁ(t)|m(t)〉 = −〈m(t)|ṁ(t)〉.

Thus, in the adiabatic approximation |cm(t)|2 = |cm(0)|2. There are no transitions between

the levels. If one starts in level |n〉 at t = 0, one always remains in |n(t)〉.

The amplitude of each state cm gets in addition to the dynamical phase θm(t) =

(1/~)
t∫
0

dt′Em(t
′) an additional phase γm(t).
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An alternative justification is to definine

cl(t) = al(t) exp

−
i

~

t∫
0

El(t
′
)dt

′

 . (592)

We obtain

ȧl = −
∑
m

〈l(t)|ṁ(t)〉 am exp

−
i

~

t∫
0

(Em(t
′
) − El(t

′
))dt

′

 (593)

The matrix element 〈l(t)|ṁ(t)〉 is small if the ”velocity” in the parameter space Ṙ(t) is small. In addition, since the energy splittings remain

finite, the factors exp

[
− i

~
t∫
0
(Em(t′) − El(t

′))dt′
]

oscillate quickly if l 6= m. The adiabatic approximation consists in neglecting the terms with

l 6= m. It is a good approximation if

~| 〈l(t)|ṁ(t)〉 | � |Em − El| . (594)

This gives

ȧm = −〈m(t)|ṁ(t)〉 am . (595)

Integrating one obtains

am(t) = exp

−
t∫

0

dt
′
〈
m(t

′
)|ṁ(t

′
)
〉 am(0) = e

iγm(t)
am(0) . (596)

Finally,

cm(t) = cm(0)e
iγm(t)

exp

−
i

~

t∫
0

dt
′
Em(t

′
)

 . (597)

The phase γm has a geometric nature. Indeed

γm(τ) = i

τ∫
0

dt 〈m(t)|ṁ(t)〉 = i

τ∫
0

dt Ṙ(t) · 〈m|∇R |m〉 . (598)

Recall that |m〉 = |m(R)〉. The time can be excluded and we get

γm(τ) = i

R(τ)∫
R(0)

dR · 〈m|∇R |m〉 . (599)

The phase γm(τ) depends, therefore, only on the path in the parameter spate R(t) and not

on how this path was followed in time (as long as it is slow).

The phase γm(τ) is not gauge invariant. Indeed, we could have defined the instantaneous

eigenstates with different phases

|m′(R)〉 = exp [iχm(R)] |m(R)〉 . (600)

This would lead to

γ′m(τ) = i

R(τ)∫
R(0)

dR · 〈m′|∇R |m′〉 = i

R(τ)∫
R(0)

dR ·
[
〈m|∇R |m〉+ i∇R χm

]
(601)

However, for closed path, R(T ) = R(0), and γ′m(T ) = γm(T ).

89



A. Berry phase for spin 1/2

We consider

Ĥ(t) = µBB(t) · σ . (602)

We can always write B(t) = B(t)n(t). Here B is the absolute value of the magnetic field

and n(t) is the unity vector, which gives the direction of the magnetic field. We can use the

spherical coordinates

n(t) = (sin θ(t) cosϕ(t), sin θ(t) sinϕ(t), cos θ(t)) . (603)

The eigenstates of the operator

n · σ =

 cos θ sin θe−iϕ

sin θeiϕ − cos θ

 (604)

can be found

|↑ (n)〉 =

 cos θ
2

eiϕ sin θ
2

 , (605)

|↓ (n)〉 =

 −e−iϕ sin θ
2

cos θ
2

 . (606)

For the geometric (Berry) phase we need

〈↑ (n)|∂t ↑ (n)〉 = iϕ̇ sin2 θ

2
=

1

2
iϕ̇(1− cos θ) . (607)

〈↓ (n)|∂t ↓ (n)〉 = −iϕ̇ sin2 θ

2
= −1

2
iϕ̇(1− cos θ) . (608)

This gives

γ↑/↓(τ) = ∓1

2

τ∫
0

dt ϕ̇(t)(1− cos θ(t)) = ∓1

2

n(τ)∫
n(0)

dϕ (1− cos θ) . (609)

For a closed path we get n(T ) = n(0)

γ↑/↓(T ) = ∓1

2

∮
dϕ (1− cos θ) . (610)

The condition n(T ) = n(0) means θ(T ) = θ(0), ϕ(T ) = ϕ(0)+ 2πN , where N is an integer.

The physical meaning has the difference of the two phases

γ↑(T )− γ↓(T ) = −
∮
dϕ (1− cos θ) . (611)

This is the solid angle encompassed by the trajectory n(t).
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XIII. SCATTERING THEORY

We consider scattering of a particle with mass m on a scatterer described by the potential

V (r). The scatterer is located near the origin r = 0 and the potential V (r) vanished at

|r| → ∞ sufficiently fast (faster than 1/r). The Hamiltonian reads

Ĥ =
p2

2m
+ V (r) . (612)

Since at |r| → ∞ the potential vanished, asymptotically the solution should consist of free

waves.

We look for a solution of the Schrödinger equation[
− ~2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r) . (613)

Since asymptotically the solution is a plane wave with the wave number k we have

E =
~2k2

2m
. (614)

A. Lippmann-Schwinger equation

The Schrödinger equation can be rewritten as follows(
∇2 + k2

)
Ψ(r) =

2m

~2
V (r)Ψ(r) . (615)

On the left side we have the Helmholtz operator and the equation has the structure of the

inhomogeneous Helmholtz equation(
∇2 + k2

)
Ψ(r) = g(r) , (616)

where g(r) = 2m
~2 V (r)Ψ(r). The general solution of this equation is given by

Ψ(r) = Ψ0(r) +

∫
d3r1G(r − r1) g(r1) , (617)

where Ψ0(r) is a solution of the homogeneous equation and G(r) is the Green function

satisfying (
∇2 + k2

)
G(r) = δ(3)(r) . (618)

The Green function is not unique. Indeed, one can add toG(r) a solution of the homogeneous

equation. There are two particular solutions that are very important

G±(r) = − 1

4π

e±ikr

r
, (619)
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where G+ is the retarded Green function and G− is the advanced one. We choose G+

(retarded Green function) since it satisfies the needed boundary conditions as will be shown

below. Namely, it describes scattered waves propagating away from the scatterer. We, thus,

obtain

Ψ(r) = Ψ0(r) +

∫
d3r1G+(r − r1)

2m

~2
V (r1)Ψ(r1) . (620)

This is one of the versions of the Lippmann-Schwinger equation.
The more abstract form is obtained from

(E − H0) |Ψ〉 = V |Ψ〉 . (621)

On the left side we can add an arbitrary eigenstate |Ψ0〉 satisfying (E − H) |Ψ0〉 = 0. Then we get

(E − H0)(|Ψ〉 − |Ψ0〉) = V |Ψ〉 . (622)

Inverting formally we obtain

|Ψ〉 = |Ψ0〉 +
V

E − H0

|Ψ〉 . (623)

The matrix E − H0 cannot actually be inverted. We have to regularize. For example replacing E → E + iε, where ε is infinitesimal and positive,

produces

|Ψ〉 = |Ψ0〉 +
V

E − H0 + iε
|Ψ〉 . (624)

It can be shown that
1

E − H0 + iε
=

2m

~2
G+ . (625)

Further

Ψ(r) = Ψ0(r)−
m

2π~2

∫
d3r1

eik|r−r1|

|r − r1|
V (r1)Ψ(r1) . (626)

The potential V (r1) decays fast for |r1| → ∞. We want to investigate the solution at

|r| � |r1|, where the scattering potential is already negligible. For |r| � |r1| we have

k|r − r1| = k
√

r2 − 2r · r1 + r2
1 = kr

√
1− 2

r2
r · r1 +

r21
r2

= kr

(
1− 1

r2
r · r1 + . . .

)
= kr − k

r

r
· r1 = kr − kn · r1 + . . . , (627)

where

n(θ, ϕ) =
r

r
. (628)

In the denominator of (626) we approximate

1

|r − r1|
=

1

r
+O

(
1

r2

)
. (629)

Thus we obtain

Ψ(r) = eik·r +
eikr

r
fk(n) +O

(
1

r2

)
, (630)
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where

fk(n) = − m

2π~2

∫
d3r1 e

−ikn·r1 V (r1)Ψ(r1) (631)

is the scattering amplitude. For the solution of the homogenous equation we took Ψ0(r) =

eik·r. Frequently, one introduces the wave vector in the direction of scattering k′ ≡ nk

(remember k is the wave vector of the incoming plane wave). The alternative notation is

fk(n) = fk,k′ .

B. Differential cross section

We calculate the current density. We take r to be very large, so that the asymptotic

expression (630) holds:

Ψ(r) = Ψin +Ψsc = eik·r +
eikr

r
fk(n) , (632)

where Ψin = eik·r and Ψsc =
eikr

r
fk(n).

The current density is given by

j =
~

2mi
(Ψ∗ [∇Ψ]− [∇Ψ∗] Ψ) . (633)

For the density of the incoming current we obtain

jin =
~

2mi
(Ψ∗

in [∇Ψin]− [∇Ψ∗
in] Ψin) =

~k
m

. (634)

For the scattering part we get

jsc =
~

2mi
(Ψ∗

sc [∇Ψsc]− [∇Ψ∗
sc] Ψsc) . (635)

We are mostly interested in the projection of the current onto the unit vector n, i.e the

current in the radial direction. We use the following expression for ∇ in the spherical

coordinates:

∇ = er
∂

∂r
+

1

r
eθ

∂

∂θ
+

1

r sin θ
eφ

∂

∂φ
. (636)

Using n = er and n ·∇ = ∂
∂r

= ∂r we obtain

n · jsc =
~

2mi
(Ψ∗

sc [∂rΨsc]− [∂rΨ
∗
sc] Ψsc) . (637)

This gives

n · jsc =
~k
mr2

|fk(n)|2 . (638)
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The differential cross section is defined as

dσ =
Current of scattered particles into solid angle dΩ in direction n

Current density of incoming particles
. (639)

This gives

dσ =
n · jsc r2dΩ

|jin|
= |fk(n)|2 dΩ . (640)

The total cross section is then given by

σ =

∫
dσ =

∫
dΩ |fk(n)|2 . (641)

C. Optical theorem

For simplicity we consider the incoming wave propagating along the z-axis, k ‖ ez. Then,

the scattering direction n = ez (θ = 0 is spherical coordinates) corresponds to forward-

scattering. We calculate the current flowing through the surface of a sphere of radius r. We

take r to be very large, so that the asymptotic expression (630) holds.

As calculated above

jin =
~

2mi
(Ψ∗

in [∇Ψin]− [∇Ψ∗
in] Ψin) =

~k
m

. (642)

Since this current is homogeneous, we obtain

Iin =

∮
r

r2 dΩn · jin = 0 . (643)

For the scattering part we get (see previous subsection)

n · jsc =
~

2mi
(Ψ∗

sc [∂rΨsc]− [∂rΨ
∗
sc] Ψsc) . (644)

This gives

n · jsc =
~k
mr2

|fk(n)|2 . (645)

Finally

Isc =

∮
S

r2 dΩn · jsc =
~k
m

∮
S

dΩ |fk(n)|2 =
~k
m
σ . (646)

We got a results that seemingly contradicts the conservation of current, since the current

through a closed surface does not vanish. In reality we just have to take into account the

interference (mixed) contribution. This reads

jinter =
~

2mi
(Ψ∗

in [∇Ψsc]− [∇Ψ∗
in] Ψsc +Ψ∗

sc [∇Ψin]− [∇Ψ∗
sc] Ψin) . (647)
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Using again n ·∇ = ∂
∂r

= ∂r and Ψin = eikr cos θ we obtain

∂r Ψin = ∂re
ikr cos θ = ik cos θeikr cos θ . (648)

We use also

∂r
eikr

r
=
eikr

r

(
ik − 1

r

)
. (649)

We obtain

n · jinter =
~

2mi

[
eikr(1−cos θ)

r

(
ik(1 + cos θ)− 1

r

)
fk(n)− c.c.

]
. (650)

We have to calculate

Iinter =

∮
S

r2 dΩn · jinter = r2
π∫

0

sin θdθ

∫ 2π

0

dϕn · jinter . (651)

Introducing x ≡ 1− cos θ we get

Iinter =
~r2

2mi

∫ 2π

0

dϕ

2∫
0

dx

[
eikrx

r

(
ik(2− x)− 1

r

)
fk(n)− c.c.

]
. (652)

We expect that for r → ∞ the integral is dominated by contributions near θ = 0,

i.e, x = 0. Assuming fk(n(θ,ϕ)) is a smooth function for θ ≈ 0 we can approximate

fk(n(θ,ϕ)) ≈ fk(θ = 0). We integrate in the interval x ∈ [0, ε], where ε� 1 and obtain

Iεinter ≈ ~r2

2mi
2π

ε∫
0

dx

[
eikrx

r

(
ik(2− x)− 1

r

)
fk(θ = 0)− c.c.

]

≈ ~r2

2mi
2π

ε∫
0

dx

[
eikrx

r

(
2ik − 1

r

)
fk(θ = 0)− c.c.

]

≈ ~r2

2mi
2π

[
eikrε − 1

ikr2

(
2ik − 1

r

)
fk(θ = 0)− c.c.

]
. (653)

Taking the limit r → ∞ we observe that the exponent eikrε will always average out to

zero. This will happen, e.g., if we consider a wave packet and integrate over k (sufficient to

integrate even over a small interval of width ∆k). Thus, the integral is independent of ε and

is given by

Iεinter ≈ −4π~
m

[fk(θ = 0)− f ∗
k(θ = 0)]

2i
= −4π~

m
Im [fk(θ = 0)] . (654)
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Demanding Iin + Isc + Iinter = 0 we obtain the optical theorem, which states that

σ =
4π

k
Im [fk(θ = 0)] . (655)

Since the interference contribution is important only for θ = 0, our results above, which

did not take into account the interference contribution are still correct for θ 6= 0.

D. Spherically symmetric scatterer

If the scattering potential is spherically symmetric, i.e., V (r) = V (r) we can use the

formalism developed for the problem of central potential (VI E 2). There we have seen that

the wave functions with E > 0 (scattering states) can be written as

ψk,l,m(r) = Rk,l(r)Yl,m(θ, φ) , (656)

where Rk,l(r) ≡ uk,l(r)/r. The functions uk,l(r) satisfy the following equation[
− ~2

2m

∂2

∂r2
+

~2l(l + 1)

2mr2
+ V (r)

]
uk,l(r) = E uk,l(r) =

~2k2

2m
uk,l(r) . (657)

The effective potential reads

Veff(r) =
~2l(l + 1)

2mr2
+ V (r) . (658)

1. Asymptotic solution

Since Veff(r → ∞) → 0, the Schrödinger equation (657)[
− ~2

2m

∂2

∂r2
+ Veff(r)

]
uk,l(r) = E uk,l(r) . (659)

becomes asymptotically (at r → ∞) an equation for a free particle

− ~2

2m

∂2

∂r2
uk,l(r) = E uk,l(r) . (660)

This can be trivially solved as uk,l(r) = Ce−ikr + Deikr, where ~k =
√
2mE. The part

∝ e−ikr is the incoming wave and the part ∝ eikr is the reflected wave. Since the wave

function cannot penetrate into the domain r < 0, it must be fully reflected, i.e., |D| = |C|.

We can choose |C| = |D| = 1.
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It is convenient to encode the relative phase between C and D in the scattering phase

shift δl(k), such that for r → ∞

uk,l(r) = 2 sin

(
kr − lπ

2
+ δl(k)

)
. (661)

The phase shift δl(k) depends both on l and on k and might be difficult to calculate. Yet,

assuming we know δl(k), we can express the scattering amplitudes and the cross section

via these phase shifts. The parametrization (661) is chosen so that for V (r) = 0 all the

scattering phases vanish, δl(k) = 0. Indeed, for V (r) = 0 the solutions of the Schrödinger

equation (657) (with the proper boundary conditions at r = 0, i.e., uk,l(r → 0) = 0) are

given by uk,l(r) = r Rk,l(r) ∼ r jl(kr), where jl(x) are the spherical Bessel functions:

jl(x) = (−x)l
(
1

x

d

dx

)l
sinx

x
. (662)

Their asymptotic behavior is given by jl(x) ≈ (1/x) sin(x− lπ/2) for x→ ∞.

The other possible solutions of the Schrödinger equation (657) with V (r) = 0 are given

by uk,l(r) = r Rk,l(r) ∼ r nl(kr), where nl(x) are the spherical Neumann functions:

nl(x) = −(−x)l
(
1

x

d

dx

)l
cosx

x
. (663)

These solutions do not satisfy the boundary condition at r → 0, but are still important for

solving problems where V (r) 6= 0, e.g., near r = 0. The asymptotic behavior of the spherical

Neumann functions is given by nl(x) ≈ −(1/x) cos(x− lπ/2) for x→ ∞.

The solution of the Schrödinger equation (657) with V (r) = 0, which corresponds to the

asymptotic form (661) reads

Rk,l(r) = uk,l(r)/r ∝ 2 [jl(kr) cos δl − nl(kr) sin δl] . (664)

We will use this solution below.

2. Relation between scattering amplitudes and scattering phases

To establish the relation between scattering amplitudes and scattering phases we expand

the scattering state in the basis of ψk,l,m(r). Since the incoming wave is directed along z-axis

and the scattering potential is symmetric, the scattering state should be independent of ϕ.
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In particular, the scattering amplitudes depend only on θ. Thus, only the states with m = 0

should be used. Finally, we recall that Yl,0 ∝ Pl(cos θ). So, we use the Legendre polynomials

Pl(µ) =
1

2ll!

dl

dµl
(µ2 − 1)l (665)

instead of Yl,0. The expansion reads

Ψ(r) =
∑
l

AlPl(cos θ)Rk,l(r) , (666)

where Al are yet unknown coefficients. We should choose the coefficients Al so that asymp-

totically, for r → ∞

Ψ(r) = eikz +
eikr

r
fk(θ) =

∞∑
l=0

AlPl(cos θ)
2 sin

(
kr − lπ

2
+ δl

)
r

. (667)

We use the well-known expansion of the plane wave

eikz = eikr cos θ =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ) , (668)

where jl(x) are the spherical Bessel functions. For r → ∞ the asymptotic expansion reads

eikz ≈ 1

2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)
[
eikr + (−1)l+1e−ikr

]
. (669)

We have used the asymptotic form of the spherical Bessel function jl(x) ≈ (1/x) sin(x−lπ/2)

for x→ ∞.

Comparing the r.h.s. and the l.h.s. of Eq. (667) we obtain

Al =
2l + 1

2k
(i)l eiδl , (670)

and

fk(θ) =
1

2ik

∞∑
l=0

(2l + 1)Pl(cos θ)
[
e2iδl − 1

]
. (671)

Thus, the total scattering amplitude splits into contributions of different ”l-channels”. One

talks about scattering in s-channel (l = 0), p-channel (l = 1) etc.

From this result we can calculate the total cross section. We can either use

σ =

∫
dΩ |fk(n)|2 = 2π

π∫
0

sin θdθ|fk(θ)|2 , (672)
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and, in addition,
π∫
0

sin θdθPl(cos θ)Pl′(cos θ) =
2

2l+1
δl,l′ . Alternatively we can use the optical

theorem

σ =
4π

k
Im [fk(θ = 0)] . (673)

Both ways lead to

σ =
∞∑
l=0

σl =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl . (674)

3. Example: hard sphere

Assume V (r) = ∞ for r ≤ a and V (t) = 0 for r > a. The boundary condition is

Rk,l(r = a) = 0. Thus, using (664) for r > a we immediately find the scattering phases

tan δl =
jl(ka)

nl(ka)
. (675)

For l = 0 we immediately obtain tan δ0 = − tan(ka). An interesting limit is that of scattering

at low energy, i.e., ka � 1. Using the asymptotic properties of jl(x) and nl(x) for x → 0

one can show that

tan δl ∝ (ka)2l+1 � 1 . (676)

This means that scattering in higher l-channels is strongly suppressed. Using (674) we

obtain

σ ≈ σ0 = 4πa2 . (677)

We get a result that is 4× the classical cross section.

E. Born series

If the scattering potential is weak or the energy of the incoming particles is high one can

use the Born series. We start again from the Lippmann-Schwinger equation

Ψ(r) = Ψ0(r) +

∫
d3r1G+(r − r1)

2m

~2
V (r1)Ψ(r1) . (678)

Let us write this symbolically as

Ψ = Ψ0 + G̃+VΨ , (679)
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where G̃+ = 2m
~2 G+. Assuming V is weak, we can iterate. The 0-th iteration is Ψ = Ψ0 (no

scattering). The next iteration reads

Ψ = Ψ0 + G̃+VΨ0 . (680)

This is the 1-st Born approximation. The next iteration (2-nd Born approximation) reads

Ψ = Ψ0 + G̃+V (Ψ0 + G̃+VΨ0) = Ψ0 + G̃+VΨ0 + G̃+V G̃+VΨ0 . (681)

This iteration can be continued and produce the Born series.

Let us write explicitly the result of the 1-st Born approximation:

Ψ(r) = Ψ0(r) +

∫
d3r1G+(r − r1)

2m

~2
V (r1)Ψ0(r1) . (682)

Taking

G+(r) = − 1

4π

eikr

r
, (683)

and

Ψ0 = eik·r , (684)

we get

Ψ(1)(r) = eik·r − m

2π~2

∫
d3r1

eik|r−r1|

|r − r1|
V (r1) e

ik·r1 . (685)

For the scattering amplitude this gives

f
(1)
k (n) = − m

2π~2

∫
d3r1 e

ik·r1 e−ikn·r1 V (r1) . (686)

Introducing k′ ≡ kn we obtain

f
(1)
k,k′ = − m

2π~2

∫
d3r1 e

i(k−k′)·r1 V (r1) = − m

2π~2
Ṽ (k′ − k) . (687)

Here Ṽ (k) is the Fourier image of V (r).

1. Example: Yukawa potential

As an example we consider the Yukawa potential

V (r) =
A

r
e−λr . (688)
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The Fourier image reads

Ṽ (k) =

∫
d3r V (r) e−ikr . (689)

For spherically symmetric potentials we get

Ṽ (k) =

∫
d3r V (r) e−ikr =

∞∫
0

r2dr V (r) 2π

π∫
0

sin θdθ e−ikr cos θ

=

∞∫
0

r2dr V (r) 2π

1∫
−1

dx e−ikrx =

∞∫
0

r2dr V (r)
4π

kr
sin(kr) . (690)

For the Yukawa potential this gives

Ṽ (k) = A

∞∫
0

r2dr
e−λr

r

2π

ikr

(
eikr − e−ikr

)
=

2πA

ik

(
1

λ− ik
− 1

λ+ ik

)
=

4πA

λ2 + k2
. (691)

For the scattering amplitude we need

(k′ − k)2 = 2k2(1− cos θ) =

(
2k sin2 θ

2

)2

. (692)

Thus

f
(1)
k,k′ = − m

2π~2
4πA

λ2 +
(
2k sin2 θ

2

)2 . (693)

The differential cross section reads

dσ

dΩ
= |f (1)

k,k′ |2 =
m2

(2π~2)2
(4πA)2(

λ2 +
(
2k sin2 θ

2

)2)2 =
A2(

4E2
k sin

2 θ
2
+ ~2λ2

2m

)2 . (694)

Here Ek = ~2k2/2m. Interestingly, for λ→ 0 we obtain the Rutherford formula, even though

our theory was not supposed to work for the Coulomb potential.

XIV. QUASI-CLASSICAL APPROXIMATION, WENTZEL-KRAMERS-

BRILLOUIN (WKB) METHOD

This is a very important approximation, which resembles the approximation which leads

from the wave optics to the geometric optics. The main idea is that the phase of the wave

function oscillates fast, e.g., because the energy is much higher than the ground state energy.

We restrict ourselves to 1D. The 1-D Schrödinger equation reads

−~2
∂2ψ(x)

∂x2
= 2m(E − V (x))ψ(x) . (695)
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Ansatz:

ψ(x) = eiS(x)/~ . (696)

We obtain
∂ψ(x)

∂x
=
i

~
∂S

∂x
ψ(x) . (697)

∂2ψ(x)

∂x2
=
i

~
∂2S

∂x2
ψ(x) +

(
i

~
∂S

∂x

)2

ψ(x) . (698)

Substituting into the Schrödinger equation we obtain(
∂S

∂x

)2

− i~
∂2S

∂x2
= 2m(E − V (x)) . (699)

The main idea now is that the second term in the l.h.s. is much smaller than the first term.

That is the phase changes fast, but the rate of its change (the second derivative) is slow.

Since the second term in the l.h.s. is the only one containing ~, one can formally present

this an as expansion in powers of ~ (since ~ is dimension-full, one should be careful):

S = S0 +
~
i
S1 +

(
~
i

)2

S2 + . . . . (700)

Zeroth order: (
∂S0

∂x

)2

= 2m(E − V (x)) . (701)

First order

2
∂S0

∂x

∂S1

∂x
= −∂

2S0

∂x2
. (702)

The zeroth order equation is solved (assuming E > V (x)) by

∂S0

∂x
= ±|p(x)| , (703)

where

|p(x)| ≡
√

2m(E − V (x)) (704)

is the absolute value of the classical momentum. This gives

S0(x) = ±
x∫

a

|p(x′)| dx′ . (705)

The lower integration limit is for now arbitrary, but the whole interval [a, x] should be in

the allowed domain, i.e., E > V (x).
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The WKB expansion is justified if∣∣∣∣i~ ∂2S0

∂x2

∣∣∣∣� ∣∣∣∣∂S0

∂x

∣∣∣∣2 →
∣∣∣∣~dpdx

∣∣∣∣� ∣∣p2∣∣ . (706)

In terms of the de Broglie wave length λ(x) = 2π~
|p| this means∣∣∣∣dλ(x)dx

∣∣∣∣� 2π . (707)

This condition means that de Broglie wave length does not change much on its own scale.

For S1(x) we get

∂S1

∂x
= −1

2

∂2S0

∂x2

∂S0

∂x

= −1

2

∂

∂x
log

[
∂S0

∂x

]
= −1

2

∂

∂x
log |p(x)| . (708)

We further obtain

S1(x) = −1

2
log |p(x)|+ const. . (709)

Thus

e
i
~

(
~
i

)
S1 = eS1 =

C√
|p|

. (710)

For the wave function we obtain

ψ(x) =
C1√
|p(x)|

e
i
~

x∫
a
|p(x′)|dx′

+
C2√
|p(x)|

e
− i

~

x∫
a
|p(x′)|dx′

. (711)

The quasi-classical expansion (700) works formally also for E < V (x), i.e., in the classi-

cally forbidden region. There we obtain

∂S0

∂x
= ±i

√
2m(V (x)− E) = ±i|p(x)| , (712)

where now |p(x)| =
√

2m(V (x)− E). We obtain again

S1(x) = −1

2
log |p(x)|+ const. . (713)

and the most general solution reads

ψ(x) =
D1√
|p(x)|

e
1
~

x∫
a
|p(x′)|dx′

+
D2√
|p(x)|

e
− 1

~

x∫
a
|p(x′)|dx′

. (714)

Now, the whole interval [a, x] should be in the forbidden region.
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Consider now a turning point x = a, where V (a) = E. Assume that right of this point

there is a forbidden region and left of this point there is an allowed region. That is

V (x) > E for x > a ,

V (x) < E for x < a . (715)

If the forbidden region extends from a to +∞, only the decaying solution is allowed for

x > a:

ψ(x) =
D√
|p(x)|

e
− 1

~

x∫
a
|p(x′)|dx′

. (716)

To find the corresponding solution in the allowed region x < a one can either solve the

problem exactly near x = a or use another trick of going around the point x = 0 in the

complex plain of x (Landau & Lifschitz). The result reads C1 = Deiπ/4 and C2 = De−iπ/4.

Thus, the wave function for x < 0 reads

ψ(x) =
Deiπ/4√
|p(x)|

e
i
~

x∫
a
|p(x′)|dx′

+
De−iπ/4√
|p(x)|

e
− i

~

x∫
a
|p(x′)|dx′

=
2D√
|p(x)|

cos

1

~

x∫
a

|p(x′)|dx′ + π

4

 . (717)

Similarly, if the turning point is such that

V (x) > E for x < b ,

V (x) < E for x > b , (718)

and the forbidden region extends to x = −∞ we obtain for x < b

ψ(x) =
G√
|p(x)|

e
1
~

x∫
b

|p(x′)|dx′

. (719)

For x > b we get

ψ(x) =
Ge−iπ/4√
|p(x)|

e
i
~

x∫
b

|p(x′)|dx′

+
Geiπ/4√
|p(x)|

e
− i

~

x∫
b

|p(x′)|dx′

=
2G√
|p(x)|

cos

1

~

x∫
b

|p(x′)|dx′ − π

4

 . (720)

Assume now the allowed region is between b and a > b and the forbidden regions are

from −∞ to b and from a to ∞. Then, comparing the two solutions in the middle interval
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[b, a] we obtain

Deiπ/4 = Ge−iπ/4e
i
~

a∫
b

|p(x′)|dx′

, (721)

De−iπ/4 = Geiπ/4e
− i

~

a∫
b

|p(x′)|dx′

. (722)

This gives the Bohr-Sommerfeld quantization condition

1

~

∮
|p(x)|dx = 2π

(
n+

1

2

)
. (723)

1. Boundary condition

Consider the point x = a, where the forbidden region is to the right of a. Near x = a we

can expand

V (x) = V (a)− Fa(x− a) = E − Fa(x− a) , (724)

where Fa = −∂V/∂x|a is the force. In our case Fa < 0.

One way is just to solve exactly the Schrödinger equation near x = a:

−~2
∂2ψ(x)

∂x2
= [2mFa] (x− a)ψ(x) . (725)

The solution is known and is given by the so-called Airy function.

An alternative way it to try to go around the point x = a in the complex plane. The

idea is always to keep far enough from x = a so that the quasi-classical solutions hold. For

x > a we have |p(x)| =
√

2m|Fa|(x− a) and

x∫
a

|p(x′)|dx′ = (2/3)
√

2m|Fa|(x− a)3/2 . (726)

For the wave function at x > 0 (far enough from the turning point) we obtain

ψ(x) =
D

(2m|Fa|)1/4
1

(x− a)1/4
e−(2/3)

√
2m|Fa|(x−a)3/2 . (727)

Introduce z = x− a = ρeiϕ and consider z in the complex plane around z = 0. The positive

direction x > a corresponds to ϕ = 0. We get

ψ(x) =
D

(2m|Fa|)1/4
1

z1/4
e−Az3/2 =

1

ρ1/4eiϕ/4
exp

[
−Aρ3/2ei3ϕ/2

]
. (728)

Here A = (2/3)
√

2m|Fa|.

105



If we go around in the upper half plane, i.e., we follow the path ϕ = 0 → ϕ = π the wave

functions at x < a becomes
D

(2m|Fa|)1/4
e−iπ/4

ρ1/4
exp

[
−A iρ3/2

]
. (729)

This corresponds to the term C2 of (711). Thus we obtain C2 = De−iπ/4.

If we go around in the lower half plane, i.e., we follow the path ϕ = 0 → ϕ = −π the

wave functions at x < a becomes
D

(2m|Fa|)1/4
eiπ/4

ρ1/4
exp

[
A iρ3/2

]
. (730)

This corresponds to the term C1 of (711). Thus we obtain C1 = Deiπ/4.

Why do we ”loose” one of the components in each of the ways? This is explained by the

so called Stokes phenomenon.

2. Stokes phenomenon

Consider the differential equation
d2u(z)

dz2
= zu(z) . (731)

One of its solutions is the Airy function Ai(x):

Ai(z) =
1

2π

∞∫
−∞

exp

[
i

(
zt+

t3

3

)]
dt . (732)

Airy function is an entire function, i.e., it is analytical (holomorphic) in the whole complex

plane. Asymptotically, for |z| → ∞, one can use the WKB method and get the two solutions

u± =
1

z1/4
exp

[
±2

3
z3/2

]
. (733)

These functions are not single valued. Once the argument of z makes a 2π rotation the

functions u±(z) are modified. Therefore, a simple asymptotic formula Ai(z) = C+u+(z) +

C−u−(z) cannot be correct for all z such that |z| → ∞. The coefficients C± should change

(possibly jump) as the argument of z changes. The actual asymptotic expressions for Ai(x)

for real x are

Ai(x) ≈ 1

2
√
π

e−2/3x3/2

x1/4
for x→ +∞ , (734)

Ai(x) ≈ 1√
π

sin
(
2
3
(−x)3/2 + π

4

)
(−x)1/4

for x→ −∞ . (735)
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Appendix A: ∇ and ∇2 in spherical coordinates

The spherical coordinates are defined via

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ . (A1)

Evidently r ∈ [0,+∞], θ ∈ [0, π], and φ ∈ [0, 2π]. The inverse relations read

r =
√
x2 + y2 + z2,

cos θ =
z

r
,

tanφ =
y

x
. (A2)

The last relation does not define φ unambiguously. If x > 0 and y > 0 the angle φ should

be taken from the quadrant φ ∈ [0, π/2] etc.. We calculate, first, the components of ∇ =

(∂/∂x, ∂/∂y, ∂/∂z):

1) x-component:
∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ
. (A3)

We get
∂r

∂x
=
x

r
= sin θ cosφ . (A4)

From
∂ cos θ

∂x
= − sin θ

∂θ

∂x
= − z

r2
∂r

∂x
= −xz

r3
= −cosφ sin θ cos θ

r
(A5)

we obtain
∂θ

∂x
=

cosφ cos θ

r
. (A6)

From
∂ tanφ

∂x
=

1

cos2 φ

∂φ

∂x
= − y

x2
= − sinφ

r sin θ cosφ2
(A7)

we obtain
∂φ

∂x
= − sinφ

r sin θ
. (A8)

We collect
∂

∂x
= sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
. (A9)
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2) y-component:
∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ
. (A10)

We get
∂r

∂y
=
y

r
= sin θ sinφ . (A11)

From
∂ cos θ

∂y
= − sin θ

∂θ

∂y
= − z

r2
∂r

∂y
= −yz

r3
= −sinφ sin θ cos θ

r
(A12)

we obtain
∂θ

∂y
=

sinφ cos θ

r
. (A13)

From
∂ tanφ

∂y
=

1

cos2 φ

∂φ

∂y
=

1

x
=

1

r sin θ cosφ
(A14)

we obtain
∂φ

∂y
=

cosφ

r sin θ
. (A15)

We collect
∂

∂y
= sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ
. (A16)

3) z-component:
∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ
. (A17)

We get
∂r

∂z
=
z

r
= cos θ . (A18)

From
∂ cos θ

∂z
= − sin θ

∂θ

∂z
= − z

r2
∂r

∂z
+

1

r
= −z

2

r3
+

1

r
=

sin2 θ

r
(A19)

we obtain
∂θ

∂z
= −sin θ

r
. (A20)

From
∂ tanφ

∂z
=

1

cos2 φ

∂φ

∂z
= 0 (A21)

we obtain
∂φ

∂z
= 0 . (A22)

We collect
∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (A23)
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4) We calculate

∇2 =

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)2

+

(
sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)2

+

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)2

. (A24)

It is easy to collect terms that contain two derivatives, i.e., the derivatives do not act on the

coefficients. Among these only diagonal terms survive. These are
∂2

∂r2
+

1

r2
∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂φ2
. (A25)

Next we examine the terms in which one of the derivatives acts on the coefficients and only

one remains. Among the diagonal terms no such combinations survive. From the mixed

terms of the type ∂θ . . . ∂r we get the contribution
1

r

∂

∂r
. (A26)

Another such contribution comes from the mixed terms of the type ∂φ . . . ∂r. Finally, the

mixed terms of the type ∂φ . . . ∂θ produce
1

r2
cos θ

sin θ

∂

∂θ
. (A27)

Adding all terms we get

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

1

r2
cos θ

sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

=
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (A28)

Appendix B: Components of the angular momentum in spherical coordinates, op-

erator L̂2

We start with L̂z:

L̂z = x̂p̂y − ŷp̂x = −i~
(
x
∂

∂y
− y

∂

∂x

)
= − i~

[
r sin θ cosφ

(
sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)
− r sin θ sinφ

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)]
= − i~

∂

∂φ
. (B1)
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Next is L̂x:

L̂x = ŷp̂z − ẑp̂y = −i~
(
y
∂

∂z
− z

∂

∂y

)
= − i~

[
r sin θ sinφ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
− r cos θ

(
sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)]
= i~

[
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

]
. (B2)

Finally is L̂y:

L̂y = ẑp̂x − x̂p̂z = −i~
(
z
∂

∂x
− x

∂

∂z

)
= − i~

[
r cos θ

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)
− r sin θ cosφ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)]
= i~

[
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

]
. (B3)

For the operator L̂2 we, thus, obtain

L̂2 = −~2
[(

∂

∂φ

)2

+

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)2

+

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)2
]
.

(B4)

We, first, collect the terms with two derivatives, i.e., those where the derivatives do not act

on the coefficients. These are

−~2
[
∂2

∂φ2
+ cot2 θ

∂2

∂φ2
+

∂2

∂θ2

]
= −~2

[
1

sin2 θ

∂2

∂φ2
+

∂2

∂θ2

]
. (B5)

In the combinations ∂φ . . . ∂θ there are contributions where ∂φ acts on the coefficients. These

give

−~2
[
cot θ

∂

∂θ

]
. (B6)

Altogether we get

L̂2 = −~2
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]
. (B7)

We can now see that

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
=

∂2

∂r2
+

2

r

∂

∂r
− L̂2

~2r2
. (B8)
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Appendix C: Local basis in spherical coordinates, ∇ in local basis and ∇2

It is a bit more elegant to use the local basis. This can be defined using again the relations

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ . (C1)

An infinitesimal differential of r = (x, y, z) can be written as

dr =
∂r

∂r
dr +

∂r

∂θ
dθ +

∂r

∂φ
dφ . (C2)

We obtain
∂r

∂r
= (sin θ cosφ, sin θ sinφ, cos θ) . (C3)

This vector is normalized, thus we call it

er = (sin θ cosφ, sin θ sinφ, cos θ) . (C4)

Next
∂r

∂θ
= r(cos θ cosφ, cos θ sinφ,− sin θ) . (C5)

Since |∂r
∂θ
| = r we normalize it and introduce

eθ = (cos θ cosφ, cos θ sinφ,− sin θ) . (C6)

Finally,
∂r

∂φ
= r(− sin θ sinφ, sin θ cosφ, 0) . (C7)

For the norm we obtain | ∂r
∂φ
| = r sin θ. We normalize and introduce a unit length vector

eφ = (− sinφ, cosφ, 0) . (C8)

For the differential we obtain

dr = erdr + reθdθ + r sin θeφdφ . (C9)

The basis er, eθ, eφ is orthonormal. We rewrite the expressions for er, eθ, eφ as

er = sin θ cosφ ex + sin θ sinφ ey + cos θ ez ,

eθ = cos θ cosφ ex + cos θ sinφ ey − sin θ ez ,

eφ = − sinφ ex + cosφ ey . (C10)
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In the matrix form this looks like
er

eθ

eφ

 =


sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0




ex

ey

ez

 . (C11)

We invert this relation. The matrix above is orthogonal, thus to invert it we just have to

transpose: 
ex

ey

ez

 =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0




er

eθ

eφ

 . (C12)

We are now in a position to calculate the operator ∇ in spherical coordinates. We use

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(C13)

and substitute (C12) as well as the relations (A9,A16,A23) obtained above and provided

below for clarity

∂

∂x
= sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
. (C14)

∂

∂y
= sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ
. (C15)

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (C16)

Collecting the terms we obtain

∇ = er
∂

∂r
+

1

r
eθ

∂

∂θ
+

1

r sin θ
eφ

∂

∂φ
. (C17)

We now attempt to calculate ∇2:

∇2 =

(
er

∂

∂r
+

1

r
eθ

∂

∂θ
+

1

r sin θ
eφ

∂

∂φ

)(
er

∂

∂r
+

1

r
eθ

∂

∂θ
+

1

r sin θ
eφ

∂

∂φ

)
. (C18)

The problem is that the operators in the left brackets acts also on the coefficients and the

unit vectors er(θ, φ), eθ(θ, φ), eφ(θ, φ) in the right bracket. First we collect the terms with

second derivatives, i.e., those where the derivatives in the left bracket do not act on the

coefficients or the unit vectors in the right bracket. These are

∂2

∂r2
+

1

r2
∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂φ2
. (C19)
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To get the terms with one derivative we use (C11) and obtain
∂er
∂θ

= eθ ,
∂eθ
∂θ

= −er ,
∂eφ
∂θ

= 0 . (C20)

∂er
∂φ

= sin θ eφ ,
∂eθ
∂φ

= cos θ eφ ,
∂eφ
∂φ

= − sin θ er − cos θ eθ . (C21)

From the combination ∂θ . . . ∂r we get
1

r

∂

∂r
. (C22)

The same we obtain from ∂φ . . . ∂r. Finally, from ∂φ . . . ∂θ we get
1

r2
cos θ

sin θ

∂

∂θ
. (C23)

Collecting we obtain again

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (C24)

Appendix D: Mutual basis of eigenstates of two commuting Hermitian operators

Consider two Hermitian operators Â and B̂, such that [A,B] = 0. Consider an eigenstate

|ψn〉 of Â, so that Â |ψn〉 = an |ψn〉. If ψn is not degenerate, then from

ÂB̂ |ψn〉 = B̂Â |ψn〉 = anB̂ |ψn〉 (D1)

it follows that B̂ |ψn〉 is an eigenvector of Â with eigenvalue an. Since there is only one such

eigenvector, we have B̂ |ψn〉 ∝ |ψn〉. Thus, |ψn〉 is also an eigenvector of B̂.

Assume now that there are several eigenstates of Â with the same eigenvalue an. We will

call these states |ψn,m〉. The index m ∈ [1, 2, . . .M ], where M is the degree of degeneracy.

We have Â |ψn,m〉 = an |ψn,m〉 for all m. From

ÂB̂ |ψn,m〉 = B̂Â |ψn,m〉 = anB̂ |ψn,m〉 (D2)

we conclude that B̂ |ψn,m〉 belongs to the subspace spanned by the degenerate eigenvectors

|ψn,m〉. That is

B̂ |ψn,m〉 =
∑
k

Cmk |ψn,k〉 with Cmk = 〈ψn,k| B̂ |ψn,m〉 = C∗
km . (D3)

Matrix Cmk represents the operator B̂ in the M -dimentional subspace |ψn,m〉. It is Hermitian

and can be diagonalized, i.e. it has M eigenvectors in this subspace. These are, thus, mutual

eigenvectors of Â and B̂.

113



Appendix E: General formulas for Yl,m

The spherical functions Yl,m are, in general, given by

Yl,m(θ, φ) = (−1)
m+|m|

2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ) eimφ . (E1)

Here

Pm
l (µ) ≡ (1− µ2)m/2 d

mPl(µ)

dµm
(E2)

are the associated Legendre polynomials (for m ≥ 0) and

Pl(µ) =
1

2ll!

dl

dµl
(µ2 − 1)l (E3)

are the Legendre polynomials.

Here are several examples

Y0,0 =
1√
4π

, Y1,0 =

√
3

4π
cos θ , Y1,1 = −

√
3

8π
cos θ eiφ . (E4)

Y2,0 =

√
5

16π
(3 cos2 θ − 1) , Y2,1 = −

√
15

8π
sin θ cos θ eiφ , Y2,2 =

√
15

32π
sin2 θ e2iφ .

(E5)

For m < 0 one can use

Yl,−m = (−1)mY ∗
l,m . (E6)

Appendix F: Radial functions Rn,l(r)

The radial functions are expressed using the associated Laguerre polynomials. See Schw-

abl. Here are several examples for low values of n:

R1,0(r) = 2

(
Z

a0

)3/2

e−Zr/a0 . (F1)

R2,0(r) = 2

(
Z

2a0

)3/2 (
1− Zr

2a0

)
e−Zr/2a0 . (F2)

R2,1(r) =
2√
3

(
Z

2a0

)3/2 (
Zr

2a0

)
e−Zr/2a0 . (F3)

[1] One can choose the numbers from any field F . Then the vector space is said to be a vector

space over the field F .
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[2] The full mathematical definition of a vector space includes also 1) the existence of a zero vector

0 such that for any v one has v + 0 = v; 2) the existence of an additive inverse (−v) for each

v, such that (−v) + v = 0; 3) associativity: (v + u) + w = v + (u + w); 4) distributivity

c(v + u) = cv + cu etc.

[3] Strictly speaking, for unbounded operators in infinite-dimensional Hilbert spaces, one should

take care of the domains in which Â and Â† are defined. We will not address this problem here.

[4] Strictly, our consideration here is valid for bounded operators.
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