KIT

Quantenmechanik I SS 11

Prof. U. Nierste Dr. M. Wiebusch Übungsblatt 5 Abgabe 20.05.2011 Besprechung 25.05.2011

Name: Matrikel-Nr: Gruppe:

(Bitte Ausfüllen und an die Lösung heften.)

Aufgabe 8: Gauß'sche Wellenpakete

(10 Punkte)

Betrachten Sie die Wellenfunktion

$$\psi_b(x) = [\pi b^2]^{-1/4} \exp\left[-\frac{x^2}{2b^2}\right] , \quad b > 0 .$$

- a) Zeichnen Sie $\psi_b(x)$ für b = 1 cm und b = 5 cm. Berechnen Sie $\langle \psi | \psi \rangle$. (2 Punkte)
- b) Berechnen Sie $\langle \psi_b | X | \psi_b \rangle$ und die Ortsunschärfe ΔX im Zustand ψ_b . (2 Punkte)
- c) Berechnen Sie die Fouriertransformation $\mathcal{F}\psi_b(\frac{p}{\hbar})$ gemäß der Definition aus Aufgabe 6. Was fällt Ihnen auf? (1 Punkt)
- d) Berechnen Sie $\langle \psi_b | P | \psi_b \rangle$ für den Impulsoperator P aus Aufgabe 7. Berechnen Sie auch die Impulsunschärfe ΔP und das Unschärfeprodukt $\Delta X \Delta P$ im Zustand ψ_b . (Hinweis: Benutzen Sie $\mathcal{F}P\mathcal{F}^{-1}\psi(\frac{p}{\hbar}) = p\psi(\frac{p}{\hbar})$.) (1 Punkt)
- e) Die kinetische Energie eines (nichtrelativistischen) Elektrons mit Masse m wird durch den Operator

 $H_{\rm kin} = \frac{P^2}{2m}$

beschrieben. Berechnen Sie den Erwartungswert der kinetischen Energie, $\langle E_{\rm kin} \rangle = \langle \psi_b | H_{\rm kin} | \psi_b \rangle$. Berechnen Sie die Unschärfe der kinetischen Energie, $\Delta E_{\rm kin} = [\langle \psi_b | H^2 | \psi_b \rangle - \langle E_{\rm kin} \rangle^2]^{1/2}$, im Zustand ψ_b . Was passiert mit $\langle E_{\rm kin} \rangle$ und $\Delta E_{\rm kin}$, wenn wir das Elektron immer weiter lokalisieren, also b immer kleiner wählen? (2 Punkte)

f) Die nichtrelativistische Näherung bricht ungefähr dann zusammen, wenn $\langle E_{\rm kin} \rangle = mc^2$ ist. Geben Sie den Wert $b_{\rm krit}$ an, bei dem dies der Fall ist. Aus der relativistischen Beziehung

 $E = \sqrt{m^2c^4 + p^2c^2} = mc^2 + \frac{p^2}{2m} - \frac{p^4}{8m^3c^2} + \dots$

verschaffen wir uns den Operator der relativistischen Korrektur, $H_{\rm kin}^{\rm rel} = -P^4/(8m^3c^2)$. Berechnen Sie $\langle E_{\rm kin}^{\rm rel} \rangle = \langle \psi_b | H_{\rm kin}^{\rm rel} | \psi_b \rangle$ und zeichnen Sie (im selben Koordinatensystem) $\langle E_{\rm kin} \rangle / (mc^2)$ und $\langle E_{\rm kin} \rangle + E_{\rm kin}^{\rm rel} \rangle / (mc^2)$ als Funktion von $b/b_{\rm krit}$. (2 Punkte)

Hinweis: Zur Berechnung von Integralen der Form $\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\alpha x^2}$ mit $\alpha > 0$ und $n \in \mathbb{N}$ berechnen Sie zunächst $\int_{-\infty}^{\infty} dx \, e^{-\alpha x^2}$ und differenzieren Sie dann nach α .

Aufgabe 9: Elektron im Potenzialtopf

(10 Punkte)

Betrachten Sie ein Potenzial, das für |x| > a unendlich groß ist und für $-a \le x \le a$ verschwindet. Die Elektron-Wellenfunktion $\psi(x)$ muss dann für $|x| \ge a$ verschwinden; insbesondere ist also $\psi(-a) = \psi(a) = 0$.

a) Bestimmen Sie aus dem Hamiltonoperator $H = \frac{P^2}{2m}$ die Energie-Eigenwerte E_n und die zugehörigen normierten Eigenfunktionen $\psi_n(x)$ in der Ortsdarstellung. Dazu müssen Sie die Gleichung

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi_n(x) = E_n\psi_n(x)$$

unter Beachtung der Randbedingung $\psi_n(-a) = \psi_n(a) = 0$ lösen. (2 Punkte)

b) Prüfen Sie explizit nach, ob die Orthonormalitätsbedingung

$$\int_{-a}^{a} dx \, \psi_k^*(x) \psi_l(x) = \delta_{kl}$$

erfüllt ist. (2 Punkte)

- c) Berechnen Sie $\langle X \rangle$ und die Ortsunschärfe ΔX für alle ψ_n . (2 Punkte)
- d) Beweisen Sie, dass der Impulsoperator P hermitesch ist, indem Sie zeigen, dass $\langle \chi | P \psi \rangle = \langle P \chi | \psi \rangle$ für alle $| \psi \rangle$ erfüllt ist, die die Randbedingung $\psi(-a) = \psi(a) = 0$ erfüllen. (1 Punkt)
- e) Berechnen Sie $\langle P \rangle$ und die Impulsunschärfe ΔP für alle ψ_n . Geben Sie auch die Unschärfeprodukte $(\Delta X)(\Delta P)$ an. (2 Punkte)
- f) Zeigen Sie, dass P überhaupt keine Eigenfunktionen hat, die $\psi(-a) = \psi(a) = 0$ erfüllen, obwohl P hermitesch ist! Welche mathematische Ursache hat das? Welchen physikalischen Grund hat die Abwesenheit von Impulseigenfunktionen? (Hinweis: Leiten Sie aus der Heisenbergschen Unschärferelation eine untere Grenze an ΔP ab.) (1 Punkt)