ÜBUNGEN ZUR MODERNEN THEORETISCHEN PHYSIK I

BLATT 6

Prof. Dr. J. Kühn (Theoretische Teilchenphysik)

Abgabe: Dienstag, 29.05.2012, 11:30 Uhr Besprechung: Mittwoch, 30.05.2012

Dr. P. Marquard (Theoretische Teilchenphysik)

Aufgabe 1: Virialsatz 6 Punkte

Gegeben sei der (eindimensionale) Hamiltonoperator $H=\frac{P_x^2}{2m}+V(X)$. Zeigen Sie, dass für einen stationären Zustand $\frac{d}{dt}\langle XP_x\rangle=0$ gilt, und leiten Sie daraus den Virialsatz

$$\frac{i}{\hbar} \langle X[P_x, V(X)] \rangle = 2 \left\langle \frac{P_x^2}{2m} \right\rangle$$

her. Benutzen Sie hierzu $\frac{d\langle A \rangle}{dt} = \frac{i}{\hbar} \langle [H,A] \rangle + \langle \frac{\partial}{\partial t} A \rangle$ für $A = X P_x$. Was erhalten Sie für $V(x) = \lambda x^n$ und speziell für n=2?

Aufgabe 2: Harmonischer Oszillator I

7 Punkte

Für den linearen harmonischen Oszillator mit den Energie-Eigenzuständen $|\Phi_n\rangle$ sind mit Hilfe der Operatoren a und a^{\dagger} die folgenden Größen zu berechnen:

- a) die Matrixelemente $\langle \Phi_m | X | \Phi_n \rangle$ und $\langle \Phi_m | P | \Phi_n \rangle$,
- b) das Produkt $(\Delta x)(\Delta p)$ mit

$$(\Delta x)^2 = \langle \Phi_n | X^2 | \Phi_n \rangle - (\langle \Phi_n | X | \Phi_n \rangle)^2$$

und analog für $(\Delta p)^2$,

c) die Erwartungswerte der potentiellen und kinetischen Energie für die Zustände $|\Phi_n\rangle$. Vergleichen Sie das Resultat mit dem von Aufgabe 1.

Aufgabe 3: Harmonischer Oszillator II

7 Punkte

Betrachten Sie einen harmonischen Oszillator der Masse m und Frequenz ω . Sein Zustand sei zur Zeit t=0 durch

$$|\Psi(0)\rangle = \sum_{n} c_n |\Phi_n\rangle$$

gegeben, wobei die $|\Phi_n\rangle$ stationäre Zustände zu den Energien $(n+1/2)\hbar\omega$ sind.

- a) Wie groß ist die Wahrscheinlichkeit P, dass eine Energiemessung zu einer beliebigen Zeit t>0 einen Wert größer $2\hbar\omega$ liefert? Geben Sie im Falle P=0 die nichtverschwindenden Koeffizienten c_n an.
- b) Für den Rest der Aufgabe seien nur c_0 und c_1 ungleich Null angenommen (auch für Teil c) und d)). Geben Sie Normierungsbedingung für $|\Psi(0)\rangle$ und den Erwartungswert der Energie $\langle H \rangle$ als Funktion von c_0 und c_1 an. Berechnen Sie $|c_0|^2$ und $|c_1|^2$ unter der Annahme, dass $\langle H \rangle = \hbar \omega$ ist.
- c) Im Folgenden sei $c_0>0$ angenommen. Dadurch wird der Phasenfaktor des normierten Zustands $|\Psi(0)\rangle$ festgelegt. Des Weiteren sei $\langle H\rangle=\hbar\omega$ und $\langle x\rangle=\frac{1}{2}\sqrt{\frac{\hbar}{m\omega}}$. Berechnen Sie dann den Wert für θ_1 in $c_1=|c_1|\exp(i\theta_1)$.
- *d*) Berechnen Sie mit dem so festgelegten $|\Psi(0)\rangle$ den Zustand $|\Psi(t)\rangle$ für t>0 und bestimmen Sie den Wert für θ_1 zur Zeit t. Was ist der Erwartungswert von $\langle x \rangle(t)$ zur Zeit t?